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Let C1 be the largest component of the Erdés—Rényi random
graph G(n,p). The mixing time of random walk on C; in the strictly
supercritical regime, p = ¢/n with fixed ¢ > 1, was shown to have
order log?n by Fountoulakis and Reed, and independently by Ben-
jamini, Kozma and Wormald. In the critical window, p = (1 +¢)/n
where A = £3n is bounded, Nachmias and Peres proved that the mix-
ing time on C; is of order n. However, it was unclear how to inter-
polate between these results, and estimate the mixing time as the
giant component emerges from the critical window. Indeed, even the
asymptotics of the diameter of C; in this regime were only recently
obtained by Riordan and Wormald, as well as the present authors
and Kim.

In this paper, we show that for p = (14 ¢)/n with A =¢&3n — oo
and A = o(n), the mixing time on C; is with high probability of order
(n/X)log? \. In addition, we show that this is the order of the largest
mixing time over all components, both in the slightly supercritical
and in the slightly subcritical regime [i.e., p= (1 —¢)/n with X as
above].

1. Introduction. There is a rich interplay between geometric properties
of a graph and the behavior of a random walk on it (see, e.g., [1]). A par-
ticularly important parameter is the mixing time, which measures the rate
of convergence to stationarity. In this paper, we focus on random walks on
the classical Erd6s—Rényi random graph G(n,p).

The geometry of G(n, p) has been studied extensively since its introduction
in 1959 by Erdés and Rényi [10]. A well-known phenomenon exhibited by
this model, typical in second-order phase transitions of mean-field models,
is the double jump: For p = ¢/n with ¢ fixed, the largest component C; has
size O(logn) with high probability (w.h.p.), when ¢ <1, it is w.h.p. linear
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in n for ¢ > 1, and for ¢ =1 its size has order n2/3 (the latter was proved by
Bollobds [5] and Luczak [20]). Bollobés discovered that the critical behavior
extends throughout p = (1+¢)/n for ¢ = O(n~/?), a regime known as the
critical window.

Only in recent years were the tools of Markov chain analysis and the un-
derstanding of the random graph sufficiently developed to enable estimating
mixing times on C;. Fountoulakis and Reed [12] showed that, in the strictly
supercritical regime (p = ¢/n with fixed ¢ > 1), the mixing time of random
walk on C; w.h.p. has order log?n. Their proof exploited fairly simple ge-
ometric properties of G(n,p), while the key to their analysis was a refined
bound [11] on the mixing time of a general Markov chain. The same result
was obtained independently by Benjamini, Kozma and Wormald [3]. There,
the main innovation was a decomposition theorem for the giant component.
However, the methods of these two papers do not yield the right order of
the mixing time when c is allowed to tend to 1.

Nachmias and Peres [25] proved that throughout the critical window the
mixing time on C; is of order n. The proof there used branching process
arguments, which were effective since the critical C; is close to a tree.

It was unclear how to interpolate between these results, and estimate
the mixing time as the giant component emerges from the critical window,
since the methods used for the supercritical and the critical case were so
different. The focus of this paper is primarily on the emerging supercritical
regime, where p = (1 + £)/n with £3n — oo and € = o(1). In this regime,
the largest component is significantly larger than the others, yet its size is
still sublinear. Understanding the geometry of C; in this regime has been
challenging: Indeed, even the asymptotics of its diameter were only recently
obtained by Riordan and Wormald [27], as well as in [8].

Our main result determines the order of the mixing time throughout the
emerging supercritical regime (see Section 2.3 for a formal definition of mix-
ing time).

THEOREM 1 (Supercritical regime). Let Cy be the largest component of
G(n,p) for p= 1—;;5, where ¢ — 0 and £3n — oo. With high probability, the
mixing time of the lazy random walk on Cy is of order €_3log2(53n).

While the second largest component Co has a mixing time of smaller order
(it is w.h.p. a tree, and given that event, it is a uniform tree on its vertices
and as such has tyrx < \02\3/2 (see, e.g., [25]), that is tyrx < &3 log3/2(€3n)
as |Ca| < e~ 2log(e3n) w.h.p.), it turns out that w.h.p. there exists an even
smaller component, whose mixing time is of the same order as on Cy. This is
captured by our second theorem, which also handles the subcritical regime.

THEOREM 2 (Controlling all components). Let G~ G(n,p) forp=(1+
g)/n, where e =0 and 3n — co. Let C* be the component of G that mai-
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mizes the mizing time of the lazy random walk on it, denoted by ty;x. Then
with high probability, ti;yx has order e3 log?(e3n). This also holds when
mazimizing only over tree components.

In the area of random walk on random graphs, the following two regimes
have been analyzed extensively.

e The supercritical regime, where tyx < (diam)? with diam denoting the
intrinsic diameter in the percolation cluster. Besides G(n, ) for ¢ > 1, this
also holds in the torus Z¢ by [4] and [23].

e The critical regime on a high dimensional torus, where tyx < (diam)3.
As mentioned above, for critical percolation on the complete graph, this
was shown in [25]. For high dimensional tori, this is a consequence of [13].

To the best of our knowledge, our result is the first interpolation for the
mixing time between these two different powers of the diameter.

2. Preliminaries.

2.1. Cores and kernels. The k-core of a graph G, denoted by G*)| is
the maximum subgraph H C G where every vertex has degree at least k. It
is well known (and easy to see) that this subgraph is unique, and can be
obtained by repeatedly deleting any vertex whose degree is smaller than k
(at an arbitrary order).

We call a path P =g, v1,...,v; for k> 1 (i.e., a sequence of vertices with
v;vi+1 an edge for each 7) a 2-path if and only if v; has degree 2 for all
i=1,...,k—1 (while the endpoints vy, v may have degree larger than 2,
and possibly vy = vg).

The kernel K of G is obtained by taking its 2-core G minus its disjoint
cycles, then repeatedly contracting all 2-paths (replacing each by a single
edge). Note that, by definition, the degree of every vertex in K is at least 3.

2.2. Structure of the supercritical giant component. The key to our anal-
ysis of the random walk on the giant component C; is the following result
from our companion paper [9]. This theorem completely characterizes the
structure of Cy, by reducing it to a tractable contiguous model C;.

THEOREM 2.1 [9].  Let Cy be the largest component of G(n,p) forp= %,
where e3n — 00 and € — 0. Let u < 1 denote the conjugate of 1+ ¢, that is,
pe " = (14 ¢e)e=(149) . Then C; is contiguous to the following model C; :

1. Let A~ N(14e—p,2) and assign i.i.d. variables D, ~ Poisson(A) (u €
[n]) to the vertices, conditioned that ) Dyl(p, >3} is even. Let

Ny =#{u:D, =k} and N:ZNk-
k>3
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Select a random multigraph IC on N wertices, uniformly among all multi-
graphs with Ny vertices of degree k for k> 3.

2. Replace the edges of IC by paths of lengths i.i.d. Geom(1 — ).

3. Attach an independent Poisson(u)-Galton-Watson tree to each vertex.

That is, P(C; € A) — 0 implies P(Cy € A) — 0 for any set of graphs A that
1s closed under graph-isomorphism.

In the above, a Poisson(u)-Galton-Watson tree is the family tree of
a Galton—Watson branching process with offspring distribution Poisson(u).
We will use the abbreviation PGW (u)-tree for this object. A multigraph is
the generalization of a simple graph permitting multiple edges and loops.

