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ANATOMY OF A YOUNG GIANT
COMPONENT IN THE RANDOM GRAPH
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ABSTRACT. We provide a complete description of the giant component

of the Erdds-Rényi random graph G(n,p) as soon as it emerges from the

3

scaling window, i.e., for p = (1 4 €)/n where e°n — oo and € = o(1).

Our description is particularly simple for ¢ = o(n71/4), where the
giant component C; is contiguous with the following model (i.e., every

graph property that holds with high probability for this model also holds

w.h.p. for C1). Let Z be normal with mean %5371 and variance &2

let K be a random 3-regular graph on 2| Z| vertices. Replace each edge

n, and

of I by a path, where the path lengths are i.i.d. geometric with mean
1/e. Finally, attach an independent Poisson(1 — ¢)-Galton-Watson tree
to each vertex.

A similar picture is obtained for larger € = o(1), in which case the

random 3-regular graph is replaced by a random graph with N}, vertices

of degree k for k > 3, where N has mean and variance of order ckn.

This description enables us to determine fundamental characteristics
of the supercritical random graph. Namely, we can infer the asymptotics
of the diameter of the giant component for any rate of decay of ¢, as
well as the mixing time of the random walk on C;.

1. INTRODUCTION

The Erdés and Rényi random graph G(n,p) has been studied extensively
since its introduction in 1959 [15]. Much of the analysis of this fundamental
random graph model has focused on its behavior near the critical point
p = 1/n. Nevertheless, a few key features, such as the diameter and the
mixing time of the random walk on the largest component, have remained
unknown in a regime just beyond criticality.

In their seminal papers from the 1960’s, Erd6s and Rényi established a
phenomenon known as the double jump. For p = ¢/n where ¢ < 1 is fixed,
the largest component C; has size O(logn) with high probability (w.h.p.).
When ¢ > 1, the size of C; is linear in n, and at the critical ¢ = 1 it has order
n?/3 (this latter fact was fully established much later by Bollobés [10] and
Luczak [24]). As discovered in [10], the critical behavior extends throughout
the critical window, the regime where p = (1 £¢)/n for e = O(n=/3).
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Up to the critical point, the structure of C; is relatively well understood.
For instance, in the fully subcritical regime (p = (1 —¢)/n for € > 0 fixed),
C is a tree of known (logarithmic) size and diameter. In the critical window
(e = O(n~1/3) the distribution of |C;| was determined in [1,26], and the
diameter was found in [28]. See [9,19] for further information.

In the supercritical regime (p = (1 4 ¢)/n with e3n — o), a variety of
methods can determine key features of C; up to some continuous functions
of e. While these functions remain bounded in the fully supercritical case
(e > 0 fixed), the situation becomes much more delicate as ¢ approaches the
critical window.

For example, one can deduce that the diameter of the fully supercritical
C1 has order log n merely by analyzing certain (weak) expansion properties
of its 2-core (formally defined in Section 2). More precise results on the
diameter were obtained in [27,32], but they still do not give the asymptotic
diameter in the whole supercritical regime.

In the fully supercritical case, it is known that the giant component con-
sists of an expander, “decorated” using paths and trees of at most logarith-
mic size (see [6] for a concrete example of such a statement, used there to
obtain the order of the mixing time on the fully supercritical C;). However,
the existing decompositions of the giant component are not precise enough
to handle the case where ¢ — 0 (e.g., in [32] Riordan and Wormald point
out that this is the most difficult regime for determining the diameter).

In this work, we obtain a complete characterization of the supercritical
giant component. Rather than merely describing its properties, we present
a simple construction whose distribution is contiguous with that of C;. This
construction is particularly elegant when the giant component is “young”,
namely when & = o(n~'/4). Since this is the hardest regime for alternative
approaches, we start by describing this special case.

Let N (i, 0?) denote the normal distribution with mean y and variance o2,
and let Geom(e) denote the geometric distribution with mean 1/e.

Theorem 1. Let Cy be the largest component of the random graph G(n,p)

forp = %, where €3n — oo and € = o(n_1/4). Then Cy is contiguous to
the model C1, constructed in 3 steps as follows:

1. Let Z ~ N (%6371,6371), and select a random 3-reqular multigraph IC on

N =2|Z]| vertices.
2. Replace each edge of IC by a path, where the path lengths are i.i.d. Geom(e).
3. Attach an independent Poisson (1 — ¢)-Galton- Watson tree to each vertex.

That is, P(C, € A) — 0 implies P(C, € A) — 0 for any set of graphs A.

In the above, a Poisson(u)-Galton-Watson tree is the family tree of a
Galton-Watson branching process with offspring distribution Poisson(pu).
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Two well-known objects relevant to the study of the giant component
are its 2-core C§2)
subgraph where all degrees are at least 2. The kernel is obtained from the
2-core by replacing every maximal 2-path by an edge (where a 2-path is a
path where all internal vertices have degree 2). Note that our description
of C; constructs the kernel in Step 1, the 2-core in Step 2 and the entire
component C; in Step 3.

The above theorem not only states that the kernel of C; in this regime
is an expander, but it is in fact contiguous to a random 3-regular graph,
an object whose expansion properties are well understood (cf., e.g., [18]).

and its kernel IC. The 2-core of a graph is its maximum

Furthermore, the 2-core is obtained from the kernel by a simple operation
(“stretching” the edges into paths of lengths i.i.d. geometric with mean 1/¢).
This allows us to pinpoint the expansion properties of the 2-core and their
dependence on ¢ as it tends to 0.

A few known (yet nontrivial) properties of the 2-core of C; can be imme-
diately read off from Theorem 1. For instance, w.h.p. the 2-core contains
(2+0(1))e%n vertices while the kernel has (3 +0(1))e%n vertices (see [25,31]).
As there are w.h.p. (2 + 0(1))e3n edges in the kernel, a simple estimate of
the maximum of i.i.d. geometric variables gives the following corollary.

Corollary 1. Let C£2) be the 2-core of the largest component of G(n,p) for
p= %, where e3n — 00 and € = o(n_1/4). The maximal 2-path in C£2) has

length (1/¢)log(e3n) + Op(1/¢).

Similarly, since a random 3-regular graph is Hamiltonian w.h.p. (see [33]),
we immediately deduce that in the above regime C; contains a simple cycle
of length (3 4+ 0(1))e?n. This matches the lower bound of Luczak [25] on the
circumference of the supercritical random graph.

Moreover, Theorem 1 enables us to interpret distances in the 2-core as
passage times in first-passage percolation (for further information on this
thoroughly studied topic, see, e.g., [21]). As we state in Theorem 3 be-
low, this connection (used in a companion paper [12]) gives the asymptotic
behavior of the diameter throughout the regime e3n — oo and € = o(1).

1.1. Main results. We now state the extension of Theorem 1 to all € = o(1)
outside the critical window.

Theorem 2. Let C; be the largest component of G(n,p) for p = %, where
e3n — oo and € — 0. Let u < 1 denote the conjugate of 1 + ¢, that is,
pe " = (1+¢e)e= (49 Then Cy is contiguous to the following model C, :

1. Let A~ N (14¢ — p, &) and assign i.i.d. variables D,, ~ Poisson(A)

(u € [n]) to the vertices, conditioned that >’ D,1p,>3 is even. Let
Ny=#{u:Dy =k} and N =3 3Ng.
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Select a random multigraph IC on N wvertices, uniformly among all
multigraphs with Ny vertices of degree k for k > 3.

2. Replace the edges of K by paths of lengths i.i.d. Geom(1 — p).

3. Attach an independent Poisson(u)-Galton- Watson tree to each vertex.

That is, P(C, € A) — 0 implies P(C, € A) — 0 for any set of graphs A.

We note that conditioning that the sum of degrees is even can easily be
realized by rejection sampling. The differences between the two theorems are
the approximation of 1 — u =~ € in Steps 2,3, and a richer degree distribution
of the random graph K in Step 1.

Further note that it was shown by Luczak [25] that the kernel K in the
above regime is a random multigraph on a certain degree sequence, which is
cubic except for a negligible number of vertices. However, in that description
the vertex degrees and lengths of the 2-paths subdividing the kernel edges
are all dependent, whereas in our contiguous model these are i.i.d. Poisson
(Step 1) and i.i.d. Geometric (Step 2) respectively.

Combining Theorem 2 with some known results on first-passage percola-
tion from [7] gives an immediate corollary on the typical distances between
vertices of degree at least 3 in the 2-core.

Corollary 2. Let C§2) be the 2-core of the largest component of G(n,p) for
_ 1+e 3
p — =1<

=, where €
least 3 in C§2), chosen u.a.r. among all such vertices. The distance between
u,v is w.h.p. (1/e + O(1))log(e3n).

n — oo and € = o(1). Let u,v be two vertices of degree at

However, maximal distances in the 2-core can differ from typical distances;
compare the above result to (1.3) in the next theorem, which we prove in a
companion paper.

- _ 1+
Theorem 3 ([12]). Consider the random graph G(n,p) for p = ==, where

e3n — 0o and € = o(1). Let Cy be the largest component G, let C§2) be its

2-core and let IC denote its kernel. Then w.h.p.,

diam(C1) = (3 + 0(1))(1/¢) log(*n), (1.1)
diam(C{*) = (2 + (1)) (1/¢) log(e%n) , (1.2)
max distciz) (u,v) = (2 4+ 0(1))(1/e) log(£%n) . (1.3)

To prove the above theorem, we need to go beyond typical distances and
obtain new large deviation estimates for the relevant parameters (see [12]
for further details). The result (1.1) on the diameter of the giant component
concludes a long list of studies of this parameter in the supercritical random
graph (e.g., [11,16,27,32]). First results for the challenging regime where
e = o(1) appeared only recently: Riordan and Wormald [32] obtained very
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accurate estimates of the diameter for most of this regime, but did not cover
the range where the random graph emerges from the critical window (i.e.,
e3n tends to oo arbitrarily slowly). Luczak and Seierstad [27] then gave
estimates for the diameter that do apply to the entire supercritical regime,
yet their upper and lower bounds differ by a factor of @.

Controlling typical and maximal distances between vertices in the giant
component is but one of several prerequisites for estimating the mixing time
of the (lazy) random walk on C;. For instance, as this parameter is highly
sensitive to bottlenecks in Cy, one also needs to fully understand the isoperi-
metric profile of the 2-core and the structure of the trees attached to it.

