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Abstract

We give a general local central limit theorem for the sum of two indepen-
dent random variables, one of which satisfies a central limit theorem while
the other satisfies a local central limit theorem with the same order variance.
We apply this result to various quantities arising in stochastic geometry, in-
cluding: size of the largest component for percolation on a box; number of
components, number of edges, or number of isolated points, for random ge-
ometric graphs; covered volume for germ-grain coverage models; number of
accepted points for finite-input random sequential adsorption; sum of nearest-
neighbour distances for a random sample from a continuous multidimensional
distribution.
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1 Introduction

A number of general central limit theorems (CLTs) have been proved recently for
quantities arising in stochastic geometry subject to a certain local dependence. See
[18, 19, 20, 21, 22| for some examples. The present work is concerned with local cen-
tral limit theorems for such quantities. The local CLT for a binomial (n, p) variable
says that for large n with p fixed, its probability mass function minus that of the
corresponding normal variable rounded to the nearest integer, is uniformly o(n=/2).
The classical local CLT provides similar results for sums of i.i.d. variables with an
arbitrary distribution possessing a finite second moment. Here we are concerned
with sums of variables with some weak dependence, in the sense that the summands
can be thought of as contributions from spatial regions with only local interactions
between different regions.



Among the examples for which we obtain local CLTs here are the following.
In Section 3 we give local CLTs for the number of clusters in percolation on a
large finite lattice box, and for the size of the largest open cluster for supercritical
percolation on a large finite box, as the box size becomes large. In Sections 4 and
5 we consider continuum models, starting with random geometric graphs [18] for
which we demonstrate local CLTs for the number of copies of a fixed subgraph (for
example the number of edges) both in the thermodynamic limit (in which the mean
degree is ©(1)) and in the sparse limit (in which the mean degree vanishes). For
the thermodynamic limit we also derive local CLTs for the number of components
of a given type (for example the number of isolated points), as an example of a
more general local CLT for functionals which have finite range interactions or which
are sums of functions determined by nearest neighbours (Theorem 5.1). This also
yields local CLT's for quantities associated with a variety of other models, including
germ-grain models and random sequential adsorption in the continuum.

We derive these local CLTs using the following idea which has been seen (in
somewhat different form) in [8], in [4], and no doubt elsewhere. If the random
variable of interest is known to satisfy a CLT, and can be decomposed (with high
probability) as the sum of two independent parts, one of which satisfies a local CLT
with the same order of variance growth, then one can find a local CLT for the original
variable. Theorem 2.1 below formalises this idea. The statement of this result has
no geometrical content and it could be of use elsewhere.

In the geometrical context, one can often use the geometrical structure to effect
such a decomposition. Loosely speaking, in these examples one can represent a
positive proportion of the spatial region under consideration as a union of disjoint
boxes or balls, in such a way that with high probability a non-vanishing proportion
of the boxes are ‘good’ in some sense, where the contributions to the variable of
interest from a good box, given the configuration outside the box and given that it
has the ‘good’ property, are i.i.d. Then the classical local CLT applies to the total
contribution from good boxes, and one can represent the variable of interest as the
sum of two independent contributions, one of which (namely the contribution from
good boxes) satisfies a local CLT, and then apply Theorem 2.1. This technique
is related to a method used by Avram and Bertsimas [1] to find lower bounds on
the variance for certain quantities in stochastic geometry, although the examples
considered here are mostly different from those considered in [1].

In any case, our results provide extra information on the CLT behaviour for
variables for numerous geometrical and multivariate stochastic settings, which have
arisen in a variety of applications (see the examples in Section 5).



2 A general local CLT

In the sequel we let ¢ denote the standard (N(0,1)) normal density function, i.e.
o(x) = (2m)" Y2 exp(—(1/2)2?). Note that for ¢ > 0, the probability density func-
tion of the N(0,0?%) distribution is then o7 '¢(x/c), * € R. Define the N(0,0)
distribution to be that of a random variable that is identically zero.

We say a random variable X is integrable if E[|X|] < co. We say X has a lattice
distribution if there exists A > 0 such that (X — a)/h € Z almost surely for some
a € R. If X is lattice, then the largest such h is called the span of X, and here
denoted hy. If X is non-lattice, then we set hx := 0. If X is degenerate, i.e. if
Var[X] = 0, then we set hy := +00. As usual with local central limit theorems,
we need to distinguish between the lattice and non-lattice cases. For real numbers
a > 0,b > 0, we shall write a|b to mean that either b is an integer multiple of a or
a =0. When a = +00,b < oo we shall say by convention that a|b does not hold.

Theorem 2.1. Let V, Vi, V5, V3, ... be independent identically distributed random
variables. Suppose for each n € N that (Y,,, Sn, Z,) is a triple of integrable random
variables on the same sample space such that (i) Y, and S, are independent, with

Sa 2 S0 Vi (i) both n PR Z, — (Yo + Su)|] and n'/2P[Z, # Y, + S,] tend to
zero as n — oo; and (i) for some o € [0, 0),

n V22, —EZ,) —» N(0,0%) as n — . (2.1)

Then Var[V] < o2 and if b, ¢y, ¢, ¢3, ... are positive constants with hy|b and ¢, ~
n'/2 as n — oo, then

sup{ cnP|Z, € [u,u+b)] — o be <LEZ") ’} —0 asn—oo. (2.2
u€R CnO
Also,

n (Y, —EY,) = N(0,0° — Var[V]). (2.3)

Remarks. The main case to consider is ¢, = n'/?2. The more general formulation
above is convenient in some applications, e.g., in the proof of Theorem 4.1. Theorem
2.1 is proved in Section 7. Our main interest is in the conclusion (2.2), but (2.3),
which comes out for free from the proof, is also of interest.

3 Percolation

Most of our applications of Theorem 2.1 will be in the continuum, but we start
with applications to percolation on the lattice. We consider site percolation with
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parameter p, where each site (element) of Z¢ is open with probability p and closed
otherwise, independently of all the other sites. Given a finite set B C Z¢, the open
clusters in B are defined to be the components of the (random) graph with vertex
set consisting of the open sites in B, and edges between each pair of open sites
in B that are at unit Euclidean distance from each other. Let A(B) denote the
number of open clusters in B. Listing the open clusters in B as Cy, ..., Cyp), and
denoting by |C,| the order (i.e., the number of vertices) of the cluster C;, we denote
by L(B) the random variable max(|C;|,...,[Cyp)|), and refer to this as the size
of the largest open cluster in B. Given a growing sequence of regions (By),>1 in
Z%, we shall demonstrate local CLTs for the random variables A(B,) and L(B,),
subject to some conditions on the sets B, which are satisfied, for example, if they
are cubes of side n. There should not be any difficulty adapting these results to
bond percolation.

For B C Z% let |B| denote the number of elements of B. Let |0B| denote the
number of elements of Z?\ B lying at unit Euclidean distance from some element of
B. We say a sequence (B,),>1 of nonempty finite sets in Z? has vanishing relative
boundary if

lim |0B,|/|B,| = 0. (3.1)
n—oo

We write liminf(B,,) for U,>1 Np>p B

Theorem 3.1. Suppose d > 2 and p € (0,1). Then there exists o > 0 such that
if (Bp)n>1 is any sequence of nonempty finite subsets in Z* with vanishing relative
boundary and with liminf(B,) = Z¢, then

|B,|"2(A(B,) — EA(B,)) -2 N(0,0?) (3.2)

and

supl 15, 2P{AB,) = 1) - 16 (33)

=/

—a|Bn|1/2 — 0.

For the size of the largest open cluster we consider a more restricted class of
sequences (B,),>1. Let us say that (B,),>1 is a cube-like sequence of lattice boxes
if each set B,, is of the form H?Zl([—am, bjn] NZ), where a;,, € N and b;,, € N for
all j,n, and moreover

.. inf{al,Tw bl,n7 a2 p,, 62,n7 <y Adn, bd,n}
lim inf
n—00 Sup{al,nv bl,nu a2,n7 b2,n7 ceey ad,rw bd,n}

>0 (3.4)

which says, loosely speaking, that the sets B, are not too far away from all being
cubes.



Given d > 2, and p € (0, 1), let 64(p) denote the percolation probability, that is,
the probability that the graph with vertices consisting of all open sites in Z¢ and
edges between any two open sites that are unit Euclidean distance apart includes
an infinite component containing the origin. Let p.(d) denote the critical value of
p for site percolation in d dimensions, i.e., the infimum of all p € (0,1) such that
0a(p) > 0. It is well known that p.(d) € (0, 1) for all d > 2.

Theorem 3.2. Suppose d > 2 and p € (p.(d),1). Then there exists o > 0 such that
if (Bp)n>1 is any cube-like sequence of lattice bozes Z* with liminf(B,) = Z¢, we
have

|B,|*(L(B,) — E L(B,)) = N(0, 02 (3.5)

and

sup || B2 PL(B,) = j] — o6 ( (3.6)

JEZ

—0’|Bn|1/2 — 0.

Theorems 3.1 and 3.2 are proved in Section 8. Theorem 3.1 is the simplest of
our applications of Theorem 2.1 and we give its proof with some extra detail for
instructional purposes.

4 Random geometric graphs

For our results in this section and the next, on continuum stochastic geometry, let
X1, X,,... be i.i.d. d-dimensional random vectors with common density f. As-
sume throughout that fiax = sup,cpa f(2) < 00, and that f is almost everywhere
continuous. Define the induced binomial point processes

X, = Xo(f) = {X1, ... X}, neN. (4.1)

In the special case where f is the density of the uniform distribution on the unit
[0, 1] cube we write f = fy.

For locally finite X € R% and > 0, let G(X,7) denote the graph with vertex set
X and with edges connecting each pair of vertices =,y in X with |y — x| < r; here
| - | denotes the Euclidean norm though there should not be any difficulty extending
our results to other norms. Sometimes G(X', r) is called a geometric graph or Gilbert
graph.

Let (r,)n>1 be a sequence with r,, — 0 as n — oco. Graphs of the type of G(X,,, )
are the subject of the monograph [18]. Among the quantities of interest associated
with G(AX,,, ) are the number of edges, the number of triangles, and so on; also the



number of isolated points, the number of isolated edges, and so on. CLTs for such
quantities are given in Chapter 3 of [18] (see the notes therein for other references)
for a large class of limiting regimes for r,. Here we give some associated local CLTs.

Let kK € N and let I'" be a fixed connected graph with s vertices. We follow
terminology in [18]. With ~ denoting graph isomorphism, let G,, be the number of
k-subsets ) of &, such that G(Y,r,) ~ I" (i.e., the number of induced subgraphs of
G(X,,r,) that are isomorphic to I'). Let G} (denoted J, in [18]) denote the number
of components of G(X,,,r,) that are isomorphic to I". To avoid certain trivialities,
assume that I' is feasible in the sense of [18], i.e. that G(AX},r) is isomorphic to I'
with strictly positive probability for some » > 0. When considering G,,, we shall
also assume that x > 2. We shall give local CLTs for G,, and G

We assume existence of the limit

p = lim (nr?) < oo, (4.2)
n—oo
so that p could be zero. If p > 0 then we are taking the thermodynamaic limat.
We also assume that
2

T = n(nr

d

n

)l s 00 as n— oo, (4.3)

Then (see Theorems 3.12 and 3.13 of [18]) there exists a constant o = o(f, ', p) > 0,
given explicitly in terms of f,T" and p in [18], such that

lim 7, *Var(G,) = 0% (4.4)

G, —EG,) =5 N(0,02). (4.5)

n

We prove here an associated local central limit theorem for the case f = fy.

