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Abstract

We give a general local central limit theorem for the sum of two indepen-

dent random variables, one of which satisfies a central limit theorem while

the other satisfies a local central limit theorem with the same order variance.

We apply this result to various quantities arising in stochastic geometry, in-

cluding: size of the largest component for percolation on a box; number of

components, number of edges, or number of isolated points, for random ge-

ometric graphs; covered volume for germ-grain coverage models; number of

accepted points for finite-input random sequential adsorption; sum of nearest-

neighbour distances for a random sample from a continuous multidimensional

distribution.
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1 Introduction

A number of general central limit theorems (CLTs) have been proved recently for
quantities arising in stochastic geometry subject to a certain local dependence. See
[18, 19, 20, 21, 22] for some examples. The present work is concerned with local cen-
tral limit theorems for such quantities. The local CLT for a binomial (n, p) variable
says that for large n with p fixed, its probability mass function minus that of the
corresponding normal variable rounded to the nearest integer, is uniformly o(n−1/2).
The classical local CLT provides similar results for sums of i.i.d. variables with an
arbitrary distribution possessing a finite second moment. Here we are concerned
with sums of variables with some weak dependence, in the sense that the summands
can be thought of as contributions from spatial regions with only local interactions
between different regions.
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Among the examples for which we obtain local CLTs here are the following.
In Section 3 we give local CLTs for the number of clusters in percolation on a
large finite lattice box, and for the size of the largest open cluster for supercritical
percolation on a large finite box, as the box size becomes large. In Sections 4 and
5 we consider continuum models, starting with random geometric graphs [18] for
which we demonstrate local CLTs for the number of copies of a fixed subgraph (for
example the number of edges) both in the thermodynamic limit (in which the mean
degree is Θ(1)) and in the sparse limit (in which the mean degree vanishes). For
the thermodynamic limit we also derive local CLTs for the number of components
of a given type (for example the number of isolated points), as an example of a
more general local CLT for functionals which have finite range interactions or which
are sums of functions determined by nearest neighbours (Theorem 5.1). This also
yields local CLTs for quantities associated with a variety of other models, including
germ-grain models and random sequential adsorption in the continuum.

We derive these local CLTs using the following idea which has been seen (in
somewhat different form) in [8], in [4], and no doubt elsewhere. If the random
variable of interest is known to satisfy a CLT, and can be decomposed (with high
probability) as the sum of two independent parts, one of which satisfies a local CLT
with the same order of variance growth, then one can find a local CLT for the original
variable. Theorem 2.1 below formalises this idea. The statement of this result has
no geometrical content and it could be of use elsewhere.

In the geometrical context, one can often use the geometrical structure to effect
such a decomposition. Loosely speaking, in these examples one can represent a
positive proportion of the spatial region under consideration as a union of disjoint
boxes or balls, in such a way that with high probability a non-vanishing proportion
of the boxes are ‘good’ in some sense, where the contributions to the variable of
interest from a good box, given the configuration outside the box and given that it
has the ‘good’ property, are i.i.d. Then the classical local CLT applies to the total
contribution from good boxes, and one can represent the variable of interest as the
sum of two independent contributions, one of which (namely the contribution from
good boxes) satisfies a local CLT, and then apply Theorem 2.1. This technique
is related to a method used by Avram and Bertsimas [1] to find lower bounds on
the variance for certain quantities in stochastic geometry, although the examples
considered here are mostly different from those considered in [1].

In any case, our results provide extra information on the CLT behaviour for
variables for numerous geometrical and multivariate stochastic settings, which have
arisen in a variety of applications (see the examples in Section 5).
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2 A general local CLT

In the sequel we let φ denote the standard (N (0, 1)) normal density function, i.e.
φ(x) = (2π)−1/2 exp(−(1/2)x2). Note that for σ > 0, the probability density func-
tion of the N (0, σ2) distribution is then σ−1φ(x/σ), x ∈ R. Define the N (0, 0)
distribution to be that of a random variable that is identically zero.

We say a random variable X is integrable if E [|X|] <∞. We say X has a lattice
distribution if there exists h > 0 such that (X − a)/h ∈ Z almost surely for some
a ∈ R. If X is lattice, then the largest such h is called the span of X , and here
denoted hX . If X is non-lattice, then we set hX := 0. If X is degenerate, i.e. if
Var[X ] = 0, then we set hX := +∞. As usual with local central limit theorems,
we need to distinguish between the lattice and non-lattice cases. For real numbers
a ≥ 0, b > 0, we shall write a|b to mean that either b is an integer multiple of a or
a = 0. When a = +∞, b <∞ we shall say by convention that a|b does not hold.

Theorem 2.1. Let V, V1, V2, V3, . . . be independent identically distributed random
variables. Suppose for each n ∈ N that (Yn, Sn, Zn) is a triple of integrable random
variables on the same sample space such that (i) Yn and Sn are independent, with

Sn
D
=
∑n

j=1 Vj; (ii) both n−1/2
E [|Zn − (Yn + Sn)|] and n

1/2P [Zn 6= Yn + Sn] tend to
zero as n→ ∞; and (iii) for some σ ∈ [0,∞),

n−1/2(Zn − EZn)
D

−→ N (0, σ2) as n→ ∞. (2.1)

Then Var[V ] ≤ σ2 and if b, c1, c2, c3, . . . are positive constants with hV |b and cn ∼
n1/2 as n→ ∞, then

sup
u∈R

{
∣

∣

∣

∣

cnP [Zn ∈ [u, u+ b)]− σ−1bφ

(

u− EZn

cnσ

)
∣

∣

∣

∣

}

→ 0 as n→ ∞. (2.2)

Also,

n−1/2(Yn − EYn)
D

−→ N (0, σ2 − Var[V ]). (2.3)

Remarks. The main case to consider is cn = n1/2. The more general formulation
above is convenient in some applications, e.g., in the proof of Theorem 4.1. Theorem
2.1 is proved in Section 7. Our main interest is in the conclusion (2.2), but (2.3),
which comes out for free from the proof, is also of interest.

3 Percolation

Most of our applications of Theorem 2.1 will be in the continuum, but we start
with applications to percolation on the lattice. We consider site percolation with
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parameter p, where each site (element) of Zd is open with probability p and closed
otherwise, independently of all the other sites. Given a finite set B ⊂ Z

d, the open
clusters in B are defined to be the components of the (random) graph with vertex
set consisting of the open sites in B, and edges between each pair of open sites
in B that are at unit Euclidean distance from each other. Let Λ(B) denote the
number of open clusters in B. Listing the open clusters in B as C1, . . . ,CΛ(B), and
denoting by |Cj| the order (i.e., the number of vertices) of the cluster Cj, we denote
by L(B) the random variable max(|C1|, . . . , |CΛ(B)|), and refer to this as the size
of the largest open cluster in B. Given a growing sequence of regions (Bn)n≥1 in
Z
d, we shall demonstrate local CLTs for the random variables Λ(Bn) and L(Bn),

subject to some conditions on the sets Bn which are satisfied, for example, if they
are cubes of side n. There should not be any difficulty adapting these results to
bond percolation.

For B ⊂ Z
d let |B| denote the number of elements of B. Let |∂B| denote the

number of elements of Zd \B lying at unit Euclidean distance from some element of
B. We say a sequence (Bn)n≥1 of nonempty finite sets in Z

d has vanishing relative
boundary if

lim
n→∞

|∂Bn|/|Bn| = 0. (3.1)

We write lim inf(Bn) for ∪n≥1 ∩m≥n Bm.

Theorem 3.1. Suppose d ≥ 2 and p ∈ (0, 1). Then there exists σ > 0 such that
if (Bn)n≥1 is any sequence of nonempty finite subsets in Z

d with vanishing relative
boundary and with lim inf(Bn) = Z

d, then

|Bn|
−1/2(Λ(Bn)− EΛ(Bn))

D
−→ N (0, σ2) (3.2)

and

sup
j∈Z

∣

∣

∣

∣

|Bn|
1/2P [Λ(Bn) = j]− σ−1φ

(

j − EΛ(Bn)

σ|Bn|1/2

)
∣

∣

∣

∣

→ 0. (3.3)

For the size of the largest open cluster we consider a more restricted class of
sequences (Bn)n≥1. Let us say that (Bn)n≥1 is a cube-like sequence of lattice boxes

if each set Bn is of the form
∏d

j=1([−aj,n, bj,n] ∩ Z), where aj,n ∈ N and bj,n ∈ N for
all j, n, and moreover

lim inf
n→∞

inf{a1,n, b1,n, a2,n, b2,n, . . . , ad,n, bd,n}

sup{a1,n, b1,n, a2,n, b2,n, . . . , ad,n, bd,n}
> 0 (3.4)

which says, loosely speaking, that the sets Bn are not too far away from all being
cubes.
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Given d ≥ 2, and p ∈ (0, 1), let θd(p) denote the percolation probability, that is,
the probability that the graph with vertices consisting of all open sites in Z

d and
edges between any two open sites that are unit Euclidean distance apart includes
an infinite component containing the origin. Let pc(d) denote the critical value of
p for site percolation in d dimensions, i.e., the infimum of all p ∈ (0, 1) such that
θd(p) > 0. It is well known that pc(d) ∈ (0, 1) for all d ≥ 2.

Theorem 3.2. Suppose d ≥ 2 and p ∈ (pc(d), 1). Then there exists σ > 0 such that
if (Bn)n≥1 is any cube-like sequence of lattice boxes Z

d with lim inf(Bn) = Z
d, we

have

|Bn|
−1/2(L(Bn)− EL(Bn))

D
−→ N (0, σ2) (3.5)

and

sup
j∈Z

∣

∣

∣

∣

|Bn|
1/2P [L(Bn) = j]− σ−1φ

(

j − EL(Bn)

σ|Bn|1/2

)
∣

∣

∣

∣

→ 0. (3.6)

Theorems 3.1 and 3.2 are proved in Section 8. Theorem 3.1 is the simplest of
our applications of Theorem 2.1 and we give its proof with some extra detail for
instructional purposes.

4 Random geometric graphs

For our results in this section and the next, on continuum stochastic geometry, let
X1, X2, . . . be i.i.d. d-dimensional random vectors with common density f . As-
sume throughout that fmax := supx∈Rd f(x) < ∞, and that f is almost everywhere
continuous. Define the induced binomial point processes

Xn := Xn(f) := {X1, ..., Xn}, n ∈ N. (4.1)

In the special case where f is the density of the uniform distribution on the unit
[0, 1]d cube we write f ≡ fU .

For locally finite X ⊂ R
d and r > 0, let G(X , r) denote the graph with vertex set

X and with edges connecting each pair of vertices x, y in X with |y − x| ≤ r; here
| · | denotes the Euclidean norm though there should not be any difficulty extending
our results to other norms. Sometimes G(X , r) is called a geometric graph or Gilbert
graph.

Let (rn)n≥1 be a sequence with rn → 0 as n→ ∞. Graphs of the type of G(Xn, rn)
are the subject of the monograph [18]. Among the quantities of interest associated
with G(Xn, rn) are the number of edges, the number of triangles, and so on; also the
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number of isolated points, the number of isolated edges, and so on. CLTs for such
quantities are given in Chapter 3 of [18] (see the notes therein for other references)
for a large class of limiting regimes for rn. Here we give some associated local CLTs.

Let κ ∈ N and let Γ be a fixed connected graph with κ vertices. We follow
terminology in [18]. With ∼ denoting graph isomorphism, let Gn be the number of
κ-subsets Y of Xn such that G(Y , rn) ∼ Γ (i.e., the number of induced subgraphs of
G(Xn, rn) that are isomorphic to Γ). Let G∗

n (denoted Jn in [18]) denote the number
of components of G(Xn, rn) that are isomorphic to Γ. To avoid certain trivialities,
assume that Γ is feasible in the sense of [18], i.e. that G(Xκ, r) is isomorphic to Γ
with strictly positive probability for some r > 0. When considering Gn, we shall
also assume that κ ≥ 2. We shall give local CLTs for Gn and G∗

n.
We assume existence of the limit

ρ := lim
n→∞

(nrdn) <∞, (4.2)

so that ρ could be zero. If ρ > 0 then we are taking the thermodynamic limit.
We also assume that

τ 2n := n(nrdn)
κ−1 → ∞ as n→ ∞. (4.3)

Then (see Theorems 3.12 and 3.13 of [18]) there exists a constant σ = σ(f,Γ, ρ) > 0,
given explicitly in terms of f,Γ and ρ in [18], such that

lim
n→∞

τ−2
n Var(Gn) = σ2; (4.4)

τ−1
n (Gn − EGn)

D
−→ N(0, σ2). (4.5)

We prove here an associated local central limit theorem for the case f ≡ fU .

Theorem 4.1. Suppose f ≡ fU . Suppose k ≥ 2, and suppose assumptions (4.2)
and (4.3) hold. Then as n→ ∞,

sup
j∈Z

∣

∣

∣

∣

τnP [Gn = j]− σ−1φ

(

j − EGn

στn

)
∣

∣

∣

∣

→ 0. (4.6)

We prove Theorem 4.1 in Section 9. It should be possible to obtain similar
results for G∗

n, but we shall do so only for the thermodynamic limit with ρ > 0, as
an example in the next section. In the next section we shall see that for the case
with ρ > 0, it is possible to relax the assumption that f ≡ fU in Theorem 4.1;
when ρ = 0, a similar extension to non-uniform densities should be possible, but we
content ourselves here with the case f ≡ fU so as to provide one example where the
simplicity and the appeal of the approach do not get buried.
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5 General local CLTs in stochastic geometry

In this section we present some general local central limit theorems in stochastic
geometry. We shall illustrate these by some examples in the next section.