In the fully supercritical case, Fountoulakis and Reed [17] and Benjamini,
Kozma and Wormald [6] independently proved that the mixing time on
C; is of order log?n. However, as evident from the structure description in
Theorem 2, methods for the fully-supercritical case that depend on large sets
in the 2-core having edge expansion bounded away from 0 will break down as
e — 0. Within the critical window, it was shown in [28] that the mixing time
on C; has order n. For e = o(1) outside the critical window, the problem of
estimating the mixing-time on C; remained open, and furthermore, it was
unclear what the answer should be, as one would expect some interpolation
between log? n for fixed € > 0 and order n at criticality.

The following theorem, proved in a companion paper, settles this problem
by exploiting the geometric understanding of C; provided by Theorem 2.
This completes the picture of the supercritical mixing time.

Theorem 4 ([13]). Let C; be the largest component of G(n,p) for p = 1=,
where e3n — oo and € = o(1). With high probability, the mizing time of the

lazy random walk on Cy is of order (1/3)log?(e%n).

Indeed, the mixing time exhibits a smooth evolution from the critical
regime ¢ = O(n~/3) to the fully-supercritical regime of & > 0 fixed.

1.2. Main techniques. A key ingredient in the proofs is the Poisson cloning
model Gpe(n,p), introduced in [23] and shown to be contiguous to G(n,p)
(see Section 2). Tt thus suffices to establish the contiguity of our model C; to
the giant component of Poisson cloning, a fact we establish in several stages.

We first show the contiguity of the 2-cores in the models through a careful
analysis of Gpc(n,p). We then perform a series of contiguous translations
of the model, in order to remove dependencies between maximal 2-paths
in the 2-core, as well as incorporate the trees attached to the 2-core in C;.
To establish these, we use local central limit results for various parameters,
including a powerful local CLT of Pittel and Wormald [31].
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1.3. Organization. Section 2 contains several preliminary facts needed for
the proofs. In Section 3 we reduce the 2-core of the Poisson cloning model to
an intermediate simplified model (the proof of a technical lemma on Poisson
cloning used here is postponed to Section 7). This model is subsequently
reduced in Section 4 to one that is essentially the 2-core of our model C;.
The complete structure of the giant component is thereafter analyzed in
Section 5, which concludes the proof of Theorem 2. In Section 6 we prove
Theorem 1, addressing the special case of the early giant component.

2. PRELIMINARIES

2.1. Cores and kernels. The k-core of a graph G, denoted by G*),| is its
maximum subgraph H C G where every vertex has degree at least k. It is
well known (and easy to verify) that this subgraph is unique, and can be
obtained by repeatedly deleting any vertex whose degree is smaller than k
(at an arbitrary order).

We call a path P = vg,vy,...,v; for & > 1 (i.e., a sequence of vertices
with v;v;41 an edge for each i) a 2-path if and only if v; has degree 2 for all
i=1,...,k —1 (while the endpoints vy, vy may have degree larger than 2,
and possibly vy = vg).

The kernel K of G is obtained by taking its 2-core G2) minus its disjoint
cycles, then repeatedly contracting all 2-paths (replacing each by a single
edge). Notice that, by definition, the degree of every vertex in K is at least
3. At certain times the notation ker(G) will be useful to denote a kernel
with respect to some specific graph G.

2.2. Configuration model. This model, introduced by Bollobds [8], pro-
vides a remarkable method for constructing random graphs with a given
degree distribution, which is highly useful to their analysis. We describe
this for the case of random d-regular graphs for d fixed (the model is similar
for other degree distributions); see [9,19,35] for additional information.

Associate each of the n vertices with d distinct points (also referred to
as “half-edges”), and consider a uniform perfect matching on these points.
The random d-regular graph is obtained by contracting each cluster of the
d points corresponding to a vertex, possibly introducing multiple edges and
self-loops. Clearly, on the event that the obtained graph is simple, it is
uniformly distributed among all d-regular graphs, and furthermore, one can
show that this event occurs with probability bounded away from 0 (namely,
with probability about exp(#)). Hence, every event that occurs w.h.p.
for this model, also occurs w.h.p. for a random d-regular graph.

One particularly useful property of the above model is that it allows one
to construct the graph gradually, exposing the edges of the matching one by
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one. This way, having exposed part of the graph, the edges on the remaining
unmatched points are still distributed as a uniform perfect matching.

2.3. Poisson cloning model. In order to analyze the delicate structure
of the near-critical giant component, we need to use Poisson cloning model
Gpc(n,p), which was introduced in [23]. We incorporate a brief account on
Poisson cloning model as follows, and one can see [22] and [23] for more.

Let V be the set of n vertices, and Po(\) denote a Poisson random variable
with mean A. Let {d,},ev be a sequence of i.i.d. Po()\) variables with
A = (n—1)p. Then, take d(v) copies of each vertex v € V and the copies of
v are called clones of v or simply v-clones. Define Ny = > vey A(v).

If N, is even, the multi-graph Gpo(n, p) is obtained by generating a uni-
form random perfect matching of those Ny clones (e.g., via the configuration
model, where every clone is considered to be a half-edge) and contracting
clones of the same vertex. That is to say, each matching of a v-clone and a
w-clone is translated into the edge (v, w) with multiplicity. In the case that
v = w, it contributes a self-loop with degree 2. On the other hand, if N,
is odd, we first pick a uniform clone and translate it to a special self-loop
contributing degree 1 of the corresponding vertex. For the remaining clones,
we generate a perfect matching and contract them as in the Ny even case.

The following theorem of [23] states that the Poisson cloning model is
contiguous with Erdés-Rényi model. Hence, it suffices to study Poisson
cloning model in order to establish properties of Erdds-Rényi model.

Theorem 2.1 ([23, Theorem 1.1]). Suppose p = ©O(n~1t). Then there exist
constants c1,co > 0 such that for any collection F of simple graphs, we have

1P(Goo(n,p) € F) <P(G(n,p) € F) < c2(P(Goc(n,p) € F)) > +e7) .

Note that in our regime (p = £t for ¢ = o(1) and &n — o00) we may
replace the rate A = (n — 1)p in the Poisson-cloning model definition simply
by A = np, for convenience.

3. THE 2-CORE OF POISSON CLONING

By the results of [23], the random graph G(n, p) in our range of parameters
is contiguous to the Poisson cloning model, where every vertex gets an i.i.d.
Po(np) number of half-edges (clones), and the final (multi)graph is obtained
thereafter via the configuration model. As opposed to G(n,p), the Poisson
cloning model features vertex degrees that are independently distributed,
often contributing to an easier analysis. Nevertheless, the structure of the
2-core in this model just beyond criticality is still highly nontrivial.
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The main goal in this section is to reduce the 2-core of the supercritical
Poisson cloning model to the following tractable model, which is simply a
random graph uniformly chosen over all graphs with a given degree sequence.

Definition 3.1 (Poisson-configuration model for n and p = %)

(1) Let A ~ N (1+¢e—p, }n) and assign an independent variable D, ~
Po(A) to each vertex u. Let Ny = #{u: Dy, =k} and N =3, -, Nj.

(2) Construct a random graph on N wvertices, uniformly chosen over all
graphs with Ny, degree-k vertices for k > 2 (if N is odd, choose a vertex
u with D, = k > 2 with probability proportional to k, and give it k — 1
half-edges and a self-loop).

Theorem 3.2. Let G ~ Gpc(n,p) be generated by the Poisson cloning model
forp= 1—:‘3, where ¢ — 0 and 3n — co. Let G@ be its 2-core, and H be
generated by the Poisson-configuration model corresponding to n,p. Then

for any set of graphs A such that P(H € A) — 0, we have P(G?) € A) — 0.

In order to prove the above Theorem 3.2, in what follows we review a
specific way to generate Gpc(n,p), introduced in [23]. Let V be a set of n
vertices and let

= np=1+4+¢,

be the mean of the degree. Consider n horizontal line segments ranging
from (0,7) to (A, j), for j = 1,...,n in R%. Assign a Poisson point process
with rate 1 on each line segment independently. Each point (z,v) in these
processes is referred to as a v-clone with the assigned number x. The entire
set of Poisson point processes is called a Poisson A-cell.

Given the Poisson A-cell, there are various schemes to generate a perfect
matching on all points (thus yielding a random graph). One such way is
the “Cut-Off Line Algorithm” (COLA), defined in [22], which is useful in
finding the 2-core G2, We next describe this algorithm in detail.

First define 6 to be the unique positive solution to the following equation:

f=1-—ec. (3.1)
It is straightforward to verify that
= (2+o0(1))e . (3.2)
Let 3 be some real, to be specified later, satisfying
1_0/\S5§1_0)\. (3.3)

Next, construct a Poisson A-cell as follows. The COLA procedure consists of
multiple phases, formally defined in Algorithm 1 below. Throughout these
phases, the algorithm maintains the position of a “cut-off line”, a vertical
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line in R? whose initial z-coordinate equals A, and gradually moves leftwards.
The j-th phase (j > 1) begins when the line is at (1 — 8)? 71\ and ends once
it reaches (1 — B)7\.

The result of each phase is a matching on (previously unmatched) clones.
In order to describe the rule of constructing this matching, we need the
following definitions. At any given point, we call a vertex v € V' (and its
unmatched clones) light if it has at most one unmatched clone and heavy
otherwise. Furthermore, for each j, we label each vertex (and its unmatched
clones) at the beginning of phase j as either j-active or j-passive, as follows.
A vertex v € V (and its clones) is j-passive if it has precisely 2 clones to
the left of the cut-off line, and both are unmatched. This partition of the
unmatched clones into j-active and j-passive ones remains fixed throughout
phase j.

At the beginning of the process, all the light clones are placed in a stack
(whose state is maintained without being re-initialized after each phase).
The order by which these clones are inserted into the stack can be arbitrary,
as long as it is oblivious of the values assigned to the clones.

Algorithm 1 CuT-OFF LINE ALGORITHM: PHASE j DESCRIPTION

1. As long as the stack is nonempty, repeat the following:
Let (u,i) be the first clone in the stack.
Move the cut-off line leftwards until one of the following occurs:
(a) If the line hits (1 — 3)/, the phase is conlcuded (quit).
(b) The line hits an unmatched clone (v, j) # (u, ).
e Remove (u, i) from the stack, as well as (v, j) (if it is there).
e Match (u,i) and (v, ), and re-evaluate v and v as light /heavy.
e Add any clone that just became light into the stack.
2. If there are active unmatched clones:

(a) Choose such a clone uniformly at random and put it in the stack.
(b) Return to Step (1).
Otherwise, the algorithm is concluded (no additional phases).

