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Let C1 be the largest component of the Erdős–Rényi random
graph G(n,p). The mixing time of random walk on C1 in the strictly
supercritical regime, p = c/n with fixed c > 1, was shown to have
order log2 n by Fountoulakis and Reed, and independently by Ben-
jamini, Kozma and Wormald. In the critical window, p = (1 + ε)/n
where λ= ε3n is bounded, Nachmias and Peres proved that the mix-
ing time on C1 is of order n. However, it was unclear how to inter-
polate between these results, and estimate the mixing time as the
giant component emerges from the critical window. Indeed, even the
asymptotics of the diameter of C1 in this regime were only recently
obtained by Riordan and Wormald, as well as the present authors
and Kim.

In this paper, we show that for p = (1 + ε)/n with λ= ε3n→∞

and λ= o(n), the mixing time on C1 is with high probability of order
(n/λ) log2 λ. In addition, we show that this is the order of the largest
mixing time over all components, both in the slightly supercritical
and in the slightly subcritical regime [i.e., p = (1 − ε)/n with λ as
above].

1. Introduction. There is a rich interplay between geometric properties
of a graph and the behavior of a random walk on it (see, e.g., [1]). A par-
ticularly important parameter is the mixing time, which measures the rate
of convergence to stationarity. In this paper, we focus on random walks on
the classical Erdős–Rényi random graph G(n,p).

The geometry of G(n,p) has been studied extensively since its introduction
in 1959 by Erdős and Rényi [10]. A well-known phenomenon exhibited by
this model, typical in second-order phase transitions of mean-field models,
is the double jump: For p= c/n with c fixed, the largest component C1 has
size O(logn) with high probability (w.h.p.), when c < 1, it is w.h.p. linear
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in n for c > 1, and for c= 1 its size has order n2/3 (the latter was proved by
Bollobás [5] and  Luczak [20]). Bollobás discovered that the critical behavior
extends throughout p= (1 ± ε)/n for ε=O(n−1/3), a regime known as the
critical window.

Only in recent years were the tools of Markov chain analysis and the un-
derstanding of the random graph sufficiently developed to enable estimating
mixing times on C1. Fountoulakis and Reed [12] showed that, in the strictly
supercritical regime (p= c/n with fixed c > 1), the mixing time of random
walk on C1 w.h.p. has order log2 n. Their proof exploited fairly simple ge-
ometric properties of G(n,p), while the key to their analysis was a refined
bound [11] on the mixing time of a general Markov chain. The same result
was obtained independently by Benjamini, Kozma and Wormald [3]. There,
the main innovation was a decomposition theorem for the giant component.
However, the methods of these two papers do not yield the right order of
the mixing time when c is allowed to tend to 1.

Nachmias and Peres [25] proved that throughout the critical window the
mixing time on C1 is of order n. The proof there used branching process
arguments, which were effective since the critical C1 is close to a tree.

It was unclear how to interpolate between these results, and estimate
the mixing time as the giant component emerges from the critical window,
since the methods used for the supercritical and the critical case were so
different. The focus of this paper is primarily on the emerging supercritical
regime, where p = (1 + ε)/n with ε3n→ ∞ and ε = o(1). In this regime,
the largest component is significantly larger than the others, yet its size is
still sublinear. Understanding the geometry of C1 in this regime has been
challenging: Indeed, even the asymptotics of its diameter were only recently
obtained by Riordan and Wormald [27], as well as in [8].

Our main result determines the order of the mixing time throughout the
emerging supercritical regime (see Section 2.3 for a formal definition of mix-
ing time).

Theorem 1 (Supercritical regime). Let C1 be the largest component of
G(n,p) for p = 1+ε

n , where ε→ 0 and ε3n→∞. With high probability, the

mixing time of the lazy random walk on C1 is of order ε−3 log2(ε3n).

While the second largest component C2 has a mixing time of smaller order
(it is w.h.p. a tree, and given that event, it is a uniform tree on its vertices

and as such has tMIX ≍ |C2|3/2 (see, e.g., [25]), that is tMIX ≍ ε−3 log3/2(ε3n)
as |C2| ≍ ε−2 log(ε3n) w.h.p.), it turns out that w.h.p. there exists an even
smaller component, whose mixing time is of the same order as on C1. This is
captured by our second theorem, which also handles the subcritical regime.

Theorem 2 (Controlling all components). Let G∼ G(n,p) for p= (1±
ε)/n, where ε→ 0 and ε3n→∞. Let C⋆ be the component of G that maxi-
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mizes the mixing time of the lazy random walk on it, denoted by t⋆MIX. Then
with high probability, t⋆MIX has order ε−3 log2(ε3n). This also holds when
maximizing only over tree components.

In the area of random walk on random graphs, the following two regimes
have been analyzed extensively.

• The supercritical regime, where tMIX ≍ (diam)2 with diam denoting the
intrinsic diameter in the percolation cluster. Besides G(n, cn) for c > 1, this

also holds in the torus Z
d
n by [4] and [23].

• The critical regime on a high dimensional torus, where tMIX ≍ (diam)3.
As mentioned above, for critical percolation on the complete graph, this
was shown in [25]. For high dimensional tori, this is a consequence of [13].

To the best of our knowledge, our result is the first interpolation for the
mixing time between these two different powers of the diameter.

2. Preliminaries.

2.1. Cores and kernels. The k-core of a graph G, denoted by G(k), is
the maximum subgraph H ⊂G where every vertex has degree at least k. It
is well known (and easy to see) that this subgraph is unique, and can be
obtained by repeatedly deleting any vertex whose degree is smaller than k
(at an arbitrary order).

We call a path P = v0, v1, . . . , vk for k > 1 (i.e., a sequence of vertices with
vivi+1 an edge for each i) a 2-path if and only if vi has degree 2 for all
i = 1, . . . , k − 1 (while the endpoints v0, vk may have degree larger than 2,
and possibly v0 = vk).

The kernel K of G is obtained by taking its 2-core G(2) minus its disjoint
cycles, then repeatedly contracting all 2-paths (replacing each by a single
edge). Note that, by definition, the degree of every vertex in K is at least 3.

2.2. Structure of the supercritical giant component. The key to our anal-
ysis of the random walk on the giant component C1 is the following result
from our companion paper [9]. This theorem completely characterizes the
structure of C1, by reducing it to a tractable contiguous model C̃1.

Theorem 2.1 [9]. Let C1 be the largest component of G(n,p) for p= 1+ε
n ,

where ε3n→∞ and ε→ 0. Let µ < 1 denote the conjugate of 1 + ε, that is,
µe−µ = (1 + ε)e−(1+ε). Then C1 is contiguous to the following model C̃1:
1. Let Λ ∼N (1+ ε−µ, 1

εn) and assign i.i.d. variables Du ∼ Poisson(Λ) (u ∈
[n]) to the vertices, conditioned that

∑

Du1{Du≥3} is even. Let

Nk = #{u :Du = k} and N =
∑

k≥3

Nk.



4 J. DING, E. LUBETZKY AND Y. PERES

Select a random multigraph K on N vertices, uniformly among all multi-
graphs with Nk vertices of degree k for k ≥ 3.

2. Replace the edges of K by paths of lengths i.i.d. Geom(1 − µ).
3. Attach an independent Poisson(µ)–Galton–Watson tree to each vertex.

That is, P(C̃1 ∈ A) → 0 implies P(C1 ∈ A) → 0 for any set of graphs A that
is closed under graph-isomorphism.

In the above, a Poisson(µ)–Galton–Watson tree is the family tree of
a Galton–Watson branching process with offspring distribution Poisson(µ).
We will use the abbreviation PGW(µ)-tree for this object. A multigraph is
the generalization of a simple graph permitting multiple edges and loops.

Note that conditioning on
∑

Du1{Du≥3} being even does not pose a prob-
lem, as one can easily use rejection sampling. The 3 steps in the description
of C̃1 correspond to constructing its kernel K (Step 1), expanding K into the

2-core C̃(2)
1 (Step 2), and finally attaching trees to it to obtain C̃1 (Step 3).

Further observe that Nk ≍ εkn for any fixed k ≥ 2, and so in the special
case where ε= o(n−1/4) w.h.p. we have Du ∈ {0,1,2,3} for all u ∈ [n], and
the kernel K is simply a uniform 3-regular multigraph.