For our general local CLTs in stochastic geometry, we consider marked point sets
in R

d. Let M be an arbitrary measurable space (the mark space), and let PM be a
probability distribution on M. Given x = (x, t) ∈ R

d ×M and given y ∈ R
d, set

y + x := (y + x, t). Given also a ∈ R, set ax = (ax, t). We think of t as a mark
attached to the point x ∈ R

d that is unaffected by translation or scalar multiplaction.
Given X ∗ ⊂ R

d×M, y ∈ R
d, and a ∈ (0,∞), let y+ aX ∗ := {y+ ax : x ∈ X ∗}. Let

0 denote the origin of Rd. For x ∈ R
d, and r > 0, let B(x; r) denote the Euclidean

ball {y ∈ R
d : |y − x| ≤ r}, and set B∗(x; r) := B(x; r) ×M. Set B(r) := B(0; r)

and B∗(r) := B∗(0; r). Given nonempty X ∗ ⊂ R
d ×M and Y∗ ⊂ R

d ×M, write

D(X ∗,Y∗) := inf{|x− y| : (x, t) ∈ X ∗, (y, u) ∈ Y∗ for some t, u ∈ M}.

Let ωd denote the volume of the d-dimensional unit ball B(1).
Suppose H(X ∗) is a measurable R-valued function defined for all finite X ∗ ⊂

R
d×M. Suppose H is translation invariant, i.e. H(y+X ∗) = H(X ∗) for all y ∈ R

d

and all X ∗.
Throughout this section we consider the thermodynamic limit; let rn, n ≥ 1 be

a sequence of constants such that (4.2) holds with ρ > 0. Define

Hn(X
∗) := H(r−1

n X ∗). (5.1)

Let the point process Xn := {X1, . . . , Xn} in R
d be as given in (4.1), with f as in

Section 4 (so fmax < ∞ and f is Lebesgue-almost everywhere continuous). Define
the corresponding marked point processs (i.e., point process in R

d ×M) by

X ∗
n := {(X1, T1), . . . , (Xn, Tn)},

where (T1, T2, T3, . . .) is a sequence of independent M-valued random variables with
distribution PM, independent of everything else. We are interested in local CLTs
for Hn(X ∗

n), for general functions H . We give two distinct types of condition on H ,
either of which is sufficient to obtain a local CLT.

We shall say that H has finite range interactions if there exists a constant τ ∈
(0,∞) such that

H(X ∗ ∪ Y∗) = H(X ∗) +H(Y∗) whenever D(X ∗,Y∗) > τ. (5.2)

In many examples it is natural to write H(X ∗) as a sum. Suppose ξ(x;X ∗) is a
measurable R-valued function defined for all pairs (x,X ∗), where X ∗ ⊂ R

d ×M is

8



finite and x is an element of X ∗. Suppose ξ is translation invariant, i.e. ξ(y+x; y+
X ∗) = ξ(x;X ∗) for all y ∈ R

d and all x,X ∗. Then ξ induces a translation-invariant
functional H(ξ) defined on finite point sets X ∗ ⊂ R

d ×M by

H(ξ)(X ∗) :=
∑

x∈X ∗

ξ(x;X ∗). (5.3)

Given r ∈ (0,∞) we say ξ has range r if ξ((x, t);X ∗) = ξ((x, t);X ∗ ∩ B∗
r (x)) for all

finite X ∗ ⊂ R
d ×M and all (x, t) ∈ X ∗. It is easy to see that if ξ has range r for

some (finite) r then H(ξ) has finite range interactions, although not all H with finite
range interactions arise in this way.

Let κ ∈ N. Given any set X ∗ ⊂ R
d ×M with more than κ elements, and given

x = (x, t) ∈ X ∗, set Rκ(x;X ∗) to be the κ-nearest neighbour distance from x to X ∗,
i.e. the smallest r ≥ 0 such that X ∗ ∩B∗(x; r) has at least κ elements other than x
itself. If X ∗ has κ or fewer elements, set Rκ(x;X ∗) := ∞.

We say that ξ depends only on the κ nearest neighbours if for all x and X ∗,
writing x = (x, t) we have

ξ(x;X ∗) = ξ(x;X ∗ ∩ B∗(x;Rκ(x;X ))).

We give local CLTs for H under two alternative sets of conditions: either (i) when H
has finite range interactions, or (ii) when H is induced, according to the definition
(5.3), by a functional ξ(x;X ∗) which depends only on the κ nearest neighbours, for
some fixed κ.

Given K > 0 and n ∈ N, define point processes Un,K , and Zn in R
d, and point

processes U∗
n,K , and Z∗

n in R
d ×M, as follows. Let Un,K denote the point process

consisting of n independent uniform random points U1,K , . . . , Un,K in B(K), and let
Zn be the point process consisting of n independent points Z1, . . . , Zn in R

d, each
with a d-dimensional standard normal distribution (any other positive continuous
density on R

d would do just as well). The corresponding marked point processs are
defined by

U∗
n,K := {(U1,K , T1), . . . , (Un,K, Tn)};

Z∗
n := {(Z1, T1), . . . , (Zn, Tn)}.

Define the limiting span

h(H) := lim inf
n→∞

hH(Z∗
n). (5.4)

Theorem 5.1. Suppose that either (i) H has finite range interactions and hH(Z∗
n) <

∞ for some n ∈ N, or (ii) for some κ ∈ N, H is induced by a functional ξ(x;X ∗)
which depends only on the κ nearest neighbours, and hH(Z∗

n) < ∞ for some n ∈ N

9



with n > κ. Suppose also that Hn(X ∗
n) and H(U∗

n,K) are integrable for all n ∈ N and
K > 0. Finally suppose that

n−1/2(Hn(X
∗
n)− EHn(X

∗
n))

D
−→ N (0, σ2) as n→ ∞. (5.5)

Then σ > 0 and h(H) <∞ and for any b ∈ (0,∞), with h(H)|b,

sup
u∈R

{
∣

∣

∣

∣

n1/2P [Hn(X
∗
n) ∈ [u, u+ b)]− σ−1bφ

(

u− EHn(X ∗
n)

n1/2σ

)
∣

∣

∣

∣

}

→ 0 as n→ ∞.

(5.6)

We prove Theorem 5.1 in Section 10. Analogues to this result and to Theorem
4.1 should also hold if one Poissonizes the number of points in the sample, but we
do not give details.

The corresponding result for unmarked point sets in R
d goes as follows; we adapt

our terminology to this case in an obvious manner.

Corollary 5.1. Suppose H(X ) is R-valued and defined for all finite X ⊂ R
d. Sup-

pose H is translation invariant, and set Hn(X ) := H(r−1
n X ). Suppose that either (i)

H has finite range interactions and hH(Zn) < ∞ for some n ∈ N, or (ii) for some
κ ∈ N, H is induced by a functional ξ(x;X ) which depends only on the κ nearest
neighbours, and hH(Zn) <∞ for some n ∈ N with n > κ. Suppose also that Hn(Xn)
and H(Un,K) are integrable for all n ∈ N and K > 0. Finally suppose

n−1/2(Hn(Xn)− EHn(Xn))
D

−→ N (0, σ2) as n→ ∞. (5.7)

Then σ > 0 and h(H) <∞ and for any b ∈ (0,∞), with h(H)|b,

sup
u∈R

{
∣

∣

∣

∣

n1/2P [Hn(Xn) ∈ [u, u+ b)]− σ−1bφ

(

u− EHn(Xn)

n1/2σ

)
∣

∣

∣

∣

}

→ 0 as n→ ∞.

(5.8)

Corollary 5.1 is easily obtained from Theorem 5.1 by taking M to have just a
single element, denoted t0 say, and identifying each element (x, t0) ∈ R

d ×M with
the corresponding element x of Rd.

To apply Theorem 5.1 in examples, we need to check condition (5.5). For some
examples this is best done directly. However, if we strengthen the other hypotheses
of Theorem 5.1, we can obtain (5.5) from known results and so do not need to
include it as an extra hypothesis. The next three theorems illustrate this. As well
(5.5), these results give us the associated variance convergence result

lim
n→∞

n−1Var[Hn(X
∗
n)] = σ2. (5.9)

10



In the next three theorems, we impose some extra assumptions besides those of
Theorem 5.1. Writing supp(f) for the support of f , we shall assume that supp(f)
is compact, and that also rn satisfy

|r−d
n − n| = O(n1/2), (5.10)

which implies (4.2) with ρ = 1. We also assume certain polynomial growth bounds;
see (5.11), (5.13) and (5.14) below.

First consider the case where H = H(ξ) is induced by a functional ξ(x;X ∗) with
finite range r > 0. For any set A, let card(A) denotes the number of elements of A.

Theorem 5.2. Suppose H = H(ξ) is induced by a translation invariant functional
ξ(x;X ∗) having finite range r and and satisfying for some γ > 0 the polynomial
growth bound

|ξ((x, t);X ∗)| ≤ γ(card(X ∗ ∩ B∗(x; r)))γ ∀ finite X ∗ ⊂ R
d ×M, ∀ (x, t) ∈ X ∗.

(5.11)

Suppose hH(Z∗
n) < ∞ for some n ∈ N, and suppose supp(f) is compact. Finally,

suppose that (5.10) holds. Then there exists σ ∈ (0,∞) such that (5.5) and (5.9)
hold, and h(H) <∞ and (5.6) holds for all b with h(H)|b.

Now we turn to the general case of Condition (i) in Theorem 5.1, where H has
finite range interactions but is not induced by a finite range ξ. For this case we
shall borrow some concepts from continuum percolation. For λ > 0, let Hλ denote a
homogeneous Poisson point process in R

d with intensity λ. Let H∗
λ denote the same

Poisson point process with each point given an independent M-valued mark with
the distribution PM.

Let λc be the critical value for percolation in d dimensions, that is, the supremum
of the set of all λ > 0 such that the component of the geometric (Gilbert) graph
G(Hλ ∪ {0}, 1) containing the origin is almost surely finite. It is known (see e.g.
[18]) that 0 < λc <∞ when d ≥ 2 and λc = ∞ when d = 1.

For nonempty X ⊂ R
d, write diam(X ) for sup{|x − y| : x, y ∈ X}. For X ∗ ⊂

R
d×M, write diam(X ∗) for diam(π(X ∗)), where π denotes the canonical projection

from R
d ×M onto R

d.

Theorem 5.3. Suppose H(X ∗) is a measurable R-valued function defined for all
finite X ∗ ⊂ R

d × M, and is translation invariant. Suppose supp(f) is compact.
Suppose for some τ > 0 that the finite range interaction condition (5.2) holds, and
suppose f and τ satisfy the subcriticality condition

τdfmax < λc, (5.12)

11



Assume (rn)n≥1 satisfies (5.10), and suppose also that hH(Z∗
n) <∞ for some n ∈ N,

and that there exists a constant γ > 0 such that for all finite non-empty X ∗ ⊂ R
d

we have

H(X ∗) ≤ γ(diam(X ∗) + card(X ∗))γ. (5.13)

Then there exists σ ∈ (0,∞) such that (5.5) and (5.9) hold, and h(H) < ∞ and if
b ∈ (0,∞) with h(H)|b, then (5.6) holds.

Now we turn to condition (ii) in Theorem 5.1. Following [24], we say that a
closed region A ⊂ R

d is a d-dimensional C1 submanifold-with-boundary of Rd if it
has a differentiable boundary in the following sense: for every x in the boundary ∂A
of A, there is an open U ⊂ R

d, and a continuously differentiable injection g from U
to R

d, such that 0 ∈ U and g(0) = x and g(U ∩ ([0,∞)× R
d−1)) = g(U) ∩ A.

Theorem 5.4. Let κ ∈ N. Suppose H = H(ξ) is induced by a ξ which depends
only on the κ nearest neighbours, and for some γ ∈ (0,∞) suppose we have for all
(x,X ∗) that

|ξ(x;X ∗)| ≤ γ(1 +Rκ(x,X
∗))γ. (5.14)

Suppose also that supp(f) is either a compact convex region in R
d or a compact d-

dimensional submanifold-with-boundary of Rd, and suppose f is bounded away from
zero on supp(f). Finally suppose that the sequence (rn)n≥1 satisfies (5.10), and that
hH(Z∗

n) < ∞ for some n ∈ N with n > κ. Then there exists σ ∈ (0,∞) such that
(5.5) and (5.9) hold, and h(H) < ∞ and if b ∈ (0,∞) with h(H)|b then (5.6) also
holds.

We prove Theorems 5.2, 5.3 and 5.4 in Section 11. In proving each of these
results, we apply Theorem 5.1, and check the CLT condition (5.5) using a general
CLT from [20], stated below as Theorem 11.1.

The conclusion that σ > 0 in Theorems 5.1–5.4 and Corollary 5.1 is noteworthy
because the result from [20] on its own does not guarantee this. Our approach to
showing σ > 0 here is related to that given in [1] (and elsewhere) but is more generic.
A different approach to providing generic variance lower bounds was used in [21]
and [3] but is less well suited to the present setting.

6 Applications

This section contains discussion of some examples of concrete models in stochastic
geometry, to which the general local central limit theorems presented in Section 5
are applicable. Further examples where the conditions for these general theorems
can be verified are discussed in [20, 21, 22, 23].
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6.1 Further quantities associated with random geometric
graphs

Suppose the graph G(Xn, rn) is as in Section 4. We assume here that (4.2) holds
with ρ > 0. Theorem 5.1 enables us to extend the case ρ > 0 of Theorem 4.1 to
non-uniform f . It also yields local CLTs for some graph quantities not covered by
Theorem 4.1; we now give some examples.

Number of components for G(Xn, rn). This quantity can be written in the form
Hn(Xn), where H(X ) is the number of components of the geometric graph G(X , 1)
(which clearly has finite range interactions). In the the thermodynamic limit, this
quantity satisfies the CLT (5.7) (see Theorem 13.26 of [18]). Therefore, Corollary
5.1 is applicable here and shows that it satisfies the local CLT (5.8).

Number of components for G(Xn, rn) isomorphic to a given feasible graph Γ. This
quantity, denoted G∗

n in Section 4, can be written in the form Hn(Xn), with H(X )
the number of components of G(X , 1) isomorphic to Γ. Clearly, this H has finite
range interactions since (5.2) holds for τ = 2. Also, it satisfies (5.7) by Theorem
3.14 of [18]. Therefore we can apply Corollary 5.1 to deduce (5.8) in this case.