Define A¢ to be the z-coordinate of the cut-off line once Step 2 is reached
for the first time in the course of the algorithm, i.e., at the first time when
there are no light clones. The next lemma states that Ac is concentrated
about 0)\\ with a standard deviation of 1/y/0\n.

Before giving the explicit statement on the concentration of A¢x, we elab-
orate on its important role in understanding the structure of the 2-core of
the graph. Until reaching Step 2 for the first time, the above algorithm
repeatedly matches light clones until all of them are exhausted — precisely
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as the cut-off line reaches Ac. As stated in Section 2, the k-core of a graph
can be obtained by repeatedly removing vertices of degree at most k£ — 1
(at any arbitrary order). Therefore, the 2-core is precisely comprised of all
the unmatched clones at the moment we reach Ac. Crucially, continuing
the algorithm will further reveal the inner structure of the 2-core, and these
further steps are equivalent to running the configuration model on the clones
to the left of Ag.

The following theorem gives tight concentration bounds for Ax. Its proof
relies on a delicate analysis of the above mentioned Algorithm 1, and we
postpone it to Section 7.

Theorem 3.3. [Upper bound on the window of Ac] There exist some con-

stant ¢ > 0 so that for all v > 0 with v = 0(@ /Hin), the following holds:
2

P (yAC — O\ > ﬁ) <e . (3.4)
3.1. Size of the 2-core and its disjoint cycles. Using the above theorem,
we will now be able to characterize the structure of G?). Indeed, by the
discussion preceding the theorem, the 2-core of Poisson-cloning given that
Ac = ¢ has the same distribution as the graph generated by the Poisson-
configuration model given that A = ¢. The above theorem implies that
w.h.p. we only need to consider

0= (1+01)0\ = (2 +o(1))e,

and our next step is to estimate the basic properties of the 2-core (size, the
number of vertices that comprise disjoint cycles) and its kernel on this event.

The next proposition thus applies not only to the Poisson-configuration
model but also to the 2-core of Poisson-cloning. The term expander used
here refers (informally) to a graph where the ratio between the boundary
and volume of each set is bounded from below by some constant ¢ > 0 (a
precise definition appears below).

Proposition 3.4. Let H be generated by the Poisson-configuration model
given A = £, where £ = (2 + o(1))e. Define H' as the graph obtained by
deleting every disjoint cycle from H. Let Ny be the number of vertices with
degree 2 in H, and N§ be the corresponding quantity for H'. Then w.h.p.

Ny = (2 4 o(1))e%n, N) = (1+0(1))Ny.
In addition, w.h.p. the kernel IC of H is an expander graph with
K| = (% + 0(1)) en | |E(K)| = (24 o(1))e3n.

The first step in the proof is to establish the size of the kernel K = ker(H),
as well as show that it is an expander. This latter fact is of independent
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interest and will have important applications, e.g., for the mixing time of
the random walk on C;. In what follows, for a subset S of the vertices of a
graph G, we let
da(S) =) " da(v)
veES

denote the sum of the degrees of its vertices (also referred to as the volume
of S in G). Further define the isoperimetric number of a graph G, denoted
by i(G), as

i(G) émin{ec(li’(g;) L SCV(G), da(S) < \E(G)\} .

We say that G is a c-edge-expander for some fixed ¢ > 0 iff i((G) > c.

Lemma 3.5. For KC the kernel of H as defined in Proposition 3.4, w.h.p.
K| = (3 +0(1)) n, |EK)| =(2+o0(1)n,

and K is an a-edge-expander for some constant o > 0.

Proof. By Definition 3.1, the kernel consists of exactly those vertices u € V'
that have D,, > 3. Combining this with the assumption that A = (2+0(1))e,
it follows that |K| ~ Bin(n,p3 (A)), where

AN A3
pi(A) =D e Aﬁ —e M1+ O(A)) 7 = (3 +0(1) .
k>3
Since en — 0o, we get that w.h.p.
K| = (3 +0(1) n . (3.5)

Similarly, the total sum of degrees in K is simply », cx Dy, and therefore,
|E(K)| is the sum of n i.i.d. variables distributed as ¥ ~ Po(A)13 ). A
similar calculation to the one above now gives that EY = (4 + o(1))e?, and
so (by CLT) w.h.p.
|E(K)| = (2 + o(1))3n . (3.6)
To show that the isoperimetric number is bounded away from 0, we apply
standard techniques used to analyze the configuration model (for definitions,
see Subsection 2.2), while assuming (3.5) and (3.6). Let 0 < o < 1 be
specified later, and let

D =2|E(K)| = (4 +0o(1))e’n

be the total number of points to be matched in the configuration model. We
will next prove a lower bound () > a > 0 for the case where D is even,
and under the relaxed condition that perhaps one of the vertices of K has
degree 2 (all others have degree 3 or more).
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To see that this gives a bound on i(K) for D odd, recall that in that
case precisely one of the D points will have a self-loop (by Definition 3.1).
Clearly, omitting one point produces a kernel as handled above (with an

isoperimetric number at least «/), and reintroducing it (to a vertex with at

least 2 other points) would give i(K) > %a.

Consider the probability that {e(S,S¢) < adi(S)}, where S is a subset
of K with di(S) = s. This is precisely the probability that k& < as points
out of the s that comprise S are matched with points in S¢, whereas the
remaining s — k points form a perfect matching. Thus,

P(e(S,5°) < as) = > P(e(S,5%) = k)1 {s=k (mod 2)}
k=0

D—1 nZ( ) 5= —1)”<Dk_s>k!(D—s—k—1)!!
Sﬁz::<Z>(s—k)!!<Dk_s>k!(D—s—k;)!!,

where we used the fact that e m" < 2y/m for sufficiently large m, and that
V(D —s—k)(s— )2\/D—2k2 VD/2,as k < as <s/4 and s < D/2.

A standard application of Stirling’s formula gives n!! = ©((n!)Y/?n!/4).
Hence, for some constant ¢; > 0,

) (D —s— k)Y sl(s—k)L/4 (D —s)!
P(e(S,5%) < as) < Clz (DN2DVA k(s — kD2 (D — s — k)12

_CIZ< —S—k)(s—m)l/‘*(%)m
Ds 1/2
(M)

It is well known that, by Stirling’s formula, (Z) = /ﬁ exp [—H(%)n],
where H(z) is the entropy function H(z) = —zlogz — (1 — z)log(1 — ).

Thus, for some constant co > 0,

P(e(S, S < as) <C2\/_Zeg (5)s+H( 5=

5)(D—s)—H(3)D]
< c233/ [H(a)s"‘H(%)D_H(%)D] ,

where we applied the fact that 5= < 5‘/82 Recalling that each vertex of IC
has degree at least 3, except for possnbly one vertex of degree 2, we have

s=de(S) >3] -1, D>3|K| -1,
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and it follows that |S| < % Thus,

Z P(e ) < as) Z Z P(e(S, S < as)

Sidc(9)= 1< =L Sidie ()
|S]=t
< Z c 83/2<|’C|> $[H(a)s+H(2%2)D—H(%)D] '
1<t

Since D = (3+0(1))|K|, any s < D/2 satisfies s/3 < (3-+0(1))|K|. Therefore,
another application of the above estimate of the binomial coefficient gives
that for some constant c3 > 0,

Z P(G(S, SC) < 048) < 6385/26H(3“;’q+o(1))\l€\+%[H(a)s—l—H(%)D—H(%)D]
S:dic(S)=s

57/ 26 5 HOH(5) D5 [H(e) 5+HE)~H(5)]D

It is then clear that we can choose a sufficiently small o > 0 such that
P(G(S, SC) S O[S) S 6385/26 10H( ) < C385/ e~ 10 log(D/s) )

Combined with the fact that D = (4+0(1))e3n — oo by (3.5), and summing
over the possible values of s, we deduce that

PES C K, di(S) < [E(K)], e(S,5°) < adi(S)) = o(1) ,
as required. |

Proof of Proposition 3.4. The required statement on the typical number
of vertices and edges in the kernel, || and |E(K)| resp., has already been
established in Lemma 3.5 (along with the expansion properties of the kernel).
It remains to show that, w.h.p., No and N} are both (2 + o(1))e?n, where
Ny is the number of degree-2 vertices in the 2-core, and N} equals No minus
the number of vertices that belong to disjoint cycles in the 2-core.

The main issue left is to distinguish between H and H' (the graph before
and after removing its disjoint cycles).

Let pa(z) be the probability that a Po(x

~—

variable equals 2

—x

po(x) =e

[\7|€‘3M

By Definition 3.1 and our assumption that A = (2 + o(1))e,
Ny ~ Bin(n, p(A)) , and py(Ac) = (24 o(1))e2.

Hence, by a standard concentration argument (using the fact that e2n — o00)
we deduce that No = (2 + o(1))e?n w.h.p. Assume therefore that this is
the case (i.e., there are (2 + o(1))e%n vertices of degree 2 in H), and that
|E(K)| = (2+ 0(1))e®n.
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We next consider the disjoint cycles in H. For a given degree-2 vertex
vin H, let A, denote the event that v belongs to such a disjoint cycle
whose length is k, and further let A, = UgilAv,k- To form a disjoint cycle
of length k via the configuration model, we must repeatedly match points
of degree-2 vertices, that is (noticing that 2| E(K)| counts the total number
of points to be matched via the configuration model):

k—2

1 2Ny — 2§ — 1
P(A, .
(Auk) = 2N, + 2|E(K )]—2k+1j1302N2+2]E(IC)\—2j—1

B 1 ’i:f 2N, —2j — 1
2N +2|E(K)| -1 g 2N+ 2|E(K)| —25—3
- 1+ 0(1)
~ 4e?n

since the terms in the above product over j formed a decreasing sequence.
Summing over the values of k,

(1= (1+o(1)e)" ",

N2

ZP o) < ST (1 (1 o)
k=1
1 1—6;)7(11) 1 +Eo(1) 1 1—6;3(1) —o(1) | (37)

It then follows that w.h.p. N} = (1—0(1)) Ny = (24+0(1))e?n, as required. W

3.2. Contiguity of Poisson-cloning and Poisson-configuration. A key
part of showing the contiguity result is a counterpart for Theorem 3.3, which
together implies that A¢ has a tight concentration window of order 1/4/en.

