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Abstract

Consider a Markov chain(ξv)v∈V ∈ [k]V on the infiniteb-ary treeT =
(V, E) with irreducible edge transition matrixM , whereb ≥ 2, k ≥ 2 and
[k] = {1, . . . , k}. We denote byLn the level-n vertices ofT . AssumeM has
a real second-largest (in absolute value) eigenvalueλ with corresponding real
eigenvectorν 6= 0. Letting σv = νξv

, we consider the following root-state
estimator, which was introduced by Mossel and Peres (2003) in the context
of the “recontruction problem” on trees:

Sn = (bλ)−n
∑

x∈Ln

σx.

As noted by Mossel and Peres, whenbλ2 > 1 (the so-called Kesten-Stigum
reconstruction phase) the quantitySn has uniformly bounded variance. Here,
we give bounds on the moment-generating functions ofSn and S2

n when
bλ2 > 1. Our results have implications for the inference of evolutionary
trees.

Keywords: Markov chains on trees, reconstruction problem, Kesten-Stigum
bound, phylogenetic reconstruction

1 Introduction

We first state our main theorem. Related results and applications are discussed at
the end of the section.

Basic setup. For b ≥ 2, let T = (V,E) be the infiniteb-ary tree rooted atρ.
Denote byTn the first n ≥ 0 levels of T . Let M = (Mij)

k
i,j=1 be ak × k

irreducible stochastic matrix with stationary distribution π > 0. AssumeM has a
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real second-largest (in absolute value) eigenvalueλ and letν 6= 0 be a real right
eigenvector corresponding toλ with

k∑

i=1

πiν
2
i = 1.

Let [k] = {1, . . . , k}. Consider the following Markov process onT : pick a root
stateξρ in [k] according toπ; moving away from the root, apply the channelM to
each edge independently. Denote by(ξv)v∈V the state assignment so obtained and
let

σv = νξv
,

for all v ∈ V

Reconstruction. In the so-called “reconstruction problem,” one seeks—roughly
speaking—to infer the state at the root from the states at level n, asn → ∞. This
problem has been studied extensively in probability theoryand statistical physics.
See e.g. [EKPS00] for background and references. Here, we are interested in the
following root-state estimator introduced in [MP03]. Forn ≥ 0, let Ln be the
vertices ofT at leveln. Consider the following quantity

Sn =
1

(bλ)n

∑

x∈Ln

σx. (1)

It is easy to show that for alln ≥ 0

E[Sn | ξρ] = σρ,

that is,Sn is “unbiased.” Moreover, it was shown in [MP03] that in the so-called
Kesten-Stigum reconstruction phase, that is, whenbλ2 > 1, it holds that for all
n ≥ 0

max
i

E[S2
n | ξρ = i] ≤ C < +∞,

whereC = C(M) is a constant depending only onM (not onn).

Main results. Forn ≥ 0, i = 1, . . . , k, andζ ∈ R, let

Γi
n(ζ) = E[eζSn | ξρ = i],

and
Γ̃i

n(ζ) = E[eζS2
n | ξρ = i].

We prove the following.
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Theorem 1 (Exponential Moment Bound) AssumeM is such thatbλ2 > 1. Then,
there isc = c(M) < +∞ such that for alln ≥ 0, i = 1, . . . , k, and ζ ∈ R, it
holds that

Γi
n(ζ) ≤ eνiζ+cζ2

< +∞.

Note thatνi = E[Sn | ξρ = i].

Corollary 1 AssumeM is such thatbλ2 > 1. Then, there is̃ζ = ζ̃(M) ∈ (0,+∞)
and C̃ = C̃(M) < +∞ such that for alln ≥ 0, i = 1, . . . , k, andζ ∈ (−ζ̃, ζ̃), it
holds that

Γ̃i
n(ζ) ≤ C̃ < +∞.

The proofs of Theorem 1 and Corollary 1 can be found in Section2.