Note that conditioning on > D,1(p,>3y being even does not pose a prob-
lem, as one can easily use rejection sampling. The 3 steps in the description
of C; correspond to constructing its kernel I (Step 1), expanding K into the

2-core C~£2) (Step 2), and finally attaching trees to it to obtain C; (Step 3).

Further observe that N < e*n for any fixed k > 2, and so in the special
case where ¢ = o(n~"/*) w.h.p. we have D, € {0,1,2,3} for all u € [n], and
the kernel K is simply a uniform 3-regular multigraph.

Combining the above description of the giant component with standard
tools in the study of random graphs with given degree-sequences, one can
easily read off useful geometric properties of the kernel. This is demonstrated
by the following lemma of [9], for which we require a few definitions: For
a vertex v in G let dg(v) denote its degree and for a subset of vertices S let

da(5) 2> da(v)
veES

denote the sum of the degrees of its vertices (also referred to as the volume
of S in G). The isoperimetric number of a graph G is defined to be

i(G) 2 min{ ec(lij(g;) 1S CV(G),dg(S) < e(G)},

where e(S5,T) denotes the number of edges between S and 7" while e(G) is
the total number of edges in G.

LEMMA 2.2 ([9], Lemma 3.5). Let K be the kernel of the largest compo-
nent C1 of G(n,p) for p= %, where e3n — oo and € — 0. Then w.h.p.,
K| = (% +o0(1))e3n, e(K) = (24 o(1))en,
and i(K) > « for some absolute constant o> 0.

2.3. Notions of mixzing of the random walk. For any two distributions ¢, ¥
on V', the total-variation distance of ¢ and v is defined as

o= wlrv & sup [¢(5) = ¥(S)] = 5 3 lole) = (o).

veV
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Let (S¢) denote the lazy random walk on G, that is, the Markov chain which
at each step holds its position with probability % and otherwise moves to
a uniformly chosen neighbor. This is an aperiodic and irreducible Markov
chain, whose stationary distribution = is given by

m(x) =dg(z)/2|E|.
We next define two notions of measuring the distance of an ergodic Markov
chain (S), defined on a state-set V, from its stationary distribution 7.
Let 0 <6 < 1. The (worst-case) total-variation mizing time of (S;) with
parameter §, denoted by tyrx(d), is defined to be

N,
tairx (8) 2 mln{t:rglea‘ic P (S, € ) — 7y < 5}7

where P, denotes the probability given that Sy =wv.
The Cesaro mizing time (also known as the approximate uniform mixing
time) of (S;) with parameter ¢, denoted by tyrx(6), is defined as

=
t — = <dy.
tyvrx (0) = mln{t max||m ZX;IP’ (Si€) TV(S}

When discussing the order of the mixing-time it is customary to choose
0= i, in which case we will use the abbreviations tygx = tMIX(i) and tyrx =
tvx (5)-

By results of [2] and [18] (see also [19]), the mixing time and the Cesaro
mixing time have the same order for lazy reversible Markov chains (i.e.,
discrete-time chains whose holding probability in each state is at least %),
as formulated by the following theorem.

THEOREM 2.3.  FEwvery lazy reversible Markov chain satisfies

artwmix (3) < tvix (3) < eatuirx (%)

for some absolute constants ci,co > 0.

PrOOF. The first inequality is straightforward and does not require lazi-
ness or reversibility. We include its proof for completeness. Notice that

1 t—1 1 t—1
Ro 1Y PSie)| <phi Y Ir-RuSie
i=0 TV i=t/8

1
< g tllm=Puo(Sys € )y,

where we used the fact that |7 — P,(S; € )|| is decreasing in t. Taking
t= 8tM1X(8) we obtain that tMIX( ) < 8tMIX( ) and conclude the proof of
the first inequality using the well-known fact that tMIX( ) < 4tMIX( ).
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The second inequality of the theorem is significantly more involved: By
combining [18], Theorem 5.4, (for a stronger version, see [19], Theorem 4.22)
and [2], Theorem C, it follows that the order of the Cesaro mixing time can
be bounded by that of the mixing time for the corresponding continuous-
time Markov chain. Now, using a well-known fact that the mixing time for
the lazy Markov chain and the continuous-time chain have the same order
(see, e.g., [15], Theorem 20.3), the proof is concluded. [J

Let T be a stopping rule (a randomized stopping time) for (S;). That is,
I':G x Q2 — N for some probability space 2, such that I'(-,w) is a stopping

time for every w € Q. Let ob 2 P, (St € -) when o is a distribution on V.

Let o,v be two distributions on V. Note that there is always a stopping
rule I' such that ¢! = v, for example, draw a vertex z according to v and
stop when reaching z. The access time from o to v, denoted by H(o,v), is
the minimum expected number of steps over all such stopping rules:

H(U,I/)é min ET".
I'io =v

It is easy to verify that H(o,v) =0 iff o = v and that H(-,-) satisfies the
triangle-inequality, however it is not necessarily symmetric.
The approzimate forget time of G with parameter 0 < § < 1 is defined by

(2.1) Fs=minmax min  H(o,v).
¢ 0 viv=epllry<s

Combining Theorem 3.2 and Corollary 5.4 in [19], one immediately obtains
that the approximate forget time and the Cesaro mixing time have the same
order, as stated in the following theorem.

THEOREM 2.4. FEvery reversible Markov chain satisfies
a1 Fis < tuix(3) € 2 Fi
for some absolute constants ci,co > 0.
2.4. Conductance and mizing. Let P = (pyy)z,y be the transition kernel

of an irreducible, reversible and aperiodic Markov chain on €2 with stationary
distribution 7. For S C €2, define the conductance of the set S to be

A\ ers,y¢5 T(2)Pa,y
m(S)m(Q2\ S)

o(9)

A
We define @, the conductance of the chain, by ® = min{®(S):7(5) < 3} (In
the special case of a lazy random walk on a connected regular graph, this
quantity is similar to the isoperimetric number of the graph, defined earlier).
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A well-known result of Jerrum and Sinclair [28] states that tyrx is of order
at most ®~2log ﬂ;ﬁln, where i, = mingeq m(x). This bound was fine-tuned
by Lovész and Kannan [17] to exploit settings where the conductance of the
average set S plays a dominant role (rather than the worst set). For our
upper bound of the mixing time on the random walk on the 2-core, we will
use an enhanced version of the latter bound (namely, Theorem 3.6) due to

Fountoulakis and Reed [11].

2.5. Edge set notations. Throughout the paper, we will use the following
notations, which will be handy when moving between the kernel and 2-core.
For S C G, let Eg(S) denote the set of edges in the induced subgraph

of G on S, and let 055 denote the edges between S and its complement

SC2V(G)\ S. Let

Ba(S) 2 Ea(S)Uda(S)

and define eg(.5) 2 |Ec(S)]. We omit the subscript G whenever its identity
is made clear from the context.
If IC is the kernel in the model C; and H is its 2-core, let

B, 2800 9B (1)

be the operator which takes a subset of edges T' C E(K) and outputs the
edges lying on their corresponding 2-paths in H. For S C V(K), we let

E3(S) 2 Ej(Bx(S)),  Ejy(S) 2 B (Ex(S)).

3. Random walk on the 2-core. In this section, we analyze the properties

)

of the random walk on the 2-core C~£2 .