Combining the above description of the giant component with standard
tools in the study of random graphs with given degree-sequences, one can
easily read off useful geometric properties of the kernel. This is demonstrated
by the following lemma of [9], for which we require a few definitions: For
a vertex v in G let dG(v) denote its degree and for a subset of vertices S let

dG(S)
△
=
∑

v∈S

dG(v)

denote the sum of the degrees of its vertices (also referred to as the volume
of S in G). The isoperimetric number of a graph G is defined to be

i(G)
△
= min

{

e(S,Sc)

dG(S)
:S ⊂ V (G), dG(S) ≤ e(G)

}

,

where e(S,T ) denotes the number of edges between S and T while e(G) is
the total number of edges in G.

Lemma 2.2 ([9], Lemma 3.5). Let K be the kernel of the largest compo-
nent C1 of G(n,p) for p= 1+ε

n , where ε3n→∞ and ε→ 0. Then w.h.p.,

|K| = ( 43 + o(1))ε3n, e(K) = (2 + o(1))ε3n,

and i(K) ≥ α for some absolute constant α> 0.

2.3. Notions of mixing of the random walk. For any two distributions ϕ,ψ
on V , the total-variation distance of ϕ and ψ is defined as

‖ϕ−ψ‖TV
△
= sup

S⊂V
|ϕ(S) −ψ(S)| =

1

2

∑

v∈V

|ϕ(v) −ψ(v)|.
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Let (St) denote the lazy random walk on G, that is, the Markov chain which
at each step holds its position with probability 1

2 and otherwise moves to
a uniformly chosen neighbor. This is an aperiodic and irreducible Markov
chain, whose stationary distribution π is given by

π(x) = dG(x)/2|E|.
We next define two notions of measuring the distance of an ergodic Markov
chain (St), defined on a state-set V , from its stationary distribution π.

Let 0< δ < 1. The (worst-case) total-variation mixing time of (St) with
parameter δ, denoted by tMIX(δ), is defined to be

tMIX(δ)
△
= min

{

t : max
v∈V

‖Pv(St ∈ ·) − π‖TV ≤ δ
}

,

where Pv denotes the probability given that S0 = v.
The Cesàro mixing time (also known as the approximate uniform mixing

time) of (St) with parameter δ, denoted by t̃MIX(δ), is defined as

t̃MIX(δ) = min

{

t : max
v∈V

∥

∥

∥

∥

∥

π− 1

t

t−1
∑

i=0

Pv(Si ∈ ·)
∥

∥

∥

∥

∥

TV

≤ δ

}

.

When discussing the order of the mixing-time it is customary to choose
δ = 1

4 , in which case we will use the abbreviations tMIX = tMIX(14 ) and t̃MIX =

t̃MIX(14 ).
By results of [2] and [18] (see also [19]), the mixing time and the Cesàro

mixing time have the same order for lazy reversible Markov chains (i.e.,
discrete-time chains whose holding probability in each state is at least 1

2 ),
as formulated by the following theorem.

Theorem 2.3. Every lazy reversible Markov chain satisfies

c1t̃MIX( 14) ≤ tMIX(14) ≤ c2t̃MIX(14)

for some absolute constants c1, c2 > 0.

Proof. The first inequality is straightforward and does not require lazi-
ness or reversibility. We include its proof for completeness. Notice that

∥

∥

∥

∥

∥

π− 1

t

t−1
∑

i=0

Pv(Si ∈ ·)
∥

∥

∥

∥

∥

TV

≤ 1

8
+

1

t

t−1
∑

i=t/8

‖π− Pv(Si ∈ ·)‖TV

≤ 1

8
+ ‖π− Pv(St/8 ∈ ·)‖TV,

where we used the fact that ‖π − Pv(St ∈ ·)‖ is decreasing in t. Taking
t= 8tMIX(18 ), we obtain that t̃MIX(14) ≤ 8tMIX(18 ) and conclude the proof of

the first inequality using the well-known fact that tMIX(18) ≤ 4tMIX(14).
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The second inequality of the theorem is significantly more involved: By
combining [18], Theorem 5.4, (for a stronger version, see [19], Theorem 4.22)
and [2], Theorem C, it follows that the order of the Cesàro mixing time can
be bounded by that of the mixing time for the corresponding continuous-
time Markov chain. Now, using a well-known fact that the mixing time for
the lazy Markov chain and the continuous-time chain have the same order
(see, e.g., [15], Theorem 20.3), the proof is concluded. �

Let Γ be a stopping rule (a randomized stopping time) for (St). That is,
Γ :G× Ω →N for some probability space Ω, such that Γ(·, ω) is a stopping

time for every ω ∈ Ω. Let σΓ
△
= Pσ(SΓ ∈ ·) when σ is a distribution on V .

Let σ, ν be two distributions on V . Note that there is always a stopping
rule Γ such that σΓ = ν, for example, draw a vertex z according to ν and
stop when reaching z. The access time from σ to ν, denoted by H(σ, ν), is
the minimum expected number of steps over all such stopping rules:

H(σ, ν)
△
= min

Γ : σΓ=ν
EΓ.

It is easy to verify that H(σ, ν) = 0 iff σ = ν and that H(·, ·) satisfies the
triangle-inequality, however it is not necessarily symmetric.

The approximate forget time of G with parameter 0< δ < 1 is defined by

Fδ = min
ϕ

max
σ

min
ν : ‖ν−ϕ‖TV≤δ

H(σ, ν).(2.1)

Combining Theorem 3.2 and Corollary 5.4 in [19], one immediately obtains
that the approximate forget time and the Cesàro mixing time have the same
order, as stated in the following theorem.

Theorem 2.4. Every reversible Markov chain satisfies

c1F1/4 ≤ t̃MIX(14) ≤ c2F1/4

for some absolute constants c1, c2 > 0.

2.4. Conductance and mixing. Let P = (px,y)x,y be the transition kernel
of an irreducible, reversible and aperiodic Markov chain on Ω with stationary
distribution π. For S ⊂ Ω, define the conductance of the set S to be

Φ(S)
△
=

∑

x∈S,y/∈S π(x)px,y

π(S)π(Ω \ S)
.

We define Φ, the conductance of the chain, by Φ
△
= min{Φ(S) :π(S) ≤ 1

2} (In
the special case of a lazy random walk on a connected regular graph, this
quantity is similar to the isoperimetric number of the graph, defined earlier).
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A well-known result of Jerrum and Sinclair [28] states that tMIX is of order
at most Φ−2 logπ−1

min, where πmin = minx∈Ω π(x). This bound was fine-tuned
by Lovász and Kannan [17] to exploit settings where the conductance of the
average set S plays a dominant role (rather than the worst set). For our
upper bound of the mixing time on the random walk on the 2-core, we will
use an enhanced version of the latter bound (namely, Theorem 3.6) due to
Fountoulakis and Reed [11].

2.5. Edge set notations. Throughout the paper, we will use the following
notations, which will be handy when moving between the kernel and 2-core.

For S ⊂ G, let EG(S) denote the set of edges in the induced subgraph
of G on S, and let ∂GS denote the edges between S and its complement

Sc △
= V (G) \ S. Let

ĒG(S)
△
=EG(S) ∪ ∂G(S)

and define eG(S)
△
= |EG(S)|. We omit the subscript G whenever its identity

is made clear from the context.
If K is the kernel in the model C̃1 and H is its 2-core, let

E⋆
H : 2E(K) → 2E(H)

be the operator which takes a subset of edges T ⊂ E(K) and outputs the
edges lying on their corresponding 2-paths in H. For S ⊂ V (K), we let

E⋆
H(S)

△
=E⋆

H(EK(S)), Ē⋆
H(S)

△
=E⋆

H(ĒK(S)).

3. Random walk on the 2-core. In this section, we analyze the properties

of the random walk on the 2-core C̃(2)
1 .

3.1. Mixing time of the 2-core. By the definition of our new model C̃1,

we can study the 2-core C(2)
1 via the well-known configuration model (see,

e.g., [6] for further details on this method). To simplify the notation, we
let H denote the 2-core of C̃1 throughout this section.

The main goal of the subsection is to establish the mixing time of the lazy
random walk on H, as stated by the following theorem.

Theorem 3.1. With high probability, the lazy random walk on H has
a Cesàro mixing time t̃MIX of order ε−2 log2(ε3n). Consequently, w.h.p. it
also satisfies tMIX ≍ ε−2 log2(ε3n).

We will use a result of Fountoulakis and Reed [12], which bounds the
mixing time in terms of the isoperimetric profile of the graph (measuring
the expansion of sets of various volumes). As a first step in obtaining this
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data for the supercritical 2-core H, the next lemma will show that a small
subset of the kernel, S ⊂K, cannot have too many edges in ĒH(S).

Lemma 3.2. For v ∈K, define

Cv,K
△
= {S ∋ v : |S| =K and S is a connected subgraph of K}.