Related results. Moment-generating functions of random variables similar to (1)
have been studied in the context of multi-type branching processes. In particular,
Athreya and Vidyashankar [AV95] have obtained large-deviation results for quan-
tities of the type (in our setting)

Rn = b−nZn · w − π · w,

wherew ∈ R
k andZn = (Z

(1)
n , . . . , Z

(k)
n ) is the “census” vector, that is,

Z(i)
n = |{x ∈ Ln : ξx = i}|,

for all i ∈ [k]. However, note that we are interested in thedegeneratecasew =
ν ⊥ π (see e.g. [HJ85]) and our results cannot be deduced from [AV95].

Note moreover that our bounds cannot hold whenbλ2 < 1. Indeed, in that case,
a classical CLT of Kesten and Stigum [KS66] for multi-type branching processes
implies that the quantity

Qn ≡ (bλ2)n/2Sn =
1

bn/2

∑

x∈Ln

σx,

converges in distribution to a centered Gaussian with a finite variance (indepen-
dently of the root state). See [MP03] for more on the Kesten-Stigum CLT and its
relation to the reconstruction problem.
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Motivation. The motivation behind our results comes from mathematical biol-
ogy. More particularly, our main theorem has recently played a role in the solution
of important questions in mathematical phylogenetics, which we now briefly dis-
cuss.

As mentioned above, the quantitySn arises naturally in the reconstruction
problem as a simple “linear” estimator of the root state [EKPS00, MP03]. In the
past few years, deep connections have been established between the reconstruction
problem and the inference of phylogenies—a central problemin computational bi-
ology [SS03, Fel04]. A phylogeny is a tree representing the evolutionary history
of a group of organisms, where the leaves are modern species and the branchings
correspond to past speciation events. To reconstruct phylogenies, biologists extract
(aligned) biomolecular sequences from extant species. It is standard in evolution-
ary biology to model such collections of sequences asindependent samples from
the leaves of a Markov chain on a finite tree

S = {(σi
x)x∈Ln}

ℓ
i=1, (2)

whereℓ is the sequence length. The goal of phylogenetics is to inferthe leaf-
labelledtree that generated these samples. In particular, developing reconstruction
techniques that require as few samples as possible is of practical importance.

An insightful conjecture of Steel [Ste01] suggests that thereconstruction of
phylogenies can be achieved from much shorter sequences when the reconstruc-
tion problem is “solvable,” in particular in the Kesten-Stigum reconstruction phase.
This conjecture has been established in the binary symmetric case (equivalent to
the ferromagnetic Ising model), that is, the casek = 2 andM symmetric, by Mos-
sel [Mos04] and Daskalakis et al. [DMR09]. The main idea behind these results
is to “boost” standard tree-building techniques by inferring ancestral sequences.
See [Mos04, DMR09] for details.

Establishing Steel’s conjecture under more realistic models of sequence evolu-
tion (i.e., more general transition matricesM ) is a major open problem in mathe-
matical phylogenetics. Roughly, to reconstruct a phylogeny from samples at level
n one iteratively joins the most correlated pairs of nodes, starting from leveln and
moving towards the root. To estimate the correlation between internal nodesu and
v on levelm < n using only (2) it is natural to consider quantities such as

Ĉov[u, v] =
1

ℓ

ℓ∑

i=1


(bλ)−(n−m)

∑

x∈Lu
n

σi
x




(bλ)−(n−m)

∑

x∈Lv
n

σi
x


 , (3)

whereLu
n is the set of nodes on leveln belowu. In words, we estimate the corre-

lation between thereconstructedstates atu andv. Proving concentration of such
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quantities necessitates uniform bounds on the moment-generating functions ofSn

andS2
n—our main result. We note in particular that our main theoremwas recently

used by Roch [Roc09], building on [Roc08], to prove Steel’s conjecture for gen-
eralk and reversible transition matrices of the formM = etQ in the Kesten-Stigum
phase. Moreover, this result was established using a surprisingly simple algorithm
known in phylogenetics as a “distance-based method,” thereby contradicting a con-
jecture regarding the weakness of this widely used class of methods. See [Roc08]
for background.

Organization. The proof of our results can be found in Section 2.