3.1. Mizing time of the 2-core. By the definition of our new model Cj,
we can study the 2-core Cf) via the well-known configuration model (see,
e.g., [6] for further details on this method). To simplify the notation, we
let # denote the 2-core of C; throughout this section.

The main goal of the subsection is to establish the mixing time of the lazy
random walk on H, as stated by the following theorem.

THEOREM 3.1.  With high probability, the lazy random walk on H has
a Cesaro mizing time tyrx of order e 2 10g2(€3n). Consequently, w.h.p. it
also satisfies tyrx =< e~ 2log?(3n).

We will use a result of Fountoulakis and Reed [12], which bounds the
mixing time in terms of the isoperimetric profile of the graph (measuring
the expansion of sets of various volumes). As a first step in obtaining this
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data for the supercritical 2-core H, the next lemma will show that a small
subset of the kernel, S C I, cannot have too many edges in Ey/(.5).

LEMMA 3.2. For v ek, define

CoK 2 {S>3v:|S|=K and S is a connected subgraph of K}.
The following holds w.h.p. for every v € K, integer K and S € €,  :

(1) 1€ x| < exp[B(K V log(c*n))]
(2) dic(S) <30(K Vlog(e3n)).

PROOF. By definition, A = (2+ o(1))e w.h.p., thus standard concentra-
tion arguments imply that the following holds w.h.p.:

(3.1) N3= <é + 0(1))53n and Nj < wn for k> 4.

3 k!

Assume that the above indeed holds, and notice that the lemma trivially
holds when K > &3n. We may therefore further assume that K < e3n.

Consider the following exploration process, starting from the vertex v.
Initialize S to be {v}, and mark vy =v. At time 7 > 1, we explore the
neighborhood of v; (unless |S| <), and for each its neighbors that does not
already belong to S, we toss a fair coin to decide whether or not to insert
it to S. Newly inserted vertices are labeled according to the order of their
arrival; that is, if |S| = k prior to the insertion, we give the new vertex the
label vg41. Finally, if |S| < ¢ at time 7 then we stop the exploration process.

Let X; denote the degree of the vertex v; in the above defined process.
In order to stochastically dominate X; from above, observe that the worst
case occurs when each of the vertices in wvi,...,v,_1 has degree 3. With
this observation in mind, let A be a set consisting of N3 — K vertices of
degree 3 and Ny vertices k (for k> 4). Sample a vertex proportional to the
degree from A and let Y denote its degree. Clearly, X; <Y;, where Y; are
independent variables distributed as Y, and so

K
(3:2) di(S) 2> Y
=1

By the definition of our exploration process,

Y
i
[N H<£>
G4l =K i=1
We can now deduce that

(33) ElCk|<E| > ﬁ(?) = 2 ﬁEK?ﬂ

4+ =K i=1 l4-+Hlg =K i=1
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For all ¢ > 4, we have

(3e) 3 log(1/¢) B (3e)i 3 log(1/¢)
i = (i —1)!

and therefore, for sufficiently large n (recall that € = o(1)),

E K}g)] < <2> +3 (;) .27(35)i@3_1°§(!1/5) g% for all k.

1>4

P(Y =i) < 27i

Altogether,

(3'4) E‘¢U,K| < 7K Z H

b+ g =K i= 1

The next simple claim will provide a bound on the sum in the last expression.

Cram 3.3. The function f(n) =3y . 4o —pllpe1 B%! satisfies f(n) <e"

ProoOF. The proof is by induction. For n =1, the claim trivially holds.
Assuming the hypothesis is valid for n < m, we get

m+1 m—f—lml€ m—+1
URTED SPIUEED L oF:
k=0 k=

as required. [J

Plugging the above estimate into (3.4), we conclude that E|&, x| < (7e)X
Now, Markov’s inequality, together with a union bound over all the vertices
in the kernel K yield the Part (1) of the lemma.

For Part (2), notice that for any sufficiently large n,

(3¢)'log(1/e)
1l

7!

EeY <ed 4 Ze’??@'
i>4

< 25,

therefore, (3.2) gives that
P(dx(S) > 30(K Vlog(e3n))) < exp[—5(K Vlog(e>n))].

At this point, the proof is concluded by a union bound over €, g for allv € K
and K < 3n, using the upper bound we have already derived for |€y k| in
the Part (1) of the lemma. I

LEMMA 3.4. Let L C E(K) be the set of loops in the kernel. With high
probability, every subset of vertices S C KC forming a connected subgraph of K
satisfies | E,(S)] < (100/¢)(|S]| \/log(f;‘ n)), and every subset T of 35e3n edges
in K satisfies |E5,(T) U E},(L)] < 3&%n.
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PROOF. Assume that the events given in Parts (1), (2) of Lemma 3.2

hold. Further note that, by definition of the model C;, a standard application
of CLT yields that w.h.p.

K|=(3+0(1)e’n,  e(H)=(2+0(1)e*n,  eK)=(2+0(1))e’n.
By Part (2) of that lemma, dx(S) < 30(|S|V log(¢3n)) holds simultaneously

for every connected set S, hence there are at most this many edges in Exc(S).
Let S C K be a connected set of size |S|=s, and let

K = K(s)=sVlog(e*n).
Recalling our definition of the graph H, we deduce that
30K

B3 (S) =Y 2,
i=1

where Z; are i.i.d. Geometric random variables with mean 1% It is well
known that the moment-generating function of such variables is given by

E(et?1) = (1_7“)&'
1 — pet
Setting t=¢/2 and recalling that =1 — (14 0(1))e, we get that E(e(#/271) <e¢
for sufficiently large n (recall that € = o(1)). Therefore, we obtain that for
the above mentioned S,

- exp(30K) o
P(E(S)] = (100/)K) < b = 20K,

By Part (1) of Lemma 3.2, there are at most (% +o0(1))e*nexp(5K) connected

sets of size s. Taking a union bound over the (3 + o(1))e®n values of s
establishes that the statement of the lemma holds except with probability

(% + 0(1)>53nZeQOK(S)eSK(S) < <1—96 + 0(1)> (e°n) " =0(1),

completing the proof of the statement on all connected subsets S C K.
Next, if T' contains t edges in IC, then the number of corresponding edges
in ‘H is again stochastically dominated by a sum of i.i.d. geometric vari-
ables {Z;} as above. Hence, by the same argument, the probability that
there exists a set T'C E(K) of aen edges in K, which expands to at least
Be?n edges in H for some 0 < a < % and 0 < 8 < 1, is at most
3

3 ae’n
((2 +O?€(§7)1)5 n> e(se/ZW < exp [<2H<%) +a— g n 0(1)>€3n]

[using the well-known fact that >, (") < exp[H(N)m], where H(z) is

the entropy function H (z) S logz — (1 —z)log(1 — x)]. It is now easy to

verify that a choice of o = 2—10 and g = % in the last expression yields a term

that tends to 0 as n — oo.
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It remains to bound |£|. This will follow from a bound on the number of
loops in K. Let u € K be a kernel vertex, and recall that its degree D, is
distributed as an independent (Poisson(A)|- > 3), where A = (2+0(1))e with
high probability. The expected number of loops that u obtains in a random
realization of the degree sequence (via the configuration model) is clearly
at most D2/D, where D = (4 + o(1))e3n is the total of the kernel degrees.
Therefore,

E|L] < (5 +0(1)e’n - (1/D)E[DF] = O(1),

and so E|Ey,(L)| = O(1/¢). The contrlbutlon of |E3,(L)| is thus easily ab-
sorbed w.h.p. when increasing [ from £ to 4, completing the proof. [

LEMMA 3.5.  There exists an absolute constant v >0 so that w.h.p. ev-
ery connected set S C H with (200/¢)log(e3n) < dy(S) < e(H) satisfies that
|034S|/d3(S) > te.