Theorem 4.1. Suppose f = fy. Suppose k > 2, and suppose assumptions (4.2)
and (4.3) hold. Then as n — oo,

sup |7, P[G,, = j] — o7 '¢ (&) ‘ — 0. (4.6)

JEZ 0Ty

We prove Theorem 4.1 in Section 9. It should be possible to obtain similar
results for G, but we shall do so only for the thermodynamic limit with p > 0, as
an example in the next section. In the next section we shall see that for the case
with p > 0, it is possible to relax the assumption that f = fy in Theorem 4.1;
when p = 0, a similar extension to non-uniform densities should be possible, but we
content ourselves here with the case f = fi; so as to provide one example where the
simplicity and the appeal of the approach do not get buried.



5 General local CLTs in stochastic geometry

In this section we present some general local central limit theorems in stochastic
geometry. We shall illustrate these by some examples in the next section.

For our general local CLTs in stochastic geometry, we consider marked point sets
in RY. Let M be an arbitrary measurable space (the mark space), and let Py be a
probability distribution on M. Given x = (z,t) € R? x M and given y € R?, set
y+x:= (y+a,t). Given also a € R, set ax = (ax,t). We think of ¢ as a mark
attached to the point z € R? that is unaffected by translation or scalar multiplaction.
Given X* C R x M,y € R and a € (0,00), let y +aX* := {y+ax:x € X*}. Let
0 denote the origin of R%. For z € R? and r > 0, let B(x;7) denote the Euclidean
ball {y € R?: |y — x| <}, and set B*(x;7) := B(x;r) x M. Set B(r) := B(0;7)
and B*(r) := B*(0;7). Given nonempty X* C R? x M and Y* C R? x M, write

DX*, V) :==inf{|lz —y|: (x,t) € X", (y,u) € Y* for some t,u € M}.

Let wq denote the volume of the d-dimensional unit ball B(1).

Suppose H(X*) is a measurable R-valued function defined for all finite X* C
R? x M. Suppose H is translation invariant, i.e. H(y+&*) = H(X*) for all y € R?
and all A™.

Throughout this section we consider the thermodynamic limit; let r,,n > 1 be
a sequence of constants such that (4.2) holds with p > 0. Define

H,(X*):= H(r;'X"). (5.1)

Let the point process &, = {X1,..., X,} in R? be as given in (4.1), with f as in
Section 4 (so fmax < 00 and f is Lebesgue-almost everywhere continuous). Define
the corresponding marked point processs (i.e., point process in R? x M) by

X ={(X1,Th),...,(X,, T},

where (11, T5,Ts, . ..) is a sequence of independent M-valued random variables with
distribution P,,, independent of everything else. We are interested in local CLTs
for H,(X?), for general functions H. We give two distinct types of condition on H,
either of which is sufficient to obtain a local CLT.

We shall say that H has finite range interactions if there exists a constant 7 €
(0, 00) such that

HX*UY")=H(X")+ H(Y*) whenever D(X*, V") > . (5.2)

In many examples it is natural to write H(X*) as a sum. Suppose £(x; X*) is a
measurable R-valued function defined for all pairs (x, X*), where X* C R% x M is
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finite and x is an element of X'*. Suppose ¢ is translation invariant, i.e. {(y+x;y+
X*) = £(x; X) for all y € R and all x, X*. Then ¢ induces a translation-invariant
functional H© defined on finite point sets X* C R? x M by

HOWX) =) £(x;x7). (5.3)

xeX*

Given r € (0,00) we say & has range r if £((x,t); X*) = {((z,1); X* N B (x)) for all
finite X* C R x M and all (z,t) € X*. It is easy to see that if £ has range r for
some (finite) r then H© has finite range interactions, although not all H with finite
range interactions arise in this way.

Let k € N. Given any set X* C R x M with more than x elements, and given
x = (x,t) € X", set R.(x; X*) to be the k-nearest neighbour distance from x to X',
i.e. the smallest r > 0 such that X* N B*(z;r) has at least x elements other than x
itself. If X* has k or fewer elements, set R, (x; X*) := oo.

We say that & depends only on the k nearest neighbours if for all x and X,
writing x = (x,t) we have

E(x; X7) = £(x; X" N B (25 Re(x; X))).

We give local CLT's for H under two alternative sets of conditions: either (i) when H
has finite range interactions, or (ii) when H is induced, according to the definition
(5.3), by a functional £(x; X*) which depends only on the x nearest neighbours, for
some fixed k.

Given K > 0 and n € N, define point processes U, i, and Z, in R¢, and point
processes U, -, and Z} in R? x M, as follows. Let U, x denote the point process
consisting of n independent uniform random points Uy g, . .., U, k in B(K), and let
Z, be the point process consisting of n independent points Z1, ..., Z, in R% each
with a d-dimensional standard normal distribution (any other positive continuous

density on R? would do just as well). The corresponding marked point processs are
defined by

Z,K = {(Ul,KaTl)a ceey (Un,Ka Tn)};
zZr={(Z,T1),...,(Zn, Ty}

Define the limiting span

n—oo

Theorem 5.1. Suppose that either (i) H has finite range interactions and hgz;) <
oo for some n € N, or (ii) for some k € N, H is induced by a functional £(x; X*)
which depends only on the k nearest neighbours, and hyz:) < oo for some n € N
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with n > k. Suppose also that H,(X;) and H (U i) are integrable for alln € N and
K > 0. Finally suppose that

n V2 (Ho (X)) — E Ho (X)) 25 N(0,02)  as n — oo. (5.5)

Then o > 0 and h(H) < oo and for any b € (0,00), with h(H)|b,
sup {
u€R

We prove Theorem 5.1 in Section 10. Analogues to this result and to Theorem
4.1 should also hold if one Poissonizes the number of points in the sample, but we
do not give details.

The corresponding result for unmarked point sets in R? goes as follows; we adapt
our terminology to this case in an obvious manner.

n'?P[H,(X}) € [u,u+b)] — 0 'b (L}W) ‘} —0 asn— oo.

nl/2¢

(5.6)

Corollary 5.1. Suppose H(X) is R-valued and defined for all finite X C RY. Sup-
pose H is translation invariant, and set H,(X) := H(r;'X). Suppose that either (i)
H has finite range interactions and hgz,) < oo for some n € N, or (ii) for some
k € N, H is induced by a functional {(x; X') which depends only on the k nearest
neighbours, and hy(z,) < oo for some n € N with n > k. Suppose also that H, (X))
and H(U, i) are integrable for alln € N and K > 0. Finally suppose

n V2 (Hy(X,) — E Hoy (X)) 25 N(0,02)  as n— oo. (5.7)

Then o > 0 and h(H) < oo and for any b € (0,00), with h(H)|b,
sup {
u€R

Corollary 5.1 is easily obtained from Theorem 5.1 by taking M to have just a
single element, denoted t, say, and identifying each element (x,ty) € R x M with
the corresponding element z of R

To apply Theorem 5.1 in examples, we need to check condition (5.5). For some
examples this is best done directly. However, if we strengthen the other hypotheses
of Theorem 5.1, we can obtain (5.5) from known results and so do not need to
include it as an extra hypothesis. The next three theorems illustrate this. As well
(5.5), these results give us the associated variance convergence result

n*?P[H,(X,) € [u,u + b)] — o~ 'bo (LH”(X”)) ‘} —0 asn— oo,

nl/2¢

(5.8)

lim n~'Var[H,(X))] = o2 (5.9)

n—oo
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In the next three theorems, we impose some extra assumptions besides those of
Theorem 5.1. Writing supp(f) for the support of f, we shall assume that supp(f)
is compact, and that also 7, satisfy

~d_n| =0(n'?), (5.10)

s

which implies (4.2) with p = 1. We also assume certain polynomial growth bounds;
see (5.11), (5.13) and (5.14) below.

First consider the case where H = H® is induced by a functional &(x; X*) with
finite range r > 0. For any set A, let card(A) denotes the number of elements of A.

Theorem 5.2. Suppose H = H'®) is induced by a translation invariant functional
E(x; X*) having finite range r and and satisfying for some v > 0 the polynomial
growth bound

1E((,1); X)| < y(card(X* N B*(a;7)))?  V finite X* C R x M, V (x,t) € X*.
(5.11)

Suppose hpzxy < oo for some n € N, and suppose supp(f) is compact. Finally,
suppose that (5.10) holds. Then there exists o € (0,00) such that (5.5) and (5.9)
hold, and h(H) < oo and (5.6) holds for all b with h(H)|b.

Now we turn to the general case of Condition (i) in Theorem 5.1, where H has
finite range interactions but is not induced by a finite range £. For this case we
shall borrow some concepts from continuum percolation. For A > 0, let H, denote a
homogeneous Poisson point process in R? with intensity A. Let H} denote the same
Poisson point process with each point given an independent M-valued mark with
the distribution P .

Let A, be the critical value for percolation in d dimensions, that is, the supremum
of the set of all A > 0 such that the component of the geometric (Gilbert) graph
G(H, U {0},1) containing the origin is almost surely finite. It is known (see e.g.
[18]) that 0 < A\, < oo when d > 2 and A, = oo when d = 1.

For nonempty X C RY, write diam(X) for sup{|z — y| : z,y € X}. For X* C
RY x M, write diam(X*) for diam(m(X*)), where m denotes the canonical projection
from R? x M onto R?.

Theorem 5.3. Suppose H(X*) is a measurable R-valued function defined for all
finite X* C RY x M, and is translation invariant. Suppose supp(f) is compact.
Suppose for some T > 0 that the finite range interaction condition (5.2) holds, and
suppose f and T satisfy the subcriticality condition

T frmax < Acy (5.12)
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Assume (rn)n>1 satisfies (5.10), and suppose also that hyzsy < oo for some n € N,
and that there exists a constant v > 0 such that for all finite non-empty X* C R?
we have

H(X™) < ~(diam(X™) + card(X™))7. (5.13)

Then there exists o € (0,00) such that (5.5) and (5.9) hold, and h(H) < oo and if
b € (0,00) with h(H)|b, then (5.6) holds.

Now we turn to condition (ii) in Theorem 5.1. Following [24], we say that a
closed region A C R? is a d-dimensional C* submanifold-with-boundary of R? if it
has a differentiable boundary in the following sense: for every z in the boundary 0A
of A, there is an open U C R?, and a continuously differentiable injection g from U
to R?, such that 0 € U and ¢(0) =z and g(U N ([0, 00) x R¥1)) = g(U) N A.

Theorem 5.4. Let k € N. Suppose H = H® is induced by a & which depends
only on the k nearest neighbours, and for some v € (0,00) suppose we have for all
(x, X*) that

€06 A7) < A(1+ Re(x, X)), (5.14)

Suppose also that supp(f) is either a compact convex region in RY or a compact d-
dimensional submanifold-with-boundary of R%, and suppose f is bounded away from
zero on supp(f). Finally suppose that the sequence (ry,)n,>1 satisfies (5.10), and that
hu(zzy < oo for somen € N with n > k. Then there exists o € (0,00) such that
(5.5) and (5.9) hold, and h(H) < oo and if b € (0,00) with h(H)|b then (5.6) also
holds.

We prove Theorems 5.2, 5.3 and 5.4 in Section 11. In proving each of these
results, we apply Theorem 5.1, and check the CLT condition (5.5) using a general
CLT from [20], stated below as Theorem 11.1.

The conclusion that ¢ > 0 in Theorems 5.1-5.4 and Corollary 5.1 is noteworthy
because the result from [20] on its own does not guarantee this. Our approach to
showing o > 0 here is related to that given in [1] (and elsewhere) but is more generic.
A different approach to providing generic variance lower bounds was used in [21]
and [3] but is less well suited to the present setting.

6 Applications

This section contains discussion of some examples of concrete models in stochastic
geometry, to which the general local central limit theorems presented in Section 5
are applicable. Further examples where the conditions for these general theorems
can be verified are discussed in [20, 21, 22, 23].
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6.1 Further quantities associated with random geometric
graphs

Suppose the graph G(X,,7,) is as in Section 4. We assume here that (4.2) holds
with p > 0. Theorem 5.1 enables us to extend the case p > 0 of Theorem 4.1 to
non-uniform f. It also yields local CLTs for some graph quantities not covered by
Theorem 4.1; we now give some examples.