Independence number. The independence number of a finite graph is the maximal
number k such that there exists a set of k vertices in the graph such that none of
them are adjacent Clearly this quantity is the sum of the independence numbers
of the graph’s components, and therefore if for X ⊂ R

d we set H(X ) to be the
independence number of G(X , τ) (also known as the off-line packing number since
it is the maximum number of balls of radius τ/2 that can be packed centred at
points of X ) then H satisfies the finite range interactions condition (5.2) with r = 2.
Therefore we can apply Theorem 5.3 to derive a local CLT for the independence
number of G(Xn, rn), as follows.

Theorem 6.1. . Let τ > 0 and suppose (5.12) holds. Suppose rn is satisfies (5.10).
Then if for X ⊂ R

d we set H(X ) to be the independence number of G(X , τ), then
there exists σ ∈ (0,∞) such that (5.7) holds, and if b ∈ N then (5.8) holds.

6.2 Germ-grain models

Consider a coverage process in which each point Xi has an associated mark Ti, the
Ti (defined for i ≥ 1) being i.i.d. nonnegative random variables with a distribution
having bounded support (i.e., with P [Ti ≤ K] = 1 for some finite K). Define the
random coverage process

Ξn := ∪n
i=1B(r−1

n Xi;Ti). (6.1)
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For U a finite union of convex sets in R
d, let |U | denote the volume of U (i.e. its

Lebesgue measure) and let |∂U | denote the surface area of U (i.e. the (d − 1)-
dimensional Hausdorff measure of its boundary).

Theorem 6.2. Under the above assumptions, if (5.10) holds then there exists σ > 0

and σ̃ > 0 such that n−1/2(|Ξn|−E |Ξn|)
D

−→ N (0, σ2) and n−1/2(|∂Ξn|−E |∂Ξn|)
D

−→
N (0, σ̃2), and moreover for any b ∈ (0,∞),

sup
u∈R

{
∣

∣

∣

∣

n1/2P [|Ξn| ∈ [u, u+ b)]− σ−1bφ

(

u− E |Ξn|

n1/2σ

)
∣

∣

∣

∣

}

→ 0 as n→ ∞.

(6.2)

and

sup
u∈R

{
∣

∣

∣

∣

n1/2P [|∂Ξn| ∈ [u, u+ b)]− σ̃−1bφ

(

u− E |∂Ξn|

n1/2σ̃

)
∣

∣

∣

∣

}

→ 0 as n→ ∞.

(6.3)

Proof. The volume |Ξn| can be viewed as a functional Hn(X ∗
n), where H(X ) =

H(ξ)(X ∗) with ξ((x, t);X ∗) given by the volume of that part of the ball centred at
x with radius given by the associated mark t, which is not covered by any corre-
sponding ball for some other point x′ ∈ X with x′ preceding x in the lexicographic
ordering. Since we assume the support of the distribution of the Ti is bounded, this
ξ has finite range r = 2K. Moreover, it satisfies the polynomial growth bound (5.11)
so by Theorem 5.2 we get the CLT (5.5) and local CLT (5.6) for any b > 0 (in this
example h(H) = 0). Thus we have (6.2).

Turning to the surface area |∂Ξn|, this can also be viewed as a functional Hn(Xn)
for a different H = H(ξ), this time taking ξ(x;X ) to be the uncovered surface area of
the ball at x, which again has range r = 2K and satisfies (5.11). Hence by Theorem
5.2. we get the CLT (5.5) and local CLT (5.6) for any b > 0 for this choice of H (in
this example, again h(H) = 0). Thus we have (6.3).

Remark. The preceding argument still works if the independent balls of random
radius in the preceding discussion are replaced by independent copies of a random
compact shape that is almost surely contained in the ball B(K) for some K (cf.
Section 6.1 of [20]).

Other functionals for the germ-grain model. When f ≡ fU , the scaled point
process r

−1/d
n Xn can be viewed as a uniform point process in a window of side r

−1/d
n .

CLTs for a large class of other functionals on germ-grain models in such a window
are considered in [13], for the Poissonised point process with a Poisson distributed
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number of points. Since the Poissonised version of Theorems 5.1 and 5.2 should also
hold, it should be possible to derive local CLTs for many of the quantities considered
in [13], at least in the case where the grains (i.e., the balls or other shapes attached
to the random points) are of uniformly bounded diameter.

6.3 Random sequential adsorption (RSA).

RSA (on-line packing) is a model of irreversible deposition of particles onto an
initially empty d-dimensional surface where particles of fixed finite size arrive se-
quentially at random locations in an initially empty region A of a d-dimensional
space (typically d = 1 or d = 2), and each successive particle is accepted if it does
not overlap any previously accepted particle. The region A is taken to be compact
and convex. The locations of successive particles are independent and governed by
some density f on A. In the present setting, we take the mark space M to be
[0, 1] with PM the uniform distribution. Each point x = (x, t) of X ∗ represents
an incoming particle with arrival time t. The marks determine the order in which
particles arrive, and two particles at x = (x, t) and y = (y, u) are said to overlap if
|x− y| ≤ 1. Let H(X ∗) denote the number of accepted particles. This choice of H
clearly has finite range interactions ((5.2) holds for τ = 2).

ThenHn(X ∗
n) represents the number of accepted particles for the re-scaled marked

point process r−1
n X ∗

n ; note that the density f and hence the region A on which the
particles are deposited, does not vary with n. At least for rn = n−1/d, the central
limit theorem for Hn(Xn) is known to hold; see [22] for the case when A = [0, 1]d

and f ≡ fU and [3] for the extension to the non-uniform case on arbitrary com-
pact convex A (note that these results do not require the sub-criticality condition
(5.12) to be satisfied). Thus, the H under consideration here satisfies the condition
(5.5). Therefore we can apply Theorem 5.1 to obtain a local CLT for the number of
accepted particles in this model.

Theorem 6.3. Suppose f has compact convex support and is bounded away from
zero and infinity on its support. Suppose rn = n−1/d, and suppose Zn = Hn(X ∗

n) is
the number of accepted particles in the rescaled RSA model described above. In other
words, suppose Zn be the number of accepted particles when RSA is performed on
Xn with distance parameter rn = n−1/d. Then there is a constant σ ∈ (0,∞) such
that (2.1) holds and for b = 1 and c = n1/2, (2.2) holds.

It is likely that in the preceding result the condition rn = n−1/d can be relaxed
to (4.2) holding with ρ > 0. We have not checked the details.

In the infinite input version of RSA with range of interaction r, particles continue
to arrive until the region A is saturated, and the total number of accepted particles
is a random variable with its distribution determined by r. A central limit theorem
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for the (random) total number of accepted particles (in the limit r → 0) is known to
hold, at least for f ≡ fU ; see [25]. It would be interesting to know if a corresponding
local central limit theorem holds here as well.

6.4 Nearest neighbour functionals

Many functionals have arisen in the applied literature which can be expressed as
sums of functionals of κ-nearest neighbours, for such problems as multidimensional
goodness-of-fit tests [5, 2], multidimensional two-sample tests [14], entropy estima-
tion of probability distributions [17], dimension estimation [16], and nonparametric
regression [10]. Functionals considered include: sums of power-weighted nearest
neighbour distances, sums of logarithmic functions of the nearest-neighbour dis-
tances, number of nearest-neighbours from the same sample in a two-sample prob-
lem, and others. Central limit theorems have been obtained explicitly for some of
these examples [5, 14, 2] and in other cases they can often be derived from more
general results [1, 20, 21, 7]. Thus, for many of these examples it should be possible
to check the conditions of Theorem 5.1 (case (ii)).

We consider just one simple example where Theorem 5.4 is applicable. Suppose
for some fixed α > 0 that H(X ) is the sum of the α-power-weighted nearest neigh-
bour distances in X (for α = 1 this is known as the total length of the directed
nearest neighbour graph on X ). That is, suppose H(X ) = H(ξ)(X ) with ξ(x;X )
given by min{|y − x|α : y ∈ X \ {x}}. Then Hn(X ) = r−α

n H(X ), and ξ clearly
satisfies (5.14) for some γ, so provided f is supported by a compact convex region in
R

d or by a compact d-dimensional submanifold-with-boundary of Rd, and provided
f is bounded away from zero on its support, Theorem 5.4 is applicable with κ = 1.
Hence in this case there exists σ ∈ (0,∞) such that (5.5) and (for any b ∈ (0,∞))
(5.6) are valid.

7 Proof of Theorem 2.1

Let V, V1, V2, V3, . . . be independent identically distributed random variables. Define
σV :=

√

Var(V ) ∈ [0,∞]. In the case σV = 0, Theorem 2.1 is trivial, so from now
on in this section, we assume σV > 0. Let b, c1, c2, c3, . . . be positive constants with
hV |b and cn ∼ n1/2 as n→ ∞.

We prove Theorem 2.1 first in the special case where Zn = Sn, then in the case
where Zn = Yn + Sn, and then in full generality. Before starting we recall a fact
about characteristic functions.
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Lemma 7.1. If σV = ∞ then for all t ∈ R, as n→ ∞

E

[

exp

(

itn−1/2
n
∑

j=1

(Vj − E [V ])

)]

→ 0.

Proof. See for example Section 3, and in particular the final display, of [26].

Lemma 7.2. Suppose Sn
D
=
∑n

j=1 Vj and σV <∞. Then as n→ ∞,

sup
u∈R

{
∣

∣

∣

∣

cnP [Sn ∈ [u, u+ b)]− σ−1bφ

(

u− ESn

cnσV

)
∣

∣

∣

∣

}

→ 0 (7.1)

Proof. First consider the special case with cn = n1/2. In this case, (7.1) holds by
the classical local central limit theorem for sums of i.i.d. non-lattice variables with
finite second moment in the case where hV = 0 (see page 232 of [6], or Theorem
2.5.4 of [9]), and by the local central limit theorem for sums of i.i.d. lattice variables
in the case where hV > 0 and b/hV ∈ Z (see Theorem XV.5.3 of [11], or Theorem
2.5.2 of [9]).

To extend this to the general case with cn ∼ n1/2, observe first that by the special
case considered above, n1/2P [Sn ∈ [u, u + b)] remains bounded uniformly in u and
n, and hence

sup
u∈R

{|(n1/2 − cn)P [Sn ∈ [u, u+ b)]|} = sup
u∈R

{

n1/2
∣

∣

∣
1−

cn
n1/2

∣

∣

∣
P [Sn ∈ [u, u+ b)]

}

→ 0. (7.2)

Also, for any K > 1,

sup
|x|≤Kn1/2

{
∣

∣

∣

∣

φ
( x

n1/2

)

− φ

(

x

cn

)
∣

∣

∣

∣

}

≤ (2πe)−1/2 sup
|x|≤Kn1/2

{
∣

∣

∣

∣

( x

n1/2

)

−

(

x

cn

)
∣

∣

∣

∣

}

≤ (2πe)−1/2

(

Kn1/2

n1/2

)
∣

∣

∣

∣

1−
n1/2

cn

∣

∣

∣

∣

→ 0. (7.3)

Also, for large enough n,

sup
|x|≥Kn1/2

max

(

φ

(

x

cn

)

, φ
( x

n1/2

)

)

≤ φ(K − 1)

and since K is arbitrarily large, combined with (7.3), this shows that

sup
x∈R

{
∣

∣

∣

∣

φ
( x

n1/2

)

− φ

(

x

cn

)
∣

∣

∣

∣

}

→ 0.

Combined with (7.2), this shows that we can deduce (7.1) for general cn satisfying
cn ∼ n1/2 from the special case with cn = n1/2 which was established earlier.
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Lemma 7.3. Theorem 2.1 holds in the special case where Zn = Yn + Sn.

Proof. Assume, along with the hypotheses of Theorem 2.1, that Zn = Yn + Sn.
Considering characteristic functions, by (2.1) we have for t ∈ R that

E
[

exp
(

itn−1/2(Yn − EYn)
)]

E
[

exp
(

itn−1/2(Sn − ESn)
)]

→ exp(−
1

2
tσ2). (7.4)

If σV = ∞ then by Lemma 7.1, the second factor in the left hand side of (7.4) tends
to zero, giving a contradiction. Hence we may assume σV <∞ from now on.

By the Central Limit Theorem,

n−1/2(Sn − ESn)
D

−→ N(0, σ2
V ). (7.5)

By (7.4) and (7.5), σ2
V ≤ σ2 and setting σ2

Y := σ2−σ2
V ≥ 0, we have that n−1/2(Yn−

EYn) is asymptotically N (0, σ2
Y ). Hence,

c−1
n (Yn − EYn)

D
−→ N (0, σ2

Y ). (7.6)

That is, (2.3) holds.
Let u ∈ R and set

t := t(u, n) := c−1
n (u− EZn). (7.7)

Assume that Zn = Yn + Sn. By independence of Yn and Sn,

P [Zn ∈ [u, u+ b)] = P [c−1
n (Zn − E [Zn]) ∈ c−1

n [u− EZn, u+ b− EZn)]

=

∫ ∞

−∞

P

[

Yn − EYn
cn

∈ dx

]

P

[

Sn − ESn

cn
∈ c−1

n [u− EZn, u+ b− EZn)− x

]

so that

cnP [Zn ∈ [u, u+ b)] =

∫ ∞

−∞

P

[

Yn − EYn
cn

∈ dx

]

× (cnP [Sn − ESn ∈ [u− EZn − xcn, u− EZn − xcn + b)])

=

∫ ∞

−∞

P

[

Yn − EYn
cn

∈ dx

]

(cnP [Sn − ESn ∈ [(t− x)cn, (t− x)cn + b)]) .