PrROOF. Let S C H be as above, and write Sx = SN K. Observe that Sk
is connected (if nonempty). Furthermore, since dx(S) > (200/¢)log(e3n)
whereas the longest 2-path in H contains (1 + o(1))(1/¢)log(e®n) edges
w.h.p., we may assume that Sx is indeed nonempty.

Next, clearly |0y S| > |0k Sk| (as each edge in the boundary of Sy trans-
lates into a 2-path in H with precisely one endpoint in ), while |Ey(S)| <
|E%, (Sk)| (any e € Ey(S) belongs to some 2-path P, which is necessarily
incident to some v € Sk as, crucially, S is nonempty. Hence, the edge cor-
responding to P, belongs to Ex(Sk), and so e € E},(Sk)). Therefore, using
the fact that dy(S) < 2|Ex(S)],

01| o 10kSkl _ _10kSkl  |Ex(Sk)l
dn(S) 7 2[E5 Skl 21Ex(Sk)l |[E5,(Sk)l
Assume that the events stated in Lemma 3.4 hold. Since the assumption

on dy(Sk) gives that |E},(Sk)| > (100/¢)log(e3n), we deduce that necessar-
ily

(3.5)

|Sic| > (/100)| B3, (Sl
and thus (since Sk is connected)
(3.6) | Exc(Sic)l > | Exc(Sic)| > (¢/100)] B3 (Sic)| - 1.
Now,

du(S) < e(H) = (2+o(1))e’n,

and since dy(S) = 2|Fy(S)| + \8HS| we have |Ex(S)| < (1 +o(1))e?n. In
particular, [E(H) \ Ey(S)| > 3&?n for sufficiently large n.



12 J. DING, E. LUBETZKY AND Y. PERES

At the same time, if £ is the set of all loops in K and T' = Ex(K\ Sk ), then
clearly E7 (T)U EZ (L) is a superset of E(H)\ Ey(S). Therefore, Lemma 3.4
yields that |T| > 55¢%n. Since dic(Sk) < 2e(K) = (44 o(1))e3n, we get

3

e’n _ 1+ o0(1)
d >|T|>— >

At this point, by Lemma 2.2 there exists o > 0 such that w.h.p. for any such

above mentioned subset S:

di(Sk)-

%g(l)dzc(sic)-

Plugging (3.6), (3.7) into (3.5), we conclude that the lemma holds for any
sufficiently large n with, say, ¢ = % 1074, O

(3.7) |0 S| > adic (Sxc) A dic (K \ Sk)) >

We are now ready to establish the upper bound on the mixing time for
the random walk on H.

Proor or THEOREM 3.1. We will apply the following recent result
of [11], which bounds the mixing time of a lazy chain in terms of its isoperi-
metric profile (a fine-tuned version of the Lovasz-Kannan [17] bound on the
mixing time in terms of the average conductance).

THEOREM 3.6 ([11]). Let P = (ps,) be the transition kernel of an irre-
ducible, reversible and aperiodic Markov chain on € with stationary distri-
bution 7. Let Tyin = mingeq m(x) and for p > myin, let

®(p) 2 min{®(5): S is connected and p/2 < m(S) < p},
and ®(p) =1 if there is no such S. Then for some absolute constant C' > 0,

-1
min—l

tix <C ) @72(27).
=1

[logm

In our case, the P is the transition kernel of the lazy random walk on .
By definition, if S C H and dy (z) denotes the degree of = € H, then

_ dy(x) 1 ~dyu(9)
e S s N L)

and so ®(S) > 10y S|/dy(5). Recall that w.h.p. e(H) = (24 o(1))e’n. Un-
der this assumption, for any p > 120M and connected subset S CH

satisfying my(S) > p/2, o
dw(S) = 213 (S)e(H) > (200/¢) log(3n).




MIXING TIME OF NEAR-CRITICAL RANDOM GRAPHS 13

Therefore, by Lemma 3.5, w.h.p.

1 log(e3n) 1
Set
, 3
§* = max{j;QJ > 12010%75”)}.
e3n

It is clear that j* = O(log(e®n)) and (3.8) can be translated into
(3.9) D(277) > Lee, for all 1 <j<j*.
On the other hand, if m3(S) < p <1 then dy(S) <2pe(H) while [0yS| > 1
(as M is connected), and so the inequality ®(S) > 1|9S|/dy(S) gives
®(S) > 1/(4pe(H)). Substituting p =277 with j < [log7_ 1 ], we have
212 2
~ 10e%n
(where the last inequality holds for large n). Combining (3.9) and (3.10)

together, we now apply Theorem 3.6 to conclude that there exists a constant
C' > 0 such that, w.h.p.,

(3.10) d(277) >

]
—

X
~—

logminl A logmuial
turx < C — = . -
MIX = ; $2(2-7) 32—21 P2(2-7) + ]_Z] D2(27)

1 \7? .
< C<j* <§Le> +2(10e*n - 277 )2> =O(c?log?(°n)),

where the last inequality follows by our choice of j*.

The lower bound on the mixing time follows immediately from the fact
that, by the definition of C;, w.h.p. there exists a 2-path in H whose length
is (1 —o0(1))(1/e)log(e®n) (see [9], Corollary 1). [

3.2. Local times for the random walk on the 2-core. In order to extend
the mixing time from the 2-core H to the giant component, we need to prove
the following proposition.

PROPOSITION 3.7. Let N, ¢ be the local time induced by the lazy random
walk (Wy) on H to the vertex v up to time s, that is, #{0 <t <s:W; =v}.
Then there exists some C >0 such that, w.h.p., for all s >0 and any u,vEH,

Eu[Nv,s] < CW + (150/5) lOg(E n)

In order to prove Proposition 3.7, we wish to show that with positive

probability the random walk W; will take an excursion in a long 2-path
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before returning to v. Consider some v € K (we will later extend this analysis
to the vertices in H \ I, i.e., those vertices lying on 2-paths). We point out
that proving this statement is simpler in case D, = O(1), and most of the
technical challenge lies in the possibility that D, is unbounded. In order to
treat this point, we first show that the neighbors of vertex v in the kernel
are, in some sense, distant apart.

LEMMA 3.8. For ve K let N, denote the set of neighbors of v in the
kernel K. Then w.h.p., for every v € K there exists a collection of disjoint
connected subsets { By, (v) C K:w € Ny}, such that for all w € N,

|Bw| = [(£°n)Y°] and diam(B,,) < +log(e%n).

PROOF. We may again assume (3.1) and furthermore, that
3<D, < log(f;‘?’n) for all v € K.

Let v € K. We construct the connected sets B,, while we reveal the struc-
ture of the kernel I via the configuration model, as follows: Process the
vertices w € N, sequentially according to some arbitrary order. When pro-
cessing such a vertex w, we expose the ball (according to the graph metric)
about it, excluding v and any vertices that were already accounted for, un-
til its size reaches [(¢°n)'/®] (or until no additional new vertices can be
added).