Number of components for G(X,,r,). This quantity can be written in the form
H,(X,), where H(X') is the number of components of the geometric graph G(X', 1)
(which clearly has finite range interactions). In the the thermodynamic limit, this
quantity satisfies the CLT (5.7) (see Theorem 13.26 of [18]). Therefore, Corollary
5.1 is applicable here and shows that it satisfies the local CLT (5.8).

Number of components for G(X,,,r,) isomorphic to a given feasible graph I'. This
quantity, denoted G}, in Section 4, can be written in the form H, (&), with H(X)
the number of components of G(&X', 1) isomorphic to I. Clearly, this H has finite
range interactions since (5.2) holds for 7 = 2. Also, it satisfies (5.7) by Theorem
3.14 of [18]. Therefore we can apply Corollary 5.1 to deduce (5.8) in this case.

Independence number. The independence number of a finite graph is the maximal
number k such that there exists a set of k vertices in the graph such that none of
them are adjacent Clearly this quantity is the sum of the independence numbers
of the graph’s components, and therefore if for X C R? we set H(X) to be the
independence number of G(X, 7) (also known as the off-line packing number since
it is the maximum number of balls of radius 7/2 that can be packed centred at
points of X') then H satisfies the finite range interactions condition (5.2) with r = 2.
Therefore we can apply Theorem 5.3 to derive a local CLT for the independence
number of G(&X,,,r,), as follows.

Theorem 6.1. . Let T > 0 and suppose (5.12) holds. Suppose r,, is satisfies (5.10).
Then if for X C R® we set H(X) to be the independence number of G(X,T), then
there exists o € (0,00) such that (5.7) holds, and if b € N then (5.8) holds.

6.2 Germ-grain models

Consider a coverage process in which each point X; has an associated mark T;, the
T; (defined for i > 1) being i.i.d. nonnegative random variables with a distribution
having bounded support (i.e., with P[T; < K] = 1 for some finite K). Define the
random coverage process

En = UL B X Ty). (6.1)
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For U a finite union of convex sets in R%, let |U| denote the volume of U (i.e. its
Lebesgue measure) and let |OU| denote the surface area of U (i.e. the (d — 1)-
dimensional Hausdorff measure of its boundary).

Theorem 6.2. Under the above assumptions, if (5.10) holds then there exists o > 0
and & > 0 such that n=Y2(|=,|-E |Z,|) = N(0,02) and n=2(|0=,|—E |0Z,|) =
N(0,6%), and moreover for any b € (0, 00),

-E|=,
sup{ n'2P[|Z,| € [u,u +b)] — o~ 'bp <UT2||) ‘} —0 asn— oo.
ueR n-’'<o
(6.2)
and
—E|0=,
sup{ n*2P[|0Z,| € [u,u+ b)] — 6 'bop <uﬁl~|) '} —0 asn— oc.
u€R n- <o
(6.3)

Proof. The volume |Z,,| can be viewed as a functional H, (X)), where H(X) =
H®(x*) with £((z,t); X*) given by the volume of that part of the ball centred at
x with radius given by the associated mark ¢, which is not covered by any corre-
sponding ball for some other point 2’ € X’ with 2’ preceding x in the lexicographic
ordering. Since we assume the support of the distribution of the T} is bounded, this
¢ has finite range r = 2K. Moreover, it satisfies the polynomial growth bound (5.11)
so by Theorem 5.2 we get the CLT (5.5) and local CLT (5.6) for any b > 0 (in this
example A(H) = 0). Thus we have (6.2).

Turning to the surface area |0=,], this can also be viewed as a functional H,, (X,,)
for a different H = H(®) | this time taking £(x; &) to be the uncovered surface area of
the ball at x, which again has range r = 2K and satisfies (5.11). Hence by Theorem
5.2. we get the CLT (5.5) and local CLT (5.6) for any b > 0 for this choice of H (in
this example, again A(H) = 0). Thus we have (6.3). |

Remark. The preceding argument still works if the independent balls of random
radius in the preceding discussion are replaced by independent copies of a random
compact shape that is almost surely contained in the ball B(K') for some K (cf.
Section 6.1 of [20]).

Other functionals for the germ-grain model. When f = fy, the scaled point
~1/d . . . . X . —1/d

process 1, "X, can be viewed as a uniform point process in a window of side r,
CLTs for a large class of other functionals on germ-grain models in such a window
are considered in [13], for the Poissonised point process with a Poisson distributed
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number of points. Since the Poissonised version of Theorems 5.1 and 5.2 should also
hold, it should be possible to derive local CLTs for many of the quantities considered
in [13], at least in the case where the grains (i.e., the balls or other shapes attached
to the random points) are of uniformly bounded diameter.

6.3 Random sequential adsorption (RSA).

RSA (on-line packing) is a model of irreversible deposition of particles onto an
initially empty d-dimensional surface where particles of fixed finite size arrive se-
quentially at random locations in an initially empty region A of a d-dimensional
space (typically d = 1 or d = 2), and each successive particle is accepted if it does
not overlap any previously accepted particle. The region A is taken to be compact
and convex. The locations of successive particles are independent and governed by
some density f on A. In the present setting, we take the mark space M to be
[0,1] with Pp¢ the uniform distribution. Each point x = (z,t) of X'* represents
an incoming particle with arrival time . The marks determine the order in which
particles arrive, and two particles at x = (z,t) and y = (y, u) are said to overlap if
|z —y| < 1. Let H(X™*) denote the number of accepted particles. This choice of H
clearly has finite range interactions ((5.2) holds for 7 = 2).

Then H,(X}) represents the number of accepted particles for the re-scaled marked
point process 7, ! X*; note that the density f and hence the region A on which the
particles are deposited, does not vary with n. At least for r, = n~¢, the central
limit theorem for H,(X,) is known to hold; see [22] for the case when A = [0, 1]¢
and f = fy and [3] for the extension to the non-uniform case on arbitrary com-
pact convex A (note that these results do not require the sub-criticality condition
(5.12) to be satisfied). Thus, the H under consideration here satisfies the condition
(5.5). Therefore we can apply Theorem 5.1 to obtain a local CLT for the number of
accepted particles in this model.

Theorem 6.3. Suppose f has compact convex support and is bounded away from
zero and infinity on its support. Suppose r, = n~Ye and suppose Z, = H,(X*) is
the number of accepted particles in the rescaled RSA model described above. In other
words, suppose Z, be the number of accepted particles when RSA is performed on
X, with distance parameter r, = n~Y%. Then there is a constant o € (0,00) such
that (2.1) holds and for b= 1 and ¢ = n'/?, (2.2) holds.

1/d can be relaxed

It is likely that in the preceding result the condition r,, = n~
to (4.2) holding with p > 0. We have not checked the details.

In the infinite input version of RSA with range of interaction r, particles continue
to arrive until the region A is saturated, and the total number of accepted particles

is a random variable with its distribution determined by r. A central limit theorem
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for the (random) total number of accepted particles (in the limit » — 0) is known to
hold, at least for f = fy; see [25]. It would be interesting to know if a corresponding
local central limit theorem holds here as well.

6.4 Nearest neighbour functionals

Many functionals have arisen in the applied literature which can be expressed as
sums of functionals of k-nearest neighbours, for such problems as multidimensional
goodness-of-fit tests [5, 2], multidimensional two-sample tests [14], entropy estima-
tion of probability distributions [17], dimension estimation [16], and nonparametric
regression [10]. Functionals considered include: sums of power-weighted nearest
neighbour distances, sums of logarithmic functions of the nearest-neighbour dis-
tances, number of nearest-neighbours from the same sample in a two-sample prob-
lem, and others. Central limit theorems have been obtained explicitly for some of
these examples [5, 14, 2] and in other cases they can often be derived from more
general results [1, 20, 21, 7]. Thus, for many of these examples it should be possible
to check the conditions of Theorem 5.1 (case (ii)).

We consider just one simple example where Theorem 5.4 is applicable. Suppose
for some fixed @ > 0 that H(X) is the sum of the a-power-weighted nearest neigh-
bour distances in X' (for &« = 1 this is known as the total length of the directed
nearest neighbour graph on X). That is, suppose H(X) = HE(X) with &(z; X)
given by min{ly — z|* : y € X \ {z}}. Then H,(X) = r *H(X), and £ clearly
satisfies (5.14) for some =, so provided f is supported by a compact convex region in
R? or by a compact d-dimensional submanifold-with-boundary of R¢, and provided
f is bounded away from zero on its support, Theorem 5.4 is applicable with x = 1.
Hence in this case there exists o € (0, 00) such that (5.5) and (for any b € (0,00))
(5.6) are valid.

7 Proof of Theorem 2.1

Let V, Vi, V5, V3, ... be independent identically distributed random variables. Define
oy = y/Var(V) € [0,00]. In the case oy = 0, Theorem 2.1 is trivial, so from now
on in this section, we assume oy > 0. Let b, ¢y, ¢, c3, ... be positive constants with
hy|b and ¢, ~ n'/? as n — co.

We prove Theorem 2.1 first in the special case where Z,, = S,,, then in the case
where Z,, = Y, + S, and then in full generality. Before starting we recall a fact
about characteristic functions.
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Lemma 7.1. If oy = oo then for allt € R, as n — oo

exp (z’tn_l/2 Z(V} —-E [V]))

J=1

E — 0.

Proof. See for example Section 3, and in particular the final display, of [26]. O

Lemma 7.2. Suppose S, 2 > -1 Vj and oy < oo. Then asn — oo,

sup {
u€R

Proof. First consider the special case with ¢, = n'/2. In this case, (7.1) holds by
the classical local central limit theorem for sums of i.i.d. non-lattice variables with
finite second moment in the case where hy = 0 (see page 232 of [6], or Theorem
2.5.4 of [9]), and by the local central limit theorem for sums of i.i.d. lattice variables
in the case where hy > 0 and b/hy € Z (see Theorem XV.5.3 of [11], or Theorem
2.5.2 of [9]).

To extend this to the general case with ¢, ~ n'/2, observe first that by the special
case considered above, n'/2P[S, € [u,u + b)] remains bounded uniformly in u and
n, and hence

%Pﬁﬁﬂwu+w—04w<ll@i>u—ﬂ) (7.1)

Choy

sup[(7 ) PIS, € [+ )]} = sup {21 -

m&emw+m}

ueR u€R nt/?
— 0. (7.2)
Also, for any K > 1,
x x x x
S R Bl < (27e)~Y/? (_> N s
K2 {‘¢ (n1/2> ¢ (Cn) ‘} < (2me) |m|SS;I:Ll/2{ n'/? Cn
Knl/2 nl/2
-2 2 _
< (2me) ( 7 ) 1 - — 0. (7.3)

Also, for large enough n,

X X
(o) 0 (555) ) < ot -1

and since K is arbitrarily large, combined with (7.3), this shows that

e Gr) = ()]} =0

Combined with (7.2), this shows that we can deduce (7.1) for general ¢, satisfying
¢, ~ n'/? from the special case with ¢, = n'/? which was established earlier. 0
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Lemma 7.3. Theorem 2.1 holds in the special case where Z, =Y, +.S,.