2 Proof

We first prove our main theorem in a neighbourhood around zero.

Lemma 1 AssumeM is such thatbλ2 > 1. Then, there isc′ = c′(M) < +∞ and
ζ0 ∈ (0,+∞) such that for alln ≥ 0, i = 1, . . . , k, and|ζ| < ζ0, it holds that

Γi
n(ζ) ≤ eνiζ+c′ζ2

.

Proof: We prove the result by induction onn. Forn = 0, note that

Γi
0(ζ) = eνiζ ,

so the first step of the induction holds for allc′ > 0 and allζ ∈ R.
Now assume the result holds forn > 0 with c′ andζ0 to be determined later.

Forn ≥ 0, i = 1, . . . , k, andζ ∈ R, let

γi
n(ζ) = ln Γi

n(ζ).

Let α1, . . . , αb be the children ofρ and, forω = 1, . . . , b, denote byLω
n+1 the

descendants ofαω on then + 1’st level. Forω = 1, . . . , b, let

Sω
n+1 =

1

(bλ)n

∑

x∈Lω
n+1

σx.

Note that conditioned onξρ, the random vectors

(ξx)x∈L1
n+1

, . . . , (ξx)x∈Lb
n+1

,

are independent and identically distributed. Hence, the variables

S1
n+1, . . . , S

b
n+1,
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are also conditionally independent and identically distributed. Applying the chan-
nel to the first level of the tree and using the induction hypothesis, we have for
ζ ∈ (−ζ0, ζ0)

γi
n+1(ζ) = ln E[eζSn+1 | ξρ = i]

= ln E

[
exp

(
ζ

bλ

b∑

ω=1

Sω
n+1

) ∣∣∣∣ ξρ = i

]

= b ln E

[
exp

(
ζ

bλ
S1

n+1

) ∣∣∣∣ ξρ = i

]

= b ln




k∑

j=1

MijE

[
exp

(
ζ

bλ
S1

n+1

) ∣∣∣∣ ξα1 = j

]


= b ln




k∑

j=1

MijΓ
j
n

(
ζ

bλ

)


≤ b ln




k∑

j=1

Mije
νj(

ζ

bλ
)+c′( ζ

bλ
)2


 ,

where we used that by assumption

|bλ| ≥
1

|λ|
≥ 1,

so thatζ/(bλ) ∈ (−ζ0, ζ0). By a Taylor expansion, asζ0 goes to zero (in particular
ζ0 < 1), we have

γi
n+1(ζ) ≤ c′

ζ2

bλ2

+b ln




k∑

j=1

Mij

[
1 + νj

(
ζ

bλ

)
+

1

2
ν2

j

(
ζ

bλ

)2

+ |ζ|3

]


≤ c′
ζ2

bλ2

+b ln

(
1 + λνi

(
ζ

bλ

)
+

1

2
‖ν‖2

∞

(
ζ

bλ

)2

+ |ζ|3

)

≤ νiζ +

{
c′ +

1

2
‖ν‖2

∞

}
ζ2

bλ2
−

1

2

ν2
i ζ2

b
+ Oζ0(|ζ|

3)

≤ νiζ +

{
c′ +

1

2
‖ν‖2

∞

}
ζ2

bλ2
+ Oζ0(|ζ|

3).
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Choosec′ > 0 large enough so that

c′ >

{
c′ +

1

2
‖ν‖2

∞

}
1

bλ2
,

that is,

c′ >
‖ν‖2

∞
2bλ2

(
1 −

1

bλ2

)−1

.

Note thatc′ is well defined whenbλ2 > 1. Then there isζ0 ∈ (0,+∞) such that
for all ζ ∈ (−ζ0, ζ0)

γi
n+1(ζ) ≤ νiζ + c′ζ2.

That concludes the proof.�

The following lemma deals with values ofζ away from zero.

Lemma 2 AssumeM is such thatbλ2 > 1. Let ζ0 ∈ (0,+∞) be as in Lemma 1.
Then, there isc′′ = c′′(M) < +∞ such that for alln ≥ 0, i = 1, . . . , k, and
|ζ| ≥ ζ0, it holds that

Γi
n(ζ) ≤ ec′′ζ2

.