By Lemma 7.2,

cnP [Sn − ESn ∈ [ycn, ycn + b)] =
b

σV
φ

(

y

σV

)

+ gn(y)
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where

sup
y∈R

|gn(y)| → 0 as n→ ∞. (7.8)

Hence,

cnP [Zn ∈ [u, u+ b)] = E

[

b

σV
φ

(

t− c−1
n (Yn − EYn)

σV

)

+ gn
(

t− c−1
n (Yn − EYn)

)

]

,

so by (7.8), to prove (2.2), it suffices to prove

sup
u∈R

{
∣

∣

∣

∣

E

[

σ−1
V φ

(

t(u, n)− c−1
n (Yn − EYn)

σV

)]

− σ−1φ

(

u− EZn

cnσ

)
∣

∣

∣

∣

}

→ 0.

(7.9)

Suppose this fails. Then there is a strictly increasing sequence of natural numbers
(n(m), m ≥ 1) and a sequence of real numbers (um, m ≥ 1) such that with tm :=
t(um, n(m)), we have

lim inf
m→∞

∣

∣

∣

∣

∣

E

[

σ−1
V φ

(

tm − c−1
n(m)(Yn(m) − EYn(m))

σV

)]

− σ−1φ

(

um − EZn(m)

cn(m)σ

)

∣

∣

∣

∣

∣

> 0.

(7.10)

By taking a subsequence if necessary, we may assume without loss of generality,
either that tm → t for some t ∈ R, or that or that |tm| → ∞ as m → ∞. Consider
first the latter case. If |tm| → ∞ as m→ ∞, then by (7.6),

P [|tm − c−1
n(m)(Yn(m) − EYn(m))| ≤ |tm|/2] ≤ P [|c−1

n(m)(Yn(m) − EYn(m))| ≥ |tm|/2]

→ 0,

and hence

E

[

σ−1
V φ

(

tm − c−1
n(m)(Yn(m) − EYn(m))

σV

)]

→ 0.

Since c−1
n(m)(um−EZn(m)) is equal to tm by (7.7), we also have under this assumption

that σ−1φ
(

um−EZn(m)

cn(m)σ

)

tends to zero, and thus we obtain a contradiction of (7.10).

In the case where tm → t for some finite t, we have by (7.6) that tm−c−1
n(m)(Yn(m)−

EYn(m)) converges in distribution to t − W1, where W1 ∼ N (0, σ2
Y ). Hence as

m→ ∞,

E

[

σ−1
V φ

(

tm − c−1
n(m)(Yn(m) − EYn(m))

σV

)]

→ σ−1
V Eφ((t−W1)/σV )

= E fW2(t−W1),
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where W2 ∼ N(0, σ2
V ), with probability density function fW2(x) := σ−1

V φ(x/σV ). If
we assume W1, W2 are independent, then E fW2(t−W1) is the convolution formula
for the probability density function of W1 +W2, which is N (0, σ2), so that

E fW2(t−W1) = fW1+W2(t) = σ−1φ(t/σ).

On the other hand, since c−1
n(m)(um − EZn(m)) is equal (by (7.7)) to tm which we

assume converges to t, we also have that

σ−1φ

(

um − EZn(m)

cn(m)σ

)

→ σ−1φ

(

t

σ

)

,

and therefore we obtain a contradiction of (7.10) in this case too.
Thus (7.10) fails, and therefore (7.9) holds. Hence, (2.2) holds in the case with

Zn = Yn + Sn.

Proof of Theorem 2.1. Set Z ′
n := Yn + Sn. By the integrability assumptions, Z ′

n

is integrable. By (2.1) and the assumption that n−1/2
E [|Zn − Z ′

n|] → 0 as n→ ∞,

n−1/2(Z ′
n − EZ ′

n)
D

−→ N (0, σ2) as n→ ∞. (7.11)

Let b > 0 with hV |b. By Lemma 7.3, σ2 ≥ VarV and (2.3) holds and

sup
u∈R

{
∣

∣

∣

∣

cnP [Z
′
n ∈ [u, u+ b)]− σ−1bφ

(

u− EZ ′
n

cnσ

)
∣

∣

∣

∣

}

→ 0 as n→ ∞.

Hence, by the assumption n1/2P [Zn 6= Z ′
n] → 0,

sup
u∈R

{
∣

∣

∣

∣

cnP [Zn ∈ [u, u+ b)]− σ−1bφ

(

u− EZ ′
n

cnσ

)
∣

∣

∣

∣

}

→ 0 as n→ ∞,

and since the assumption n−1/2
E [|Zn−Z ′

n|] → 0 implies that c−1
n (E [Zn]−E [Z ′

n]) → 0
as n→ ∞, and φ is uniformly continuous on R, we can then deduce (2.2).

8 Proof of theorems for percolation

We shall repeatedly use the following Chernoff-type tail bounds for the binomial
and Poisson distributions For a > 0 set ϕ(a) := 1− a + a log a. Then ϕ(1) = 0 and
ϕ(a) > 0 for a ∈ (0,∞) \ {1}.

Lemma 8.1. If X is a binomial or Poisson distributed random variable with E [X ] =
µ > 0. Then we have for all x > 0 that

P [X ≥ x] ≤ exp(−µϕ(x/µ)), x ≥ µ; (8.1)

P [X ≤ x] ≤ exp(−µϕ(x/µ)), x ≤ µ. (8.2)
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Proof. See e.g. Lemmas 1.1 and 1.2 of [18].

Proof of Theorem 3.1. Let (Bn)n≥1 be a sequence of nonempty finite subsets in Z
d

with vanishing relative boundary. The first conclusion (3.2) follows from Theorem
3.1 of [19], so it remains to prove (3.3).

For x ∈ Z
d let ‖x‖∞ denote the ℓ∞-norm of x, i.e., the maximum absolute value

of its coordinates. Let Bo
n be the set of points x in Bn such that all y ∈ Z

d with ‖y−
x‖∞ ≤ 1 are also in Bn. Since |Bn \Bo

n|/|∂Bn| is bounded by a constant depending
only on d, the vanishing relative boundary condition (3.1) implies |Bo

n|/|Bn| → 1 as
n→ ∞.

Hence, by the pigeonhole principle, for all large enough n we can choose a set
of points xn,1, xn,2, . . . , xn,⌊5−d|Bn|/2⌋ in Bo

n such that ‖xn,j − xn,k‖∞ ≥ 3 for each
distinct j, k in {1, 2, . . . , ⌊5−d|Bn|/2⌋} (let these points be chosen by some arbitrary
deterministic rule).

For 1 ≤ j ≤ ⌊5−d|Bn|/2⌋, let In,j be the indicator of the event that each vertex
y ∈ Z

d with ‖y−xn,j‖∞ = 1 is closed, and list the j for which In,j = 1, in increasing

order, as J(n, 1) . . . , J(n,Nn), whereNn :=
∑⌊5−d|Bn|/2⌋

j=1 In,j. Let I
′
n,j be the indicator

of the event that the vertex xn,j is itself open. Then Nn is binomially distributed

with parameter (1− p)3
d−1, so by Lemma 8.1,

lim sup
n→∞

|Bn|
−1 logP [Nn < 5−d(1− p)3

d−1|Bn|/4] < 0. (8.3)

Set bn := ⌊5−d(1 − p)3
d−1|Bn|/4⌋. Let V1, V2, . . . be a sequence of independent

Bernoulli variables with parameter p, independent of everything else. Recalling
that Λ(B) denotes the number of open clusters in B, set

S ′
n :=

min(bn,Nn)
∑

j=1

I ′n,J(n,j); Yn := Λ(Bn)− S ′
n,

and

Sn := S ′
n +

(bn−Nn)+
∑

j=1

Vj,

where x+ := max(x, 0) as usual, and the sum
∑0

i=1 is taken to be zero.
In this case, the ‘good boxes’ discussed in Section 1 are the unit ℓ∞-neighbourhoods

of the sites xn,J(n,1), xn,J(n,2), . . . xn,J(n,min(bn,Nn)). If xn,j is at the centre of a good
box, it is (if open) isolated from other open sites, so that Yn is simply the number
of open clusters in Bn if one ignores all sites xn,J(n,j) (1 ≤ j ≤ min(bn, Nn)). Hence
Yn does not affect the open/closed status of these sites.
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Thus Sn has the Bin(bn, p) distribution and its distribution, given Yn, is unaf-
fected by the value of Yn so Sn is independent of Yn. Also,

Λ(Bn)− (Yn + Sn) = S ′
n − Sn = −

(bn−Nn)+
∑

j=1

Vj

so that by (8.3), both |Bn|1/2P [Λ(Bn) 6= Yn+Sn] and |Bn|−1/2
E [|Λ(Bn)−(Yn+Sn)|]

tend to zero as n→ ∞. Combined with (3.2) this shows that Theorem 2.1 is appli-
cable, with hV = 1, and that result shows that (3.3) holds.

In the proof of Theorem 3.2, and again later on, we shall use the following.

Lemma 8.2. Suppose ξ1, . . . , ξm are independent identically distributed random el-
ements of some measurable space (E, E). Suppose m ∈ N and ψ : Em → R is
measurable and suppose for some finite K that for j = 1, . . . , m,

K ≥ sup
(x1,...,xm,x′

j)∈E
m+1

|ψ(x1, . . . , xj, . . . , xm)− ψ(x1, . . . , x
′
j , . . . , xm)|.

Set Y = ψ(ξ1, . . . , ξm). Then for any t > 0,

P [|Y − EY | ≥ t] ≤ 2 exp(−t2/(2mK2)).

Proof. The argument is similar to e.g. the proof of Theorem 3.15 of [18]; we
include it for completeness. For 1 ≤ i ≤ m let Fi be the σ-algebra generated
by ξ1, . . . , ξi, and let F0 be the trivial σ-algebra. Then Y − E [Y ] =

∑m
i=1Di with

Di := E [Y |Fi]−E [Y |Fi−1], the ith martingale difference. Then with ξ′i independent
of ξ1, . . . , ξm with the same distribution as them, we have

Di = E [ψ(ξ1, . . . , ξi, . . . ξm)− ξ(ξ1, . . . , ξ
′
i, . . . , ξm)|Fi]

so that |Di| ≤ K almost surely and hence by Azuma’s inequality (see e.g. [18]) we
have the result.

Proof of Theorem 3.2. Assume d ≥ 2 and p > pc(d). Let (Bn)n≥1 be a cube-like
sequence of lattice boxes in Z

d. For finite nonempty A ⊂ Z
d we define the diameter

of A, written diam(A), to be max{‖x− y‖∞ : x ∈ A, y ∈ A}.
Set γn := ⌈diam(Bn)

1/(4d)⌉. Let Bin
n be the set of points x in Bn such that all

y ∈ Z
d with ‖y − x‖∞ ≤ γn are also in Bn. Then we claim that |Bin

n |/|Bn| → 1 as
n → ∞. Indeed, writing Bn =

∏d
j=1([−aj,n, bj,n] ∩ Z), from the cube-like condition

(3.4) we have for 1 ≤ j ≤ d that γn = o(aj,n + bj,n) as n→ ∞, and therefore

|Bin
n | =

d
∏

j=1

(bj,n + aj,n − 2γn) = (1 + o(1))
d
∏

j=1

(aj,n + bj,n),
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justifying the claim.
By the preceding claim, and the pigeonhole principle, for all large enough n

there is a deterministic set of points xn,1, xn,2, . . . , xn,⌊5−d|Bn|/2⌋ in Bin
n such that

‖xn,j − xn,k‖∞ ≥ 3 for each distinct j, k in {1, 2, . . . , ⌊5−d|Bn|/2⌋}.
For 1 ≤ j ≤ ⌊5−d|Bn|/2⌋, let In,j be the indicator of the event that (i) each vertex

y ∈ Z
d with ‖y − xn,j‖∞ = 1 is open, and (ii) the open cluster in Bn containing all

y ∈ Z
d with ‖y − xn,j‖∞ = 1 has diameter at least γn.

Setm(n) := ⌊5−dp3
d−1θd(p)|Bn|/8⌋, with θd(p) denoting the percolation probabil-

ity. List the j for which In,j = 1 as J(n, 1), . . . , J(n,Nn), withNn :=
∑⌊5−d|Bn|/2⌋

j=1 In,j.
Then we have for n large that

E [Nn] ≥ ⌊5−d|Bn|/2⌋p
3d−1θd(p) ≥ 2m(n).

Changing the open/closed status of a single site z in Bn can change the value of In,j
only for those j for which ‖xn,j − z‖∞ ≤ γn, and the number of such j is at most
(2γn + 1)d. Moreover, for n large

(2γn + 1)d ≤ (2(diamBn)
1/(4d) + 3)d ≤ 3d(diamBn)

1/4 ≤ 3d|Bn|
1/4

so that the total change in Nn due to changing the status of a single site z is at
most 3d|Bn|1/4. So by Lemma 8.2,

P [Nn ≤ m(n)] ≤ P [|Nn − ENn| ≥ m(n)] ≤ 2 exp

(

−
m(n)2

2|Bn|(3d|Bn|1/4)2

)

and hence

lim sup
n→∞

|Bn|
−1/2 logP [Nn ≤ m(n)] < 0. (8.4)

Let V1, V2, . . . be a sequence of independent Bernoulli variables with parameter p,
independent of everything else. For 1 ≤ j ≤ ⌊5−d|Bn|/2⌋, let I ′n,j be the indicator of
the event that the vertex xn,j is open. Set

S ′
n :=

min(m(n),Nn)
∑

j=1

I ′n,J(n,j); Sn := S ′
n +

(m(n)−Nn)+
∑

j=1

Vj.

Let Yn be the size of the largest open cluster in Bn if the status of xi,n is set to
‘closed’ for the first min(m(n), Nn) values of j for which In,j = 1.