The following holds w.h.p. for every v ∈K, integer K and S ∈ Cv,K :

(1) |Cv,K | ≤ exp[5(K ∨ log(ε3n))].
(2) dK(S) ≤ 30(K ∨ log(ε3n)).

Proof. By definition, Λ = (2 + o(1))ε w.h.p., thus standard concentra-
tion arguments imply that the following holds w.h.p.:

N3 =

(

4

3
+ o(1)

)

ε3n and Nk ≤
(3ε)k log(1/ε)

k!
n for k ≥ 4.(3.1)

Assume that the above indeed holds, and notice that the lemma trivially
holds when K ≥ ε3n. We may therefore further assume that K ≤ ε3n.

Consider the following exploration process, starting from the vertex v.
Initialize S to be {v}, and mark v1 = v. At time i ≥ 1, we explore the
neighborhood of vi (unless |S|< i), and for each its neighbors that does not
already belong to S, we toss a fair coin to decide whether or not to insert
it to S. Newly inserted vertices are labeled according to the order of their
arrival; that is, if |S| = k prior to the insertion, we give the new vertex the
label vk+1. Finally, if |S|< i at time i then we stop the exploration process.

Let Xi denote the degree of the vertex vi in the above defined process.
In order to stochastically dominate Xi from above, observe that the worst
case occurs when each of the vertices in v1, . . . , vi−1 has degree 3. With
this observation in mind, let A be a set consisting of N3 −K vertices of
degree 3 and Nk vertices k (for k ≥ 4). Sample a vertex proportional to the
degree from A and let Y denote its degree. Clearly, Xi � Yi, where Yi are
independent variables distributed as Y , and so

dK(S) �
K
∑

i=1

Yi.(3.2)

By the definition of our exploration process,

|Cv,K | �
∑

ℓ1+···+ℓK=K

K
∏

i=1

(

Yi
ℓi

)

.

We can now deduce that

E|Cv,K | ≤ E





∑

ℓ1+···+ℓK=K

K
∏

i=1

(

Yi
ℓi

)



=
∑

ℓ1+···+ℓK=K

K
∏

i=1

E

[(

Yi
ℓi

)]

.(3.3)
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For all i≥ 4, we have

P(Y = i) ≤ 27i
(3ε)i−3 log(1/ε)

i!
= 27

(3ε)i−3 log(1/ε)

(i− 1)!

and therefore, for sufficiently large n (recall that ε= o(1)),

E

[(

Y
k

)]

≤
(

3
k

)

+
∑

i≥4

(

i
k

)

· 27
(3ε)i−3 log(1/ε)

(i− 1)!
≤ 7

k!
for all k.

Altogether,

E|Cv,K | ≤ 7K
∑

ℓ1+···+ℓK=K

K
∏

i=1

1

ℓi!
.(3.4)

The next simple claim will provide a bound on the sum in the last expression.

Claim 3.3. The function f(n) =
∑

ℓ1+···+ℓn=n

∏n
k=1

1
ℓk!

satisfies f(n) ≤ en.

Proof. The proof is by induction. For n= 1, the claim trivially holds.
Assuming the hypothesis is valid for n≤m, we get

f(m+ 1) =

m+1
∑

k=0

1

k!
f(m− k) ≤

m+1
∑

k=0

em−k

k!
≤ em

m+1
∑

k=0

1

k!
≤ em+1,

as required. �

Plugging the above estimate into (3.4), we conclude that E|Cv,K | ≤ (7e)K .
Now, Markov’s inequality, together with a union bound over all the vertices
in the kernel K yield the Part (1) of the lemma.

For Part (2), notice that for any sufficiently large n,

EeY ≤ e3 +
∑

i≥4

ei27i
(3ε)i−3 log(1/ε)

i!
≤ 25,

therefore, (3.2) gives that

P(dK(S) ≥ 30(K ∨ log(ε3n))) ≤ exp[−5(K ∨ log(ε3n))].

At this point, the proof is concluded by a union bound over Cv,K for all v ∈K
and K ≤ ε3n, using the upper bound we have already derived for |Cv,K | in
the Part (1) of the lemma. �

Lemma 3.4. Let L ⊂ E(K) be the set of loops in the kernel. With high
probability, every subset of vertices S ⊂K forming a connected subgraph of K
satisfies |Ē⋆

H(S)| ≤ (100/ε)(|S|∨ log(ε3n)), and every subset T of 1
20ε

3n edges

in K satisfies |E⋆
H(T ) ∪E⋆

H(L)| ≤ 3
4ε

2n.
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Proof. Assume that the events given in Parts (1), (2) of Lemma 3.2
hold. Further note that, by definition of the model C̃1, a standard application
of CLT yields that w.h.p.

|K| = ( 43 + o(1))ε3n, e(H) = (2 + o(1))ε2n, e(K) = (2 + o(1))ε3n.

By Part (2) of that lemma, dK(S) ≤ 30(|S| ∨ log(ε3n)) holds simultaneously
for every connected set S, hence there are at most this many edges in ĒK(S).

Let S ⊂K be a connected set of size |S| = s, and let

K =K(s) = s ∨ log(ε3n).

Recalling our definition of the graph H, we deduce that

|Ē⋆
H(S)| �

30K
∑

i=1

Zi,

where Zi are i.i.d. Geometric random variables with mean 1
1−µ . It is well

known that the moment-generating function of such variables is given by

E(etZ1) =
(1− µ)et

1− µet
.

Setting t=ε/2 and recalling that µ=1− (1+ o(1))ε, we get that E(e(ε/2)Z1)≤e
for sufficiently large n (recall that ε= o(1)). Therefore, we obtain that for
the above mentioned S,

P(|Ē⋆
H(S)| ≥ (100/ε)K) ≤ exp(30K)

exp((ε/2)(100/ε)K)
= e−20K .

By Part (1) of Lemma 3.2, there are at most (43 +o(1))ε3n exp(5K) connected

sets of size s. Taking a union bound over the (43 + o(1))ε3n values of s
establishes that the statement of the lemma holds except with probability

(

4

3
+ o(1)

)

ε3n
∑

s

e−20K(s)e5K(s) ≤
(

16

9
+ o(1)

)

(ε3n)−13 = o(1),

completing the proof of the statement on all connected subsets S ⊂K.
Next, if T contains t edges in K, then the number of corresponding edges

in H is again stochastically dominated by a sum of i.i.d. geometric vari-
ables {Zi} as above. Hence, by the same argument, the probability that
there exists a set T ⊂ E(K) of αε3n edges in K, which expands to at least
βε2n edges in H for some 0<α< 1

2 and 0< β < 1, is at most
(

(2 + o(1))ε3n
αε3n

)

eαε
3n

e(ε/2)βε2n
≤ exp

[(

2H

(

α

2

)

+α− β

2
+ o(1)

)

ε3n

]

[using the well-known fact that
∑

i≤λm

(m
i

)

≤ exp[H(λ)m], where H(x) is

the entropy function H(x)
△
= −x logx− (1− x) log(1− x)]. It is now easy to

verify that a choice of α= 1
20 and β = 2

3 in the last expression yields a term
that tends to 0 as n→∞.
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It remains to bound |L|. This will follow from a bound on the number of
loops in K. Let u ∈ K be a kernel vertex, and recall that its degree Du is
distributed as an independent (Poisson(Λ)|· ≥ 3), where Λ = (2+o(1))ε with
high probability. The expected number of loops that u obtains in a random
realization of the degree sequence (via the configuration model) is clearly
at most D2

u/D, where D = (4 + o(1))ε3n is the total of the kernel degrees.
Therefore,

E|L| ≤ (43 + o(1))ε3n · (1/D)E[D2
u] =O(1),

and so E|E⋆
H(L)| = O(1/ε). The contribution of |E⋆

H(L)| is thus easily ab-
sorbed w.h.p. when increasing β from 2

3 to 3
4 , completing the proof. �

Lemma 3.5. There exists an absolute constant ι > 0 so that w.h.p. ev-
ery connected set S ⊂H with (200/ε) log(ε3n) ≤ dH(S) ≤ e(H) satisfies that
|∂HS|/dH(S) ≥ ιε.

Proof. Let S ⊂H be as above, and write SK = S ∩K. Observe that SK
is connected (if nonempty). Furthermore, since dH(S) ≥ (200/ε) log(ε3n)
whereas the longest 2-path in H contains (1 + o(1))(1/ε) log(ε3n) edges
w.h.p., we may assume that SK is indeed nonempty.