Theorem 3.6. [Lower bound on the window of Ac] There exist some con-
stant ¢ > 0 such that for any t = t(n) > 0 and fized § > 0,

]P’<t§AC§t+%>§c5. (3.8)

En

Proof. The results of the previous subsection imply that, for some suitably
large constant M = M (§) > 0,

IP><|AC | > \/%) <4

It follows that (3.8) holds trivially for any ¢ > 1 when [t — A\0)\| > Ajainl

Therefore, we assume in what follows [t — A0,| < A\/}inl Denote by A the

event {t < Ac < t+ 6/\/en}. Recall the fact that |G| ~ Bln(n py (Ao)),
where G2 is the 2-core of the Poisson-cloning model and py () stands for
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the probability for a Po(x) variable to be at least 2. Standard analytical
arguments give that

pJ(HL)—p?(t)é 5

veM Vnfe

Now, an application of CLT implies that for some interval B of length 49+/en,

P (\G@)y € B| A) =1-0(1). (3.9)

Consider C£2), the 2-core of the giant component in the Poisson-cloning.
Recalling (3.7) (which, as the discussion before Proposition 3.4, also applies

w
e3n
vertices in G?) will appear in disjoint cycles, where w = (£3n)%/* (— o).

Therefore, we have

P = 16O (1- ) = 6P| - 0(2) = 6P| - o(Vem) .

to the Poisson-cloning model), we know that w.h.p. only an fraction of

Together with (3.9), we conclude that there exists an interval B’ with length
50+/en such that

P (|c§2’| € B| A) =1-o0(1). (3.10)
Now, for the 2-core H of the giant component of the Erdés-Rényi graph

G(n,p), it is known (see [31, Theorem 6|, reformulated here in Theorem 5.1)
that |H| is in the limit Gaussian with variance (12 + o(1))en. Therefore,

P(|H| € B') <56 .

Combining this with contiguity of Poisson-cloning and G(n,p) (as stated in
Theorem 2.1), we obtain that for some constant ¢y > 0

P(IC?| € B') < 5y .
The proof is completed by choosing ¢ = 5¢y + 1 and applying (3.10). |

Using the above estimate for A¢, we are now able to conclude the main
result of this section, which reduces the 2-core of Poisson-cloning to the
graph generated by the Poisson-configuration model.

Proof of Theorem 3.2. Recall that H is the random graph generated by
the Poisson-configuration model, and G®) is the 2-core of Poisson-cloning.
Let 0 > 0, and set

B = (M — M\/en, My + My/zn),

where M = M (0) is a sufficiently large constant such that P(A¢ € B) > 1-4.
Further define

DE{z:P(HecA|A=2z)>5}.
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Since P(H € A) = o(1), we obtain that P(A € D) — 0, and consequently
P(Ae BND)=o0(1).

Recalling that A ~ N (A0y,1/(en)), we deduce that £(B N D)y/en — 0,
where £(-) stands for the Lebesgue measure on R. At this point, Theorem 3.6
gives that P(A¢ € BN D) — 0. Recalling that G®) and H are generated
by the same scheme (and hence have the same distribution) given the event
Ac = A, we obtain that

P(G? e A) <20 +o(1),

as required. |

4. CONSTRUCTING THE 2-CORE OF THE RANDOM GRAPH

In the previous section, we have shown that the 2-core of Poisson-cloning
is contiguous to a simpler model, which we called the Poisson-configuration
model (see Definition 3.1). The goal of this section is to reduce the Poisson-
configuration model to the following, where here and in what follows, p is
defined to be the conjugate of A =1+ e. That is to say, u < 1 and

pe M = e . (4.1)

14
=)

Definition 4.1 (Poisson-geometric model for n and p =

(1) Let A ~ N (1 + € — p, L) and assign an independent Po(A) variable D,
to each vertex uw. Let N, = #{u: D, =k} and N =), -5 Nj.

(2) Construct a random graph K on N wvertices, uniformly chosen over all
graphs with Ny, degree-k vertices for k >3 (if > ,.~4 kN}, is odd, choose
a vertex u with Dy, = k > 3 with probability proportional to k, and give
it k — 1 half-edges and a self-loop).

(8) Replace the edges of IC by paths of length i.i.d. Geom(1 — ).

Theorem 4.2. Let H be generated by the Poisson-configuration model w.r.t.

n and p = %, where ¢ — 0 and e3n — oo. Let H be generated by the
Poisson-geometric model corresponding to n,p. Then for any set of graphs

A such that P(H € A) — 0, we have P(H € A) — 0.

Clearly, both models have the same kernel, and they only differ in the
way this kernel is thereafter expanded to form the entire graph (replacing
edges by paths). To prove the above statement, we need to estimate the
distribution of the total number of edges in each of the models; we will show
that they are in fact contiguous.
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4.1. Edge distribution in the Poisson-configuration model.

Lemma 4.3. Let Ny, denote the number of degree-k vertices in the Poisson-
configuration model, and set Ag = X\ — u. For any fixed M > 0 there exist
some c1,co > 0 such that the following holds: If ns,ng, ... satisfy

‘n (1 —e M1+ Ag + AT%)> — D ks3] < MVedn,
‘nAo (1—eMo(1+Ag)) — Yrszknk| < Mvedn

and x satisfies |x — Ag| < \/i— then

]P’(Nk—nk forallk>3‘A—x)

< .
CI_IP’(Nk—nk forallk:>3|A Ao) @

Proof. Throughout the proof of the lemma, the implicit constants in the
O(-) notation depend on M.

Write m = 3 ;o gng and 7= ) ;o3 kny, and let A = A(nz, ny,...) denote
the event { N, = ny, for all k£ > 3}. As usual, we use the abbreviations

pr(z) =P(Po(x) = k) = e_xazk/k:! , and p, = P(Po(x) < k).
It follows that

PA[A==) (py(x)\"™™ (@) \"*
P(A[A=1Ao) <P5(Ao)> 1;[ (Pk(Ao)>

2 n—m
o e—n(x—Ao) ( I+a+ % ) <£>T
- A2 )
1 + AO + 70 AO

and so
P(A|A=2) 14z +
log————% =n(Ag— )+ (n—m)log <72> —|—7‘10g—
P(A[A = Ao) 1+ Ao+ Ao
Using Taylor’s expansion and recalling that z — Ag = O(1//en) = o(Ay),
2
1+x+ % 1+ A
og (1) = o)~ (o = oD — o’
1+ Ao+ 3 1+ Ao+ 3
1+A
= 7"A2<x — Ao) +O(1/n),
1+ Ag+ 32
and we deduce that
P(A|A =) 1+ Ag
log =n(Ao— )+ (n —m) (x —Ap) —0(1)
P (A[A = Ao) 14+ A+ 28
T — A(]
+r r, O (r/e’n)
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Our assumptions on m,r now yield that

P(A ‘ A=uz) —A
log ————% =n(Ag — o1+ A — A
Og]P’(A|A:A0) n(Ag — ) + ne” 20(1 4+ Ag)(z 0)
+n(1—e (14 Ag)) (z — Ag) + O(1) = O(1),
completing the proof. [ |

Fix M > 0, and let Bjy; denote the following set of “good” kernels:
‘|IC| “n (1 e M1 Ag + %3)) ‘ < MV
' ‘|E(IC) — InAg (1—e=M0(1+ Ag)) ‘ < MV

A

By = (4.2)

Let fa(- ] -) denote the density function of A given the kernel K (or equiv-
alently, given its degree sequence). By applying Bayes’ formula, the above
lemma gives that

falz | K)
———= =0(1
Tatho 15) ~ OV
for all L € By and « in the interval Iy = [Ag — %, Ao+ \/%] Clearly, by
volume considerations, this implies that for some ¢ = ¢(M) > 0 we have
falz | K) < even  forall x € Iy and K € Byy. (4.3)

Lemma 4.4. Define M > 0, Ip; and Byr as above. Let H be generated by
the Poisson-configuration model. There exists some constant ¢ = ¢(M) > 0
so that for any K € By and s with ‘s -5 (Ao — e‘AOAO) ‘ < M./en,
P(|E(H)| =s, A€ Iy | ker(H) = K) < %

Proof. Let x € Ipy and K € By, and write m = |K| and r = |E(K)| for the
number of vertices and the edges in the kernel respectively. We will first
estimate P(|E(H)| = s|A = «, ker(H) = K), and the required inequality
will then readily follow from an integration over x € Ij;.

Note that, given A = x and ker(H) = K, the number of edges in H is the
r edges of I plus an added edge for each degree 2 variable out of the n —m
variables (i.i.d. Po(z)) that have {u : D, < 2}. That is, in this case

x2/2
E(H)|l ~ Bi — _
|E(H)| ~r+ 1n<n m,1+x+$2/2>,

and therefore,

P(|E(H)|=s|A=ux, ker(H) =K)

_(n—m x2/2 o 1+ n-m—(s=r)
S \s—r 1+z+22/2 1+x+22/2 '
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Write
_ A2
qo = D)
14+ A —I-AO
and define
2
x* /2 s—r
4= a(w) 142+ 22/2 o n—m

Since z € Ip; and K € By, we have
¢=q0+0(/e/n) , and t = go + O(V/e/n) . (4.4)
Using Stirling’s formula, we obtain that
P(|E(H)|=s|A=ux, ker(H) =K)
< (I+o0(1))(n—m) >1/2 (g)S—r <ﬂ>”—m—s+r
2n(s—r)(n—m— (s —1)) t 1—t
1

S —

IN

o(n=m)g ()

IN

9

<

~—

where g;(q) is given by

A

gt(q) = —tlogt — (1 —t)log(1 —t) + tlogg+ (1 —t)log(l —q) .

It is easy to verify that

1—-t t
/ —_— —— p—

and so for any ¢, t satisfying (4.4) we have

g(t)=0,  gi(t)=0,

, t 1—t 1+ 0(1)
Q) =——5 — =— .

9 (@) ¢ (1—q)? %

Thus, for any large n (absorbing the o(1)-term in the constant) we have

1 2
Q)< ——(q—1)?. 45
91(q) 3q0( ) (4.5)
Clearly, the function ¢(r) = 7+ >7 +zi/§2 75 satisfies ¢ (z) = —2(1_959(5242;?/—2)27 and

in particular ¢ is strictly monotone increasing from 0 to 1 for = € [0, 00).
Thus, there exists a unique z; > 0 such that ¢(x;) = ¢t. Noticing that for all
z = (14 0(1))Ag we have ¢'(z) = (1 +0(1))Ag = (2 + o(1))e, it follows that
for any M7 > 0 one can choose Ms > 0 such that

[AO_MI\/E‘:/—TL,AO‘FMI\/g/—n} qu/\o— %,Ao+%}) :
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and in particular, z; = Ao+ O(1/y/en). We can now apply the Mean Value
Theorem to ¢ in (4.5) and obtain that
1 1+ 0(1))Ag)? 3
1(0) < —2—(q(@) — q(an)y? = - LA o _gjo o B g2,
3q0 390 5

where the last inequality holds for any sufficiently large n. Altogether,

absorbing the change from (n — m) to n in the constant, we conclude that
P(|[E(H)|=s| A==, ker(H) = K)
1

< o—inte—z)? o 1

RV =V
It remains to integrate the above conditional probability over x € I;.