It is clear from the definition that the B,’s are indeed disjoint and con-
nected, and it remains to prove that each B, satisfies |B,| = [(¢*n)/] and
diam(B,,) <log(e3n).

Let R denote the tree-excess of the (connected) subset {v} UJ,, B, once
the process is concluded. We claim that w.h.p. R < 1. To see this, first
observe that at any point in the above process, the sum of degrees of all the
vertices that were already exposed (including v and N,) is at most

[(50) /7 log? (%) = (c3n) V/5+ol0).

Hence, by the definition of the configuration model (which draws a new half-
edge between w and some other vertex proportional to its degree), R < Z
where Z is a binomial variable Bin((g3n)!/5+0() (g3n)=4/5+() This gives

P(R > 2) _ (€3n)76/5+0(1)‘

In particular, since D,, > 3 for any w € IC, this implies that we never fail to
grow By, to size (¢3n)'/5, and that the diameter of each B,, is at most that
of a binary tree (possibly plus R < 1), that is, for any large n,

diam(B,,) < %logz(s?’n) +2< %log(z-:?’n).

A simple union bound over v € K now completes the proof. [J
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We distinguish the following subset of the edges of the kernel, whose paths
are suitably long:

A 1
gl {e € B(K): P > 5 log(53n)},
where P, is the 2-path in H that corresponds to the edge e € E(K). Further
define Q € 2% to be all the subsets of vertices of K whose induced subgraph
contains an edge from &:

QL (SCK:Ec(S)NE#a).

For each e € IC, we define the median of its 2-path, denoted by med(P,), in
the obvious manner: It is the vertex w € P, whose distance from the two
endpoints is the same, up to at most 1 (whenever there are two choices for
this w, pick one arbitrarily). Now, for each v € H let

£ 2 med(P.) e € &0 ¢ P}

The next lemma provides a lower bound on the effective conductance be-
tween a vertex v in the 2-core and its corresponding above defined set &,.
See, for example, [22] for further details on conductances/resistances.

LEMMA 3.9. Let Cogr(v > &) be the effective conductance between a ver-
tex v e H and the set £,. With high probability, for any v € H,

Ceg(v & £,) /Dy > ¢/(1001log(e3n)).

PROOF. In order to bound the effective conductance, we need to prove
that for any v € KC, there exist D, disjoint paths of length at most (100/
¢)log(e3n) leading to the set &,. By Lemmas 3.4 and 3.8, it suffices to prove
that w.h.p. for any v € K and w € N,,, we have that F(B,,)NE # &, where N,
and B, are defined as in Lemma 3.8 (in this case, the path from v to some
e € € within B,, will have length at most log(e3n) in K, and its length will
not be exceed (100/¢)log(e®n) after being expanded in the 2-core).

Notice that if Y is the geometric variable Geom(1 — ) then

]P><Y > 1_(1)E log(sgn)> _ M(l/lOs) log(e3n) > (€3n)71/10+0(1).
Therefore, by the independence of the lengths of the 2-paths and the fact
that |By| = [(¢3n)'/%], we obtain that

]P)(E(Bw) NE = @) < (1 o (€3n)71/10+o(1))(53n)

At this point, a union bound shows that the probability that for some v € IC
there exists some w € N, such that F(B,,) does not intersect £, is at most

1/5 1/10—0(1)

< ef(s3n)

(% +0(1))e’n - log(e’n) - e~ (EPm)M/107e o(1). O
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We are ready to prove the main result of this subsection, Proposition 3.7,
which bounds the local times induced by the random walk on the 2-core.

PROOF OF PROPOSITION 3.7. For some vertex v € H and subset A C H,
let

Tjémin{t>0:Wt:v}, TAémin{t:WteA}.

It is well known [see, e.g., [22], equation (2.4)] that the effective conductance
has the following form:
C. — A
Pv(TA<Tj):7eﬁ(v )
D,

Combined with Lemma 3.9, it follows that

Ceﬂ‘ (7) 4 51,)
D,

On the other hand, for any v € ‘H, by definition w € &, is the median of some

2-path, which does not contain v and has length at least ﬁ log(£3n). Hence,

by well-known properties of hitting times for the simple random walk on the

integers, there exists some absolute constant ¢ > 0 such that for any v € H

and w € &,:

Py (1,7 > ce 2 log?(e3n)) > Py (15 > ce*log?(3n)) >

Py (1e, <T.)) = > ¢/(1001og(£3n)).

Wl

Altogether, we conclude that

P, (7,7 > ce21og?(e3n)) > Py(1e, < 7,7) gélgl {Py (1, > ce 2 log?(%n))}

>¢/(1501og(e3n)).

Setting t. = ce~2log?(e>n), we can rewrite the above as

Py(Nys, >2) <1—¢/(150log(%n)).
By the strong Markovian property (i.e., (WT; +¢) is a Markov chain with the
same transition kernel of (W;)), we deduce that

P(Nyy, > k) < [1—¢/(1501og(e*n))]* 1,
and hence
EN, ., < (150/¢)log(e*n).

The proof is completed by observing that E, (N, s) < [s/t.]E, Ny and that
EyuNys <E,N, s for any u. [

4. Mixing on the giant component. In this section, we prove Theorem 1,
which establishes the order of the mixing time of the lazy random walk on
the supercritical C;.
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4.1. Controlling the attached Poisson Galton—Watson trees. So far, we
have established that w.h.p. the mixing time of the lazy random walk on

the 2-core (?9 has order e 2log?(%n). To derive the mixing time for C;
based on that estimate, we need to consider the delays due to the excursions
the random walk makes in the attached trees. As we will later see, these
delays will be upper bounded by a certain a linear combination of the sizes
of the trees (with weights determined by the random walk on the 2-core).
The following lemma will play a role in estimating this expression.

LeMMA 4.1.  Let {7;} be independent PGW (u)-trees. For any two con-
stants C,Cq > 0 there exists some constant C' >0 such that the following
holds: If {a;}I", is a sequence of positive reals satisfying

m
(4.1) Z a; < Cre?log?(3n),
i=1
) < COpe L 3
(4.2) max a; < Cae™ " log(e”n),
then

P (Z ai|T;| > Ce™3 10g2(€3n)> < (e3n)72

i=1

PrOOF. It is well known (see, e.g., [26]) that the size of a Poisson(y)-
Galton—Watson tree 7 follows a Borel(y) distribution, namely,
Jk—1 .
— k) = -
(4.3) P(T]=k) = o (ye )"
The following is a well-known (and easy) estimate on the size of a PGW-tree;
we include its proof for completeness.

Cram 4.2. Let 0<y <1, and let T be a PGW(~)-tree. Then
1 Y
E[T]=-——  Var(T]) =~
1= 1= (7)==

Proor. For k=0,1,..., let Li be the number of vertices in the kth
level of the tree 7. Clearly, EL, =~*, and so E|T| = EY . Ly= ﬁ
By the total-variance formula,

Var(LZ-) = VaI'(E(LZ‘LZ_l)) + E(Var(LZ|LZ_1))
=~ Var(Lj_1) +yEL;_1 =~* Var(L;_1) + "

By induction,

(4.4) Var(L;) = Z 7k = ’yil 7.
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We next turn to the covariance of L;, L; for ¢ < j:
Cov(L;,Lj) =E[L;L;] — EL;EL; =+ 'EL? — 4**J
=~""Var(L;) =+’ .
v ar(L;) = 1—~
Summing over the variances and covariances of the L;’s, we deduce that

Var(T =233 73— =Y 0 =

1—
1=0 j=1 =0 v

We need the next lemma to bound the tail probability for > a;|7;|.