Next, clearly |∂HS| ≥ |∂KSK| (as each edge in the boundary of SK trans-
lates into a 2-path in H with precisely one endpoint in S), while |ĒH(S)| ≤
|Ē⋆

H(SK)| (any e ∈ ĒH(S) belongs to some 2-path Pe, which is necessarily
incident to some v ∈ SK as, crucially, SK is nonempty. Hence, the edge cor-
responding to Pe belongs to ĒK(SK), and so e ∈ Ē⋆

H(SK)). Therefore, using
the fact that dH(S) ≤ 2|ĒH(S)|,

|∂HS|
dH(S)

≥ |∂KSK|
2|Ē⋆

H(SK)| =
|∂KSK|

2|ĒK(SK)| ·
|ĒK(SK)|
|Ē⋆

H(SK)| .(3.5)

Assume that the events stated in Lemma 3.4 hold. Since the assumption
on dH(SK) gives that |Ē⋆

H(SK)| ≥ (100/ε) log(ε3n), we deduce that necessar-
ily

|SK| ≥ (ε/100)|Ē⋆
H(SK)|,

and thus (since SK is connected)

|ĒK(SK)| ≥ |EK(SK)| ≥ (ε/100)|Ē⋆
H(SK)| − 1.(3.6)

Now,

dH(S) ≤ e(H) = (2 + o(1))ε2n,

and since dH(S) = 2|EH(S)| + |∂HS| we have |EH(S)| ≤ (1 + o(1))ε2n. In
particular, |E(H) \EH(S)| ≥ 3

4ε
2n for sufficiently large n.
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At the same time, if L is the set of all loops in K and T = ĒK(K\SK), then
clearly E⋆

H(T )∪E⋆
H(L) is a superset of E(H)\EH(S). Therefore, Lemma 3.4

yields that |T | ≥ 1
20ε

3n. Since dK(SK) ≤ 2e(K) = (4 + o(1))ε3n, we get

dK(K \ SK) ≥ |T | ≥ ε3n

20
≥ 1 + o(1)

80
dK(SK).

At this point, by Lemma 2.2 there exists α > 0 such that w.h.p. for any such
above mentioned subset S:

|∂KSK| ≥ α(dK(SK) ∧ dK(K \ SK)) ≥ α+ o(1)

80
dK(SK).(3.7)

Plugging (3.6), (3.7) into (3.5), we conclude that the lemma holds for any
sufficiently large n with, say, ι= 1

2 · 10−4α. �

We are now ready to establish the upper bound on the mixing time for
the random walk on H.

Proof of Theorem 3.1. We will apply the following recent result
of [11], which bounds the mixing time of a lazy chain in terms of its isoperi-
metric profile (a fine-tuned version of the Lovász–Kannan [17] bound on the
mixing time in terms of the average conductance).

Theorem 3.6 ([11]). Let P = (px,y) be the transition kernel of an irre-
ducible, reversible and aperiodic Markov chain on Ω with stationary distri-
bution π. Let πmin = minx∈Ω π(x) and for p > πmin, let

Φ(p)
△
= min{Φ(S) :S is connected and p/2 ≤ π(S) ≤ p},

and Φ(p) = 1 if there is no such S. Then for some absolute constant C > 0,

t̃MIX ≤C

⌈logπ−1
min⌉

∑

j=1

Φ−2(2−j).

In our case, the P is the transition kernel of the lazy random walk on H.
By definition, if S ⊂H and dH(x) denotes the degree of x ∈H, then

πH(x) =
dH(x)

2e(H)
, px,y =

1

2dH(x)
, πH(S) =

dH(S)

2e(H)
,

and so Φ(S) ≥ 1
2 |∂HS|/dH(S). Recall that w.h.p. e(H) = (2 + o(1))ε2n. Un-

der this assumption, for any p ≥ 120 log(ε3n)
ε3n

and connected subset S ⊂ H
satisfying πH(S) ≥ p/2,

dH(S) = 2πH(S)e(H) ≥ (200/ε) log(ε3n).
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Therefore, by Lemma 3.5, w.h.p.

Φ(p) ≥ 1

2
ιε for all 120

log(ε3n)

ε3n
≤ p≤ 1

2
.(3.8)

Set

j∗ = max

{

j : 2−j ≥ 120
log(ε3n)

ε3n

}

.

It is clear that j∗ =O(log(ε3n)) and (3.8) can be translated into

Φ(2−j) ≥ 1
2 ιε, for all 1 ≤ j ≤ j∗.(3.9)

On the other hand, if πH(S) ≤ p < 1 then dH(S) ≤ 2pe(H) while |∂HS| ≥ 1
(as H is connected), and so the inequality Φ(S) ≥ 1

2 |∂HS|/dH(S) gives

Φ(S) ≥ 1/(4pe(H)). Substituting p= 2−j with j ≤ ⌈logπ−1
min⌉, we have

Φ(2−j) ≥ 2j−2

e(H)
≥ 2j

10ε2n
(3.10)

(where the last inequality holds for large n). Combining (3.9) and (3.10)
together, we now apply Theorem 3.6 to conclude that there exists a constant
C > 0 such that, w.h.p.,

t̃MIX ≤ C

⌈logπ−1
min⌉

∑

j=1

1

Φ2(2−j)
=C

[

j∗
∑

j=1

1

Φ2(2−j)
+

⌈logπ−1
min⌉

∑

j=j∗

1

Φ2(2−j)

]

≤ C

(

j∗
(

1

2
ιε

)−2

+ 2(10ε2n · 2−j∗)2
)

=O(ε−2 log2(ε3n)),

where the last inequality follows by our choice of j∗.
The lower bound on the mixing time follows immediately from the fact

that, by the definition of C̃1, w.h.p. there exists a 2-path in H whose length
is (1− o(1))(1/ε) log(ε3n) (see [9], Corollary 1). �

3.2. Local times for the random walk on the 2-core. In order to extend
the mixing time from the 2-core H to the giant component, we need to prove
the following proposition.

Proposition 3.7. Let Nv,s be the local time induced by the lazy random
walk (Wt) on H to the vertex v up to time s, that is, #{0 ≤ t≤ s :Wt = v}.
Then there exists some C>0 such that, w.h.p., for all s>0 and any u, v∈H,

Eu[Nv,s] ≤C
εs

log(ε3n)
+ (150/ε) log(ε3n).

In order to prove Proposition 3.7, we wish to show that with positive
probability the random walk Wt will take an excursion in a long 2-path
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before returning to v. Consider some v ∈K (we will later extend this analysis
to the vertices in H\K, i.e., those vertices lying on 2-paths). We point out
that proving this statement is simpler in case Dv = O(1), and most of the
technical challenge lies in the possibility that Dv is unbounded. In order to
treat this point, we first show that the neighbors of vertex v in the kernel
are, in some sense, distant apart.

Lemma 3.8. For v ∈ K let Nv denote the set of neighbors of v in the
kernel K. Then w.h.p., for every v ∈ K there exists a collection of disjoint
connected subsets {Bw(v) ⊂K :w ∈Nv}, such that for all w ∈Nv,

|Bw| = ⌈(ε3n)1/5⌉ and diam(Bw) ≤ 1
2 log(ε3n).

Proof. We may again assume (3.1) and furthermore, that

3 ≤Dv ≤ log(ε3n) for all v ∈K.
Let v ∈ K. We construct the connected sets Bw while we reveal the struc-
ture of the kernel K via the configuration model, as follows: Process the
vertices w ∈ Nv sequentially according to some arbitrary order. When pro-
cessing such a vertex w, we expose the ball (according to the graph metric)
about it, excluding v and any vertices that were already accounted for, un-
til its size reaches ⌈(ε3n)1/5⌉ (or until no additional new vertices can be
added).

It is clear from the definition that the Bw’s are indeed disjoint and con-
nected, and it remains to prove that each Bw satisfies |Bw| = ⌈(ε3n)1/5⌉ and
diam(Bw) ≤ log(ε3n).

Let R denote the tree-excess of the (connected) subset {v} ∪⋃wBw once
the process is concluded. We claim that w.h.p. R ≤ 1. To see this, first
observe that at any point in the above process, the sum of degrees of all the
vertices that were already exposed (including v and Nv) is at most

⌈(ε3n)1/5⌉ log2(ε3n) = (ε3n)1/5+o(1).

Hence, by the definition of the configuration model (which draws a new half-
edge between w and some other vertex proportional to its degree), R � Z
where Z is a binomial variable Bin((ε3n)1/5+o(1), (ε3n)−4/5+o(1)). This gives

P(R≥ 2) = (ε3n)−6/5+o(1).

In particular, since Dw ≥ 3 for any w ∈K, this implies that we never fail to
grow Bw to size (ε3n)1/5, and that the diameter of each Bw is at most that
of a binary tree (possibly plus R≤ 1), that is, for any large n,

diam(Bw) ≤ 1
5 log2(ε3n) + 2 ≤ 1

2 log(ε3n).