Combining (4.3) and (4.6), we obtain that for some constant ¢ > 0

1

ezn(@—ae)? (4.6)

P([EH)|=s, A€ Iy | ker(H)=K)

g/ P(IEH) =s|A=2, ker(H) = K) fa(z]K) da
Ing

1 1 c e eV 2w
< / e_En(m_xt)ZC /en, < — / e—§yzdy — ,
Iy Ve?n VEN J oo VEn
as required. |

4.2. Edge distribution in the Poisson-geometric model.

Lemma 4.5. Let M > 0 and By be as in (4.2). Let H be generated by the
Poisson-geometric model. There exists some constant ¢ = ¢(M) > 0 so that
for any K € By and s with ‘S —5(A—p) (1 - %) | < M/en,

P <|E(H)| — 5| ker(H) = ;c) > \/%
Proof. By definition, given that ker(H) = K, the variable |E(H) is the sum
of |[E(K)| i.i.d. geometric variables with mean 1/(1 — ).
Denote by r the number of edges in the kernel IC, and let s be a candidate
for the number of edges in the expanded 2-core H. As stated in the lemma
(recall definition (4.2)), we are interested in the following range for r, s:

r=g50 =m0 =50 - ) +aven, (Jer] < M)
s= 30— pL -4 +even, (les| < M) .

In this case, we have that

s—1 1 N cav/en —eVedn/(1—pu) —1 C1+¢
r=1 l—p 20— -HA-p+avein-—1 1—p’

(4.7)
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where £ = 1+g(1) C\ZTC; Let X; be independent geometric random variables
with mean ﬁ, ie, P(X; = k) = pF~1(1 — p) for k = 1,2,...; further set

Sk = Ele(Xi —1). Since Sy follows a negative binomial distribution,

(s, —s )= (1) Ja-wae

Using Stirling’s formula, we get that for some constant ¢z > 0

s, =02 S (D) (2 T

Substituting (4.7) in the above, and using the fact that
sl (Q49/1-p _ 14¢

s—r Q+9/0-m—-1 &+pu’

we obtain that

= s = %(i ji)r—l(é ii)s_r(l — ) "

263(1\/;:“)(1_’_6)5—1(%)8—7«

= Lﬂexp (g(i)z:i) ,

where
H ) '

g(z) & (14 z)log(1 + z) + (z + p)log (a:+,u

Clearly, we have that g(0) = 0 and a standard calculation yields that
-1
dd’ __ p=r ‘
) and o) =

In particular, we have that ¢’(0) = 0 and |¢"(x)| < 2(1 — u) when |z] < [¢],
where £ is defined as above (recall that £ = o(1)). Therefore, for all such z
we have |g(z)| < 2(1 — p)2?, and altogether,

"(z) = log(1 log ( —/——
g'(x) =log(1 +2) +log (1

cs(1 — 1) ~a(r-1)lef?
P(S, =s—1)> NG e

Since
1+ 0(1)
2 _
we deduce that for some c§ > 0,

P(S, =s—1) > cy/Ven,

completing the proof. [ |

(Cg — 01)2 § (2 + 0(1))M2 s
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4.3. Contiguity of the two models. We are now ready to prove the main
result of this section, Theorem 4.2, which reduces the Poisson-configuration
model to the Poisson-geometric model.

Proof. For some constant M > 0 to be specified later, define the event
Ay 2 { A€ Iy, ker(H) € Bag, ||[E(H)| — 2(A — p)(1 — £)] < My/en } .

Fix § > 0. We claim that for a sufficiently large M = M(J) we have
P(Apr) > 1 — 6. To see this, note the following:

1. In the Poisson-configuration model, A ~ A (Ao, %), and Ij; includes
at least M standard deviations about its mean.

2. Each of the variables || and F(K) is a sum of i.i.d. random variables
with variance O(en) and mean as specified in the definition of By,
hence their concentration follows from CLT.

3. Finally, F(H) is again a sum of i.i.d. variables and has variance O(en),
only here we must subtract the vertices that comprise disjoint cycles.
By (3.7) and the estimate in Proposition 3.4 on the size of the 2-core in
the Poisson-configuration model, the number of such vertices is O(1/¢)
w.h.p. Compared to the standard deviation of O(y/en), this amounts

3

to a negligible error, as °n — oc.

Given an integer s and a kernel IC, let D, x denote every possible 2-core with
s edges and kernel K. Crucially, the distribution of the Poisson-configuration
model given E(H) = s and ker(H) = K is uniform over D; i, and so is the
Poisson-geometric model given E(H) = s and ker(H) = K. Therefore, for
any graph D € D; k,

IP({I =D| ker({l) =K) _ IP’(|E(}~I)| =5 ker({l) =K) .
P(H =D |ker(H)=K) P(E(H)|=s|ker(H)=K)
Combining Lemmas 4.4,4.5 we get that for some ¢ = ¢(M) > 0,

PUEH)| = 5 . Au | ker(H) = K)
P(|E(H)| = s| ker(H) = K)

<c.

Recalling that P(Ay7) > 1 — 4§ and letting § — 0, we deduce that for any
family of graphs A, if P(H € A) — 0 then also P(H € A) — 0. [ |

5. CONSTRUCTING THE GIANT COMPONENT

Throughout the section, let p = (1 + ¢)/n, where ¢ — 0 and 3n — oo
with n, and let G be a random graph G ~ G(n,p). We begin by analyzing
the “bushes”, i.e., the trees that are attached to G, the 2-core of G.
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As before, p < 1 is defined to be the conjugate of A = 1+ ¢ (see (4.1)).
Since € — 0, we can infer from a standard Taylor expansion that

p=1-e+22+0( . (5.1)

Proof of Theorem 2. In what follows, we use the abbreviation PGW (u)-
tree for a Poisson(u)-Galton-Watson tree. Let C; denote the graph obtained
as follows:

e Let H be a copy of C§2) (the 2-core of the giant component of G).
e For each v € H, attach an independent PGW(u) tree rooted at wv.

By this definition, C; and 51 have exactly the same 2-core H. For simplicity,

we will refer directly to H as the 2-core of the model, whenever the context

of either C; or CAl is clear. We first establish the contiguity of C; and CAl.
Define the bushes of C; as follows:

T, = {v e C :vis connected to u in C; \ H} for ue H.

Clearly, each T, is a tree as it is connected and does not contain any cycles
(its vertices were not included in the 2-core). To conclude, we go from H to
Ci1 by attaching a tree T, to each vertex w € H (while identifying the root
of T, with u). Analogously, let {T,},er be the corresponding bushes in C.

We next introduce notations for the labeled and unlabeled trees as well
as their distributions. For ¢t € N, let R; be the set of all labeled rooted trees
on the vertex set [t], and let Uy be chosen uniformly at random from R;. For
T € R; and a bijection ¢ on [t], let ¢(T") be the tree obtained by relabeling
the vertices in 1" according to ¢. Furthermore, define

T' £ {¢(T) : ¢ is a bijection on [t]}

to be the corresponding rooted unlabeled tree.
Let {t, : u € H} be some integers. Conditioning on the event

{|Ty]| =ty for allu € H},

we know from the definition of G(n,p) that 7T;, is distributed independently
and uniformly among all labeled trees of size t, rooted at u. In particu-
lar, in that case each T is independently distributed as Uy, (the unlabeled
counterparts of T3, and Uy, ).

On the other hand, Aldous [2] (see also, e.g., [3]) observed that, if T is a
PGW-tree then 7" has the same distribution as U on the event {|T"| = t¢}.
Therefore, conditioning on the event

{|T,| =t, foralluec H},

we also get that T} has the same distribution as Ui, -
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We therefore turn to study the sizes of the bushes in C; and 51 Letting
{ty : u € H} be some integers and writing

N:Ztu,

ueH

we claim that by definition of G(n,p) every extension of the 2-core H to the
component Cy, using trees whose sizes sum up to IV, has the same probability.
To see this, fix H, and notice that the probability of obtaining a component
with a 2-core is H and an extension X connecting it to N — |H| additional
vertices only depends on the number of edges in H and X (and the fact that
this is a legal configuration, i.e., H is a valid 2-core and X is comprised of
trees). Therefore, upon conditioning on H the probabilities of the various
extensions X remain all equal. Cayley’s formula gives that there are m™~!
labeled rooted trees on m vertices, and so,

P(|Tu|:tu for alluGH‘H)
=P (|C1| = N|H)P(|T| = t, for allu € H|H , |C1| = N)

1 N! _
u ueH

—P(|C)| = N | H)ﬁ I1 [tztu'l (,ue_u)tu}, (5.2)
ueH
where Z(N) and Z'(N) are the following normalizing constants
Fru—1
2= 3 L[]

{ru}:> e ru=NueH
Z(N) = Z'(N)pN~Hlg=nN
Notice that the size of a Poisson(v)-Galton-Watson tree T follows a Borel(~)
distribution (see, e.g., [30]), namely,

tt—l
P(T| =1) = W(’Ye_”)t : (5.3)

Recalling that 7T}, are independent PGW (p)-trees, it follows that
Z'(N) = 3 [H P(|T,| :ru)} :]P’(]Cl\ :N|H) .
{ru}>yegru=N ueH
Combining this with (5.2) and (5.3), we obtain that
P(|Tu| =ty forallu e H|H) P(|C;|=N|H)

i, = . (5.4)
P(|T,| = t, for all w € H | H) P(|Ci| = N | H)
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At this point, we wish to estimate the ratio in the right hand side above. To
this end, we need the following result of [31], which we restate in our setting
of the near-critical regime.

b1(N)
Theorem 5.1 ([31, Theorem 6], reformulated). Let b(\) = <b;(>\) > where
bz (A)

bV = (1= 1) (1= %) bV = p (1= %) b5V =3 (1= &) A+ u—2).
There exist positive definite matrices K, K, satisfying
(12+0(1))e  4+4o0(1)  (6+0(1))e
K, = 440(1)  (240(1))/e (24 0(1))e ,
(640(1))e?  (2+0(1)e (X +0(1))e?
db(X) . db(\)T
dA ax 7’

K=K, — 2\ det(K) = (5 4+ 0(1))e” ,

and such that

(i) (|H|,|C1| — |H|,|E(H)| — |H|) is in the limit Gaussian with a mean
vector nb and a covariance matriz nk,.