LEMMA 4.3 ([14], Corollary 4.2). Let Xi,...,X,, be independent r.v.’s
with E[X;] = ;. Suppose there are b;, d; and & such that Var(X;) <b;, and

IE[(X; — )38 X)) < g for all 0 < €] < &p.
If 660> 0 di <577 by for some 0 <8 <1, then for all A >0,

]P’( >A> <exp<—%min{5§oA,Zﬁ72b}>.
= i=10i

m m
S-S
i=1 i=1
Let T; = |T;| and X; = a;T; for i € [m]. Claim 4.2 gives that
pi =EX; =a;/(1— p).

Now set
o= 63/(1002 log(53n)).

For any [£] < &y, we have a;|¢| <2/10 by the assumption (4.2), and so

1 3
E KT _ _> esaim—l/(l—u))} ‘
I—n

<@E[(1 - 1)Ly c1mp)1y]

+ @[T g, 1))

B, — pi)eS 9] = o

(4.5)

< aj(1—p)~° + alE[T7 exp(e°T;/10)].
Recalling the law of T; given by (4.3), we obtain that
kk—l
k!

[ee]
E(T;B eXp(€2TZ/10)) = Z )kk3e52k/10.
k=1

(pe™"
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Using Stirling’s formula, we obtain that for some absolute constant ¢ > 1,

E(T? exp(e2T;/10)) < ci wk%*’“ 10
ws) N Y CORE

_¢ ikB/Q(Melfu)keEQk/lo.
=

Recalling that p=1— ¢+ 2¢2 + O(e?) and using the fact that 1 — z <

e ==*/2 for g > 0, we get that for sufficiently large n (and hence small

enough ¢),
(A7) pel Tt =(1—(1—p)e' T <exp(—3e® + O()) <e /.
Plugging the above estimate into (4.6), we obtain that for large n,
e o0
2 2
E[T? exp(*T;/10)] < chlﬁ/?e*s k/6 < 46/ B326—22/6 g
k=1 0

[e.e]
< 400cs~° / 23267 dx = 300y/mce°.
0
Going back to (4.5), we get that for some absolute ¢’ > 1 and any large n,

IE[(X; — p15)3esKimm)]| < a3(2e73 + de™) < a; - 2¢ C2e T log?(e%n) 2 d;,

where the second inequality used (4.2).
By Claim 4.2, it follows that for large enough n,

ﬁ <2ale73 < a; - 205 *log(e®n) 2 b;.
—p

Since Y, d; = (¢/Cae3log(e3n)) Y, bi, by setting 6 =1 (and recalling our
choice of &y) we get

Var(X;) = a? Var(T;) = a?

5§0§:di= %sz Szm:bzw
i—1 i i—1

We have thus established the conditions for Lemma 4.3, and it remains to
select A. For a choice of A = (60Cy V /12C1Cs)e 3 log?(e3n), by definition
of &y and the b;’s we have

oA > 6log(e’n),
A?) Z b; > 6C1e 2log3(e3n)/ Z a; > 6log(e3n),
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where the last inequality relied on (4.1). Hence, an application of Lemma 4.3
gives that for large enough n,

PQ: a; Ty — Z” > A) < (e%n)72

Finally, by (4.1) and using the fact that 1 — u > /2 for any large n, we have
Sipi=(1—p)"tY", a; <2016 3 log?(e%n). The proof of Lemma 4.1 is thus
concluded by choosing C' = 2C + (60C, V /12C1Cs). O

To bound the time it takes the random walk to exit from an attached
PGW-tree (and enter the 2-core), we will need to control the diameter and
volume of such a tree. The following simple lemma of [8] gives an estimate
on the diameter of a PGW-tree.

LeEmMMA 4.4 ([8], Lemma 3.2). Let T be a PGW (u)-tree and Ly, be its
kth level of vertices. Then P(Ly # @) = ee *ETOE) for any k> 1/e.

The next lemma gives a bound on the volume of a PGW-tree.

LEMMA 4.5. Let T be a PGW (u)-tree. Then
P(|T| > 6e 2 log(e3n)) = o(e(e®n) ~2).

PROOF. Recalling (4.3) and applying Stirling’s formula, we obtain that
for any s >0,

k—1 elf k
(19 B(TI > )= 30 E ey < Y2 WO TR

k!
k>s H k>s

Write r = log(3n). By estimate (4.7), we now get that for large enough n,
P e L D U G O!
k>6e—2r k>6e—2r

and combined with (4.8) this concludes the proof. [

Finally, for the lower bound, we will need to show that w.h.p. one of the
attached PGW-trees in C; is suitably large, as we next describe. For a rooted
tree T, let Ly be its kth level of vertices and 7T, be its entire subtree rooted
at v. Define the event

A, s(T) 2 {3v € L, such that |T,| > s}.

The next lemma gives a bound on the probability of this event when 7T is
a PGW(pu)-tree.
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LEMMA 4.6. Let T be a PGW(u)-tree and take r = [~ log(e3n)] and
s= %6*2 log(e3n). Then for any sufficiently large n,

P(A,(T)) > e(e3n) 3.

PrRoOOF. We first give a lower bound on the probability that |T] > s.
By (4.8), we have P(|T| > s) > ¢} 1 k=372 (ue'=m)* for some absolute ¢ > 0.

Recalling that p=1—¢+ %EQ + O(£3), we have that for n large enough,
Hel—u > e—(€+€2)ee—62 > e—252'

Therefore, for s = %5*2 log(e3n) this gives that

P(|T|>s)>c Z L—3/2—2%k > cs(25)’3/2e’4528 > E(€3n)—1/2+o(1).

s<k<2s

Combining this with the fact that {7,:v € L,} are ii.d. PGW(u)-trees
given L,, we get

P(Ars(T)|L) = 1= (1= P(IT] 2 )" 21— (1 — (%) 7120l
Taking expectation over L,., we conclude that

P(Ar,s(T)) > 1~ E((1 — g(e?n)~/2+o)lErl)

> E(E n)71/2+0(1)E‘LT| - EZ(EBn)flJro(l)E‘LT‘Z.

For r = [$e7'log(°n)], we have

E(|Ly])=p">e" (e+O(e?)r > (53n)_1/8+0(1)

9

and by (4.4),

Var |L,| = u" <e et < 2:7(Bn) VB,

Plugging these estimates into (4.9), we obtain that
P(Ays(T)) = e(e2n) "5/ > e(en) =2/,

where the last inequality holds for large enough n, as required. [J

4.2. Proof of Theorem 1: Upper bound on the mizing time. By Theo-
rem 2.1, it suffices to consider C; instead of C;. As in the previous section,
we abbreviate (?9) by H.

For each vertex v in the 2-core H, let 7, be the PGW-tree attached to v
in Cy1. Let (S¢) be the lazy random walk on Cy, define {; =0 and for j > 0,

o= §j+1, if S§j+1 :ng,
I\ min{t > &;: S; € H, 81 # Se, b, otherwise.
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. A .
Defining W; = S¢;, we observe that (W) is a lazy random walk on H. Fur-
thermore, started from any w € H, there are two options:

(i) Do a step in the 2-core (either stay in w via the lazy rule, which has
probability %, or jump to one of the neighbor of w in H, an event that has
probability dy(w)/2ds (w)).