A simple union bound over v ∈K now completes the proof. �
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We distinguish the following subset of the edges of the kernel, whose paths
are suitably long:

E △
=

{

e ∈E(K) : |Pe| ≥
1

20ε
log(ε3n)

}

,

where Pe is the 2-path in H that corresponds to the edge e ∈E(K). Further
define Q⊂ 2K to be all the subsets of vertices of K whose induced subgraph
contains an edge from E :

Q △
= {S ⊂K :EK(S) ∩ E 6= ∅}.

For each e ∈K, we define the median of its 2-path, denoted by med(Pe), in
the obvious manner: It is the vertex w ∈ Pe whose distance from the two
endpoints is the same, up to at most 1 (whenever there are two choices for
this w, pick one arbitrarily). Now, for each v ∈H let

Ev △
= {med(Pe) : e ∈ E , v /∈Pe}.

The next lemma provides a lower bound on the effective conductance be-
tween a vertex v in the 2-core and its corresponding above defined set Ev .
See, for example, [22] for further details on conductances/resistances.

Lemma 3.9. Let Ceff(v↔Ev) be the effective conductance between a ver-
tex v ∈H and the set Ev. With high probability, for any v ∈H,

Ceff(v↔Ev)/Dv ≥ ε/(100 log(ε3n)).

Proof. In order to bound the effective conductance, we need to prove
that for any v ∈ K, there exist Dv disjoint paths of length at most (100/
ε) log(ε3n) leading to the set Ev . By Lemmas 3.4 and 3.8, it suffices to prove
that w.h.p. for any v ∈K and w ∈Nv, we have that E(Bw)∩E 6= ∅, where Nv

and Bw are defined as in Lemma 3.8 (in this case, the path from v to some
e ∈ E within Bw will have length at most 1

2 log(ε3n) in K, and its length will
not be exceed (100/ε) log(ε3n) after being expanded in the 2-core).

Notice that if Y is the geometric variable Geom(1− µ) then

P

(

Y ≥ 1

10ε
log(ε3n)

)

= µ(1/10ε) log(ε
3n) ≥ (ε3n)−1/10+o(1).

Therefore, by the independence of the lengths of the 2-paths and the fact
that |Bw| = ⌈(ε3n)1/5⌉, we obtain that

P(E(Bw) ∩ E = ∅) ≤ (1− (ε3n)−1/10+o(1))(ε
3n)1/5 ≤ e−(ε3n)1/10−o(1)

.

At this point, a union bound shows that the probability that for some v ∈K
there exists some w ∈Nv , such that E(Bw) does not intersect E , is at most

( 43 + o(1))ε3n · log(ε3n) · e−(ε3n)1/10−o(1)
= o(1). �
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We are ready to prove the main result of this subsection, Proposition 3.7,
which bounds the local times induced by the random walk on the 2-core.

Proof of Proposition 3.7. For some vertex v ∈H and subset A⊂H,
let

τ+v
△
= min{t > 0 :Wt = v}, τA

△
= min{t :Wt ∈A}.

It is well known [see, e.g., [22], equation (2.4)] that the effective conductance
has the following form:

Pv(τA < τ+v ) =
Ceff(v↔A)

Dv
.

Combined with Lemma 3.9, it follows that

Pv(τEv < τ+v ) =
Ceff(v↔Ev)

Dv
≥ ε/(100 log(ε3n)).

On the other hand, for any v ∈H, by definition w ∈ Ev is the median of some
2-path, which does not contain v and has length at least 1

20ε log(ε3n). Hence,
by well-known properties of hitting times for the simple random walk on the
integers, there exists some absolute constant c > 0 such that for any v ∈H
and w ∈ Ev :

Pw(τ+v ≥ cε−2 log2(ε3n)) ≥ Pw(τK ≥ cε−2 log2(ε3n)) ≥ 2
3 .

Altogether, we conclude that

Pv(τ+v ≥ cε−2 log2(ε3n)) ≥ Pv(τEv < τ+v ) min
w∈Ev

{Pw(τ+v ≥ cε−2 log2(ε3n))}

≥ ε/(150 log(ε3n)).

Setting tc = cε−2 log2(ε3n), we can rewrite the above as

Pv(Nv,tc ≥ 2) ≤ 1− ε/(150 log(ε3n)).

By the strong Markovian property (i.e., (Wτ+v +t) is a Markov chain with the

same transition kernel of (Wt)), we deduce that

P(Nv,tc ≥ k) ≤ [1− ε/(150 log(ε3n))]k−1,

and hence

ENv,tc ≤ (150/ε) log(ε3n).

The proof is completed by observing that Ev(Nv,s) ≤ ⌈s/tc⌉EvNv,tc and that
EuNv,s ≤ EvNv,s for any u. �

4. Mixing on the giant component. In this section, we prove Theorem 1,
which establishes the order of the mixing time of the lazy random walk on
the supercritical C1.
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4.1. Controlling the attached Poisson Galton–Watson trees. So far, we
have established that w.h.p. the mixing time of the lazy random walk on

the 2-core C̃(2)
1 has order ε−2 log2(ε3n). To derive the mixing time for C̃1

based on that estimate, we need to consider the delays due to the excursions
the random walk makes in the attached trees. As we will later see, these
delays will be upper bounded by a certain a linear combination of the sizes
of the trees (with weights determined by the random walk on the 2-core).
The following lemma will play a role in estimating this expression.

Lemma 4.1. Let {Ti} be independent PGW(µ)-trees. For any two con-
stants C1,C2 > 0 there exists some constant C > 0 such that the following
holds: If {ai}mi=1 is a sequence of positive reals satisfying

m
∑

i=1

ai ≤C1ε
−2 log2(ε3n),(4.1)

max
1≤i≤m

ai ≤C2ε
−1 log(ε3n),(4.2)

then

P

(

m
∑

i=1

ai|Ti| ≥Cε−3 log2(ε3n)

)

≤ (ε3n)−2.

Proof. It is well known (see, e.g., [26]) that the size of a Poisson(γ)–
Galton–Watson tree T follows a Borel(γ) distribution, namely,

P(|T | = k) =
kk−1

γk!
(γe−γ)k.(4.3)

The following is a well-known (and easy) estimate on the size of a PGW-tree;
we include its proof for completeness.

Claim 4.2. Let 0< γ < 1, and let T be a PGW(γ)-tree. Then

E|T | =
1

1− γ
, Var(|T |) =

γ

(1 − γ)3
.

Proof. For k = 0,1, . . . , let Lk be the number of vertices in the kth
level of the tree T . Clearly, ELk = γk, and so E|T | = E

∑

k Lk = 1
1−γ .

By the total-variance formula,

Var(Li) = Var(E(Li|Li−1)) +E(Var(Li|Li−1))

= γ2 Var(Li−1) + γELi−1 = γ2 Var(Li−1) + γi.

By induction,

Var(Li) =

2i−1
∑

k=i

γk = γi
1− γi

1− γ
.(4.4)
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We next turn to the covariance of Li,Lj for i≤ j:

Cov(Li,Lj) = E[LiLj] − ELiELj = γj−i
EL2

i − γi+j

= γj−i Var(Li) = γj
1− γi

1− γ
.

Summing over the variances and covariances of the Li’s, we deduce that

Var(|T |) = 2
∞
∑

i=0

∞
∑

j=i

γj
1− γi

1 − γ
−

∞
∑

i=0

γi
1 − γi

1 − γ
=

γ

(1− γ)3
.

�

We need the next lemma to bound the tail probability for
∑

ai|Ti|.

Lemma 4.3 ([14], Corollary 4.2). Let X1, . . . ,Xm be independent r.v.’s
with E[Xi] = µi. Suppose there are bi, di and ξ0 such that Var(Xi) ≤ bi, and

|E[(Xi − µi)
3eξ(Xi−µi)]| ≤ di for all 0 ≤ |ξ| ≤ ξ0.

If δξ0
∑m

i=1 di ≤
∑m

i=1 bi for some 0< δ ≤ 1, then for all ∆> 0,

P

(∣

∣

∣

∣

∣

m
∑

i=1

Xi −
m
∑

i=1

µi

∣

∣

∣

∣

∣

≥ ∆

)

≤ exp

(

−1

3
min

{

δξ0∆,
∆2

∑m
i=1 bi

})

.

Let Ti = |Ti| and Xi = aiTi for i ∈ [m]. Claim 4.2 gives that

µi = EXi = ai/(1 − µ).

Now set

ξ0 = ε3/(10C2 log(ε3n)).