(i) If Ay = K;' and B denotes the event that |E(G)| = m for some

m = (1+(1+4o0(1))e)5, and there is a unique component of size between

en and 4en and none larger, then
P (|H| = n1,|C| — [H| = na, |E(H)| — |H| = n3 | B)

_ % exp (—hxT A ) | (5.5)

uniformly for all (n1,n2,n3) € N such that

(Kp(lv 1)_1/23317 Kp(27 2)_1/2:1727 Kp(37 3)_1/2:173)

is bounded, where xT = (x1,x2,23) is defined by
1
xI' = %(nl —byn,ng — ban,ng — bzn) .

Since e2n — o0, it is clear by CLT that w.h.p. the total number of edges
in G~ G(n,p)is (1+(1+o0(1))e)5. Furthermore, by the results of [10] and
[24] (see also [19]), w.h.p. our graph G has a unique giant component of size

(I+o(1)(1—pu/AM)n=(2+o0(1)en .

Altogether, we deduce that the event B happens w.h.p.; assume therefore
that B indeed occurs. Define the event @) by

Qu = {(n17n27n3) EN?: |aq| < VEM | |ag| <

M
= ’x?)‘ S 53/2M ’
Ve

Q = {(HI,|c1| — |H|,|E(H)| — |H]|) € Qur} -
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By part (i) of Theorem 5.1, for any fixed § > 0 there exists some M > 0
such that P(Q°) < ¢ for a sufficiently large n. Next, define

Prax = max  P(|H|=mn, |Ci] = [H| =ne, |E(H)| - [H| =n3) ,
(n1,n2,n3)€Qn
Pmin: min ]P’(]H]:nl, ’Cl‘—‘H‘:ng, ’E(H)’—‘H‘:ng)

(n1,m2,n3)€QNM

It follows from part (ii) of Theorem 5.1 that there exists some ¢ = ¢(M) > 0
such that

Prax < ¢ Puin (56)
when n is sufficiently large. Notice that by definition of x,

#{ny € N: |z < M/\/E} > My/n/e .

Combined with (5.6), it follows that for any (n1,n2,n3) € Qu we have

c
With this estimate for P(|C1| = N | H), the numerator in the right-hand-side
of (5.4), it remains to estimate the denominator, P(|Cy| = N | H).

Recall that, given H, the quantity |Ci| is a sum of |H| ii.d. Borel(y)
random variables (each such variable is the size of a PGW(u)-tree). We
would now like to derive a local central limit theorem for \CAl |. Unfortunately,
each Borel(y) variable |T),| has Var |T},| < 1/e* — oo, and standard versions
of local CLT do not apply here. To bypass this obstacle, we use a different
characterization of the tree-sizes {|T,|: u € H}.

It is well known that the total progeny in a branching process with off-
spring distribution Z has the same law as the hitting time from 1 to 0 of
a one-dimensional random walk whose increments are i.i.d. variables dis-
tributed as Z — 1 (see, e.g., [34, page 234]). Hence, the total size of k i.i.d.
such branching processes is exactly the hitting time of this walk from & to
0. The following theorem of Otter [29] characterizes this quantity:

Theorem 5.2 ([29], see also [20]). Let Wy be a random walk, whose steps
Y; are i.i.d. random wvariables satisfying Y; > —1. Then

k
Pr(ro =1t) = ?Pk(Wt =0).

In our setting, ¥; ~ Po(u) — 1, hence P (W; = 0) = P(S; =t — k) where
Sy = 3! | X; and the X;’s are ii.d. Po(y) variables. In light of the above
theorem, it follows that for any integer no,
ny

P(IC1| = ny +no | [H| =m1) = i

P(Sny4ny = n2) - (5.8)
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Since S,;, ~ Po(mu) for any m, we have that

n
P(Snl—l—nz — ’[’L2) e e_(n1+n2)/1/ ((nl + n'2)/’[/) i . (59)
ng:
Recalling the definition of Q,,, we are interested in the following range for
ny and na:

n=(1—p)(1-5)n+cven (lea| < M),
ny = p(l = §)n + ca/n/e (2| < M) .

In this case, we have

n1+n2_( —§) +01\/ﬁ+02\/%_1 Cl\/g_n+c2(1_%)\/n—/€

=—+
79 p(l = 5)n +cay/nje 1% p(l = 5)n+cay/nje

== +¢,

==

where £ = £(n) = (5 +o(1))(c1 — ¢2)/+/en. Applying Stirling’s formula to
(5.9) and using the fact that 1 4+ z > exp(z — 22) for > 0 gives

n2
]P)(Sn1+n2 = 7”L2) = exp |:<1 - s M) 7”L2:| ! <(n1 + n2)ﬂ>

no \V2mny n9
1 1 2 2
_ _ 1 n2 > —&“png .
exp (—Epn) 27m2( +en) 2 27T7”L2€

Now, since ng = (2 + o(1))en and

-y, < (2 + o(1)) M?
4 — )

€t = (14 0(1) L

we conclude that for some constant §' = ¢'(M),

5/

P(Sn1+n2 - Tl2) > \/’I’L_e :

Recalling that - = (1 + o(1))e, we can decrease ¢’ to absorb this o(1)
error-term for a sufﬁ(nently large n, and together with (5.8) get

o~ 6/
P(ICi| = ny + o | [H| = ny) > & — =

VRE  Jnle
Combining (5.7) and (5.10), we obtain that when n is sufficiently large,
Pcl=N. QlH) _
P(ICi|=N|[m]) M
By (5.4) (and recalling the fact that conditioned on |T;|, the tree T; is uni-

formly distributed among all unlabeled trees of this size, and a similar state-
ment holds for T;), we conclude that for some ¢ = (M) > 0 and any

(5.10)
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unlabeled graph A
P(Ci=A,Q,B|H)<J/PC,=A|H). (5.11)

We are now ready to conclude the proof of the main theorem. Let C; be
defined as in Theorem 2. For any set of simple graphs A, define

H = {H P(CLeA,Q,B|C? =H)> PG e A))1/2} L (5.12)

Recall that by definition, C; is produced by first constructing its 2-core
(first two steps of the description), then attaching to each of its vertices
independent PGW (p)-trees. Hence, for any H, the graphs CAl and C; have
the same conditional distribution given 5%2) = C~§2) = H. It then follows
from (5.11),(5.12) that for some constant ¢ > 0 and any H € H,

P(C e A|CY = H) > ' (P(C € A)Y2.

Since

P(C, € A) > ' (P(C; € A)/2P(CP € H),

the assumption that P(C; € A) — 0 now gives that IP’(C~§2) €H)—0.
At this point, we combine all the contiguity results thus far to claim that,
for any family of simple graphs F,

P(C? € F) = o(1) implies that P(C\” € F) = o(1).

Indeed, by definition, the 2-core of C; is precisely the Poisson-geometric
model, conditioned on the sum of the degrees (3, Dy1p,>3) being even.
Therefore, as F consists only of simple graphs, clearly we may consider
this model condition on the graph produced being simple, and in partic-
ular, that ) D,1p,>3 is even. Applying Theorem 4.2 (contiguity with
Poisson-configuration), Theorem 3.2 (contiguity with Poisson-cloning) and
Theorem 2.1 (contiguity with Erdés-Rényi graphs), in that order, now gives
the above statement.

This fact and the arguments above now give that ]P’(Ciz) € H) — 0. By
the definition of H, we now conclude that

P(C, € A) < P(BY) + P(Q°) + P(C\Y € H) + (P(C, € A))"/2.
Taking a limit, we get that limsup, .. P(C; € A) < ¢ and the proof is
completed by letting § — 0. |

6. THE EARLY GIANT COMPONENT

In this section, we consider the special case of Theorem 2 for ¢ = o(n_l/ 4,
and namely prove Theorem 1. We show how each of the three steps described
in Theorem 2 reduces to the corresponding steps in Theorem 1.
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6.1. Step 1: The kernel. Let A ~ N ~ (1+&—p, =). By (5.1), we have
p=1-—¢e+0(?), and so

1
EA=1+e—p=2+0(?), Var(A):\/ﬁ’

giving that A = (2+40(1))e w.h.p. In particular, the probability that D,, > 4
for some vertex wu is

P(Po(A) > 4) = O(e") = o(n™"),

and a union bound thus implies that the kernel is 3-regular w.h.p. In other
words, we have N = 0 for all £ > 4, and

N = N3 ~ Bin(n,e “A?/6) conditioned to be even.
It remains to compare the distributions of N and 2| Z|, where
Z ~N(3¢°n,e°n).

The first step in this direction is to approximate the binomial variable by
a Poisson variable. A well-known and straightforward application of the
Stein-Chen method (see, e.g., [5]) is that for any n and g,

|| Bin(nv q) - PO(nQ)HTV < q A ’I’Lq2,

where the total-variation distance || - ||y between two distributions o, 7 on
a finite space € is given by

A 1
lo —mllvv = ilé%\U(A) —m(A)| = 5%\0(@ —m(x)] . (6.1)

Therefore, given that A = (2 + o(1))e (again, this holds w.h.p.) we have
| Bin(n, e A%/6) — Po(ne™A%/6) v < O(ne®) = o(n""12).

Clearly, by definition (6.1), a negligible total-variation distance between two
distributions already implies they are contiguous (in both directions), hence
it suffices to compare 2| Z| to the variable Y, distributed as Po(ne™*A3/6)
conditioned to be even. We will show that for some region Q such that
P(Y € Q) — 1 and some ¢ = ¢(Q) > 0,

PY =t)<c-P2|Z] =t) forallevente Q. (6.2)
Let § > 0. By the above properties of A, there exists some M > 0 such that
P (JA —2e] > M//en) <.

The following result is a special case of a theorem of [14].
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Theorem 6.1 ([14, Ch. 2, Theorem 5.2], reformulated). Let X be a random
variable on N with P(X = k) > 0 for all k € N. Suppose that EX = v < oo
and Var X = 02 < oo. Let X; be i.i.d. distributed as X and S,, = 221 X;.
Then as m — oo, we have

S — mv > 1 22
sup |[VmP (22— =) - ——e /7| 50,
mGEI,)n < vm V2o

where Ly, = {(z —mv)/\/m: z € Z}.