(ii) Enter the PGW-tree attached to w (this happens with probability
dr, ()2, (w)).

It is the latter case that incurs a delay for the random walk on C;. Since the
expected return time to w once entering the tree Ty, is 2(|7w| — 1)/d7, (W),
and as the number of excursions to the tree follows a geometric distribution
with success probability 1 —dr, (w)/2ds (w), we infer that

2Tl 1) 2de,(w)
dr,(w)  2dg (w) — dr, (w) < 4| Tl

For some constant Cy > 0 to be specified later, let

Ewgl =1+

/—1
(4.10) (=Che?log?(e%n) and  ayw(l) =) Py(W;=w).
7=0

It follows that

/—1
Ey (&) = Z Z Pv(séj =w)Ep&
j=0weH
(4.11) L
= Z ZPU(Wj :w)Ewgl <4 Z av,w(g)wzu"
weH j=0 weEH

We now wish to bound the last expression via Lemma 4.1. Let v € K. Note
that, by definition,

Z apw(l) =L =Cre~*log?(°n).
weH

Moreover, by Proposition 3.7, there exists some constant Co > 0 (which
depends on C7) such that w.h.p.

v (0) < CocMog(e3n).
MaX dy, (¢) < Coe™" log(e”n)

Hence, Lemma 4.1 (applied on the sequence {a,,(¢):w € H}) gives that
there exists some constant C' > 0 (depending only on Cy,C5) such that

Z v ()| Ty| < Ce2log?(en) except with probability (e3n)72.
weH
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Since |K| = (3 + o(1))e*n w.h.p., taking a union bound over the vertices of
the kernel while recalling (4.11) implies that w.h.p.,

(4.12) E, (&) < Ce3log?(e3n) for all v e K.
We next wish to bound the hitting time to the kernel K, defined next:
Tic =min{t: S, € K}.

Define 7, and 75 analogously as the hitting times of S; to the vertex x and
the subset S, respectively. Recall that from any v € Cy, after time & we will
have hit a vertex in the 2-core, hence for any v € C; we have

(4.13) E,mx <E, 7 + maxE, 7.
weH

To bound the first summand, since

it clearly suffices to bound E,7, for all w € H and v € 7. To this end,
let we H, and let S; be the lazy random walk on 7,,. As usual, define 7, =
min{t: S, =v}. Clearly, for all v € T, we have E, 7, = E,7,. We bound E,7,,
by E,7Tw + E\Ty, that is, the commute time between v and w. Denote by
Reft (v, w) the effective resistance between v and w when each edge has unit
resistance. The commute time identity of [7] (see also [29]) yields that

(414) EyTw + EyTy < 4‘7:1)‘Reff(v<—>w) < 4‘7:1)‘ dlam(ﬁu)
Now, Lemmas 4.4 and 4.5 give that for any w € H, with probability at least
1-0(e(e’n)7?),
(4.15) [Tw| <6 %log(e®n) and  diam(Ty) < 2e log(en).
Since w.h.p. |H| = (2 + o(1))e?n, we can sum the above over the vertices
of H and conclude that w.h.p., (4.15) holds simultaneously for all w € H.
Plugging this in (4.14), we deduce that

Ey7w + BTy < 4822 log? (Egn),
and altogether, as the above holds for every w € H,
(4.16) max E, 7y < 48 3 log?(e*n).

veCy

For the second summand in (4.13), consider e € K and let P, be the 2-
path corresponding to e in the 2-core H. Recall that w.h.p. the longest such
2-path in the 2-core has length (14 o0(1))e~!log(e3n). Since from each point
v € P, we have probability at least 2/|P.| to hit one of the endpoints of
the 2-path (belonging to K) before returning to v, it follows that w.h.p., for
every e € C and v € P, we have

1
(4.17) max E,#{t<mc:Wy=v}< <§ + 0(1)) e tog(e3n).
weEPe
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We now wish to apply Lemma 4.1 to the sequence a, = maxyep, Eu#{t <
Tic: Wy = v}. Since this sequence satisfies

max a, < (% + 0(1))51 log(e3n), > ay< (% + 0(1))5210g2(53n),

vEP
N Uepe

we deduce that there exists some absolute constant C’ > 0 such that, except
with probability O((e3n)~2), every w € P, satisfies
(4.18) E,7mc < C'e3log? e3n.
Recalling that e(K) = (2+0(1))e3n w.h.p., we deduce that w.h.p. this state-
ment holds simultaneously for all w € H. Plugging (4.16) and (4.18) into (4.13)
we conclude that w.h.p.

B,k < (C" 4 48)e 2 log®3n for all v e C;.

Finally, we will now translate these hitting time bounds into an upper
bound on the approximate forget time for S;. Let my denote the stationary
measure on the walk restricted to H:

(W) = dy(w)/2e(H) for we H.

Theorem 3.1 enables us to choose some absolute constant C7 > 0 so that ¢,
defined in (4.10) as C1e2log?(%n), would w.h.p. satisfy

1
< -.
4

TV

4.19
(4.19) max

l
1
Z Z]P)w(Wj S ) — Ty
j=1

Define & = 7xc and for j > 0, define Ejﬂ as we did for ;’s, that is,

§iv1= GLo if S0 ="5¢;,
It min{t > &;: 5y € H, 5 # Sg, } otherwise.

Let I' be the stopping rule that selects j € {0,...,¢ — 1} uniformly and then
stops at §;. By (4.19), w.h.p.
1
max [|Py (St € ) — myflrv <
veCy 4
Going back to the definition of the approximate forget time in (2.1), taking
¢ =y with the stopping rule I' yields 7y, <max, s EI' <max s &
Furthermore, combining (4.12) and (4.18), we get that w.h.p. for any
v e Cq:

E,& < (C+ C' 4+ 48)e 3 log?(e®n).

Altogether, we can conclude that the approximate forget time for S; w.h.p.
satisfies that

Fia <maxE,& < (C+ C'+48)e log?(e%n).

veCy
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This translates into the required upper bound on tyx via an application of
Theorems 2.3 and 2.4. [

4.3. Proof of Theorem 1: Lower bound on the miring time. As before,
by Theorem 2.1 it suffices to prove the analogous statement for C;.
Let r,s be as in Lemma 4.6, that is,

r=[tc'log(e’n)] and s=ze ?log(c’n).

Let T, for v € H be the PGW(u)-tree that is attached to the vertex v.
Lemma 4.6 gives that when n is sufficiently large, every v € H satisfies

P(A,.s(Ty)) > e(e®n) =23,

Since |H| = (2+0(1))e?n w.h.p. (recall Theorem 2.1), and since {7, :v € H}
are i.i.d. given H, we can conclude that w.h.p. there exists some p € H such
that A, (7,) holds. Let p € H therefore be such a vertex.

Let (S;) be a lazy random walk on C; and 7 be its stationary distribution.

A .
As usual, let 7, = min{¢:S; =v}. We wish to prove that

2 1
(4.20) max P, (Tp > §T‘S> > 3

weT)

For w € 7,, let T, be the entire subtree rooted at w. Further let L, be
the vertices of the rth level of 7,. By our assumption on 7,, there is some
€ € L, such that [T¢| > s.

We will derive a lower bound on E¢7, from the following well-known
connection between hitting-times of random walks and flows on electrical
networks (see [29] and also [22], Proposition 2.19).