For any |ξ| ≤ ξ0, we have ai|ξ| ≤ ε2/10 by the assumption (4.2), and so

|E[(Xi − µi)
3eξ(Xi−µi)]| = a3i

∣

∣

∣

∣

E

[(

Ti −
1

1− µ

)3

eξai(Ti−1/(1−µ))

]
∣

∣

∣

∣

≤ a3iE[(1− µ)−3
1{Ti<(1−µ)−1}]

(4.5)
+ a3iE[T 3

i eξaiTi1{Ti≥(1−µ)−1}]

≤ a3i (1− µ)−3 + a3iE[T 3
i exp(ε2Ti/10)].

Recalling the law of Ti given by (4.3), we obtain that

E(T 3
i exp(ε2Ti/10)) =

∞
∑

k=1

kk−1

µk!
(µe−µ)kk3eε

2k/10.
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Using Stirling’s formula, we obtain that for some absolute constant c > 1,

E(T 3
i exp(ε2Ti/10)) ≤ c

∞
∑

k=1

kk−1(µe−µ)k

µ(k/e)k
√
k
k3eε

2k/10

(4.6)

=
c

µ

∞
∑

k=1

k3/2(µe1−µ)keε
2k/10.

Recalling that µ = 1 − ε + 2
3ε

2 + O(ε3) and using the fact that 1 − x ≤
e−x−x2/2 for x ≥ 0, we get that for sufficiently large n (and hence small
enough ε),

µe1−µ = (1 − (1− µ))e1−µ ≤ exp(−1
2ε

2 +O(ε3)) ≤ e−ε2/3.(4.7)

Plugging the above estimate into (4.6), we obtain that for large n,

E[T 3
i exp(ε2Ti/10)] ≤ 2c

∞
∑

k=1

k3/2e−ε2k/6 ≤ 4c

∫ ∞

0
x3/2e−ε2x/6 dx

≤ 400cε−5

∫ ∞

0
x3/2e−x dx= 300

√
πcε−5.

Going back to (4.5), we get that for some absolute c′ > 1 and any large n,

|E[(Xi − µi)
3eξ(Xi−µi)]| ≤ a3i (2ε−3 + c′ε−5) ≤ ai · 2c′C2

2ε
−7 log2(ε3n)

△
= di,

where the second inequality used (4.2).
By Claim 4.2, it follows that for large enough n,

Var(Xi) = a2i Var(Ti) = a2i
µ

(1 − µ)3
≤ 2a2i ε

−3 ≤ ai · 2C2ε
−4 log(ε3n)

△
= bi.

Since
∑

i di = (c′C2ε
−3 log(ε3n))

∑

i bi, by setting δ = 1 (and recalling our
choice of ξ0) we get

δξ0

m
∑

i=1

di =
δc′

10

∑

i

bi ≤
m
∑

i=1

bi.

We have thus established the conditions for Lemma 4.3, and it remains to
select ∆. For a choice of ∆ = (60C2 ∨

√
12C1C2)ε

−3 log2(ε3n), by definition
of ξ0 and the bi’s we have

ξ0∆ ≥ 6 log(ε3n),

∆2/
∑

i

bi ≥ 6C1ε
−2 log3(ε3n)/

∑

i

ai ≥ 6 log(ε3n),
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where the last inequality relied on (4.1). Hence, an application of Lemma 4.3
gives that for large enough n,

P

(

∑

i

aiTi −
∑

i

µi ≥ ∆

)

≤ (ε3n)−2.

Finally, by (4.1) and using the fact that 1−µ≥ ε/2 for any large n, we have
∑

i µi = (1−µ)−1
∑

i ai ≤ 2C1ε
−3 log2(ε3n). The proof of Lemma 4.1 is thus

concluded by choosing C = 2C1 + (60C2 ∨
√

12C1C2). �

To bound the time it takes the random walk to exit from an attached
PGW-tree (and enter the 2-core), we will need to control the diameter and
volume of such a tree. The following simple lemma of [8] gives an estimate
on the diameter of a PGW-tree.

Lemma 4.4 ([8], Lemma 3.2). Let T be a PGW(µ)-tree and Lk be its

kth level of vertices. Then P(Lk 6= ∅) ≍ εe−k(ε+O(ε2)) for any k ≥ 1/ε.

The next lemma gives a bound on the volume of a PGW-tree.

Lemma 4.5. Let T be a PGW(µ)-tree. Then

P(|T | ≥ 6ε−2 log(ε3n)) = o(ε(ε3n)−2).

Proof. Recalling (4.3) and applying Stirling’s formula, we obtain that
for any s > 0,

P(|T | ≥ s) =
∑

k≥s

kk−1

µk!
(µe−µ)k ≍

∑

k≥s

(µe1−µ)k

k3/2
.(4.8)

Write r= log(ε3n). By estimate (4.7), we now get that for large enough n,
∑

k≥6ε−2r

k−3/2(µe1−µ)k ≤
∑

k≥6ε−2r

k−3/2e−ε2k/3 =O(e−2rε/
√
r),

and combined with (4.8) this concludes the proof. �

Finally, for the lower bound, we will need to show that w.h.p. one of the
attached PGW-trees in C̃1 is suitably large, as we next describe. For a rooted
tree T , let Lk be its kth level of vertices and Tv be its entire subtree rooted
at v. Define the event

Ar,s(T )
△
= {∃v ∈Lr such that |Tv| ≥ s}.

The next lemma gives a bound on the probability of this event when T is
a PGW(µ)-tree.
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Lemma 4.6. Let T be a PGW(µ)-tree and take r= ⌈18ε−1 log(ε3n)⌉ and

s= 1
8ε

−2 log(ε3n). Then for any sufficiently large n,

P(Ar,s(T )) ≥ ε(ε3n)−2/3.

Proof. We first give a lower bound on the probability that |T | ≥ s.
By (4.8), we have P(|T | ≥ s) ≥ c

∑

k≥s k
−3/2(µe1−µ)k for some absolute c > 0.

Recalling that µ= 1− ε+ 2
3ε

2 +O(ε3), we have that for n large enough,

µe1−µ ≥ e−(ε+ε2)eε−ε2 ≥ e−2ε2 .

Therefore, for s= 1
8ε

−2 log(ε3n) this gives that

P(|T | ≥ s) ≥ c
∑

s≤k≤2s

k−3/2e−2ε2k ≥ cs(2s)−3/2e−4ε2s ≥ ε(ε3n)−1/2+o(1).

Combining this with the fact that {Tv :v ∈ Lr} are i.i.d. PGW(µ)-trees
given Lr, we get

P(Ar,s(T )|Lr) = 1− (1− P(|T | ≥ s))|Lr| ≥ 1− (1− ε(ε3n)−1/2+o(1))|Lr|.

Taking expectation over Lr, we conclude that

P(Ar,s(T )) ≥ 1−E((1− ε(ε3n)−1/2+o(1))|Lr|)
(4.9)

≥ ε(ε3n)−1/2+o(1)
E|Lr| − ε2(ε3n)−1+o(1)

E|Lr|2.
For r = ⌈18ε−1 log(ε3n)⌉, we have

E(|Lr|) = µr ≥ e−(ε+O(ε2))r ≥ (ε3n)−1/8+o(1),

and by (4.4),

Var |Lr| = µr
1− µr

1− µ
≤ e−εr2ε−1 ≤ 2ε−1(ε3n)−1/8.

Plugging these estimates into (4.9), we obtain that

P(Ar,s(T )) ≥ ε(ε3n)−5/8+o(1) ≥ ε(ε3n)−2/3,

where the last inequality holds for large enough n, as required. �

4.2. Proof of Theorem 1: Upper bound on the mixing time. By Theo-
rem 2.1, it suffices to consider C̃1 instead of C1. As in the previous section,

we abbreviate C̃(2)
1 by H.

For each vertex v in the 2-core H, let Tv be the PGW-tree attached to v
in C̃1. Let (St) be the lazy random walk on C̃1, define ξ0 = 0 and for j ≥ 0,

ξj+1 =

{

ξj + 1, if Sξj+1 = Sξj ,
min{t > ξj :St ∈H, St 6= Sξj}, otherwise.
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Defining Wj
△
= Sξj , we observe that (Wj) is a lazy random walk on H. Fur-

thermore, started from any w ∈H, there are two options:

(i) Do a step in the 2-core (either stay in w via the lazy rule, which has
probability 1

2 , or jump to one of the neighbor of w in H, an event that has
probability dH(w)/2dC̃1(w)).

(ii) Enter the PGW-tree attached to w (this happens with probability
dTw(w)/2dC̃1(w)).