Proof: Let c′ be as in Lemma 1. Letζ1 ∈ (0,+∞) be such that

ζ1 <
ζ0

|bλ|
. (4)

Choosec′′ > c′ large enough so that

eνiζ+c′ζ2
≤ ec′′ζ2

, (5)

for all |ζ| > ζ1 and for alli = 1, . . . , k.
Let n ≥ 0 andζ with |ζ| ≥ ζ0 be fixed. Note that, when we relate the expo-

nential moment at levelm to that at levelm− 1 with a recursion as in the proof of
Lemma 1, the value ofζ is effectively divided bybλ. Therefore, there are two cases
in the proof: either we reach the interval(−ζ0, ζ0) by the time we reachm = 0 in
the recursion; or we do not.

1. First assume that ∣∣∣∣
ζ

(bλ)n

∣∣∣∣ ≥ ζ0, (6)

that is, we do not reach(−ζ0, ζ0). We prove the result by induction on the
levelm = 0, . . . , n. At m = 0, we have

Γi
0

(
ζ

(bλ)n

)
= e

νi(
ζ

(bλ)n
)
≤ e

c′′( ζ
(bλ)n

)2
,
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by (5) and (6) for alli = 1, . . . , k. Assume for the sake of the induction that

Γi
m

(
ζ

(bλ)n−m

)
≤ e

c′′( ζ

(bλ)n−m )2
,

for all i = 1, . . . , k. Using the calculations of Lemma 1, we have

γi
m+1

(
ζ

(bλ)n−(m+1)

)
= b ln




k∑

j=1

MijΓ
j
m

(
1

bλ

ζ

(bλ)n−(m+1)

)


≤ b ln




k∑

j=1

Mije
c′′( ζ

(bλ)n−m )2




= bc′′
(

ζ

(bλ)n−m

)2

=
b

b2λ2
c′′
(

ζ

(bλ)n−(m+1)

)2

≤ c′′
(

ζ

(bλ)n−(m+1)

)2

,

where we usedbλ2 > 1 on the last line. The proof of the first case follows
by induction, that is, we have

Γi
n(ζ) ≤ ec′′ζ2

,

for all i = 1, . . . , k.

2. Assume now that ∣∣∣∣
ζ

(bλ)n

∣∣∣∣ < ζ0. (7)

Let m∗ be the largest value in0, . . . , n such that
∣∣∣∣

ζ

(bλ)n−m∗

∣∣∣∣ < ζ0. (8)

The purpose of Assumption (4) above is to make sure that we never “jump”
entirely over the subset of(−ζ0, ζ0) where (5) holds. Indeed, by (4) and

∣∣∣∣
ζ

(bλ)n−(m∗+1)

∣∣∣∣ ≥ ζ0, (9)
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it follows that we must also have
∣∣∣∣

ζ

(bλ)n−m∗

∣∣∣∣ > ζ1. (10)

Hence, by (5) and Lemma 1, we get

Γi
m∗

(
ζ

(bλ)n−m∗

)
≤ e

c′′( ζ

(bλ)n−m∗ )2

,

for all i = 1, . . . , k. The proof then follows by induction as in the first case
above.

�

Proof of Theorem 1: Let ζ0, c′ andc′′ be as in Lemmas 1 and 2. Choosec > c′′(>
c′) large enough so that

ec′′ζ2
≤ eνiζ+cζ2

, (11)

for all |ζ| ≥ ζ0 and for all i = 1, . . . , k. The result then follows by combining
Lemmas 1 and 2.�

Proof of Corollary 1: We use a standard trick relating the exponential moment of
the square to that of a Gaussian. LetX be a standard normal. Using Theorem 1
and applying Fubini we have for alln ≥ 0 andi = 1, . . . , k

E[eζS2
n | ξρ = i] = E[e

√
2ζSnX | ξρ = i]

≤ E[eνi

√
2ζX+c2ζX2

| ξρ = i].

The last expectation is finite forζ small enough.�
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