LEMMA 4.7 ([29]). Given a graph G = (V, E) with a vertex z and a subset
of vertices Z not containing z, let v(-) be the voltage when a unit current
flows from z to Z and the voltage is 0 on Z. Then E.77 =3 .y d(x)v(x).

In our setting, we consider the graph C;. Clearly, the effective resistance
between p and & satisfies Reg(p <> &) =r. If a unit current flows from £ to p
and v(p) =0, it follows from Ohm’s law that v(§) =r. Notice that for any
w € Tg, the flow between w and ¢ is 0. Altogether, we deduce that

v(w)=r for all w e Te.
Therefore, Lemma 4.7 implies that
Eer, > 1[Te| > rs.
Clearly, if w* € 7, attains max{E,7,:w € 7,} then clearly

EuwsTp < 378 + Py (75 > 378)Eye 7).
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On the other hand,
Euws7p 2> Ee1p > 18,

hence we obtain (4.20).
Recall that w.h.p. |C1| = (24 o(1))en. Together with Lemma 4.5, we de-
duce that w.h.p. every v € H satisfies

|To| < 62 log(g?’n) = o(\él\).

In particular, |7,| = o(|C1]), and so (as it is a tree) 7(7,) = o(1). How-
ever, (4.20) states that with probability at least %, the random walk started
at some w € 7, does not escape from 7, hence
1

max HP’UJ(SQTS/3 € ) - 7THTV > Z,

weCy
where 7 is the stationary measure for the random walk S; on Cy. In other
words, we have that

tmix (§) = 3rs = %5*3 log?(e3n),

as required.

5. Mixing in the subcritical regime. In this section, we give the proof of
Theorem 2. By Theorem 1 and the well known duality between the subcriti-
cal and supercritical regimes (see [20]), it suffices to establish the statement
for the subcritical regime of G(n,p).

For the upper bound, by results of [5] and [20] (see also [24]), we know that
the largest component has size O(¢~2log(e3n)) w.h.p., and by results of [21],
the largest diameter of a component is w.h.p. O(e~!log(3n)). Therefore, by
the commute time identity (4.14) the maximal hitting time to a vertex is
O(e731og?(e®n)) uniformly for all components, and using the well-known
fact that tyix = O(max, , E,7y) (see, e.g., [1], Chapter 2) we arrive at the
desired upper bound on the mixing time.

In order to establish the lower bound, we will demonstrate the existence
of a component with a certain structure, and show that the order of the
mixing time on this particular component matches the above upper bound.

To find this component, we apply the usual exploration process until en
vertices are exposed. By definition, each component revealed is a Galton—
Watson tree (the exploration process does not expose the tree-excess) where
the offspring distribution is stochastically dominated by Bin(n, %) and
stochastically dominates Bin(n, 1=2).

It is well known [see, e.g., [16], equation (1.12)] that for any A >0,

HBin <n 5) “PoN)|| < A2/m.
n TV
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It follows that when discovering the first en vertices, we can approximate
the binomial variables by Poisson variables, at the cost of a total error of at
most en(1l/n) =¢c=o(1).

LEMMA 5.1.  With high probability, once en wertices are exposed in the
exploration process, we will have discovered at least £2n/2 components.

Proor. Notice that each discovered component is stochastically dom-
inated (with respect to containment) by a Poisson(1 — &)-Galton—Watson
tree. Thus, the probability that the first e2n/2 components contain more
than en vertices is bounded by the probability that the total size of £2n/2
independent PGW (1 —¢)-trees is larger than en. The latter can be estimated
(using Chebyshev’s inequality and Claim 4.2) by

e e2ne3
, (31
P( ; |Ti] >6n> < (en 27 4(e"n)”" = o(1). -

For a rooted tree T, we define the following event, analogous to the
event A, ¢(7) from Section 4.1:

B, (T) 2 {3v,w € T such that |T,| > s,|Ty| > s and dist(v,w) =r}.
The next lemma estimates the probability that the above defined event

occurs in a PGW-tree.

LEMMA 5.2.  Let T be a PGW(1 — 2¢)-tree and set r = [55c ' log(e’n)]

and s = 6—145*2 log(e3n). Then for some ¢ >0 and any sufficiently large n,
P(B,5(T)) > ce(e*n) /2.
PrOOF. The proof follows the general argument of Lemma 4.6. By Lem-
ma 4.4,
P(Ll/s # @) =E.

Combined with the proof of Claim 4.2 [see (4.4) in particular]|, we get that
E(|Lyje| | Lyje # @) =e ! and  Var(|Lyj|| Ly #2) <€ 2.
Applying Chebyshev’s inequality, we get that for some constants ¢, co > 0
P(|Lyje| > 16! | Lyje # ) > ca,

Repeating the arguments for the proof of Lemma 4.6, we conclude that
for a PGW(1 — 2¢)-tree T, the probability that the event A, s(7) occurs

(using 7, s as defined in the current lemma) is at least (e%n)~1/4 for n large
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enough. Thus [by the independence of the subtrees rooted in the (1/e)th
level],

P(U{AT,S(E)F}AM(%/) cu,u € Lyje,u## u'} | |Ly/e| > 0151) > c(s3n)*1/2
for some ¢ > 0. Altogether, we conclude that for some ¢’ > 0,

]P’<U{AT7S(7;) N Ars(Tyr)iu,u’ € Ly ey u 7 u'}> > de(ePn) 12,
which immediately implies that required bound on P(B, 4(7)). O

Combining Lemmas 5.1 and 5.2, we conclude that w.h.p., during our
exploration process we will find a tree 7 which satisfies the event B, (7))
for r,s as defined in Lemma 5.2. Next, we will show that the component
of T is indeed a tree, namely, it has no tree-excess. Clearly, edges belonging
to the tree-excess can only appear between vertices that belong either to the
same level or to successive levels (the root of the tree T is defined to be the
vertex in 7 that is first exposed). Therefore, the total number of candidates
for such edges can be bounded by 43, |L;|* where L; is the ith level of
vertices in the tree. The next claim provides an upper bound for this sum.

CLAaM 5.3.  Letr,s be defined as in Lemma 5.2. Then the PGW (1 —¢)-
tree T satisfies E[Y;|Li|* | By s(T)] = O(e3Vein).

PROOF. Recalling Claim 4.2 and in particular equation (4.4), it follows
that E(Y_, |L;|?) <e2. Lemma 5.2 now implies the required upper bound.
O

By the above claim and Markov’s inequality, we deduce that w.h.p. there
are, say, O(e~%(n)?/3) candidates for edges in the tree-excess of the com-
ponent of 7. Crucially, whether or not these edges appear is independent of
the exploration process, hence the probability that any of them appears is at
most O((%n)~1/3) = o(1). Altogether, we may assume that the component
of T is indeed a tree which satisfies the event B, (7).

It remains to establish the lower bound on the mixing time of the random
walk on the tree T. Let v, w be two distinct vertices in the rth level satisfying
|7y| > s and |T,| > s. By the same arguments used to prove (4.20), we have
that

max P, (7, >103rs) > 1 — 1073,

u€Ty
Recall that w.h.p. |T| < 62 log(e3n) = 384s. It now follows that w.h.p. the
mixing time of the random walk on this components satisfies

tyix(6) >107%rs for 6 = o4 — 1072 > 1072

The lower bound on tMIX(i) now follows from the definition of 7, s.
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