It is the latter case that incurs a delay for the random walk on C̃1. Since the
expected return time to w once entering the tree Tw is 2(|Tw| − 1)/dTw (w),
and as the number of excursions to the tree follows a geometric distribution
with success probability 1− dTw(w)/2dC̃1(w), we infer that

Ewξ1 = 1 +
2(|Tw| − 1)

dTw(w)
·

2dC̃1(w)

2dC̃1(w) − dTw(w)
≤ 4|Tw|.

For some constant C1 > 0 to be specified later, let

ℓ=C1ε
−2 log2(ε3n) and av,w(ℓ) =

ℓ−1
∑

j=0

Pv(Wj =w).(4.10)

It follows that

Ev(ξℓ) =

ℓ−1
∑

j=0

∑

w∈H

Pv(Sξj =w)Ewξ1

(4.11)

=
∑

w∈H

ℓ−1
∑

j=0

Pv(Wj =w)Ewξ1 ≤ 4
∑

w∈H

av,w(ℓ)|Tw|.

We now wish to bound the last expression via Lemma 4.1. Let v ∈K. Note
that, by definition,

∑

w∈H

av,w(ℓ) = ℓ=C1ε
−2 log2(ε3n).

Moreover, by Proposition 3.7, there exists some constant C2 > 0 (which
depends on C1) such that w.h.p.

max
w∈H

av,w(ℓ) ≤C2ε
−1 log(ε3n).

Hence, Lemma 4.1 (applied on the sequence {av,w(ℓ) :w ∈ H}) gives that
there exists some constant C > 0 (depending only on C1,C2) such that
∑

w∈H

av,w(ℓ)|Tv| ≤Cε−3 log2(ε3n) except with probability (ε3n)−2.
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Since |K| = (43 + o(1))ε3n w.h.p., taking a union bound over the vertices of
the kernel while recalling (4.11) implies that w.h.p.,

Ev(ξℓ) ≤Cε−3 log2(ε3n) for all v ∈K.(4.12)

We next wish to bound the hitting time to the kernel K, defined next:

τK = min{t :St ∈K}.
Define τx and τS analogously as the hitting times of St to the vertex x and
the subset S, respectively. Recall that from any v ∈ C̃1, after time ξ1 we will
have hit a vertex in the 2-core, hence for any v ∈ C̃1 we have

EvτK ≤ EvτH + max
w∈H

EwτK.(4.13)

To bound the first summand, since

max
v∈C̃1

EvτH = max
w∈H

max
v∈Tw

Evτw,

it clearly suffices to bound Evτw for all w ∈ H and v ∈ Tw. To this end,
let w ∈H, and let S̃t be the lazy random walk on Tw. As usual, define τ̃v =
min{t : S̃t = v}. Clearly, for all v ∈ Tw we have Evτw = Evτ̃w. We bound Ev τ̃w
by Evτ̃w + Ewτ̃v , that is, the commute time between v and w. Denote by
Reff(v,w) the effective resistance between v and w when each edge has unit
resistance. The commute time identity of [7] (see also [29]) yields that

Evτ̃w +Ew τ̃v ≤ 4|Tw|Reff(v↔w) ≤ 4|Tw|diam(Tw).(4.14)

Now, Lemmas 4.4 and 4.5 give that for any w ∈H, with probability at least
1−O(ε(ε3n)−2),

|Tw| ≤ 6ε−2 log(ε3n) and diam(Tw) ≤ 2ε−1 log(ε3n).(4.15)

Since w.h.p. |H| = (2 + o(1))ε2n, we can sum the above over the vertices
of H and conclude that w.h.p., (4.15) holds simultaneously for all w ∈ H.
Plugging this in (4.14), we deduce that

Evτ̃w + Ewτ̃v ≤ 48ε−3 log2(ε3n),

and altogether, as the above holds for every w ∈H,

max
v∈C̃1

EvτH ≤ 48ε−3 log2(ε3n).(4.16)

For the second summand in (4.13), consider e ∈ K and let Pe be the 2-
path corresponding to e in the 2-core H. Recall that w.h.p. the longest such
2-path in the 2-core has length (1 + o(1))ε−1 log(ε3n). Since from each point
v ∈ Pe, we have probability at least 2/|Pe| to hit one of the endpoints of
the 2-path (belonging to K) before returning to v, it follows that w.h.p., for
every e ∈K and v ∈Pe we have

max
w∈Pe

Ew#{t≤ τK :Wt = v} ≤
(

1

2
+ o(1)

)

ε−1 log(ε3n).(4.17)
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We now wish to apply Lemma 4.1 to the sequence av = maxw∈Pe Ew#{t≤
τK :Wt = v}. Since this sequence satisfies

max
v∈Pe

av ≤
(

1

2
+ o(1)

)

ε−1 log(ε3n),
∑

v∈Pe

av ≤
(

1

2
+ o(1)

)

ε−2 log2(ε3n),

we deduce that there exists some absolute constant C ′ > 0 such that, except
with probability O((ε3n)−2), every w ∈ Pe satisfies

EwτK ≤C ′ε−3 log2 ε3n.(4.18)

Recalling that e(K) = (2+ o(1))ε3n w.h.p., we deduce that w.h.p. this state-
ment holds simultaneously for all w ∈H. Plugging (4.16) and (4.18) into (4.13)
we conclude that w.h.p.

EvτK ≤ (C ′ + 48)ε−3 log2 ε3n for all v ∈ C̃1.
Finally, we will now translate these hitting time bounds into an upper

bound on the approximate forget time for St. Let πH denote the stationary
measure on the walk restricted to H:

πH(w) = dH(w)/2e(H) for w ∈H.
Theorem 3.1 enables us to choose some absolute constant C1 > 0 so that ℓ,
defined in (4.10) as C1ε

−2 log2(ε3n), would w.h.p. satisfy

max
w∈H

∥

∥

∥

∥

∥

1

ℓ

ℓ
∑

j=1

Pw(Wj ∈ ·) − πH

∥

∥

∥

∥

∥

TV

≤ 1

4
.(4.19)

Define ξ̄0 = τK and for j ≥ 0, define ξ̄j+1 as we did for ξj ’s, that is,

ξ̄j+1 =

{

ξ̄j + 1, if Sξ̄j+1 = Sξ̄j ,

min{t > ξ̄j :St ∈H, St 6= Sξ̄j}, otherwise.

Let Γ be the stopping rule that selects j ∈ {0, . . . , ℓ− 1} uniformly and then
stops at ξ̄j . By (4.19), w.h.p.

max
v∈C̃1

‖Pv(SΓ ∈ ·) − πH‖TV ≤ 1

4
.

Going back to the definition of the approximate forget time in (2.1), taking
ϕ= πH with the stopping rule Γ yields F1/4 ≤ maxv∈C̃1

EΓ ≤ maxv∈C̃1
ξ̄ℓ.

Furthermore, combining (4.12) and (4.18), we get that w.h.p. for any
v ∈ C̃1:

Ev ξ̄ℓ ≤ (C +C ′ + 48)ε−3 log2(ε3n).

Altogether, we can conclude that the approximate forget time for St w.h.p.
satisfies that

F1/4 ≤ max
v∈C̃1

Evξ̄ℓ ≤ (C +C ′ + 48)ε−3 log2(ε3n).
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This translates into the required upper bound on tMIX via an application of
Theorems 2.3 and 2.4. �

4.3. Proof of Theorem 1: Lower bound on the mixing time. As before,
by Theorem 2.1 it suffices to prove the analogous statement for C̃1.

Let r, s be as in Lemma 4.6, that is,

r= ⌈18ε−1 log(ε3n)⌉ and s= 1
8ε

−2 log(ε3n).

Let Tv for v ∈ H be the PGW(µ)-tree that is attached to the vertex v.
Lemma 4.6 gives that when n is sufficiently large, every v ∈H satisfies

P(Ar,s(Tv)) ≥ ε(ε3n)−2/3.

Since |H| = (2 + o(1))ε2n w.h.p. (recall Theorem 2.1), and since {Tv :v ∈H}
are i.i.d. given H, we can conclude that w.h.p. there exists some ρ ∈H such
that Ar,s(Tρ) holds. Let ρ ∈H therefore be such a vertex.

Let (St) be a lazy random walk on C̃1 and π be its stationary distribution.

As usual, let τv
△
= min{t :St = v}. We wish to prove that

max
w∈Tρ

Pw

(

τρ ≥
2

3
rs

)

≥ 1

3
.(4.20)

For w ∈ Tρ, let Tw be the entire subtree rooted at w. Further let Lr be
the vertices of the rth level of Tρ. By our assumption on Tρ, there is some
ξ ∈ Lr such that |Tξ| ≥ s.