In our setting, given that |[A—2¢| < M/y/en we have a Poisson distribution
with parameter

m = 2e’n+ O(Vedn),

and clearly the effect of conditioning that it is even, as well as rounding
m to its integer part, only affect the density function by a constant factor.
This translates into a sum of |m] i.i.d. Po(1) variables, and by the above
theorem we conclude that, as long as |A — 2e| < M/+/en, there exists some
¢ =c(M) > 0 such that

C

PY =t) < for any integer ¢.

e3n
Furthermore, we can choose Q = [m — M'\/e3n, m + M'/e3n) for a suitably
large M’ > 0 so that
PY ¢ Q) <6.
By the definition of Z (note that 2[Z| has mean 4e°n 4+ O(1) and variance

of order &3n), there exists some ¢ = ¢/(M’) such that

C/

P2|Z] =t) > for all even t € Q.

e3n
Altogether, it follows that for any sequence of subsets of integers S = S(n),

if P(2|Z] € S) = o(1) then P(N € S) <26 + o(1). We now let 6 — 0 to
complete the contiguity of N and 2| 7.

6.2. Step 2: The 2-core. Here we need to compare the effect of replacing
the 2-paths by i.i.d. Geom(e) variables rather than Geom(1 — ). Rather
than just showing contiguity between the two models, we will show a stronger
statement, namely that the total-variation between the joint distributions of
the path lengths are negligible. The total-variation distance || - || v between
two distributions o, 7w on a finite space €2 is given by

A 1
lo — oy Zilé%\U(A) —m(A)| = 5%\0(@ —m(x)] .
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p(1—p)*
a(1-q)*
increasing in k, we can clearly consider sets of the A = {k,k+1,...} in the

In our case, since the ratio of for 0 < p < ¢ < 1 is monotone

supremum above. Hence,

| Geom(L = p1) = Geom(&)]rv = sup W — (1 —e)"]

< sup lp = (L=e)f-klpv (1 - )t =0(e),

where, as |u — (1 — )| = ©(g?), the value of k optimizing the above has
order 1/e.
Recalling that |E(K)| = O(e3n) w.h.p., we infer that the total-variation

distance between the joint distribution of the 2-path lengths in the two

models (i.i.d. Geom(1 — y) variables and i.i.d. Geom(e) variables) is O(g'n).

Our assumption that € = o(n~'/4) now gives that this is o(1).

6.3. Step 3: The attached trees. We now wish to compare the distribu-
tions of i.i.d. PGW(u)-trees to i.i.d. PGW(1 — ¢)-trees. Recall that the size
of a PGW(y)-tree follows a Borel(vy) distribution, as given in (5.3). Thus,

1 tt—l
|Borel(u) — Borel(1 — ) ||rv = 5 Z Tmt_le_ﬂt — (1 —e)tlem(=e)

<0@E))) Tyg;g—?e—wtt(t —1—tay)],

Noticing that z; = 1 — ¢ + O(e?) and applying Stirling’s inequality, we get
tt—l
T 2ot — 1 — tay)| = O(1)t 732 (ze! ™)t | -1+ te + O(tez)‘

< Ot 32)e~=20°/2(1 4 te) < O(t3/2)e =" 1/3(1 + te)

where the first inequality is by the fact that 1 —y < e=¥=Y"/2 for all y >0,
and the second one holds for any large n by the definition of ;. Therefore,

—£2t/3
||Borel(p) — Borel(1 — ¢) ||y = 0(52) + O<€2 Et: ge 7 >

<0 e_azx/gd(azx/?)) =0(e?),

oo
1

2 2
e”) +0(e / —
SRR W
where we used the fact that [ ﬁe_y converges (to /).

With high probability, the size of the 2-core (that is, the number of PGW-
trees we attach) is O(e?n), and so the total-variation distance between the

two joint distributions is at most O(e*n) = o(1), as required.
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7. ANALYSIS OF THE CUT-OFF LINE ALGORITHM

In this section, we analyze Algorithm 1 for generating the Poisson cloning
model, and establish a tight concentration result for Ac (the location of the
cut-off line when all light clones are exhausted), as stated in Theorem 3.3.

Proof of Theorem 3.3. We wish to prove inequality (3.4), i.e., that for

some fixed ¢ > 0, the probability that [Ac — O\A] > \/ng is at most
exp(—cy?).

Notice that, prior to the first time the algorithm reaches Step 2, the notion

of active/passive vertices does not play a role in its decisions. Since this is

the only change between subsequent phases, it follows that A is precisely

the same regardless of the choice of phase boundaries. In particular, we may
choose (3 as follows: Take 1_39* <p< 1_29* and an integer m such that
i

Vorn '

where 7 as given in the lemma, i.e., v = 0(1 /Hin).

In order to prove the lemma, we first estimate the number of j-active

(1=p)"" =0+ (7.1)

clones for each j, denoted by N;. Let M; be the number of j-active clones
that are matched during phase j. We need the following lemma to estimate
M; given Nj.

Lemma 7.1 ([22, Lemma 2.2]). Consider a Poisson p-cell for p > 0, and
let N be its total number of clones. For 0 < 0 < 1, let N(0) be the number
of matched clones once the cut-off line reaches 0. Then there exists some
¢ > 0 so that the following holds: For any 0 < 6y <1 and I,A > 0,

P <6§r<1&01)<<1|N(9) —(1-6%k| >A ‘ N = k‘> <2exp[—c(AN ﬁ)] .

By definition of the Cut-Off Line Algorithm, if either one of the two
unmatched clones of a passive vertex was matched in a given step, then
the other clone is guaranteed to be matched in the next step (either in this
phase or in a later one), as it is inserted to the top of the stack. This means
that, for the purpose of determining the number of matched active clones
throughout the phase, M;, applying the algorithm with or without passive
vertices is effectively the same (since one can always identify the two clones
of each passive vertex, then contract the 2-paths into edges between active
clones).

That said, one must consider the following delicate point. If the end-
of-phase boundary is reached while the top of the stack contains a passive
clone, this corresponds to a path whose one endpoint is an active clone (u, 1),
yet its other endpoint is a passive clone. In this case, the active clone should
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not be considered as matched when disregarding all passive clones. Let A;
denote this event for phase j, and define

M} = Mj — 1y,

J

to be the number of j-active clones that are matched during phase j while
disregarding (contracting) the passive clones.

Combining the above observation with the fact that phase j began with
N; active clones and a cut-off line at ;= (1 — )71\ and ended as soon as
the cut-off line reached (1 — 3)u, we apply Lemma 7.1 for § = 0y =1 —
and conclude that for some constant ¢ > 0,

P(|M,—(1—(1-B)*)N;| = A|N;) <2exp[—c(ANA BA—;J_)] . (12)

Let B; denote the number of vertices which have precisely 2 clones to the
left of the end-of-phase boundary of phase j, and at least 1 more clone in
the interval of phase j. Note that, for such a vertex v, it is clearly j-active,
and it would become (j + 1)-passive if and only if the formerly mentioned
2 clones are unmatched by the end of phase j. In this case, two formerly
active clones will be relabeled as passive. In particular, the number of clones
that transition from being j-active to being (j + 1)-passive is at most 25;.

On the other hand, a clone can transition from being j-passive to being
(j + 1)-active if and only if it happened to be at the top of the stack when
phase j ended, and in particular, the event A; occurred.

Adding these two, along with the number of j-active clones matched in
this phase M ]’ , we conclude that the number of (j 4 1)-active clones satisfies

Nj+1zNj—Mj+1Aj—2Bj:Nj—Mj{—2Bj . (73)

Note that, as long as Step 2 of the algorithm is not reached, the stack
always consists of light clones exclusively. Therefore, up till that point, if a
vertex has 2 unmatched clones, both will remain unmatched until the cut-off
line reaches one of them. Suppose that phase jy is the first one where the
algorithm invoked Step 2. In that case, for any j < jg, the vertices counted
in B; are precisely those that were j-active yet became (j + 1)-passive. We
deduce that (7.3) is in fact an equality for all j < jg.

In order to analyze B;, for each v € V and 0 < 6 < ¢ < 1 let d,(0,0")
denote the number of v-clones whose assigned value belongs to [6A, 0')\).
Further let dy(f) £ d,(0,6). Recall that phase j begins with the line at
(1 —B)77'X and ends with the line at (1 — 3)7\. Hence, for ; = (1 — )71,
we have by the definition of B; that

Bj =D 1{a,0,1)=2) Hdo(;01.6,)21)
veV



34 JIAN DING, JEONG HAN KIM, EYAL LUBETZKY AND YUVAL PERES

Observe that (dy(0j41),dy(0j41,05)) for v € V are i.i.d. pairs of independent
Poisson random variables with means 6;,1A and (6; — 611)\ respectively.
Applying Chernoff’s bound (cf., e.g., [4]) we have that for some ¢; > 0,
) 2
P (‘Bj - @e_%ﬂk(l - e_ﬁ(’i)‘)n‘ > A) < 2exp < - 01%> . (7.4)
J

Combined with (7.2) and (7.3), we arrive at the following estimated lower
bound for N;4:

(1= B)°Nj = (Bj110) e 13 (1 — e P M)n

Applying this inductively, we expect that the following would be a lower
bound for N;:

OIN(1 — Xe ¥ M)n (7.5)
(indeed, this is later shown in Lemma 7.3).

Suppose that the algorithm is at the beginning of phase j, and Step 2
has not been reached yet (in any of the phases thus far). By the discussion
above, any j-active vertex has either 1 or strictly more than 2 clones with
values in (0,6;\). In particular, the number of j-active clones that are heavy
at the beginning of phase j can then be written as

Hj = du(0;)1(4,0,)>2} -
veV

and the number of light clones at the start of phase j is then precisely
L; = N;—Hj .

In general (once Step 2 is invoked), H; is an upper bound for the number of
j-active clones that are heavy at this point. (Note that the only reason for
this bound not to be tight is on account of clones that are already matched.
That is, > <y 1(4,(0,)>2) counts all j-active heavy wvertices, in addition to
perhaps some whose clones are all matched by phase j.) Hence, L; is always
a lower bound for the number of light clones at the start of phase j.