Then Sn has the Bin(m(n), p) distribution and we assert that its distribution,
given Yn, is unaffected by the value of Yn so Sn is independent of Yn. Indeed, Yn
is obtained without sampling the status of the sites xn,j for the first min(m(n), Nn)
values of j for which In,j = 1.
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To explain this further, consider algorithmically sampling the open/closed status
of sites in Bn as follows. First sample the status of sites outside ∪j{xn,j}. Then
sample the status of those xn,j for which the ℓ∞-neighbouring sites are not all open
(for these sites, In,j must be zero). At this stage, it remains to sample the status of
sites xn,j for which the ℓ∞-neighbouring sites are all open, and for these sites one can
tell, without revealing the value of xn,j , whether or not In,j = 1 (and in particular
one can determine the value of Nn). At the next step sample the status of all xn,i
except for the first min(Nn, m(n)) values of i which have In,j = 1. At this point,
the value of Yn is determined. However, the value of Sn is determined by the status
of the remaining unsampled sites together with some extra Bernoulli variables in
the case where Nn < m(n), so its distribution is independent of the value of Yn as
asserted.

Next, we establish that L(Bn) = Yn + Sn with high probability. One way in
which this could fail would be if Nn < m(n), but we know from (8.4) that this
has small probability. Also, we claim that with high probability, all sites xn,j for
which In,j = 1 have all their neighbouring sites as part of the largest open cluster,
regardless of the status of xn,i. To see this, let An be the event that (i) there is a
unique open cluster for Bn that crosses Bn in all directions (in the sense of [19]) and
(ii) all other clusters in Bn have diameter less than γn. Then we claim that P [Ac

n]
decays exponentially in γn in the sense that

lim sup
n→∞

(diamBn)
1/(4d) logP [Ac

n] < 0. (8.5)

The proof of (8.5) proceeds as in proof of Lemma 3.4 of [19]; we include a sketch of
this argument here for completeness.

First suppose d = 2. For a given rectangle of dimensions (γn/3) × γn, the
probability that it fails to have an open crossing the long way decays exponentially
in γn (see Lemma 3.1 of [19]). Consider the family of all rectangles of dimensions
(γn/3)× γn or of dimensions γn × (γn/3), with all corners in (γn/3)Z

2, having non-
empty intersection with Bn. The number of such rectangles is O(diam(Bn)

d−1/2).
By the preceding probability estimate, all rectangles in this family have an open
crossing the long way, except on an event of probablity decaying exponentially in
γn. However, if all these rectangles have an open crossing the long way, then event
An occurs and we have justified (8.5) for d = 2.

For d ≥ 3, by the well known result of Grimmett and Marstrand [12], there exists
a finite K such that there is an infinite open cluster in the slab [0, K]× R

d−1 with
strictly positive probability. By dividing Bn into slabs of thickness K we see for
1 ≤ i ≤ d that the probabilty that there is no open crossing of Bn in the i-direction
decays exponentially in diam(Bn). Moreover, for i 6= j, by a similar slab argument
(consider successive slabs of thickness K in the i direction), the probability that
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there is an open cluster in Bn that crosses Bn in the i direction but not the j
direction decays exponentially in diam(Bn). Similarly the probability that there
are two or more disjoint open clusters in Bn which cross in the i direction decays
exponentially in n. Finally by a further slab argument, the probability that there is
an open cluster which has diameter at least γn/d in the i direction but fails to cross
the whole of Bn in the j direction, decreases exponentially in γn. This justifies (8.5)
for d ≥ 3.

Note that the occurrence or otherwise of An is unaffected by the open/closed
status of those xn,i for which In,j = 1. Also, for large enough n, on event An,
whatever status we give to these xn,j, the unique crossing cluster is the largest one
because it has at least diam(Bn) elements while all other clusters have at most
O(diam(Bn)

1/4) elements.
If Nn ≥ m(n) and event An occurs, then for each j ≤ m(n), the site xn,J(n,j) is

in the largest open cluster if and only if it is open, since if it is open then it is in an
open cluster of diameter at least γn. This shows that if Nn ≥ m(n) and event An

occurs, we do indeed have L(Bn) = Yn+Sn. Together with the previous probability
estimates (8.4) and (8.5), this shows that |Bn|1/2P [L(Bn) 6= Yn+Sn] → 0 as n→ ∞.
Moreover, by the Cauchy-Schwarz inequality,

E [|L(Bn)− (Yn + Sn)|] = E [|L(Bn)− (Yn + Sn)|1{Nn<m(n)}∪Ac
n
]

≤ (P [Nn < m(n)] + P [Ac
n])

1/2(E [(L(Bn)− (Yn + Sn))
2])1/2

≤ (P [Nn < m(n)] + P [Ac
n])

1/2(|Bn|+m(n)) → 0.

By Theorem 3.2 of [19], the first conclusion (3.5) holds, and by the preceding discus-
sion, we can then apply Theorem 2.1 with hV = 1, to derive the second conclusion
(3.6).

9 Proof of Theorem 4.1

We are now in the setting of Section 4. Assume f ≡ fU , and fix a feasible connected
graph Γ with κ vertices (2 ≤ κ < ∞). Assume also that the sequence (rn)n≥1 is
given and satisifies (4.2) and (4.3). Then P [G(Xκ, 1/(κ + 3)) ∼ Γ] ∈ (0, 1). Let
Qn,1, Qn,2, . . . , Qn,m(n) be disjoint cubes of side (κ+5)rn, contained in the unit cube,
with m(n) ∼ ((κ + 5)rn)

−d as n → ∞. For 1 ≤ j ≤ m(n), let In,j be the indicator
of the event that Xn ∩ Qn,j consists of exactly κ points, all of them at a Euclidean
distance greater than rn from the boundary of Qn,j. List the indices j ≤ m(n) such

that In,j = 1, in increasing order, as Jn,1, . . . , Jn,Nn, with Nn :=
∑m(n)

j=1 In,j. Then

E [Nn] = m(n)((κ + 3)/(κ+ 5))dκP [Bin(n, ((κ+ 5)rn)
d) = κ], (9.1)
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and hence as n→ ∞, since nrdn is bounded by our assumption (4.2),

E [Nn] ∼ κ!−1(κ+ 3)dκ(κ+ 5)−dnκrd(κ−1)
n exp(−n(κ+ 5)drdn). (9.2)

Recalling from (4.3) that τn :=
√

n(nrdn)
κ−1, we can rewrite (9.2) as

E [Nn] ∼ κ!−1(κ+ 3)dκ(κ+ 5)−dτ 2n exp(−n(κ+ 5)drdn) (9.3)

as n → ∞. Moreover, for the Poissonised version of this model where the number
of points is Poisson distributed with mean n, we have the same asymptotics for the
quantity corresponding to Nn (the binomial probability in (9.1) is asymptotic to the
corresponding Poisson probability). Set α to be one-quarter of the coefficient of τ 2n
in (9.3), if the exponential factor is replaced by its smallest value in the sequence,
i.e. set

α := (4κ!)−1(κ+ 3)dκ(κ+ 5)−d inf
n
exp(−n(κ + 5)drdn). (9.4)

Then α > 0 by our assumption (4.2) on rn.

Lemma 9.1. It is the case that

lim sup
n→∞

τ−2
n logP

[

Nn < ατ 2n
]

< 0.

Proof. Let δ > 0 (to be chosen later). Let Mn be Poisson distributed with
parameter (1 − δ)n, independent of the sequence of random d-vectors X1, X2, . . ..
Define the Poisson point process

Pn(1−δ) := {X1, . . . , XMn}.

Let N ′
n be defined in the same manner as Nn but in terms of Pn(1−δ) rather than

Xn. That is, set

N ′
n :=

m(n)
∑

j=1

I ′n,j

with I ′n,j denoting the indicator of the event that Pn(1−δ) ∩ Qn,j consists of exactly
κ points, all at distance greater than rn from the boundary of Qn,j. List the indices
j ≤Mn such that I ′n,j = 1 as J ′

n,1, . . . , J
′
n,N ′

n
.

Since (9.3) holds in the Poisson setting too, using the definition of τn we have as
n→ ∞ that

E [N ′
n] ∼ κ!−1(κ + 3)dκ(κ + 5)−d(1− δ)κτ 2n exp(−n(1 − δ)(κ+ 5)drdn). (9.5)
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By (9.3) and (9.5), we can and do choose δ > 0 to be small enough so that EN ′
n >

(3/4)ENn for large n.
By (9.3) and (9.4) we have for large n that 2ατ 2n ≤ (5/8)ENn. Also, N ′

n is bi-
nomially distributed, and hence by Lemma 8.1, P [N ′

n < 2ατ 2n] decays exponentially
in τ 2n .

By Lemma 8.1, except on an event of probability decaying exponentially in n,
the value of Mn lies between n(1 − 2δ) and n. If this happens, the discrepancy
between Nn and N ′

n is due to the addition of at most an extra 2δn points to Pn(1−δ).
If also N ′

n ≥ 2ατ 2n then to have Nn < ατ 2n, at least ατ 2n of the added points must
land in the union of the first ⌈2ατ 2n⌉ cubes contributing to N ′

n.
To spell out the preceding argument in more detail, let 1 ≤ j ≤ m(n). If

Mn < n and I ′n,j = 1 and Xk /∈ Qn,j for Mn < k ≤ n, then In,j = 1, since in this
case Xn ∩Qn,j = Pn(1−δ) ∩Qn,j . Therefore if Mn < n and N ′

n ≥ 2ατ 2n and

n
∑

k=Mn+1

1{Xk ∈ ∪⌈2ατ2n⌉
j=1 Qn,J ′

n,j
} < ατ 2n,

then Xn ∩ Qn,J ′
n,j

6= Pn(1−δ) ∩ Qn,J ′
n,j

for at most ⌊ατn⌋ values of j ∈ [1, 2ατ 2n], and
hence

Nn ≥

⌈2ατ2n⌉
∑

j=1

In,J ′
n,j

≥ ⌈2ατ 2n⌉ − ατ 2n ≥ ατ 2n .

Hence, if n(1−2δ) < Mn < n andN ′
n ≥ 2ατ 2n and

∑Mn+⌈2δn⌉
k=Mn+1 1{Xk ∈ ∪⌈2ατ2n⌉

j=1 Qn,J ′
n,j
} <

ατn, then Nn ≥ ατ 2n. Hence

P [Nn < ατ 2n|N
′
n ≥ 2ατ 2n, n− 2δn < Mn < n]

≤ P [Bin(⌈2δn⌉, ⌈2ατ 2n⌉((κ + 5)rn)
d) > ατ 2n ].

Since nrdn is assumed bounded, we can choose δ small enough so that the expecta-
tion of the binomial variable in the last line is less than (α/2)τ 2n, and then appeal
once more to Lemma 8.1 to see that the above conditional probability decays ex-
ponentially in τ 2n . Combining all these probability estimates give the desired result.

Proof of Theorem 4.1. Set p := P [G(Xκ, 1/(κ + 3)) ∼ Γ]. Let V1, V2, . . . be a
sequence of independent Bernoulli variables with parameter p, independent of Xn.
Let

S ′
n :=

min(⌊ατ2n⌋,Nn)
∑

j=1

1{G(Xn ∩Qn,J(n,j); rn) ∼ Γ}; Yn := Gn − S ′
n,
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and

Sn := S ′
n +

(⌊ατ2n⌋−Nn)+
∑

j=1

Vj ,

where x+ := max(x, 0) as usual, and the sum
∑0

j=1 is taken to be zero.
For each j, given that In,j = 1, the distribution of the contribution to Gn from

points in Qn,j is Bernoulli with parameter P [G((κ + 3)rnXκ, rn) ∼ Γ], which is p.
Hence Sn is binomial Bin(⌊ατ 2n⌋, p). Moreover, the conditional distribution of Sn,
given the value of Yn, does not depend on the value of Yn, and therefore Sn is
independent of Yn. By (4.5),

⌊ατ 2n⌋
−1/2(Gn − EGn)

D
−→ N (0, α−1σ2).

Moreover,

E [|Gn − (Yn + Sn)|] = E





(⌊ατ2n⌋−Nn)+
∑

j=1

Vj



 ≤ p⌊ατ 2n⌋P [Nn < ατ 2n ]

so that by Lemma 9.1, both τnP [Gn 6= Yn + Sn] and τ−1
n E [|Gn − Yn − Sn|] tend

to zero as n → ∞. Hence, Theorem 2.1 (with hV = 1) is applicable, with ⌊ατ 2n⌋
playing the role of n in that result and α1/2τn playing the role of cn, yielding

sup
k∈Z

{
∣

∣

∣

∣

α1/2τnP [Gn = k]− α1/2σ−1φ

(

k − EGn

(α1/2τn)α−1/2σ

)
∣

∣

∣

∣

}

→ 0,

as n→ ∞. Multiplying through by α−1/2 yields (4.6).

10 Proof of Theorem 5.1

Recall the definition of hX (the span of X) from Section 2.

Lemma 10.1. If X and Y are independent random variables then hX+Y |hX .

Proof. If hX+Y = 0 there is nothing to prove. Otherwise, set h = hX+Y . Then,
considering characteristic functions, observe that

1 = |E exp(2πi(X + Y )/h)| = |E exp(2πiX/h)| × |E exp(2πiY/h)|

so that |E exp(2πiX/h)| = 1 and hence h|hX .
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We are in the setup of Section 5. Recall that the point process Zn consists
of n normally distributed marked points in R

d, while Un,K consists of n uniformly
distributed marked points in B(K). Set hn,K := hH(U∗

n,K). Set hn := hH(Z∗
n), and

recall from (5.4) that h(H) := lim infn→∞ hn.

Lemma 10.2. Suppose either (i) H has finite range interactions and hH(Z∗
n) < ∞

for some n, or (ii) H = H(ξ) is induced by a κ-nearest neighbour functional ξ(x;X ∗),
and hH(Z∗

n) < ∞ for some n > κ. Then h(H) < ∞, and if h(H) > 0, there exists
µ ∈ N and K > 0 such that hµ,K = h(H). If h(H) = 0, then for any ε > 0 there
exists µ ∈ N and K > 0 such that hµ,K < ε. In case (ii), we can take µ such that
additionally µ ≥ κ+ 1.