Proof. Assume, along with the hypotheses of Theorem 2.1, that Z, =Y, + 5,,.
Considering characteristic functions, by (2.1) we have for t € R that

E [exp (itn "/*(Y,, — EY,))] E [exp (itn "/*(S, —ES,))]
1
— exp(—§t02). (7.4)
If oy = oo then by Lemma 7.1, the second factor in the left hand side of (7.4) tends

to zero, giving a contradiction. Hence we may assume oy < oo from now on.
By the Central Limit Theorem,

n %S, —ES,) = N(0,02). (7.5)

By (7.4) and (7.5), 02 < 02 and setting 07 := 0% — 02 > 0, we have that n~/2(Y,, —
EY,) is asymptotically N(0, 0% ). Hence,
(Y, —EY,) = N(0,02). (7.6)

That is, (2.3) holds.
Let © € R and set

t:=t(u,n) :=c, (u—EZ,). (7.7)
Assume that 7, =Y, + 5,. By independence of Y,, and S,,,

P[Z, € [u,u+b)] = Plc; (Z, —E[Z,]) € ;' fu —EZ,,u+b—EZ,)]
:/ P {w ed:c] P {w EC—l[u—EZn,qub—EZn)—x]

Cp, Cn "

— 00

so that

o Y,—LEY,
cnP[Z, € [u,u+0)] :/ P [u € d:c]

—o0 Cn

X (c,P[Sy,—ES,€u—EZ, —xc,,u—EZ, —xc, +b)])
o Y,—EY,
= / P {7 € dzz] (cnP[Sy, —ES, €[(t—2)cp, (t —x)c, +D)]).

o CTL

By Lemma 7.2,

b
P [Sp —E S, € [yen, yen, + )] = ;¢ (%) + gn(y)
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where

sup |g.(y)] = 0 as n — oo. (7.8)
yeR

Hence,

enP|Z, € [u,u+b)] = E [i¢ (t — (Y, ~EY,)
ov

) + g (t— ¢, (Yo — EYH))} ,

oy
so by (7.8), to prove (2.2), it suffices to prove

sy {s s (AL o522

u€R ov Cp0

(7.9)
Suppose this fails. Then there is a strictly increasing sequence of natural numbers
(n(m),m > 1) and a sequence of real numbers (u,,, m > 1) such that with ¢,, :=
t(tpm, n(m)), we have

tm_cglm Ynm _EYnm m_Ean
E U;l(ﬁ( ( )( (m) ( )))] —U_l(ﬁ(u)

> 0.

lim inf
m—00 oy Cn(m)0

(7.10)

By taking a subsequence if necessary, we may assume without loss of generality,
either that ¢,, — t for some ¢t € R, or that or that |¢,,| = co as m — oco. Consider
first the latter case. If |t,,| — 0o as m — oo, then by (7.6),

Pt — oty Vatm) = E V)| < [l /2] < Pllesdy Vagmy = E Yagm)| > |tm]/2
— 0,

and hence

E

t— (Yoo —E Y0
0_‘71¢< nim) J(V> ( )>>] Lo

Since c;(lm)(um —E Z,m)) is equal to t,,, by (7.7), we also have under this assumption

that o~ '¢ <M) tends to zero, and thus we obtain a contradiction of (7.10).

Cn(m)0

In the case where ¢, — t for some finite ¢, we have by (7.6) that t,, —c;(lm) (Yogm)—

EY,(m)) converges in distribution to t — Wi, where Wi ~ N(0,0%). Hence as
m — 00,

E

~1
1t = gy (Yagm) — E Yogm))
oy o p

)] — U;IE o((t —Wh)/ovy)
= E fw,(t — W),
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where Wy ~ N(0,0%), with probability density function fu,(z) := oy ¢(z/oy). If
we assume Wi, Wy are independent, then E fy, (t — W) is the convolution formula
for the probability density function of W; + Ws, which is A(0, 02), so that

E fw,(t = W) = furwy(t) = 07 6(t/0).
On the other hand, since ¢ \(un, — E Z,(n)) is equal (by (7.7)) to t,, which we

(m)
assume converges to t, we also have that

m_Ean _ t
U_1¢<u ())_)O_lgb(_)’
Cn(m)O' o

and therefore we obtain a contradiction of (7.10) in this case too.
Thus (7.10) fails, and therefore (7.9) holds. Hence, (2.2) holds in the case with
Zp =Y, + Sy O

Proof of Theorem 2.1. Set Z! =Y, + S,. By the integrability assumptions, Z/
is integrable. By (2.1) and the assumption that n='/2E[|Z, — Z/|] — 0 as n — oo,

n 2z —EZ') 25 N(0,0%) as n — oo. (7.11)
Let b > 0 with hy|b. By Lemma 7.3, 02 > VarV and (2.3) holds and

—EZ
sup{ cnP[Z), € [u,u+b)] — o be (b) } — 0 as n — oo.

ueR CnO

Hence, by the assumption n'/2P[Z, # Z'] — 0,

—EZ
sup{ cnP|Z, € [u,u+b)] — o 'be (u) } — 0 as n — oo,

ueR CnhO

and since the assumption n=Y/2E[|Z,,—Z"|] — 0 implies that ¢, (E [Z,]-E[Z']) — 0
as n — 00, and ¢ is uniformly continuous on R, we can then deduce (2.2). O

8 Proof of theorems for percolation

We shall repeatedly use the following Chernoff-type tail bounds for the binomial
and Poisson distributions For a > 0 set p(a) := 1 — a + aloga. Then ¢(1) =0 and
w(a) >0 for a € (0,00) \ {1}.

Lemma 8.1. If X is a binomial or Poisson distributed random variable with E [X] =
w > 0. Then we have for all x > 0 that

PX > z] <exp(—pp(z/p), =2 p; (8.1)
PIX <z <exp(—pp(z/p), =z <p
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Proof. See e.g. Lemmas 1.1 and 1.2 of [18]. O

Proof of Theorem 3.1. Let (B,,),>1 be a sequence of nonempty finite subsets in Z4
with vanishing relative boundary. The first conclusion (3.2) follows from Theorem
3.1 of [19], so it remains to prove (3.3).

For x € Z let ||x||o denote the £ -norm of z, i.e., the maximum absolute value
of its coordinates. Let B° be the set of points z in B,, such that all y € Z? with ||y —
z||oo < 1 are also in B,,. Since |B,, \ B2|/|0B,| is bounded by a constant depending
only on d, the vanishing relative boundary condition (3.1) implies |B2|/|B,| — 1 as
n — 0o.

Hence, by the pigeonhole principle, for all large enough n we can choose a set
of points 1, Tn2, ..., Ty 5-dB,|/2) I By such that ||z, ; — znillc > 3 for each
distinct 7,k in {1,2,...,[57%B,|/2]} (let these points be chosen by some arbitrary
deterministic rule).

For 1 < j < [57%B,|/2], let I, ; be the indicator of the event that each vertex
y € Z% with ||y — 2, |lc = 1 is closed, and list the j for which I,, ; = 1, in increasing

order, as J(n,1)...,J(n, N,), where N, ZL5 “IBal/2) I, j. Let I, ; be the indicator
of the event that the vertex z, ; is itself open. Then N is binomially distributed

with parameter (1 — p)*'~1, so by Lemma 8.1,
limsup | B,| ' log P[N, < 5~%(1 — p)*~!|B,|/4] < 0. (8.3)
n—oo

Set b, = |5741 — p)* "1 B,|/4]. Let Vi,Vs,... be a sequence of independent
Bernoulli variables with parameter p, independent of everything else. Recalling
that A(B) denotes the number of open clusters in B, set

min(bn,Np)
S S H Tam MBS,

Jj=1

and

_S/ Z Vi,

where x1 := max(x,0) as usual, and the sum Z?:l is taken to be zero.

In this case, the ‘good boxes’ discussed in Section 1 are the unit /.,-neighbourhoods
of the sites Xy jn,1): Tn,J(n,2)s - - - Tn,J(nmin(bn,Nn))- 1 Tn; is at the centre of a good
box, it is (if open) isolated from other open sites, so that Y,, is simply the number
of open clusters in B, if one ignores all sites x,, jnj) (1 < j < min(by,, N,)). Hence
Y,, does not affect the open/closed status of these sites.
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Thus S,, has the Bin(b,, p) distribution and its distribution, given Y,,, is unaf-
fected by the value of Y,, so S, is independent of Y,,. Also,

(bn—

A(B,) — (Y, +8,) = Z v

so that by (8.3), both | B, |Y2P[A(B,) # Y, +5,] and | B,|"Y2E [|A(B,) — (Y, +S,)]]
tend to zero as n — co. Combined with (3.2) this shows that Theorem 2.1 is appli-
cable, with hy = 1, and that result shows that (3.3) holds. 0

In the proof of Theorem 3.2, and again later on, we shall use the following.

Lemma 8.2. Suppose &1, ...,&, are independent identically distributed random el-
ements of some measurable space (E,E). Suppose m € N and ¢ : E™ — R is
measurable and suppose for some finite K that for j =1,...,m,

K > sup L N N 0 Ik 2 €2 PR S |

SetY = (&, ..., &n). Then for anyt > 0,
P[lY —EY| > t] < 2exp(—t*/(2mK?)).

Proof. The argument is similar to e.g. the proof of Theorem 3.15 of [18]; we
include it for completeness. For 1 < ¢ < m let F; be the o-algebra generated
by &1, ..., &, and let Fy be the trivial o-algebra. Then Y — E[Y] = > D; with
D; :=E[Y|F]—-E[Y|Fi;-1], the ith martingale difference. Then with &/ independent
of &, ..., &, with the same distribution as them, we have

=E[(&,. &, &m) —E(&, . &, &) F]

so that |D;| < K almost surely and hence by Azuma’s inequality (see e.g. [18]) we
have the result.

Proof of Theorem 3.2. Assume d > 2 and p > p.(d). Let (B,),>1 be a cube-like
sequence of lattice boxes in Z?. For finite nonempty A C Z? we define the diameter
of A, written diam(A), to be max{||x — y|| : * € A,y € A}.

Set 7, := [diam(B,)"“)]. Let Bi® be the set of points x in B, such that all
y € 2% with ||y — 2||ec < 7 are also in B,. Then we claim that |B|/|B,| — 1 as
n — oo. Indeed, writing B,, = H;'l:1([_aj,m bjn] NZ), from the cube-like condition
(3.4) we have for 1 < j <d that v, = o(a;, + b;,) as n — oo, and therefore

d d
1B =T (bjn + @0 = 270) = (1 + 0(1) [ [ (@) + bjn),
7j=1

i=1
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justifying the claim.

By the preceding claim, and the pigeonhole principle, for all large enough n
there is a deterministic set of points T, 1,Zn2, ..., Ty 5-4/B,|/2) N B™ such that
|Znj — Tnilleo = 3 for each distinct j,k in {1,2,..., 579 B,|/2]}.

For 1 < j < [57%B,|/2], let I, ; be the indicator of the event that (i) each vertex
y € Z¢ with ||y — . j|loo = 1 is open, and (ii) the open cluster in B, containing all
y € Z% with ||y — 2 |l = 1 has diameter at least 7.

Set m(n) := |57 %% ~104(p)| Ba|/8], with 64(p) denoting the percolation probabil-
ity. List the j for which I,; = Las J(n,1), ..., J(n, N,)), with N,, := 3212 B2l
Then we have for n large that

E[N,] > |57 B, /2]p* " 0a(p) > 2m(n).

Changing the open/closed status of a single site z in B,, can change the value of I, ;
only for those j for which ||z, ; — 2|/« < Vn, and the number of such j is at most
(27, + 1)% Moreover, for n large

(27, + 1)? < (2(diamB,)Y D) + 3)¢ < 3¢(diamB,,)"/* < 3¢|B,|'/4

so that the total change in N,, due to changing the status of a single site z is at
most 3¢ B,|"/*. So by Lemma 8.2,

m(n)
and hence
lim sup | B,,| /% log P[N,, < m(n)] < 0. (8.4)
n—o0
Let Vi, V5, ... be a sequence of independent Bernoulli variables with parameter p,

independent of everything else. For 1 < j < [57%B,|/2], let I, ; be the indicator of
the event that the vertex z, ; is open. Set

min(m(n),Nn) (m(n)—=Nyp)*
j=1 J=1

Let Y,, be the size of the largest open cluster in B, if the status of z;, is set to
‘closed’ for the first min(m(n), N,) values of j for which [, ; = 1.