We need the following large deviation inequality:

Lemma 7.2 (23, Corollary 4.2]). Let X1,...,X,, be a sequence of inde-
pendent random variables. Suppose E[X;] = p; and there are b;, d; and &
such that E[(X; — p;)?] < b;, and

B [ — e Xmm)] [ < d; for all0 < g1 <& -
If 6o 221 d; < Zfll b; for some 0 < 6 <1, then
—1 min ,%72
P (|0 Xi — X i) >A) <e ? s st o} 7
for all A > 0.
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Since d,(0;) are i.i.d. Po(6;\) variables, an application of the above lemma
gives that for some constant co > 0,

P <|Hj —0;A(1 — e 0t _ HjAe—GjA)n| > A) < 2exp [—02 (A/\ 9?—2)] . (7.6)

Recalling that m is an integer with (1 — 3)™~! = 6y + V%T (see (7.1)), set

J
o 0 g3 _ g)(@i—i—m)/4
Aj =100 Hjn;(l 6) . (7.7)

Observe that the following sequence is increasing in j:
in-3/2 3/2 —5j/4
(1=)10,"" = (1= p)*2(1 - )=/t
We then get that for all j € [m],

y(1 = B)U=™A(G3n) 12 < L — o(1) (7.8)

N
05.n

where the last equality used the facts v = 0(\ / 9§n) and

O = (1— 8)" " =0+ ;n=ﬂ+dDW» (7.9)

7

It then follows from (7.8) that for any j € [m],

J
0 g3 _ 3)2i—i-m)/4
A 100,/0]71;(1 3)

J
— O e3p(1 — g)i-m)/4 _ 3\ =0/4 — g3
gV (= 8) ;(1 3) o(03n) . (7.10)

Recalling (7.5) and (7.6), we will next establish lower bounds for the N;’s
and L;’s in terms of the following parameters:

1

L

B2A(1 — Ae % )n

for j € [m]. 7.11
9]')\(9]' — 1+ e_ef)‘)n J [ ] ( )

2
N

Lemma 7.3. There exists a constant ¢ > 0 such that the following holds:
P(3j€[m]:N; <nj—Aj) < e~
P(3j€lm]:L;<lj—20;) <e

Proof. With (7.4) in mind, define the following for each j € [m]:

. 2
by 2 (91+21)\) 0N (] — e BN,

(1—p)=m/iy. (7.12)

>

i
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It is clear (see definition (7.11)) that
njp1 = (1 B)*n; — 2b; , (7.13)
and furthermore, by (7.8), we have that

;= 0(\/9571) : (7.14)

For ¢ € [m], decomposing the events in the required lower bound on N; gives
P(Eje[l]:Nj<n;j—A)=P3je[l—1]:N; <nj —Aj)
+ P(Njee— {N; 25 = A5} 0 {Ne <me = Ar})
as well as
P(Njep-1{N; = ny — 853 N {Ng <mg — A})
<P(Ney>mnpq—ADp g, Ne<ng—A) =P, .
Recall that v; is decreasing in j, thereby for any constant ¢} > 0 there exists

a constant ¢, > 0 such that

)4
Ze_clﬂf’ < e %
j=1
It will thus suffice to show that P; < e~ for some constant ¢ > 0 and
every j € [m].

For j = 1, recall that N; is the number of active clones at the beginning of
the algorithm (since all clones are initially unmatched, the passive vertices
are those with precisely 2 clones, and all other vertices are active) and
np = M1 — )\e_’\)n = EN;. In addition, A; = Wl(ﬁl\/ﬁ and 1 —
with n (by the fact that (1 — 5)™™ =< 1/e — o0). Hence, by a standard
application of the Central Limit Theorem to the i.i.d. random variables
defined by the number of active clones that each vertex contributes, we
deduce that P; < e~ for some co > 0 fixed.

Next, consider Pjq for j € {1,...,m —1}. Combining (7.3) with (7.13)
we get that for each such j

Nji1—njp1 = Nj— (1= f)°n; — M} — 2(Bj — by)
= (1= (1= 8)")N; = Mj + (1 = B)*(N; — nj) — 2(B;j — b)) .
Therefore, the event addressed in P;y; implies that
Ajr1 <mjp1— Njpr S Mj— (1= (1= B)*)N; + (1 - 8)°A; +2(B; — bj) ,
and also N; > n; — Aj. In particular, Pj4q is at most the probability that
M;—(1—(1—=B)*)N; +2(B; —bj) > Aji — (1—B)*A; , and
Nj 2 nj — Aj .
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Adding the fact that, by definitions (7.7) and (7.12),

Vi+1

and we deduce that

.
Py <P (B~ > o 93+1n>

+P (M= (1= (1= AN, > 2\ Jo3 0 | N 2 m; - ;)

Combining (7.4) and (7.14), we can obtain an upper bound e"“%41 on the
first term, for some constant ¢; > 0. At the same time, (7.2) provides an

upper bound of e_cﬂgﬂ on the second term, for some ¢y > 0 fixed.
Altogether, we have shown the desired upper bound on P; for all j € [m],
implying the first inequality in the lemma.
Recall now that inequality (7.6) gives that for some constant c3, ¢y > 0,

P (Elj €10 : |H; — 01 — e % — 9,0 %)n| > Aj)

4
§ 2 E e—C.‘i’YJQ' § e—04’Y¢? .
j=1

Combining this with the fact L; > N; —Hj, as well as the above lower bound
on Nj, yields the second statement of the lemma, as required. |

We can now derive a lower bound on the first time that Step 2 is applied
(that is, the first time at which there are no light clones). Equivalently, this
gives an upper bound on Ac (the z-coordinate of the cut-off line at that
point).

By the definition, the number of light clones throughout the algorithm
has the following property:

e As long as there light clones in the stack, in each step one of them
will be popped and matched, and as a result, at most one new light
clone will be created.

e If there are no light clones in the stack (and the algorithm is not
concluded) then following Step 2 the stack will necessarily be com-
prised of a single heavy clone. This clone will then be popped in the
next iteration of Step 1, while creating at most two new light clones.

That is to say, once the number of light clones drops to 0, it can never again
exceed 2. In particular, if all the light clones disappear for the first time
during phase j for some j = 1,...,m — 1, we must have that L,, <2 (since
L; is a lower bound on the number of light clones at the start of phase j).
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By (7.11) we have that
Ly = 0 A0y — 14+ 79 M)n, .

By the definition of 8 and its asymptotic behavior (see (3.1),(3.2)), as well
as the fact that 6, = (1 + o(1))@y, we have that for all 0y < x < 0, the
function f(z) = 2 — 1 + e~ satisfies

(@) =1=Xxe™ = 1= e~ HoWIBA — 1_X\(1-0,)(1—0(6))) = (1—0(1))e .

Since f(0)) = 0 and 6, = 0, + ﬁ = (
the Mean Value Theorem and get

2+0(1))e (see (7.9)), we can apply

Ln = O A ()10 = O\ - (1 — 0(1))5\/9';_”71 = (L —o(1)yy/Bn . (7.15)

On the other hand, by (7.7) (and recalling requirement (3.3) from [3)

Y = —i y 1
A= X BRSNS g m e  EaL
100 m”;( f) =100V T (1 gy

gl 1 gl 1
< —/03 < =03n <zl , 7.16

=100V TS (@ Sy T gVt = (7.16)
where the last two inequalities hold for any large n. As 6, = (1 4 o(1))0)

and 95”\71 — oo with n, we immediately have that [,,, — oo as well. However,
Lemma 7.3 gives that

P(Lyy < 2) < P(Lyy < by — 2A,,) < e

for some fixed ¢ > 0. By the above discussion, this translates into an upper
bound of A¢:

P(Ac = 0N+ =) <™ (7.17)

The above upper bound on A¢ ensures that Step 2 is not applied in the
first m — 1 phases, except with probability exp(—cy?). Recall that, if Step 2
has not yet been applied in phases 1,...,7 — 1 then our lower bound (7.3)
for Nj is in fact an equality, and similarly, L; is precisely the number of
light clones at the beginning of phase j. Therefore, assuming that indeed
Step 2 was not applied in phases 1,...,m — 1 (we account for the above
error probability), we may now apply the same proof of Lemma 7.3, this
time with respect to the events {N; > n; +A;} and {L; > [; +2A,}. This
gives the following matching upper bounds on the N;’s and L;’s:

Lemma 7.4. There exists a constant ¢ > 0 such that the following holds:
P(3j € [m]:N; >nj+A;) <e
P(3j€m]:L;>1+24,)<e " .
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To obtain the required upper bound on Ag, assume that Step 2 was
not applied in phases 1,...,m — 1 (this happens except with probability
exp(—cy?)). We now wish to show that all light clones will disappear shortly
after commencing phase m with probability at least 1 — exp(—cy?).

Since we did not apply Step 2 yet, the stack exclusively contains light
clones, and a clone is active (more precisely, m-active) iff it has 3 unmatched
clones or more. Now, if we ignore the passive clones, the algorithm must
remove at least 2 light clones from the stack in order to create a new light
clone.

Suppose that at the beginning of phase m, the stack contains k light
clones. By the above discussion, after matching k light clones, the stack will
be of size at most k/2. Iterating, it follows that after matching at most 2k
active clones, every light clone will disappear (the stack will be exhausted).

By Lemma 7.4 and the fact that [, +2A,, < 2v,/63 n for any large n with

room to spare (as established in (7.15),(7.16)), there are L,, < 27v,/63n light

clones at the beginning of phase m, except with probability 1 — e, Com-
bined with the above argument, we conclude that the stack of light clones
will be exhausted after matching at most 4~ 0§n active clones, except with
the above error probability.

We will next show that at least this many active clones will be matched
by the time the cut-off line reaches the point 6,, A — 10%. Since 0,, > 0,
by definition (7.11) we have

N = 02 N1 = Xe 9" Mn > 02 \(1 — Xe P Mn = 62, (1 — A(1 — 6)))n
=02 (—c+ (2+0(1)e)n = (1 + 0(1))03,n .

Together with Lemma 7.3, we deduce that for a sufficiently large n, there are

Ny, > %Hi’\n unmatched active clones at the beginning of phase m, except
C

with probability 1 —e™ 7* . Note that, by the assumption on -,

) — 10—— = (1—10 i 0, = (1 — 0(1))0,, .
7 <1+o<1>>¢9§7) e

Since the boundary marking the end of phase m is at (1 — (3)6,, (and
is bounded away from 0), the cut-off line moves through the entire inter-
val between #,,A and the above point as part of phase m. Hence, we can
use the original version of the Cut-Off Line Algorithm in order to analyze
the number of active clones that are matched along this interval (without
considering a potential change of phase).
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Applying Lemma 7.1 with 6 = 1 — 10— and k = 263n, we can now

3
osn

deduce that, except with probability exp(—cy?) we match at least

5(1— 62)k = 2(20 — o(1))——k > (5 — 0(1))7\/9?”

active clones. Therefore,

P (Ac <O\ — ﬁ) <e o

Combining this bound with (7.17) completes the proof of (3.4). [ |
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