Proof. The support of the distribution of H(U∗
n,K) is increasing with K, so

hn,K ′|hn,K for K ′ ≥ K. Hence, there exists a limit hn,∞ such that

hn,∞ = lim
K→∞

hn,K (10.1)

and also we have the implication

hn,∞ > 0 =⇒ ∃K : hn,K = hn,∞. (10.2)

Also, for all K the support of the distribution of H(U∗
n,K) is contained in the support

of H(Z∗
n), so that

hn = hH(Z∗
n) ≤ hn,K , ∀K, (10.3)

and hence hn ≤ hn,∞ for all n. We assert that in fact

hn,∞ = hn. (10.4)

This is clear when hn,∞ = 0. When hn,∞ > 0, there exists a countable set S with
span hn,∞ such that P [H(U∗

n,K) ∈ S] = 1 for all K. But then it is easily deduced
that P [H(Z∗

n) ∈ S] = 1, so that hn ≥ hn,∞, and combined with (10.3) this gives
(10.4).

We shall show in both cases (i) and (ii) that hn tends to a finite limit; that is,
for both cases we shall show that

h(H) = lim
n→∞

hn = lim
n→∞

hn,∞ <∞. (10.5)

Also, we show in both cases that

h(H) > 0 =⇒ ∃n0 ∈ N : hn = h(H) ∀n ≥ n0. (10.6)
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If h(H) > 0, the desired conclusion follows from (10.6), (10.4) and (10.2). If h(H) =
0, the desired conclusion follows from (10.5) and (10.1).

Consider the case (i), where H has finite range interactions. In this case, we
shall show that for all n,

hn+1|hn, (10.7)

and since we assume hn <∞ for some n, (10.7) clearly implies (10.5) and (10.6).
We now demonstrate (10.7) in case (i) as follows. By (10.4) and (10.2), to prove

(10.7) it suffices to prove that hn+1|hn,K for all K. Choose τ such that (5.2) holds.
There is a strictly positive probability that the first n points of Zn lie in B(K) while
the last one lies outside B(K + τ). Hence by (5.2) and translation-invariance, the
support of the distribution of H(Z∗

n+1) contains the support of the distribution of
H(U∗

n,K) +H({(0, T )}), where T is a PM-distributed element of M, independent of
U∗
n,K . Hence by Lemma 10.1, hn+1|hn,K , so (10.7) holds as claimed in this case.

Now consider case (ii), where we assume H = H(ξ) with ξ(x;X ) determined by
the κ nearest neighbours. We claim that if j ≥ κ+ 1 and ℓ ≥ κ+ 1 then

hj+ℓ|hj and hj+ℓ|hℓ. (10.8)

By (10.2) and (10.4), to verify (10.8) it suffices to show that

hj+ℓ|hj,K ∀K > 0. (10.9)

Given K, let B and B′ be disjoint balls of radius K, distant more than 2K from
each other. There is a positive probability that Zj+ℓ consists of j points in B and
ℓ points in B′, and if this happens then (since we assume min(j, ℓ) > κ)) the κ
nearest neighbours of the points in B are also in B, while the κ nearest neighbours
of the points in B′ are also in B′, so that H(Z∗

j+ℓ) is the sum of conditionally
independent contributions from the points in B and those in B′. Hence the support
of the distribution of H(Z∗

j+ℓ) contains the support of the distribution of H(U∗
j,K)+

H(Ũ∗
ℓ,K), where H(Ũ∗

ℓ,K) is defined to be a variable with the distribution of H(U∗
ℓ,K)

independent of H(U∗
j,K). Then (10.9) follows from Lemma 10.1.

Define

h′ = inf
n≥κ+1

hn.

Then for all ε > 0 we can pick j ≥ κ + 1 with hj ≤ h′ + ε, and then by (10.8) we
have hℓ ≤ h′ + ε for ℓ ≥ j + κ + 1. This demonstrates (10.5) for this case (with
h(H) = h′), since we assume hn < ∞ for some n. Moreover, if h(H) > 0, then in
the argument just given we can take ε < h(H) and then for ℓ ≥ j + κ+ 1 we must
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have hℓ|hj, which can happen only if hℓ = hj , so by (10.5), in fact hℓ = hj = h(H).
That is, we also have (10.6) for this case.

Since we are in the setting of Section 5, we assume (as in Section 4) that f is an
almost everywhere continuous probability density function on R

d with fmax < ∞.
The point process Xn ⊂ R

d is a sample from this density, and the marked point
process X ∗

n ⊂ R
d × M is obtained by giving each point of Xn a PM-distributed

mark. Recall also that we are given a sequence (rn) with ρ := limn→∞ nrdn ∈ (0,∞).
Recall from (5.1) that Hn(X ∗) := H(r−1

n X ∗) for a given translation-invariant H .
Our strategy for proving Theorem 5.1 goes as follows. First we choose µ,K as

in Lemma 10.2. Then we choose constants β ≥ K and m ≥ µ in a certain way (see
below), and use the continuity of f to pick Θ(n) disjoint deterministic balls of radius
βrn such that f is positive and almost constant on each of these balls. We use a form
of rejection sampling to make the density of points of Xn in each (unrejected) ball
uniform. We also reject all balls which do not contain exactly m points of Xn in a
certain ‘good’ configuration (of non-vanishing probability). The definition of ‘good’
is chosen in such a way that the contribution toHn from inside an inner ball of radius
Krn is shielded from everything outside the outer ball of radius βrn. We end up with
Θ(n) (in probability) unrejected balls, and the contributions to Hn(X ∗

n) from the
corresponding inner balls are independent (because of the shielding) and identically
distributed (because of the uniformly distributed points) so the sum contribution of
these inner balls can play the role of Sn in Theorem 2.1.

In the proof of Theorem 5.1, we need to consider certain functions, sets and
sequences, defined for β > 0. For x ∈ R

d with f(x) > 0, define the function

gn,β(x) :=
inf{f(y) : y ∈ B(x; βrn)}

sup{f(y) : y ∈ B(x; βrn)}
, (10.10)

and for x ∈ R
d with f(x) > 0 and gn,β(x) > 0, and z ∈ B(x; βrn), define

pn,β(x, z) :=
inf{f(y) : y ∈ B(x; β)}

f(z)
. (10.11)

Since we assume f is almost everywhere continuous, the function gn,β converges
almost everywhere on {x : f(x) > 0} to 1. By Egorov’s theorem (see e.g. [9]), given
β > 0 there is a set Aβ with

∫

Aβ
f(x)dx ≥ 1/2, such that f(x) is bounded away

from zero on Aβ and gn,β(x) → 1 uniformly on Aβ.
Since we assume (4.2) with ρ > 0 here, for n large enough nrdn < 2ρ. Set

η(β) := 2−(d+2)ω−1
d β−df−1

maxρ
−1.

Given β > 0, we claim that for n large enough so that nrdn < 2ρ, we can (and
do) choose points xβ,n,1, . . . , xβ,n,⌊η(β)n⌋ in Aβ with |xβ,n,j − xβ,n,k| > 2βrn for 1 ≤
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j < k ≤ ⌊η(β)n⌋. To see this we use a measure-theoretic version of the pigeonhole
principle, as follows. Suppose inductively that we have chosen xβ,n,1, . . . , xβ,n,k, with
k < ⌊η(β)n⌋. Then let xβ,n,k+1 be the first point, according to the lexicographic
ordering, in the set Aβ \ ∪k

j=1B(xβ,n,j; 2βrn). This is possible, because this set is
non-empty, because by subadditivity of measure,

∫

∪k
j=1B(xβ,n,j ;2βrn)

f(x)dx ≤ kωd(2βrn)
dfmax < η(β)nωd(2βrn)

dfmax

= nrdn/(4ρ) < 1/2 ≤

∫

Aβ

f(x)dx,

justifying the claim. Define the ball

Bβ,n,j := B(xβ,n,j, βrn); B∗
β,n,j := B(xβ,n,j, βrn)×M.

The balls Bβ,n,1, . . . , Bβ,n,⌊η(β)n⌋ are disjoint.
Let W1,W2,W3, . . . be uniformly distributed random variables in [0, 1], indepen-

dent of each other and of (Xj)
n
j=1, where Xj = (Xj, Tj). For k ∈ N, think of Wk

as an extra mark attached to the point Xk. This is used in the rejection sampling
procedure. Given β, if Xk ∈ Bβ,n,j, let us say that the point Xk is β-red if the
associated mark Wk is less than pn,β(xβ,n,j, Xk). Given that Xk lies in Bβ,n,j and is
β-red, the conditional distribution of Xk is uniform over Bβ,n,j.

Now letm ∈ N, and suppose S is a measurable set of configurations ofm points in
B(β) such that P [Um,β ∈ S] > 0. The number m and the set S will be chosen so that
given there are m points of Xn in ball Bβ,n,j, and given their rescaled configuration
of lies in the set S, there is a subset of these m points which are ‘shielded’ from the
rest of Xn.

Given S (and by implication β and m), for 1 ≤ j ≤ ⌊η(β)n⌋, let IS,n,j be the
indicator of the event that the following conditions hold:

• The point set Xn ∩Bβ,n,j consists of m points, all of them β-red;

• The configuration r−1
n (−xβ,n,j + (Xn ∩Bβ,n,j)) is in S.

Let NS,n :=
∑⌊η(β)n⌋

j=1 IS,n,j, and list the i for which IS,n,j = 1 in increasing order as
J(S, n, 1) . . . , J(S, n, NS,n).

Lemma 10.3. Let β > 0, and m ∈ N. Let S be a measurable set of configurations
of m points in B(β) such that P [Um,β ∈ S] > 0. Then: (i) there exists δ > 0 such
that

lim sup
n→∞

(

n−1 logP [NS,n < δn]
)

< 0, (10.12)
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and (ii) conditional on the values of IS,n,i for 1 ≤ i ≤ ⌊η(β)n⌋ and the configuration
of Xn outside Bβ,n,J(S,n,1) ∪ · · · ∪ Bβ,n,J(S,n,NS,n), the joint distribution of the point
sets

r−1
n (−xβ,n,J(S,n,1)+(Xn∩Bβ,n,J(S,n,1))), . . . , r

−1
n (−xβ,n,J(S,n,NS,n)+(Xn∩Bβ,n,J(S,n,NS,n)))

is that of NS,n independent copies of Um,β each conditioned to be in S.

Proof. Consider first the asymptotics for E [NS,n]. Given a finite point set
X ⊂ R

d and a set B ⊂ R
d, let X (B) denote the number of points of X in B. Fix

m. Since f is bounded away from zero and infinity on Aβ and gn,β → 1 uniformly
on Aβ, we have uniformly over x ∈ Aβ that

n

∫

B(x;βrn)

f(y)dy = nf(x)

∫

B(x;βrn)

(f(y)/f(x))dy → βdωdρf(x)

Hence by binomial approximation to Poisson,

P [Xn(B(x; βrn)) = m] →
(βdωdρf(x))

m exp(−βdωdρf(x))

m!
as n→ ∞,

and this convergence is also uniform over x ∈ Aβ.
Given m points Xk in Bβ,n,j, the probability that these are all β-red is at least

gn,β(x)
m so exceeds 1

2
if n is large enough, since gn,β → 1 uniformly on Aβ.

Given that m of the points Xk lie in Bβ,n,j, and given that they are all β-red,
their spatial locations are independently uniformly distributed over Bβ,n,j; hence the
conditional probability that r−1

n (−xβ,n,j+(Xn∩Bβ,n,j)) lies in S is a strictly positive
constant.

These arguments show that lim infn→∞ n−1
E [NS,n] > 0. They also demonstrate

part (ii) in the statement of the lemma.
Take δ > 0 with 2δ < lim infn→∞ n−1

E [NS,n]. We shall show that P [NS,n < δn]
decays exponentially in n, using Lemma 8.2. The variable NS,n is a function of n
independent identically distributed triples (marked points) (Xk, Tk,Wk).

Consider the effect of changing the value of one of the marked points ((X, T,W )
to (X ′, T ′,W ′), say). The change could affect the value of IS,n,j for at most two
values of j, namely the j with X ∈ Bβ,n,j and the j′ with X ′ ∈ Bβ,n,j′. So by
Lemma 8.2,

P [|NS,n − ENS,n| > δn] ≤ 2 exp(−δ2n/8),

and (10.12) follows.

Proof of Theorem 5.1 under condition (i) (finite range interactions). Recall that
h(H) is given by (5.4). Since condition (i) includes the assumption that hH(Z∗

n) <∞
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for some n, by Lemma 10.2 we have h(H) < ∞. Let b > 0 with h(H)|b. Let
ε ∈ (0, b). Let µ ∈ N, and K > 0, be as given by Lemma 10.2. Then hµ,K = h(H)
if h > 0, or hµ,K < ε if h = 0. Moreover H(U∗

µ,K) is integrable by assumption. Set

b1 :=

{

hµ,K⌊b/hµ,K⌋ if hµ,K > 0

b if hµ,K = 0.
(10.13)

Choose τ ∈ (0,∞) such that (5.2) holds. We shall apply Lemma 10.3 with
β = K + τ . Let S be the set of configurations of µ points in B(K + τ) such that
in fact all of the points are in B(K). By Lemma 10.3, we can find δ > 0 such that,
writing Nn for NS,n we have exponential decay of P [Nn < δn].

Let V1, V2, . . . , be random variables distributed as independent copies ofH(U∗
µ,K),

independently of X ∗
n . Set

S ′
n :=

min(⌊δn⌋,Nn)
∑

ℓ=1

Hn(X
∗
n ∩ B∗

K+τ,n,J(S,n,ℓ)); Sn = S ′
n +

(⌊δn⌋−Nn)+
∑

j=1

Vj .

Thus, S ′
n is the the total contribution toHn(X ∗

n) from points in ∪min(⌊δn⌋,Nn)
ℓ=1 B∗

K+τ,n,J(S,n,ℓ).