Then S, has the Bin(m(n),p) distribution and we assert that its distribution,
given Y,,, is unaffected by the value of Y,, so S, is independent of Y,,. Indeed, Y,
is obtained without sampling the status of the sites z,, ; for the first min(m(n), N,)
values of j for which I, ; = 1.
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To explain this further, consider algorithmically sampling the open/closed status
of sites in B,, as follows. First sample the status of sites outside U;{z, ;}. Then
sample the status of those z,, ; for which the ¢, -neighbouring sites are not all open
(for these sites, I, ; must be zero). At this stage, it remains to sample the status of
sites x,, ; for which the {,-neighbouring sites are all open, and for these sites one can
tell, without revealing the value of z,, j, whether or not I, ; = 1 (and in particular
one can determine the value of V,,). At the next step sample the status of all z,,;
except for the first min(N,, m(n)) values of ¢ which have I, ; = 1. At this point,
the value of Y, is determined. However, the value of .S,, is determined by the status
of the remaining unsampled sites together with some extra Bernoulli variables in
the case where NN,, < m(n), so its distribution is independent of the value of Y, as
asserted.

Next, we establish that L(B,) = Y, + S, with high probability. One way in
which this could fail would be if N,, < m(n), but we know from (8.4) that this
has small probability. Also, we claim that with high probability, all sites x,, ; for
which I, ; = 1 have all their neighbouring sites as part of the largest open cluster,
regardless of the status of z,;. To see this, let A,, be the event that (i) there is a
unique open cluster for B, that crosses B, in all directions (in the sense of [19]) and
(ii) all other clusters in B,, have diameter less than ,. Then we claim that P[A¢]
decays exponentially in 7, in the sense that

lim sup(diamB,,) "9 log P[A¢] < 0. (8.5)

n—o0

The proof of (8.5) proceeds as in proof of Lemma 3.4 of [19]; we include a sketch of
this argument here for completeness.

First suppose d = 2. For a given rectangle of dimensions (7,/3) X 7,, the
probability that it fails to have an open crossing the long way decays exponentially
in 7, (see Lemma 3.1 of [19]). Consider the family of all rectangles of dimensions
(Yn/3) X 7, or of dimensions 7, X (7,/3), with all corners in (v, /3)Z?, having non-
empty intersection with B,. The number of such rectangles is O(diam(B,)*"'/?).
By the preceding probability estimate, all rectangles in this family have an open
crossing the long way, except on an event of probablity decaying exponentially in
. However, if all these rectangles have an open crossing the long way, then event
A,, occurs and we have justified (8.5) for d = 2.

For d > 3, by the well known result of Grimmett and Marstrand [12], there exists
a finite K such that there is an infinite open cluster in the slab [0, K] x R4 with
strictly positive probability. By dividing B, into slabs of thickness K we see for
1 <4 < d that the probabilty that there is no open crossing of B,, in the i-direction
decays exponentially in diam(B, ). Moreover, for i # j, by a similar slab argument
(consider successive slabs of thickness K in the i direction), the probability that
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there is an open cluster in B, that crosses B, in the ¢ direction but not the j
direction decays exponentially in diam(B,). Similarly the probability that there
are two or more disjoint open clusters in B,, which cross in the ¢ direction decays
exponentially in n. Finally by a further slab argument, the probability that there is
an open cluster which has diameter at least 7, /d in the 7 direction but fails to cross
the whole of B,, in the j direction, decreases exponentially in ~,. This justifies (8.5)
for d > 3.

Note that the occurrence or otherwise of A, is unaffected by the open/closed
status of those z,; for which I,,;, = 1. Also, for large enough n, on event A,,
whatever status we give to these z, ;, the unique crossing cluster is the largest one
because it has at least diam(B,,) elements while all other clusters have at most
O(diam(B,,)/*) elements.

If N, > m(n) and event A, occurs, then for each j < m(n), the site x, ;0 ;) is
in the largest open cluster if and only if it is open, since if it is open then it is in an
open cluster of diameter at least 7,,. This shows that if IV, > m(n) and event A,
occurs, we do indeed have L(B,) =Y, +S,. Together with the previous probability
estimates (8.4) and (8.5), this shows that | B, |2 P[L(B,) # Y,+S,] — 0 asn — oo.
Moreover, by the Cauchy-Schwarz inequality,

E[[L(Bn) — (Yo + Su)ll = E[|L(Bn) — (Yo + S0) 1N, <m(n)juas]
< (P[N, < m(n)] + P[AS])*(E[(L(By) — (Yo + Sn))*)"?
< (P[N, < m(n)] + P[A)Y2(|B,| + m(n)) — 0.

By Theorem 3.2 of [19], the first conclusion (3.5) holds, and by the preceding discus-
sion, we can then apply Theorem 2.1 with hy = 1, to derive the second conclusion
(3.6). |

9 Proof of Theorem 4.1

We are now in the setting of Section 4. Assume f = fy, and fix a feasible connected
graph I' with x vertices (2 < k < 00). Assume also that the sequence (r,),>1 is
given and satisifies (4.2) and (4.3). Then P[G(X,,1/(k +3)) ~ '] € (0,1). Let
Qn1sQn2s - - -y Qnmm) be disjoint cubes of side (k+5)ry, contained in the unit cube,
with m(n) ~ ((k + 5)r,) "% as n — oo. For 1 < j < m(n), let I, ; be the indicator
of the event that X, N, ; consists of exactly x points, all of them at a Euclidean
distance greater than r,, from the boundary of @, ;. List the indices j < m(n) such

that I, ; = 1, in increasing order, as J, 1, ..., Jy n,, With N,, := Z;n:(’f) I, ;. Then

E[N,] = m(n)((x + 3)/(k + 5))*P[Bin(n, ((k + 5)r)?) = &, (9.1)
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and hence as n — oo, since nr? is bounded by our assumption (4.2),

E[N,] ~ &7 (k4 3)% (k + 5) "0 rd= =Y exp(—n(k + 5)%rd). (9.2)
Recalling from (4.3) that 7, := /n(nrd)"=1, we can rewrite (9.2) as
E[N,] ~ &7 (k5 + 3)%(k + 5) %72 exp(—n(k + 5)%r?) (9.3)

as n — 0o. Moreover, for the Poissonised version of this model where the number
of points is Poisson distributed with mean n, we have the same asymptotics for the
quantity corresponding to N, (the binomial probability in (9.1) is asymptotic to the
corresponding Poisson probability). Set a to be one-quarter of the coefficient of 72
n (9.3), if the exponential factor is replaced by its smallest value in the sequence,
i.e. set

= (46)) 7Yk + 3)" (K + 5)7¢ i:%f exp(—n(k + 5)%rd). (9.4)

Then a > 0 by our assumption (4.2) on ry,.

Lemma 9.1. It is the case that

limsup 7, 2 log P [Nn < on’,ﬂ < 0.
n—oo
Proof. Let § > 0 (to be chosen later). Let M, be Poisson distributed with
parameter (1 — d)n, independent of the sequence of random d-vectors X, Xo, .. ..
Define the Poisson point process

Pn(l—é) = {Xl, e 7XMn}

Let IV, be defined in the same manner as N, but in terms of P,_s) rather than
X,,. That is, set

m(n)

=2t

with I} ; denoting the indicator of the event that P, _5 N Qy,; consists of exactly
x points, all at distance greater than r, from the boundary of @), ;. List the indices
J < M, such that I, ; =1as J,,,....J; nr.

Since (9.3) holds i 1n the Poisson setting too, using the definition of 7,, we have as
n — oo that

E[N'] ~ &7 (k4 3)% (5 + 5) 741 — §)*72 exp(—n(1 — §)(k + 5)%rd). (9.5)
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By (9.3) and (9.5), we can and do choose 6 > 0 to be small enough so that E N], >
(3/4)E N,, for large n.

By (9.3) and (9.4) we have for large n that 2a7? < (5/8)EN,,. Also, N’ is bi-
nomially distributed, and hence by Lemma 8.1, P[N/, < 2a7?] decays exponentially
in 72.

By Lemma 8.1, except on an event of probability decaying exponentially in n,
the value of M, lies between n(1 — 26) and n. If this happens, the discrepancy
between IV, and N}, is due to the addition of at most an extra 20n points to Pp—s).
If also N/ > 2a7? then to have N, < at?, at least ar? of the added points must

land in the union of the first [2a72] cubes contributing to N!.

To spell out the preceding argument in more detail, let 1 < j < m(n). If
M, < n and ];L,j =1 and X ¢ Q,; for M,, < k < n, then I, ; = 1, since in this
case X, N Qnj = Pn(i—s) N Qn ;. Therefore if M,, < n and N}, > 2a7? and

n

Z 1{Xk€u2aT]QnJ’ }<oz7'

k=Mp+1

then X, N Q,, vy - # Prii—s) N Qn, ) ~for at most |aT,]| values of j € [1,2a7?], and

hence
[2047'”]

N, > Z Ly > [2a72] — a7 > a1’

Hence, if n(1—26) < M, < nand N, > 2a72 and S0t %ﬁﬂ 1{X; € U 20‘7 Q.. .} <
at,, then N, > at2. Hence

P[N, < at?|N/ > 2a1?,n —26n < M, < n]
< P[Bin([26n], [2a721((k + 5)rn)?) > a72].

Since nrd is assumed bounded, we can choose § small enough so that the expecta-
tion of the binomial variable in the last line is less than («/2)72, and then appeal
once more to Lemma 8.1 to see that the above conditional probability decays ex-

ponentially in 72. Combining all these probability estimates give the desired result. O

Proof of Theorem 4.1. Set p := P[G(X,,1/(k+ 3)) ~ T']. Let V;,V5,... be a
sequence of independent Bernoulli variables with parameter p, independent of X,.
Let

min(|ar2 |,Ny)

S= > MHG(X N Quiegita) ~ T} V=G, — S,

i=1
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and

So=S,+ >V,

=1

where x1 := max(x,0) as usual, and the sum Z?:l is taken to be zero.

For each j, given that I,, ; = 1, the distribution of the contribution to G,, from
points in @, ; is Bernoulli with parameter P[G((x + 3)r,X,, ) ~ I'|, which is p.
Hence S, is binomial Bin(|a72],p). Moreover, the conditional distribution of S,,,

given the value of Y,,, does not depend on the value of Y,,, and therefore S,, is
independent of Y,,. By (4.5),

LaTr%J_l/2(Gn - EGn) i) N(O, Oé_10'2).

Moreover,
(lar7]=Nn)*
El|Gn — (Yo + 5[] =E Z V SpLO&TiJP[Nn<Oz7'5]
j=1

so that by Lemma 9.1, both 7,,P[G, # Y, + S,] and 7, 'E[|G,, — Y,, — S,|] tend
to zero as n — oo. Hence, Theorem 2.1 (with hy = 1) is applicable, with |a7?|
playing the role of n in that result and a'/?7, playing the role of ¢,, yielding

—E
sup { a1/27‘nP[Gn =k] — a1/20_1¢ ( K Gn ) ‘} — 0,
keZ

(a'21,))a~ 120
as n — oo. Multiplying through by a='/? yields (4.6). O

10 Proof of Theorem 5.1

Recall the definition of hx (the span of X) from Section 2.
Lemma 10.1. If X and Y are independent random variables then hx y|hx.