We will derive a lower bound on Eξτρ from the following well-known
connection between hitting-times of random walks and flows on electrical
networks (see [29] and also [22], Proposition 2.19).

Lemma 4.7 ([29]). Given a graph G= (V,E) with a vertex z and a subset
of vertices Z not containing z, let v(·) be the voltage when a unit current
flows from z to Z and the voltage is 0 on Z. Then EzτZ =

∑

x∈V d(x)v(x).

In our setting, we consider the graph C̃1. Clearly, the effective resistance
between ρ and ξ satisfies Reff(ρ↔ ξ) = r. If a unit current flows from ξ to ρ
and v(ρ) = 0, it follows from Ohm’s law that v(ξ) = r. Notice that for any
w ∈ Tξ, the flow between w and ξ is 0. Altogether, we deduce that

v(w) = r for all w ∈ Tξ.
Therefore, Lemma 4.7 implies that

Eξτρ ≥ r|Tξ| ≥ rs.

Clearly, if w⋆ ∈ Tρ attains max{Ewτρ :w ∈ Tρ} then clearly

Ew⋆τρ ≤ 2
3rs+ Pw⋆(τρ ≥ 2

3rs)Ew⋆τρ.
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On the other hand,

Ew⋆τρ ≥ Eξτρ ≥ rs,

hence we obtain (4.20).
Recall that w.h.p. |C̃1| = (2 + o(1))εn. Together with Lemma 4.5, we de-

duce that w.h.p. every v ∈H satisfies

|Tv| ≤ 6ε−2 log(ε3n) = o(|C̃1|).
In particular, |Tρ| = o(|C̃1|), and so (as it is a tree) π(Tρ) = o(1). How-
ever, (4.20) states that with probability at least 1

3 , the random walk started
at some w ∈ Tρ does not escape from Tρ, hence

max
w∈C̃1

‖Pw(S2rs/3 ∈ ·) − π‖TV ≥ 1

4
,

where π is the stationary measure for the random walk St on C̃1. In other
words, we have that

tMIX(14) ≥ 2
3rs= 1

96ε
−3 log2(ε3n),

as required.

5. Mixing in the subcritical regime. In this section, we give the proof of
Theorem 2. By Theorem 1 and the well known duality between the subcriti-
cal and supercritical regimes (see [20]), it suffices to establish the statement
for the subcritical regime of G(n,p).

For the upper bound, by results of [5] and [20] (see also [24]), we know that
the largest component has size O(ε−2 log(ε3n)) w.h.p., and by results of [21],
the largest diameter of a component is w.h.p. O(ε−1 log(ε3n)). Therefore, by
the commute time identity (4.14) the maximal hitting time to a vertex is
O(ε−3 log2(ε3n)) uniformly for all components, and using the well-known
fact that tMIX =O(maxx,y Exτy) (see, e.g., [1], Chapter 2) we arrive at the
desired upper bound on the mixing time.

In order to establish the lower bound, we will demonstrate the existence
of a component with a certain structure, and show that the order of the
mixing time on this particular component matches the above upper bound.

To find this component, we apply the usual exploration process until εn
vertices are exposed. By definition, each component revealed is a Galton–
Watson tree (the exploration process does not expose the tree-excess) where
the offspring distribution is stochastically dominated by Bin(n, 1−ε

n ) and

stochastically dominates Bin(n, 1−2ε
n ).

It is well known [see, e.g., [16], equation (1.12)] that for any λ > 0,
∥

∥

∥

∥

Bin

(

n,
λ

n

)

−Po(λ)

∥

∥

∥

∥

TV

≤ λ2/n.
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It follows that when discovering the first εn vertices, we can approximate
the binomial variables by Poisson variables, at the cost of a total error of at
most εn(1/n) = ε= o(1).

Lemma 5.1. With high probability, once εn vertices are exposed in the
exploration process, we will have discovered at least ε2n/2 components.

Proof. Notice that each discovered component is stochastically dom-
inated (with respect to containment) by a Poisson(1 − ε)–Galton–Watson
tree. Thus, the probability that the first ε2n/2 components contain more
than εn vertices is bounded by the probability that the total size of ε2n/2
independent PGW(1−ε)-trees is larger than εn. The latter can be estimated
(using Chebyshev’s inequality and Claim 4.2) by

P

(ε2n/2
∑

i=1

|Ti| ≥ εn

)

≤ ε2nε−3

(εn/2)2
= 4(ε3n)−1 = o(1).

�

For a rooted tree T , we define the following event, analogous to the
event Ar,s(T ) from Section 4.1:

Br,s(T )
△
= {∃v,w ∈ T such that |Tv| ≥ s, |Tw| ≥ s and dist(v,w) = r}.

The next lemma estimates the probability that the above defined event
occurs in a PGW-tree.

Lemma 5.2. Let T be a PGW(1− 2ε)-tree and set r= ⌈ 1
20ε

−1 log(ε3n)⌉
and s= 1

64ε
−2 log(ε3n). Then for some c > 0 and any sufficiently large n,

P(Br,s(T )) ≥ cε(ε3n)−1/2.

Proof. The proof follows the general argument of Lemma 4.6. By Lem-
ma 4.4,

P(L1/ε 6= ∅) ≍ ε.

Combined with the proof of Claim 4.2 [see (4.4) in particular], we get that

E(|L1/ε| | L1/ε 6= ∅) ≍ ε−1 and Var(|L1/ε| | L1/ε 6= ∅) ≍ ε−2.

Applying Chebyshev’s inequality, we get that for some constants c1, c2 > 0

P(|L1/ε|> c1ε
−1 | L1/ε 6= ∅) ≥ c2.

Repeating the arguments for the proof of Lemma 4.6, we conclude that
for a PGW(1 − 2ε)-tree T , the probability that the event Ar,s(T ) occurs

(using r, s as defined in the current lemma) is at least ε(ε3n)−1/4 for n large
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enough. Thus [by the independence of the subtrees rooted in the (1/ε)th
level],

P

(

⋃

{Ar,s(Tu)∩Ar,s(Tu′) :u,u′ ∈ L1/ε, u 6= u′} | |L1/ε|> c1ε
−1

)

≥ c(ε3n)−1/2

for some c > 0. Altogether, we conclude that for some c′ > 0,

P

(

⋃

{Ar,s(Tu) ∩Ar,s(Tu′) :u,u′ ∈ L1/ε, u 6= u′}
)

≥ c′ε(ε3n)−1/2,

which immediately implies that required bound on P(Br,s(T )). �

Combining Lemmas 5.1 and 5.2, we conclude that w.h.p., during our
exploration process we will find a tree T which satisfies the event Br,s(T )
for r, s as defined in Lemma 5.2. Next, we will show that the component
of T is indeed a tree, namely, it has no tree-excess. Clearly, edges belonging
to the tree-excess can only appear between vertices that belong either to the
same level or to successive levels (the root of the tree T is defined to be the
vertex in T that is first exposed). Therefore, the total number of candidates
for such edges can be bounded by 4

∑

i |Li|2 where Li is the ith level of
vertices in the tree. The next claim provides an upper bound for this sum.

Claim 5.3. Let r, s be defined as in Lemma 5.2. Then the PGW(1− ε)-
tree T satisfies E[

∑

i |Li|2 |Br,s(T )] =O(ε−3
√
ε3n).

Proof. Recalling Claim 4.2 and in particular equation (4.4), it follows
that E(

∑

i |Li|2) ≤ ε−2. Lemma 5.2 now implies the required upper bound.
�

By the above claim and Markov’s inequality, we deduce that w.h.p. there
are, say, O(ε−3(ε3n)2/3) candidates for edges in the tree-excess of the com-
ponent of T . Crucially, whether or not these edges appear is independent of
the exploration process, hence the probability that any of them appears is at
most O((ε3n)−1/3) = o(1). Altogether, we may assume that the component
of T is indeed a tree which satisfies the event Br,s(T ).

It remains to establish the lower bound on the mixing time of the random
walk on the tree T . Let v,w be two distinct vertices in the rth level satisfying
|Tv| ≥ s and |Tw| ≥ s. By the same arguments used to prove (4.20), we have
that

max
u∈Tv

Pu(τw ≥ 10−3rs) ≥ 1− 10−3.

Recall that w.h.p. |T | ≤ 6ε−2 log(ε3n) = 384s. It now follows that w.h.p. the
mixing time of the random walk on this components satisfies

tMIX(δ) ≥ 10−3rs for δ = 1
384 − 10−3 ≥ 10−3.

The lower bound on tMIX(14 ) now follows from the definition of r, s.
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