By Part (ii) of Lemma 10.3, given that Nn ≥ δn, for each ℓ we know that
r−1
n (−xβ,n,J(S,n,ℓ)+X ∗

n)∩B
∗(K+τ) is conditionally distributed as U∗

µ,K+τ conditional
on U∗

µ,K+τ ∈ S; in other words, distributed as U∗
µ,K . Therefore the distribution of

Sn is that of the sum of ⌊δn⌋ independent copies of H(U∗
µ,K), independent of the

contribution of the other points. Let Yn denote the contribution of the other points,
i.e.

Yn := Hn(X
∗
n)− S ′

n.

Since the distribution of Sn, given the value of Yn, does not depend on the value of
Yn, Sn is independent of Yn.

By assumption Hn(X ∗
n) and Sn are integrable. Clearly n1/2P [Hn(Xn) 6= Yn+Sn]

is at most n1/2P [Nn < δn], which tends to zero by (10.12). Also by conditioning on
Nn, we have that

n−1/2
E [|Hn(X

∗
n)− (Yn + Sn)|] = n−1/2

E





∣

∣

∣

∣

∣

∣

(⌊δn⌋−Nn)+
∑

j=1

Vj

∣

∣

∣

∣

∣

∣





≤ n−1/2
E [(⌊δn⌋ −Nn)

+]E [|V1|]

≤ n−1/2⌊δn⌋P [Nn ≤ δn]E [|V1|] , (10.14)

which tends to zero by (10.12). This also shows that Yn is integrable By the as-
sumption (5.5),

⌊δn⌋−1/2(Hn(X
∗
n)− EHn(X

∗
n))

D
−→ N (0, δ−1σ2), (10.15)
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and so, since hµ,K |b1, Theorem 2.1 is applicable, and yields

sup
u∈R

{
∣

∣

∣

∣

(δn)1/2P [Hn(X
∗
n) ∈ [u, u+ b1)]− δ1/2σ−1b1φ

(

u− EHn(X ∗
n)

(δn)1/2(δ−1σ2)1/2

)
∣

∣

∣

∣

}

→ 0,

(10.16)

and dividing through by δ1/2 gives (5.6) in all cases where b = b1. In general, suppose
b 6= b1. Then h(H) = 0 (else hµ,K = h(H) and h(H)|b so b = b1 by (10.13)), and
hence hµ,K < ε. Since b1 ≤ b by (10.13), we have that

inf
u∈R

{

n1/2P [Hn(X
∗
n) ∈ [u, u+ b)]− σ−1bφ

(

u− EHn(X
∗
n)

n1/2σ

)}

≥ inf
u∈R

{

n1/2P [Hn(X
∗
n) ∈ [u, u+ b1)]− σ−1b1φ

(

u− EHn(X ∗
n)

n1/2σ

)}

+σ−1(b1 − b)(2π)−1/2

so that by (10.16), since b1 ≥ b− ε,

lim inf
n→∞

inf
u∈R

{

n1/2P [Hn(X
∗
n) ∈ [u, u+ b)]− σ−1bφ

(

u− EHn(X ∗
n)

n1/2σ

)}

≥ −
ε

σ
(2π)−1/2.

Similarly, setting b2 := hµ,K⌈b/hµ,K⌉, we have that

sup
u∈R

{

n1/2P [Hn(X
∗
n) ∈ [u, u+ b)]− σ−1bφ

(

u− EHn(X ∗
n)

n1/2σ

)}

≤ inf
u∈R

{

n1/2P [Hn(X
∗
n) ∈ [u, u+ b2)] + σ−1b2φ

(

u− EHn(X ∗
n)

n1/2σ

)}

+σ−1(b2 − b)(2π)−1/2

so that since b2 − b ≤ ε,

lim sup
n→∞

sup
u∈R

{

n1/2P [Hn(X
∗
n) ∈ [u, u+ b)]− σ−1bφ

(

u− EHn(X ∗
n)

n1/2σ

)}

≤
ε

σ
(2π)−1/2.

Since ε > 0 is arbitrarily small, this gives us (5.6).

Proof of Theorem 5.1 under condition (ii). We now assume that H , instead
of having finite range, is given by (5.3) with ξ depending only on the κ nearest
neighbours. Again, by Lemma 10.2 we have that h(H), given by (5.4), is finite.

Let b > 0 with h(H)|b. Let ε ∈ (0, b). Let µ ∈ N and K > 0, with µ ≥ κ+ 1, by
as given by Lemma 10.2. Then hµ,K = h(H) if h(H) > 0, and hµ,K < ε if h(H) = 0.
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Also, H(U∗
µ,K) integrable, by the integrability assumption in the statement of the

result being proved.
Let B1,B2, . . . ,Bν be a minimal collection of open balls of radius K, each of them

centred at a point on the boundary of B(4K), such that their union contains the
boundary of B(4K). Let B0 be the ball B(K).

We shall apply Lemma 10.3 with β = 5K, with m = (ν + 1)µ, and with S as
follows. S is the set of configurations of m = (ν + 1)µ points in B(β) = B(5K),
such that each of B1, . . . ,Bν contains at least µ points, and ∪ν

i=1Bi contains exactly
νµ points, and also the ball B0 contains exactly µ points (so that consequently
there are no points in B(5K)\∪ν

i=0Bi). A similar construction (using squares rather
than balls, and with diagram) was given by Avram and Bertsimas [1] for a related
problem.

With this choice of β and S, let the locations xβ,n,j = x5K,n,j, the balls Bβ,n,j =
B5K,n,j, the indicators IS,n,j, and the variables NS,n and J(S, n, ℓ) be as described
just before Lemma 10.3. By that result, we can (and do) choose δ > 0 such that
(10.12) holds.

For 1 ≤ ℓ ≤ NS,n, the point process r
−1
n (−x5K,n,J(S,n,ℓ)+(Xn∩B5K,n,J(S,n,ℓ))) has

µ points within distance K of the origin, and also at least µ points in each of the
balls B1, . . . ,Bν .

Since µ ≥ κ+1, for any point configuration in S, each point inside B(K) has its
κ nearest neighbours also inside B(K). Also none of the points in B(5K)\B(K) has
any of its κ nearest neighbours in B(K). Finally, any further added point outside
B(5K) cannot have any of its κ nearest neighbours inside B(K), since the line
segment from such a point to any point in B(K) passes through the boundary of
B(4K) at a location inside some Bi, and any of the µ or more points inside Bi are
closer to the outside point than the point in B(K) is. To summarise this discussion,
the points in B(K) are shielded from those outside B(5K).

Given n, let W(1)
(ν+1)µ,5K , . . . ,W

(⌊δn⌋)
(ν+1)µ,5K be a collection of (marked) point pro-

cesses which are each distributed as U∗
(ν+1)µ,5K conditioned on U∗

(ν+1)µ,5K ∈ S, in-

dependently of each other and of X ∗
n . For 1 ≤ j ≤ ⌊δn⌋ set Vj := H(W(j)

(ν+1)µ,5K ∩

B∗(K)), so that V1, V2, . . . V⌊δn⌋ are random variables distributed as independent
copies of H(U∗

µ,K), independent of Xn. Define S ′
n and Sn by

S ′
n :=

min(⌊δn⌋,NS,n)
∑

ℓ=1

Hn(X
∗
n ∩ B∗(x5K,n,J(S,n,ℓ), Krn)); Sn := S ′

n +

(⌊δn⌋−NS,n)
+

∑

j=1

Vj.

Also set Yn := Hn(X ∗
n)− S ′

n.
Thus S ′

n is the total contribution toHn(X ∗
n) from points in B∗(x5K,n,J(S,n,ℓ);Krn),

1 ≤ ℓ ≤ min(⌊δn⌋, NS,n). On account of the shielding effect described above, Sn
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is the sum of ⌊δn⌋ independent copies of a random variable with the distribution
of H(U∗

µ,K). Moreover, we assert that the distribution of Sn, given the value of Yn,
does not depend on the value of Yn, and therefore Sn is independent of Yn.

Essentially, this assertion holds because for any triple of sub-σ-algebras F1,F2,F3,
if F1 ∨F2 is independent of F3 and F1 is independent of F2 then F1 is independent
of F2 ∨ F3 (here Fi ∨ Fj is the smallest σ-algebra containing both Fi and Fj). In
the present instance, to define these σ-algebras we first define the marked point
processes Yj for 1 ≤ j ≤ ⌊δn⌋ by

Yj :=

{

r−1
n (−x5K,n,J(S,n,j) + (X ∗

n ∩B∗
5K,n,J(S,n,j))) if 1 ≤ j ≤ min(⌊δn⌋, NS,n)

W
(j−NS,n)

(ν+1)µ,5K if NS,n < j ≤ ⌊δn⌋.

Take F3 to be the σ-algebra generated by the values of J(S, n, 1), . . . ,
J(S, n,min(⌊δn⌋, NS,n)) and the locations and marks of points of Xn outside the
union of the balls B5K,n,J(S,n,1), . . . , B5K,n,J(S,n,min(⌊δn⌋,NS,n)). Take F2 to be the σ-
algebra generated by the point processes Yj ∩B∗(5K) \B∗(K), 1 ≤ j ≤ ⌊δn⌋. Take
F1 to be the σ-algebra generated by the point processes Yj ∩ B∗(K), 1 ≤ j ≤ ⌊δn⌋.
Then by Lemma 10.3 and the definition of S, F1∨F2 is independent of F3 and F1 is
independent of F2, so F1 is independent of F2 ∨ F3. The variable Sn is measurable
with respect to F1, and by shielding, the variable Yn is measurable with respect to
F2 ∨ F3, justifying our assertion of independence.

By the assumptions of the result being proved, Hn(X ∗
n) and Sn are integrable.

Clearly n1/2P [Hn(X
∗
n) 6= Yn + Sn] is at most n1/2P [NS,n < δn], which tends to zero.

Also, as with (10.14) in Case (i), we have that n−1/2
E [|Hn(X ∗

n)− (Yn + Sn)|] tends
to zero by (10.12), and Yn is integrable. By (5.5),

⌊δn⌋−1/2(Hn(X
∗
n)− EHn(X

∗
n))

D
−→ N (0, δ−1σ2), (10.17)

and so, since hµ,K |b1, Theorem 2.1 is applicable with Zn = Hn(X ∗
n), yielding

sup
{u∈R}

{
∣

∣

∣

∣

(δn)1/2P [Hn(X
∗
n) ∈ [u, u+ b1)]− δ1/2σ−1b1φ

(

u− EHn(X ∗
n)

(δn)1/2δ−1/2σ

)
∣

∣

∣

∣

}

→ 0,

as n → ∞. Multiplying through by δ−1/2 yields (5.6) for this case, when b1 = b. If
b1 6= b, we can complete the proof in the same manner as in the proof for Case (i).

11 Proof of Theorems 5.2, 5.3 and 5.4

The proofs of Theorems 5.2, 5.3 and 5.4 all rely heavily on Theorem 2.3 of [20] so
for convenience we state that result here in the form we shall use it. This requires
some further notation, besides the notation we set up earlier in Section 5.
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As before, we assume ξ(x,X ∗) is a translation invariant, measurable R-valued
function defined for all pairs (x,X ∗), where X ∗ ⊂ R

d×M is finite and x is an element
of X ∗. We extend the definition of ξ(x,X ∗) to the case where X ∗ ⊂ R

d ×M and
x ∈ (Rd × M) \ X ∗, by setting ξ(x,X ∗) to be ξ(x,X ∗ ∪ {x}) in this case. Recall
that H(ξ) is defined by (5.3).

Let T be an M-valued random variable with distribution PM, independent of
everything else. For λ > 0 let Mλ be a Poisson variable with parameter λ, indepen-
dent of everything else, and let Pλ be the point process {X1, . . . , XMλ

}, which is a
Poisson point process with intensity λf(·). Let P∗

λ := {(X1, T1), . . . , (XMλ
, TMλ

)} be
the corresponding marked Poisson process.

Given λ > 0, we say ξ is λ-homoegeneously stabilizing if there is an almost surely
finite positive random variable R such that with probability 1,

ξ((0, T ); (H∗
λ ∩B

∗(0;R)) ∪ Y) = ξ((0, T );H∗
λ ∩B

∗(0;R))

for all finite Y ⊂ (Rd \B(0;R))×M. Recall that supp(f) denotes the support of f .
We say that ξ is exponentially stabilizing if for λ ≥ 1 and x ∈ supp(f) there exists
a random variable Rx,λ such that

ξ((λ1/dx, T );λ1/d(P∗
λ ∩ B

∗(x;λ−1/dRx,λ)) ∪ Y)

= ξ((λ1/dx, T );λ1/d(P∗
λ ∩ B

∗(x;λ−1/dRx,λ)))

for all finite Y ⊂ (Rd \ B(x;λ−1/dRx,λ))) × M, and there exists a finite positive
constant C such that

P [Rx,λ > s] ≤ C exp(−C−1s), s ≥ 1, λ ≥ 1, f ∈ supp(f).

For k ∈ N ∪ {0}, let Tk be the collection of all subsets of supp(f) with at most k
elements. For k ≥ 1 and A = {x1, . . . , xk} ∈ Tk \ Tk−1, let A∗ be the corresponding
marked point set {(x1, T1), . . . , (xk, Tk)} where T1, . . . , Tk are independent M-valued
variables with distribution PM, independent of everything else. If A ∈ T0 (so A = ∅)
let A∗ also be the empty set.