Proof. If hx,y = 0 there is nothing to prove. Otherwise, set h = hx.y. Then,
considering characteristic functions, observe that

1= |E exp(2mi(X +Y)/h)| = |E exp(2miX/h)| X |E exp(27iY/h)|

so that |E exp(2miX/h)| = 1 and hence hlhx. O
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We are in the setup of Section 5. Recall that the point process Z, consists
of n normally distributed marked points in R?, while U, x consists of n uniformly
distributed marked points in B(K). Set h,x = huw: ). Set h, = hy(zy), and
recall from (5.4) that h(H) := liminf, . hy. 7

Lemma 10.2. Suppose either (i) H has finite range interactions and hyz:) < 0o
for somen, or (ii) H = H® is induced by a k-nearest neighbour functional &(x; X*),
and hyzxy < 0o for some n > k. Then h(H) < oo, and if h(H) > 0, there exists
p € N and K > 0 such that h, x = h(H). If h(H) = 0, then for any € > 0 there
exists p € N and K > 0 such that h, x < €. In case (i), we can take p such that
additionally pn > Kk + 1.

Proof. The support of the distribution of H(U,; ;) is increasing with K, so
ho.icr| o, ic for K’ > K. Hence, there exists a limit A, o, such that

oo = lim Ay i (10.1)

K—o0

and also we have the implication
hpoo >0 = 3K : hy g = hpoo- (10.2)

Also, for all K the support of the distribution of H (U} ;) is contained in the support
of H(ZY), so that

hn - hH(Z;;) S hn,K; VK, (103)
and hence h,, < h,, o for all n. We assert that in fact
hoo = hip. (10.4)

This is clear when h, o, = 0. When h,, . > 0, there exists a countable set S with
span hy, o, such that P{H (U ;) € S] = 1 for all K. But then it is easily deduced
that P[H(Z}) € S| = 1, so that h,, > hy, «, and combined with (10.3) this gives
(10.4).

We shall show in both cases (i) and (ii) that h, tends to a finite limit; that is,
for both cases we shall show that

h(H) = lim h, = lim h, o < co. (10.5)

n—o0 n—oo

Also, we show in both cases that

h(H) >0 = dng € N:h, =h(H) Vn > ny. (10.6)
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If h(H) > 0, the desired conclusion follows from (10.6), (10.4) and (10.2). If h(H) =
0, the desired conclusion follows from (10.5) and (10.1).

Consider the case (i), where H has finite range interactions. In this case, we
shall show that for all n,

B[, (10.7)

and since we assume h,, < oo for some n, (10.7) clearly implies (10.5) and (10.6).

We now demonstrate (10.7) in case (i) as follows. By (10.4) and (10.2), to prove
(10.7) it suffices to prove that h,iq|h, ik for all K. Choose 7 such that (5.2) holds.
There is a strictly positive probability that the first n points of Z,, lie in B(K') while
the last one lies outside B(K + 7). Hence by (5.2) and translation-invariance, the
support of the distribution of H(Z?,,) contains the support of the distribution of
H(Uy i)+ H({(0,T)}), where T' is a Py -distributed element of M, independent of
U, k- Hence by Lemma 10.1, hy11|hn , so (10.7) holds as claimed in this case.

Now consider case (ii), where we assume H = H®) with (x; X) determined by
the k nearest neighbours. We claim that if j > k+ 1 and ¢ > k + 1 then

hj+g|hj and hj_M‘hg. (108)
By (10.2) and (10.4), to verify (10.8) it suffices to show that
hjvelhjxk VK > 0. (10.9)

Given K, let B and B’ be disjoint balls of radius K, distant more than 2K from
each other. There is a positive probability that Z;,, consists of j points in B and
¢ points in B’, and if this happens then (since we assume min(j,¢) > x)) the &
nearest neighbours of the points in B are also in B, while the x nearest neighbours
of the points in B’ are also in B’, so that H(Z;,,) is the sum of conditionally
independent contributions from the points in B and those in B’. Hence the support
of the distribution of H(Z7,,) contains the support of the distribution of H (U x) +
H (Z;Il?k i), where H (Z;{; ) is defined to be a variable with the distribution of H (U )
independent of H(Uj ). Then (10.9) follows from Lemma 10.1.
Define

Then for all € > 0 we can pick j > k + 1 with h; < A/ + ¢, and then by (10.8) we
have hy < h' 4+ ¢ for £ > j + k + 1. This demonstrates (10.5) for this case (with
h(H) = K'), since we assume h,, < oo for some n. Moreover, if h(H) > 0, then in
the argument just given we can take e < h(H) and then for ¢ > j + x4+ 1 we must
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have hy|h;, which can happen only if h, = h;, so by (10.5), in fact hy = h; = h(H).
That is, we also have (10.6) for this case. O

Since we are in the setting of Section 5, we assume (as in Section 4) that f is an
almost everywhere continuous probability density function on R? with foa.x < 00.
The point process X, C R? is a sample from this density, and the marked point
process X* C R? x M is obtained by giving each point of X, a P,-distributed
mark. Recall also that we are given a sequence (r,) with p := lim,,_,o, nre € (0, 00).
Recall from (5.1) that H,(X*) := H(r;1X*) for a given translation-invariant H.

Our strategy for proving Theorem 5.1 goes as follows. First we choose u, K as
in Lemma 10.2. Then we choose constants > K and m > p in a certain way (see
below), and use the continuity of f to pick O(n) disjoint deterministic balls of radius
Bry, such that f is positive and almost constant on each of these balls. We use a form
of rejection sampling to make the density of points of X, in each (unrejected) ball
uniform. We also reject all balls which do not contain exactly m points of X, in a
certain ‘good’ configuration (of non-vanishing probability). The definition of ‘good’
is chosen in such a way that the contribution to H,, from inside an inner ball of radius
K, is shielded from everything outside the outer ball of radius Sr,. We end up with
©(n) (in probability) unrejected balls, and the contributions to H, (X)) from the
corresponding inner balls are independent (because of the shielding) and identically
distributed (because of the uniformly distributed points) so the sum contribution of
these inner balls can play the role of S, in Theorem 2.1.

In the proof of Theorem 5.1, we need to consider certain functions, sets and
sequences, defined for 8 > 0. For x € R? with f(x) > 0, define the function

_ inf{f(y) : y € B(w; Bry)}

o) = S {Fl0) v € Bl Br)} HO-10
and for z € R? with f(z) > 0 and g, 3(x) > 0, and 2z € B(x; Br,), define

Since we assume f is almost everywhere continuous, the function g, g converges
almost everywhere on {x : f(z) > 0} to 1. By Egorov’s theorem (see e.g. [9]), given
> 0 there is a set Az with fAza f(x)dx > 1/2, such that f(z) is bounded away

from zero on Ag and g, g(x) — 1 uniformly on Ag.
Since we assume (4.2) with p > 0 here, for n large enough nré¢ < 2p. Set

n(B) =27yt ™
d

Given 8 > 0, we claim that for n large enough so that nrf < 2p, we can (and
do) choose points g1, ..., Tam |nE)n) 0 Ag With |2, — g,k > 287, for 1 <
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Jj <k < |n(B)n]. To see this we use a measure-theoretic version of the pigeonhole
principle, as follows. Suppose inductively that we have chosen 25,1, ..., 2g %, With
k < [n(B)n]. Then let x5, ,+1 be the first point, according to the lexicographic
ordering, in the set Ag \ U*_ B(xg,;;20r,). This is possible, because this set is
non-empty, because by subadditivity of measure,

/ F@)dr < Fowa(28m) fues < 1(B)103(287) e
U?71B(Iﬁ,n,j§2ﬁrn)
=nrl/(4p) <1/2< [ f(x)da,
Ap

justifying the claim. Define the ball
Bgpj = B(zgnj, fn); B, = B(xp,;, Bra) X M.

The balls Bgp1,..., Bgn,|n3)n) are disjoint.

Let Wy, Wy, W3, ... be uniformly distributed random variables in [0, 1], indepen-
dent of each other and of (Xj;)%_,, where X; = (X;,T;). For k € N, think of W}
as an extra mark attached to the point Xj. This is used in the rejection sampling
procedure. Given 3, if X € Bg, ;, let us say that the point X is S-red if the
associated mark Wy is less than p, g(z,,j, Xi). Given that Xy lies in Bg, ; and is
B-red, the conditional distribution of X, is uniform over Bg,, ;.

Now let m € N, and suppose § is a measurable set of configurations of m points in
B(p) such that P[U,, 3 € S] > 0. The number m and the set S will be chosen so that
given there are m points of &), in ball Bg,, ;, and given their rescaled configuration
of lies in the set S, there is a subset of these m points which are ‘shielded’ from the
rest of X,,.

Given S (and by implication S and m), for 1 < j < [n(B)n], let Is, ; be the
indicator of the event that the following conditions hold:

e The point set X, N B, ; consists of m points, all of them [-red;
e The configuration 7, '(—z5,,; + (X, N Bs,;)) is in S.

Let Ns, = Z]Ll(f)"J Is ;, and list the ¢ for which /s, ; = 1 in increasing order as

J(S,n,1)..., J(S,n, Ns,).

Lemma 10.3. Let > 0, and m € N. Let S be a measurable set of configurations
of m points in B(B) such that PUy,s € S] > 0. Then: (i) there exists § > 0 such
that

lim sup (n_l log P[Ns.,, < 5n]) <0, (10.12)

n—oo
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and (i) conditional on the values of Is,; for 1 <i < |n(B)n| and the configuration
of X, outside Bgpn jsn1) Y- U Bgn isnnNs,), the joint distribution of the point
sets

7}71(_Iﬁ,n,J(S,n,l)_l'(XntB,n,J(S,n,l)))7 CI) T7:1(_Iﬁ,n,J(S,n,Ns’n)+(XntB,n,J(S,n,Ns’n)))
is that of Ns,, independent copies of Uy, 3 each conditioned to be in S.

Proof.  Consider first the asymptotics for E[Ns,]. Given a finite point set
X C R% and a set B C R% let X(B) denote the number of points of X in B. Fix
m. Since f is bounded away from zero and infinity on Az and g, s — 1 uniformly
on Ag, we have uniformly over x € Ag that

n / f(y)dy = nf() / (F)/ F(@))dy — Bwapf(x)
B(z;8rn) B(z;8rn)

Hence by binomial approximation to Poisson,

(B%wapf ()™ exp(=Fwapf (x))

m)!

P[X,(B(x; Bry,)) = m] — as n — 0o,
and this convergence is also uniform over x € Ag.

Given m points X}, in Bg,, ;, the probability that these are all S-red is at least
gn(x)™ so exceeds 3 if n is large enough, since g, 3 — 1 uniformly on Ag.

Given that m of the points X}, lie in Bg,, ;, and given that they are all $-red,
their spatial locations are independently uniformly distributed over Bg, ;; hence the
conditional probability that r, (=25, j+ (X, N Bg,;)) lies in S is a strictly positive
constant.

These arguments show that liminf, ,., n 'E[Ns,] > 0. They also demonstrate
part (ii) in the statement of the lemma.

Take § > 0 with 26 < liminf,,_,o, n 'E[Ns,,]. We shall show that P[Ns, < dn]
decays exponentially in n, using Lemma 8.2. The variable Ng,, is a function of n
independent identically distributed triples (marked points) (Xy, Ty, W).

Consider the effect of changing the value of one of the marked points ((X, 7, W)
to (X', T, W’), say). The change could affect the value of Is, ; for at most two
values of j, namely the j with X € Bg,; and the j* with X' € Bg, ;. So by
Lemma 8.2,

P[|Nsn —E Ng .| > dn] < 2exp(—6n/8),

and (10.12) follows. O

Proof of Theorem 5.1 under condition (i) (finite range interactions). Recall that
h(H) is given by (5.4). Since condition (i) includes the assumption that hg(zx) < 0o
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for some n, by Lemma 10.2 we have h(H) < oco. Let b > 0 with h(H)|b. Let
€ (0,b). Let p € N, and K > 0, be as given by Lemma 10.2. Then h, x = h(H)
if h >0, or h,x <eif h=0. Moreover H(Uj, ) is integrable by assumption. Set

by = hu,K Lb/hMKJ lf hu,K >0 (1013)
b if hﬂvK =0.