We say that ξ is binomially exponentially stabilizing if there exist finite positive
constants C, ε such that for all x ∈ supp(f) and all λ ≥ 1 and n ∈ N∩ ((1−ε)λ, (1+
ε)λ)), and A ∈ T2, there is a random variable Rx,λ,n,A such that

ξ((λ1/dx, T );λ1/d((X ∗
n ∪ A∗) ∩B∗(x;λ−1/dRx,λ,n,A)) ∪ Y)

= ξ((λ1/dx, T );λ1/d((X ∗
n ∪ A∗) ∩ B∗(x;λ−1/dRx,λ,n,A))) (11.1)

for all finite Y ⊂ (Rd \ B(x;λ−1/dRx,λ,n,A)) × M, and such that all λ ≥ 1 and all
n ∈ N ∩ ((1− ε)λ, (1 + ε)λ)), and all x ∈ supp(f) and all A ∈ T2,

P [Rx,λ,n,A > s] ≤ C exp(−C−1s), s ≥ 1.
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Given p > 0 and ε > 0, we consider the moments conditions

sup
λ≥1,x∈supp(f),A∈S1

E [|ξ((λ1/dx, T );λ1/d(P∗
λ ∪ A∗))|p] <∞ (11.2)

and

sup
λ≥1,n∈N∩((1−ε)λ,(1+ε)λ),x∈supp(f),A∈S3

E [|ξ((λ1/dx, T );λ1/d(X ∗
n ∪ A∗))|p] <∞. (11.3)

Theorem 11.1. Suppose H = H(ξ) is induced by translation-invariant ξ. Suppose
that ξ is f(x)-homogeneously stabilizing for Lebesgue-almost all x ∈ supp(f), and ξ
is exponentially stabilizing, binomially exponentially stabilizing and for some ε > 0
and p > 2 satisfies (11.2) and (11.3). Suppose fmax < ∞ and supp(f) is bounded.
Suppose (λ(n), n ≥ 1) is a sequence taking values in R

+ with |λ(n)− n| = O(n1/2)
as n→ ∞. Then there exists σ ≥ 0 such that

n−1/2(H(ξ)(λ(n)1/dX ∗
n)− EH(ξ)(λ(n)1/dX ∗

n))
D

−→ N (0, σ2),

and n−1Var(H(ξ)(λ(n)1/dX ∗
n) → σ2 as n→ ∞.

Theorem 11.1 is a special case of Theorem 2.3 of [20], which also provides an
expression for σ in terms of integrated two-point correlations; that paper considers
random measures given by a sum of contributions from each point, whereas here we
just consider the total measure. The sets Ω∞ and (for all λ ≥ 1) Ωλ in [20] are taken
to be supp(f). Our ξ is translation invariant, and these assumptions lead to some
simplification of the notation in [20].

Proof of Theorem 5.2. The condition that ξ(x;X ∗) has finite range implies
that H = H(ξ) has finite range interactions. Since ξ has finite range r, ξ is λ-
homogeneously stabilizing for all λ > 0, exponentially stabilizing and binomially
exponentially stabilizing (just take R = r, Rx,λ = r and Rx,λ,n,A = r).

We shall establish (5.5) by applying Theorem 11.1. We need to check the mo-
ments conditions (11.2) and (11.3) in the present setting. Since we assume that
fmax < ∞, for any λ > 0 and any n ∈ N with n ≤ 2λ, and any x ∈ supp(f), the
variable card(X ∗

n ∩B∗(x; rλ−1/d)) is binomially distributed with with mean at most
ωdfmax2r

d. Hence by Lemma 8.1, there is a constant C, such that whenever n ≤ 2λ
and x ∈ supp(f) we have

P [card(X ∗
n ∩B∗(x; rλ−1/d)) > u] ≤ C exp(−u/C), u ≥ 1. (11.4)

Moreover by (5.11) and the assumption that ξ has range r, for A ∈ T3 we have

E [ξ((λ1/dx, T );λ1/d(X ∗
n ∪ A∗))4] ≤ γ4E [(4 + card(X ∗

n ∩B∗(x; rλ−1/d)))4γ]
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so by (11.4) we can bound the fourth moments of ξ((λ1/dx, T );λ1/d(X ∗
n ∪ A∗)) uni-

formly over (x, λ, n,A) ∈ supp(f) × [1,∞) × N × T3 with n ≤ 2λ. This gives us
(11.3) (for p = 4 and ε = 1/2) and (11.2) may be deduced similarly.

Hence, the assumptions of Theorem 11.1 are satisfied, with λ(n) in that result
given by λ(n) = r−d

n . By Theorem 11.1, for some σ ≥ 0 we have (5.5) and (5.9).
Then by Theorem 5.1, we can deduce that σ > 0 and h(H) < ∞ and (5.6) holds
whenever h(H)|b.

Proof of Theorem 5.3. Under condition (5.2), the functional H(X ∗) can be
expressed as a sum of contributions from components of the geometric (Gilbert)
graph G(X , τ), where X := π(X ∗) is the unmarked point set corresponding to X ∗

(recall that π denotes the canonical projection from R
d × M onto R

d.) Hence,
H(X ∗) can be written asH(ξ)(X ∗) where ξ(x;X ∗) denotes the contribution toH(X ∗)
from the component containing π(x), divided by the number of vertices in that
component. Then ξ(x;X ∗) is unaffected by changes to X ∗ that do not affect the
component of G(X , τ) containing π(x), and we shall use this to demonstrate that
the conditions of Theorem 11.1 hold, as follows (the argument is similar to that in
Section 11.1 of [18]).

Consider first the homogeneous stabilization condition. For λ > 0, let R(λ) be
the maximum Euclidean distance from the origin of vertices in the graph G(Hλ ∪
{0}, τ) that are pathwise connected to the origin, which by scaling (see the Map-
ping theorem in [15]) has the same distribution as τ times the maximum Euclidean
distance from the origin of vertices in G(Hτdλ∪{0}, 1), that are pathwise connected
to the origin. Then R(λ) is almost surely finite, for any λ ∈ (0, τ−dλc).

Changes to Hλ at a distance more than R(λ) + τ from the origin do not affect
the component of G(Hλ ∪ {0}, τ) containing the origin and therefore do not affect
ξ((0, T );H∗

λ). This shows that ξ is λ-homogeneously stabilizating for any λ < τ−dλc,
and therefore by assumption (5.12) the homogeneous stabilization condition of The-
orem 11.1 holds.

Next we consider the binomial stabilization condition. Let x ∈ supp(f). Let
Rx,λ,n be equal to τ plus the maximum Euclidean distance from λ1/dx of ver-
tices in G(λ1/d(Xn ∪ {x}), τ) that are pathwise connected to λ1/dx. Changes to
Xn at a Euclidean distance greater than λ−1/dRx,λ,n from x will have no effect on
ξ((λ1/dx, T );λ1/dX ∗

n).
Using (5.12), let ε ∈ (0, 1/2) with (1 + ε)2τdfmax < λc. The Poisson point

process Pn(1+ε) := {X1, . . . , XMn(1+ε)
}, is stochastically dominated by Hnfmax(1+ε)

(we say a point process X is stochastically dominated by a point process Y if there
exist coupled point processes X ′,Y ′ with X ′ ⊂ Y ′ almost surely and X ′ having the
distribution of X and Y ′ having the distribution of Y). Hence by scaling, λ1/dPn(1+ε)

is stochastically dominated by Hnfmax(1+ε)/λ, and hence we have for n ≤ λ(1 + ε)

40



that λ1/dPn(1+ε) is stochastically dominated by Hfmax(1+ε)2 . Therefore for u > 0,

P [Rx,λ,n > u] ≤ P [Mn(1+ε) < n] + P [R((1 + ε)2fmax) > u− τ ]. (11.5)

By scaling, the second probability in (11.5) equals the probability that there is a path
from the origin in G(Hτd(1+ε)2fmax

∪ {0}, 1) to a point at Euclidean distance greater
than τ−1u− 1 from the origin. By the exponential decay for subcritical continuum
percolation, (see e.g. Lemma 10.2 of [18]), this probability decays exponentially in
u (and does not depend on n).

Let ∆ := diam(supp(f)) (here assumed finite). By Lemma 8.1, the first term
in the right hand side of (11.5) decays exponentially in n. Hence, there is a finite
positive constant C, independent of λ, such that provided we have n > (1− ε)λ1/d

we have for all u ≤ λ1/d(∆ + τ) that

P [Mn(1+ε) < n] ≤ C exp(−C−1λ1/d) ≤ C exp(−((∆ + τ)C)−1u).

On the other hand P [Rx,λ,n > u] = 0 for u > λ1/d(∆+τ). Combined with (11.5) this
shows that there is a constant C such that for all (x, n, λ, u) ∈ supp(f)×N×[1, ,∞)2

with n ≤ (1 + ε)λ, we have

P [Rx,λ,n > u] ≤ C exp(−u/C). (11.6)

Now suppose A ∈ T3, and x ∈ supp(f). Let Rx,λ,n,A be equal to τ plus the maxi-
mum Euclidean distance from λ1/dx of vertices in G(λ1/d(Xn ∪A∪ {x}); τ) that are
pathwise connected to λ1/dx. Changes to Xn ∪ A at a Euclidean distance greater
than λ−1/dRx,λ,n,A from x will have no effect on ξ((λ1/dx, T );λ1/d(X ∗

n ∪ A∗)); that
is, (11.1) holds. To check the tail behaviour of Rx,λ,n,A, suppose for example that A
has three elements, x1, x2 and x3. Then it is not hard to see that

Rx,λ,n,A ≤ Rx,λ,n +Rx1,λ,n +Rx2,λ,n +Rx3,λ,n,

and likewise when A has fewer than three elements. Using this together with (11.6),
it is easy to deduce that there is a constant C such that for all (x, n,A, λ, u) ∈
supp(f)× N× T3 × [1,∞)2 with n ≤ (1 + ε)λ, and we have

P [Rx,λ,n,A > u] ≤ C exp(−u/C). (11.7)

In other words, ξ is binomially exponentially stabilizing.
Next we check the moments condition (11.3), with p = 4 and using the same

choice of ε as before. By our definition of ξ and the growth bound (5.13), we have
for all (x, n,A, λ) ∈ supp(f)× N× T3 × [1,∞)2 with n ≤ λ(1 + ε) that

E [ξ((λ1/dx, T );λ1/d(X ∗
n ∪A∗))4] ≤ γ4E [(card(C) + diam(C))4γ ], (11.8)
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where C is the vertex set of the component of G(λ1/d(Xn ∪ A ∪ {x}); τ) containing
λ1/dx. By (11.7), there is a constant C such that for all (x, n,A, λ, u) ∈ (supp(f)×
N× T3 × [1,∞)2 with n ≤ λ(1 + ε) we have

P [diam(C) > u] ≤ C exp(−u/C); (11.9)

moreover,

P [card(C) > u] ≤ P [diam(C) > u1/(2d)] + P [card(Xn ∩B(x;λ−1/du1/(2d))) > u− 4]

(11.10)

and the first term in the right hand side of (11.10) decays exponentially in u1/(2d)

by (11.9). Since card(Xn ∩ B(x;λ−1/du1/(2d))) is binomially distributed with

E [card(Xn ∩ B(x;λ−1/du1/(2d)))] ≤ u1/2ωdfmaxn/λ,

by Lemma 8.1 there is a constant C such that for all (x, n, λ, u) with n ≤ λ(1 + ε)
we have that

P [card(Xn ∩ B(x;λ−1/du1/(2d))) > u− 4] ≤ C exp(−C−1u1/2).

Thus by (11.10) there is a constant, also denoted C, such that for all (x, n,A, λ, u)
with n ≤ λ(1 + ε) we have

P [card(C) > u] ≤ C exp(−C−1u−1/(2d)),

and combining this with (11.9) and using (11.8) gives us a uniform tail bound which
is enough to ensure (11.3). The argument for (11.2) is similar.

Thus our ξ satisfies all the assumptions of Theorem 11.1, and we can deduce
(5.5) and (5.9) for some σ ≥ 0 by applying that result with λ(n) = r−d

n . Then by
applying Theorem 5.1, we can deduce that σ > 0 and h(H) < ∞ and (5.6) holds
whenever h(H)|b.

Proof of Theorem 5.4. Suppose the hypotheses of Theorem 5.4 hold, and
assume without loss of generality that ξ(x,X ∗) = 0 whenever X ∗ \ {x} has fewer
than κ elements. We assert that under these hypotheses, there exists a constant C
such that for all (x, n, λ, u) ∈ supp(f)×N× [1,∞)2 with n ∈ [λ/2, 3λ/2] and n ≥ κ,
we have

P [λ1/dRκ((x, T );X
∗
n) > u] ≤ C exp(−C−1u). (11.11)

Indeed, if supp(f) is a compact convex region in R
d and f is bounded away from

zero on supp(f), then (11.11) is demonstrated in Section 6.3 of [20], while if supp(f)
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is a compact d-dimensional submanifold-with-boundary of Rd, and f is bounded
away from zero on supp(f), then (11.11) comes from the proof of Lemma 6.1 of [24].

It is easy to see that ξ is λ-homogeneously stabilizing for all λ > 0. Also, for
any (x,A) ∈ (supp(f)×T3) we obviously have Rκ((x, T );X ∗∪A∗) ≤ Rκ((x, T );X ∗)
and hence by (11.11), ξ is binomially exponentially stabilizing, and exponential
stabilization comes from a similar estimate with a Poisson sample.

We need to check the moments conditions to be able to deduce (5.5) via Theorem
11.1. With γ as in the growth bound (5.14), we claim that there is a constant C such
that for any A ∈ T3, any x ∈ supp(f), and any u > 0, and for all (x, n,A, λ, u) ∈
supp(f)× N× T3 × [1,∞)2 with λ/2 ≤ n ≤ 3λ/2, and n ≥ κ, we have

P [|ξ((λ1/dx, T );λ1/d(X ∗
n ∪ A∗))| > u] ≤ P [γ(1 + λ1/dRκ((x, T ),X

∗
n))

γ > u]

≤ C exp(−C−1u1/γ).(11.12)

Indeed, the first bound comes from the (5.14), and the second bound comes from
(11.11). Using (11.12), we can deduce the moments bound (11.3) for p = 4 and
ε = 1/2. We can derive (11.2) similarly. Thus Theorem 11.1 is applicable, and
enables us to deduce (5.5) and (5.9) for some σ ≥ 0, in the present setting. Then
by using Theorem 5.1, we can deduce that σ > 0 and h(H) > 0 and (5.6) holds
whenever h(H)|b.
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