Choose 7 € (0,00) such that (5.2) holds. We shall apply Lemma 10.3 with
B = K + 7. Let S be the set of configurations of y points in B(K + 7) such that
in fact all of the points are in B(K'). By Lemma 10.3, we can find § > 0 such that,
writing N, for Ng, we have exponential decay of P[N,, < dn].

Let Vi, V5, ..., be random variables distributed as independent copies of H (Z/{; %)
independently of A¥. Set

min(|6n],Ny) ([on]—Nn)*
Spi= ) HulXNBiirussae)i  Sn=S+ Z V.
/=1

Thus, S/, is the the total contribution to H,, (X) from points in Umm(an V) B}}JFT nT(S )"
By Part (ii) of Lemma 10.3, given that N,, > dn, for each ¢ we know that

0 (=2, (s me+ X )N B*(K +7) is conditionally distributed as U}; s, . conditional

on Uy ;.. € S; in other words, distributed as U} ;. Therefore the distribution of

Sy, is that of the sum of |dn] independent copies of H(U}; ), independent of the

contribution of the other points. Let Y,, denote the contribution of the other points,

ie.
Y, = H, (X)) —S..
Since the distribution of S,,, given the value of Y,,, does not depend on the value of
Y,., S, is independent of Y,,.
By assumption H,(X*) and S, are integrable. Clearly n'/2P[H,,(X,,) # Y, +S,]

is at most n'/2P[N,, < én], which tends to zero by (10.12). Also by conditioning on
N,,, we have that

([6n]—Np)T
n" V2R [ H, (X)) — (Y, + S,)|] = n /2K Z v

<n PE[(|6n] — No)TIE [|VA]]
< n~Y2|6n| PN, < on]E [|Vi]], (10.14)

which tends to zero by (10.12). This also shows that Y,, is integrable By the as-
sumption (5.5),

160 ]~ V2(H,(X7) — E Ho (X)) 25 N(0,67102), (10.15)
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and so, since hy, i|by, Theorem 2.1 is applicable, and yields

sup {'(5n)1/2P[Hn(X;) € [u,u+by)] — 620 b¢ <(52;/IE(§[_"1(;§§3/2) ‘} -0,

(10.16)
and dividing through by §/2 gives (5.6) in all cases where b = b;. In general, suppose

b # b;. Then h(H) = 0 (else h,x = h(H) and h(H)|b so b = by by (10.13)), and
hence h, x < e. Since by < b by (10.13), we have that

inf {nlﬂp[Hn(X;) € [u,u+b)] — o bg (M) }

ucR n!/%g
N * L (u—EH (X
> igﬂg{n PP[H, (X)) € [u,u+b1)] — o701 (W

+0 (b — b)(2m) /7

so that by (10.16), since by > b — ¢,

lim inf inf {nl/2P[Hn(X;) € [u,u+b)] — o b (LH"(X:))} > _S(QW)_1/2'

n—soo uER nt/2¢

Similarly, setting by := h,, x [b/h, i ], we have that

sup {nmP[Hn(X;f) € [u,u+0b)] — o be (

u€eR

u— IEHn(X;)) }

nl/2¢

u€R nl2qs

< inf {nl/2p[Hn(X;) € [u,u+b)] + 0 ba¢p (%) }
+07 Y (by — b)(2m) 1/

so that since by — b < ¢,

n
n—oo  u€eR n1/20-

lim sup sup {nl/2P[Hn(X*) € [u,u+b)] — o b (%)} < 2(270_1/2-

Since € > 0 is arbitrarily small, this gives us (5.6). O

Proof of Theorem 5.1 under condition (ii). We now assume that H, instead
of having finite range, is given by (5.3) with ¢ depending only on the k nearest
neighbours. Again, by Lemma 10.2 we have that h(H), given by (5.4), is finite.

Let b > 0 with h(H)|b. Let ¢ € (0,b). Let p € N and K > 0, with u > k+ 1, by
as given by Lemma 10.2. Then h, x = h(H) if h(H) > 0, and h, x < ¢ if h(H) = 0.
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Also, H( M ) integrable, by the integrability assumption in the statement of the
result being proved.

Let By, Bs, ..., B, be a minimal collection of open balls of radius K, each of them
centred at a point on the boundary of B(4K), such that their union contains the
boundary of B(4K). Let By be the ball B(K).

We shall apply Lemma 10.3 with § = 5K, with m = (v + 1)u, and with S as
follows. S is the set of configurations of m = (v + 1) points in B(f8) = B(5K),
such that each of By, ..., B, contains at least p points, and UY_,3; contains exactly
vp points, and also the ball B, contains exactly p points (so that consequently
there are no points in B(5K)\UY_,B;). A similar construction (using squares rather
than balls, and with diagram) was given by Avram and Bertsimas [1] for a related
problem.

With this choice of 8 and S, let the locations x5, ; = Tskn,;, the balls Bg, ; =
Bsk . j, the indicators Is,, ;, and the variables Ng, and J(S,n,¢) be as described
just before Lemma 10.3. By that result, we can (and do) choose 6 > 0 such that
(10.12) holds.

For 1 < ¢ < Ng, the point process 7, (=Z5x.n.1(S:n0) + (X N Bs i n,i(sn0)) has
1 points within distance K of the origin, and also at least p points in each of the
balls By,...,B,.

Since 1 > K+ 1, for any point configuration in S, each point inside B(K) has its
x nearest neighbours also inside B(K'). Also none of the points in B(5K)\ B(K) has
any of its k nearest neighbours in B(K). Finally, any further added point outside
B(5K) cannot have any of its x nearest neighbours inside B(K), since the line
segment from such a point to any point in B(K) passes through the boundary of
B(4K) at a location inside some B;, and any of the p or more points inside B; are
closer to the outside point than the point in B(K) is. To summarise this discussion,
the points in B(K) are shielded from those outside B(5K).

Given n, let W((l) ...,W((VM"J) be a collection of (marked) point pro-

v+1)p,5K) +1)p,5K
cesses which are each distributed as U} , conditioned on LI(*V sk € S, in-

(v+1)u,5

dependently of each other and of X¥. For 1 < j < [dn] set V; := H(W((erl)%sK N

B*(K)), so that Vi, Va,... V|5, are random variables distributed as independent
copies of H(U;; ), independent of &,. Define S and S, by

min(|6n],Ns.n) (lon]—Ns,n)*
Sii= > HaX OB @sicssan K Sa=Sit > Vi
=1 Jj=1

Also set Y, := H, (X)) — S!.
Thus S, is the total contribution to H,,(X;}) from points in B*(25x n,5(s.n,0; K7n),
1 < ¢ < min(|dn], Ns,). On account of the shielding effect described above, S,

36



is the sum of [dn] independent copies of a random variable with the distribution
of H(U} ). Moreover, we assert that the distribution of S,, given the value of Y,
does not depend on the value of Y,,, and therefore S,, is independent of Y,,.

Essentially, this assertion holds because for any triple of sub-c-algebras Fi, F», F3,
if 1V F5 is independent of F3 and F; is independent of F, then F; is independent
of Fo V F3 (here F; V F; is the smallest o-algebra containing both F; and ;). In
the present instance, to define these o-algebras we first define the marked point
processes Y; for 1 < j < |on] by

o {r#(—ww,us,n,j) + (XN By sisng) i1 <5 < min(|on], N,)

S R if Ns,. < j < |on].

Take F3 to be the o-algebra generated by the wvalues of J(S,n,1),...,
J(S,n,min(|dn|, Ns,,)) and the locations and marks of points of X, outside the
union of the balls Bsk n 1(s.n,1), -« > BsKn,J(Snmin(|6n|,Ns..))- Lake Fo to be the o-
algebra generated by the point processes J; N B*(5K) \ B*(K),1 < j < |dn]. Take
Fi to be the o-algebra generated by the point processes V; N B*(K),1 < j < [dn].
Then by Lemma 10.3 and the definition of S, F; V F5 is independent of F3 and F is
independent of F5, so F; is independent of F5 V F3. The variable S, is measurable
with respect to Fi, and by shielding, the variable Y,, is measurable with respect to
Fo V F3, justifying our assertion of independence.

By the assumptions of the result being proved, H, (X)) and S, are integrable.
Clearly n'/2P[H, (X}) # Y, + S,] is at most n'/2P[Ng,, < dn], which tends to zero.
Also, as with (10.14) in Case (i), we have that n~'/2E [|H,,(X*) — (Y,, + S,)|] tends
to zero by (10.12), and Y, is integrable. By (5.5),

[6n) 72 (H, (X7) = B Ho (X)) = N (0,670, (10.17)
and so, since hy, k|by, Theorem 2.1 is applicable with Z,, = H,,(&X}), yielding

sup {
{ueR}
as n — 0o. Multiplying through by §~'/2 yields (5.6) for this case, when b; = b. If

by # b, we can complete the proof in the same manner as in the proof for Case (i).
O

(0n)' 2 P[H, (X)) € [u,u+b1)] — 6207 by (%) ‘} o

11 Proof of Theorems 5.2, 5.3 and 5.4

The proofs of Theorems 5.2, 5.3 and 5.4 all rely heavily on Theorem 2.3 of [20] so
for convenience we state that result here in the form we shall use it. This requires
some further notation, besides the notation we set up earlier in Section 5.
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As before, we assume £(x, X*) is a translation invariant, measurable R-valued
function defined for all pairs (x, X*), where X* C R?x M is finite and x is an element
of X*. We extend the definition of £(x, X*) to the case where X* C R? x M and
x € (R? x M)\ X*, by setting £(x, X*) to be £(x, X* U {x}) in this case. Recall
that H© is defined by (5.3).

Let T" be an M-valued random variable with distribution P,,, independent of
everything else. For A\ > 0 let M, be a Poisson variable with parameter \, indepen-
dent of everything else, and let Py be the point process { X7, ..., Xy}, which is a
Poisson point process with intensity Af(-). Let Py := {(X1,T1),. .., (X, T, )} be
the corresponding marked Poisson process.

Given A > 0, we say £ is \-homoegeneously stabilizing if there is an almost surely
finite positive random variable R such that with probability 1,

§((0,T); (HyN B*(0; R)) UY) = &((0,T); Hy N B*(0; R))

for all finite Y C (R?\ B(0; R)) x M. Recall that supp(f) denotes the support of f.
We say that £ is ezponentially stabilizing if for A > 1 and x € supp(f) there exists
a random variable I, ) such that

E(WY 92, T); NV Py N B (1 AR, 5)) UY)
= (N9, T); NVYP; N B (2 A VR, )

for all finite ) C (R?\ B(z; A\"Y9R,))) x M, and there exists a finite positive
constant C' such that

PR, \ > s] < C’exp(—C'_ls), s>1, A>1, f €supp(f).

For k € NU {0}, let T, be the collection of all subsets of supp(f) with at most k
elements. For k> 1 and A = {x1,..., 2} € T \ Tr—1, let A* be the corresponding
marked point set {(z1,71), ..., (zx, Tx)} where T}, ..., T are independent M-valued
variables with distribution P4, independent of everything else. If A € Tg (so A = ()
let A* also be the empty set.

We say that £ is binomially exponentially stabilizing if there exist finite positive
constants C, € such that for all x € supp(f) and all A > 1 andn € NN((1—¢)A, (1+
e)A)), and A € Ty, there is a random variable R, ), 4 such that

(Y2, T AV U AN B (25 N YRy ann)) UY)
= (A0, T); \Ve(x: U A N B (0, N Y9 Ry ania))) (11.1)

for all finite Y C (R?\ B(x; \"Y9R, yna)) X M, and such that all A > 1 and all
neNN((1—¢e)\ (1+¢)A)), and all = € supp(f) and all A € Ty,

P[Ryxna >8] < Cexp(—=C's), s>1.
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Given p > 0 and € > 0, we consider the moments conditions

sup E [JE((AY 42, T); AP U AN)IP] < oo (11.2)

A>1,xzesupp(f), AeSt

and

sup E[|€(AY2, T); Y4 U AM)P] < oo. (11.3)
A>1,neNN((1—e)\,(14¢e)N),z€supp(f), AESs

Theorem 11.1. Suppose H = H® s induced by translation-invariant €. Suppose
that £ is f(x)-homogeneously stabilizing for Lebesque-almost all x € supp(f), and £
is exponentially stabilizing, binomially exponentially stabilizing and for some € > 0
and p > 2 satisfies (11.2) and (11.3). Suppose fuax < 00 and supp(f) is bounded.
Suppose (A(n),n > 1) is a sequence taking values in RY with |A\(n) — n| = O(n'/?)
as n — 0o. Then there exists o > 0 such that

nTV2HO M) VIXT) — EHO(Mn)7X0)) =5 N(0,0%),
and n~'Var(HEO(\(n)/1X*) = 02 as n — oo.

Theorem 11.1 is a special case of Theorem 2.3 of [20], which also provides an
expression for ¢ in terms of integrated two-point correlations; that paper considers
random measures given by a sum of contributions from each point, whereas here we
just consider the total measure. The sets 0, and (for all A > 1) Q, in [20] are taken
to be supp(f). Our ¢ is translation invariant, and these assumptions lead to some
simplification of the notation in [20].

Proof of Theorem 5.2. The condition that {(x; X*) has finite range implies
that H = H® has finite range interactions. Since ¢ has finite range r, £ is A-
homogeneously stabilizing for all A > 0, exponentially stabilizing and binomially
exponentially stabilizing (just take R =r, R, x =7 and Ry xna =T).

We shall establish (5.5) by applying Theorem 11.1. We need to check the mo-
ments conditions (11.2) and (11.3) in the present setting. Since we assume that
fmax < 00, for any A > 0 and any n € N with n < 2\, and any = € supp(f), the
variable card (X N B*(x;rA~1/4)) is binomially distributed with with mean at most
Wa fmax2r?. Hence by Lemma 8.1, there is a constant C, such that whenever n < 2\
and x € supp(f) we have

Pleard(X N B*(z;7A"Y%) > u] < Cexp(—u/C), u > 1. (11.4)
Moreover by (5.11) and the assumption that £ has range r, for A € T3 we have

E[§((AY ", T); AV(Xy U AM))'] < 9'E[(4 + card (X)) 0 B (3 A1) "]
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so by (11.4) we can bound the fourth moments of £((A\Yx, T); A\V/4(X* U A*)) uni-
formly over (x,\;n, A) € supp(f) x [1,00) x N x T3 with n < 2\. This gives us
(11.3) (for p =4 and € = 1/2) and (11.2) may be deduced similarly.

Hence, the assumptions of Theorem 11.1 are satisfied, with A(n) in that result
given by A(n) = r;% By Theorem 11.1, for some o > 0 we have (5.5) and (5.9).
Then by Theorem 5.1, we can deduce that ¢ > 0 and h(H) < oo and (5.6) holds
whenever h(H)|b. O

Proof of Theorem 5.3. Under condition (5.2), the functional H(X*) can be
expressed as a sum of contributions from components of the geometric (Gilbert)
graph G(X, 1), where X := 7(X™*) is the unmarked point set corresponding to AX™*
(recall that 7 denotes the canonical projection from RY x M onto R?.) Hence,
H(X*) can be written as H©) (X*) where £ (x; X*) denotes the contribution to H (X'*)
from the component containing m(x), divided by the number of vertices in that
component. Then &(x; X*) is unaffected by changes to X'* that do not affect the
component of G(X,7) containing m(x), and we shall use this to demonstrate that
the conditions of Theorem 11.1 hold, as follows (the argument is similar to that in
Section 11.1 of [18]).

Consider first the homogeneous stabilization condition. For A > 0, let R(\) be
the maximum Euclidean distance from the origin of vertices in the graph G(H, U
{0}, 7) that are pathwise connected to the origin, which by scaling (see the Map-
ping theorem in [15]) has the same distribution as 7 times the maximum Euclidean
distance from the origin of vertices in G(H, 4y U{0}, 1), that are pathwise connected
to the origin. Then R() is almost surely finite, for any A € (0, 779\,).

Changes to H, at a distance more than R(\) + 7 from the origin do not affect
the component of G(H, U {0}, 7) containing the origin and therefore do not affect
£((0,7); H3). This shows that £ is »-homogeneously stabilizating for any A < 779\,
and therefore by assumption (5.12) the homogeneous stabilization condition of The-
orem 11.1 holds.

Next we consider the binomial stabilization condition. Let x € supp(f). Let
R, \n be equal to 7 plus the maximum FEuclidean distance from Az of ver-
tices in G(AY4(X, U {z}),7) that are pathwise connected to A\?z. Changes to
X, at a Euclidean distance greater than Y de,/\,n from z will have no effect on
E((NY 1, T AV,

Using (5.12), let ¢ € (0,1/2) with (1 4+ €)*7%fmax < Ae. The Poisson point
process Ppaie) = {Xi,.. .,XMn(HS)}, is stochastically dominated by H,j,...(1+¢)
(we say a point process X is stochastically dominated by a point process } if there
exist coupled point processes X', )" with X’ C )’ almost surely and X’ having the
distribution of X and )’ having the distribution of ))). Hence by scaling, '/ dPn(Ha)
is stochastically dominated by Hnj,...(14¢)/x, and hence we have for n < A(1 + ¢)
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that AP, . is stochastically dominated by H, . (14c)2. Therefore for u > 0,
P[Ryan > u] < P[Mya1e) < 1] 4+ PIR((1+€)* fnax) > u — 7. (11.5)

By scaling, the second probability in (11.5) equals the probability that there is a path
from the origin in G(H a1 4ey25,.. U 10}, 1) to a point at Euclidean distance greater
than 77'u — 1 from the origin. By the exponential decay for subcritical continuum
percolation, (see e.g. Lemma 10.2 of [18]), this probability decays exponentially in
u (and does not depend on n).

Let A := diam(supp(f)) (here assumed finite). By Lemma 8.1, the first term
in the right hand side of (11.5) decays exponentially in n. Hence, there is a finite
positive constant C, independent of A, such that provided we have n > (1 — g)A\/4
we have for all u < AY¢(A 4 7) that

P[Mya4e) <n] < Cexp(—C7IAYY) < Cexp(—((A + 7)C) 7 ).

On the other hand P[R, ., > u] = 0 for u > A\/4(A+7). Combined with (11.5) this
shows that there is a constant C' such that for all (z,n, A\, u) € supp(f)xNx[1,,00)?
with n < (1 + ¢)A, we have

PRy n > u] < Cexp(—u/C). (11.6)

Now suppose A € Ts, and x € supp(f). Let R, .4 be equal to 7 plus the maxi-
mum Euclidean distance from A%z of vertices in G(A\Y/4(X, U AU {z});7) that are
pathwise connected to A\/%z. Changes to X, U A at a Euclidean distance greater
than A"Y9R, \,, 4 from z will have no effect on &((A\Y4z, T); \Y4(X* U A*)); that
is, (11.1) holds. To check the tail behaviour of R, x4, suppose for example that A
has three elements, x1, x5 and x3. Then it is not hard to see that

Rm,)\,n,A < Rw,)\,n + le,)\,n + Rmz,)\,n + ng,)\,nv

and likewise when A has fewer than three elements. Using this together with (11.6),
it is easy to deduce that there is a constant C' such that for all (x,n, A, A\, u) €
supp(f) x N x T3 x [1,00)? with n < (1 +¢)\, and we have

PRy ana>u] < Cexp(—u/C). (11.7)

In other words, £ is binomially exponentially stabilizing.

Next we check the moments condition (11.3), with p = 4 and using the same
choice of € as before. By our definition of £ and the growth bound (5.13), we have
for all (z,n, A, \) € supp(f) x N x T3 x [1,00)? with n < X\(1 + ¢) that

B [6((AY 42, T); \V4x: U A%)* < 4*E[(card(C) + diam(C))*], (11.8)
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where C is the vertex set of the component of G(AY4(X, U AU {z});7) containing
Ay, By (11.7), there is a constant C such that for all (z,n, 4, A\, u) € (supp(f) x
N x T3 x [1,00)? with n < A\(1 + €) we have

P[diam(C) > u] < Cexp(—u/C); (11.9)
moreover,

Plcard(C) > u] < P[diam(C) > u"/®] + Pleard(X, N B(z; A"V /CDY)) > 4 — 4]
(11.10)

and the first term in the right hand side of (11.10) decays exponentially in /(%)

by (11.9). Since card(X, N B(z; A~Y%!/9)) is binomially distributed with
I [card(X, N B(z; A~V CON)] < 4l 2wg faaxn /A,

by Lemma 8.1 there is a constant C' such that for all (z,n, A\, u) with n < A\(1 + ¢)
we have that

Plcard(X, N B(z; \™ Y4 D)) > 4 — 4] < Cexp(—C~'ul/?).

Thus by (11.10) there is a constant, also denoted C, such that for all (x,n, A4, \, u)
with n < A(1+ ¢) we have

P[card(C) > u] < C’exp(—C‘lu—l/@d))’

and combining this with (11.9) and using (11.8) gives us a uniform tail bound which
is enough to ensure (11.3). The argument for (11.2) is similar.

Thus our £ satisfies all the assumptions of Theorem 11.1, and we can deduce
(5.5) and (5.9) for some o > 0 by applying that result with A(n) = r,¢. Then by
applying Theorem 5.1, we can deduce that ¢ > 0 and h(H) < oo and (5.6) holds
whenever h(H)|b. 0

Proof of Theorem 5.4. Suppose the hypotheses of Theorem 5.4 hold, and
assume without loss of generality that £(x, X*) = 0 whenever X* \ {x} has fewer
than x elements. We assert that under these hypotheses, there exists a constant C'
such that for all (z,n, A\, u) € supp(f) x N x [1,00)? with n € [\/2,3\/2] and n > &,
we have

P\YIR, (2, T); X7) > u] < Cexp(—C~u). (11.11)

Indeed, if supp(f) is a compact convex region in R? and f is bounded away from
zero on supp(f), then (11.11) is demonstrated in Section 6.3 of [20], while if supp(f)
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is a compact d-dimensional submanifold-with-boundary of R?, and f is bounded
away from zero on supp(f), then (11.11) comes from the proof of Lemma 6.1 of [24].

It is easy to see that £ is A-homogeneously stabilizing for all A > 0. Also, for
any (z,.A) € (supp(f) x T3) we obviously have R, ((z,T); X*UA*) < R.((x,T); X*)
and hence by (11.11), £ is binomially exponentially stabilizing, and exponential
stabilization comes from a similar estimate with a Poisson sample.

We need to check the moments conditions to be able to deduce (5.5) via Theorem
11.1. With v as in the growth bound (5.14), we claim that there is a constant C' such
that for any A € T3, any = € supp(f), and any v > 0, and for all (z,n, A, \,u) €
supp(f) x N x T3 x [1,00)? with A\/2 < n < 3)\/2, and n > k, we have

P, T); AV(Xy U A)| > ) < Ply(1+ AR ((2,T), X)) > u]
< Cexp(—CMu!7).(11.12)

Indeed, the first bound comes from the (5.14), and the second bound comes from
(11.11). Using (11.12), we can deduce the moments bound (11.3) for p = 4 and
e = 1/2. We can derive (11.2) similarly. Thus Theorem 11.1 is applicable, and
enables us to deduce (5.5) and (5.9) for some o > 0, in the present setting. Then
by using Theorem 5.1, we can deduce that ¢ > 0 and h(H) > 0 and (5.6) holds
whenever h(H)|b. |
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