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Abstract

We consider the following dynamic Boolean model introduced by van den Berg, Meester and
White (1997). At time 0, let the nodes of the graph be a Poisson point process in R

d with
constant intensity and let each node move independently according to Brownian motion. At
any time t, we put an edge between every pair of nodes whose distance is at most r. We study
three fundamental problems in this model: detection (the time until a target point—fixed or
moving—is within distance r of some node of the graph); coverage (the time until all points
inside a finite box are detected by the graph); and percolation (the time until a given node
belongs to the infinite connected component of the graph). We obtain precise asymptotics for
these quantities by combining ideas from stochastic geometry, coupling and multi-scale analysis.

Keywords and phrases. Poisson point process, Brownian motion, coupling, Minkowski dimen-
sion.
MSC 2010 subject classifications. Primary 82C43; Secondary 60G55, 60D05, 60J65, 60K35,
82C21.

1 Introduction

In a random geometric graph, nodes are distributed according to a Poisson point process in R
d of

intensity λ (i.e., nodes are uniformly distributed, with λ nodes in expectation per unit volume),
and an edge is placed between all pairs of nodes whose distance is at most r. These graphs, also
known as “continuum percolation” or the ”Boolean model,“ have been used extensively as models
for communication networks [8, 14, 19]. While simple, these models capture important qualitative
features of real networks, such as the phase transition in connectivity as the intensity λ of the
Poisson point process is increased.

In many applications, the nodes of the network are not fixed in space but mobile. It is natural
to model the movement of the nodes by independent Brownian motions [3, 9, 11]; we call this the
mobile geometric graph model. We focus on three fundamental problems in this model: detection
(the time until a target point—which may be fixed or moving—comes within distance r of a node
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of the graph); coverage (the time until all points in a large set are detected); and percolation (the
time until a given node is connected to the infinite connected component).

We now give a precise definition of the model and state our results. Motivation and related work
are addressed in Section 2.

The Mobile Geometric Graph model

Let Π0 = {Xi}i be a Poisson point process on R
d of intensity λ. To avoid ambiguity, we refer to the

points of a point process as nodes. We let each node Xi move according to a standard Brownian
motion (ζi(s))s≥0 independently of the other nodes, and set Πs = {Xi + ζi(s)}i to be the point
process obtained after the nodes of Π0 have moved for time s. By standard arguments [3] it follows
that Πs is again a Poisson point process of the same intensity λ.

At any given time s we construct a graph Gs by putting an edge between any two nodes of Πs
that are at distance at most r. In what follows we take r to be an arbitrary but fixed constant.
There exists a critical intensity λc = λc(d) such that if λ > λc, then a.s. there exists a unique
infinite connected component in Gs, which we denote by C∞(s), while if λ < λc then all connected
components are finite a.s. [14, 19].

Statement of results

Detection. Consider a “target” particle u which is initially placed at the origin, and whose position
at time s is given by g(s), which is a continuous process in R

d. We are interested in the time it
takes for u to be detected by the mobile geometric graph, namely how long it takes until a node of
Π0 has come within distance at most r from u. More formally we define

Tdet = inf
{

t ≥ 0 : g(t) ∈
⋃

i

B(Xi + ζi(t), r)
}

,

where the union is taken over all the nodes {Xi} of Π0 and B(x, r) denotes the ball of radius r
centered at x. In Section 3 we prove the following theorem, which extends previous classical results
on detection for non-mobile particles u [24, 9].

Theorem 1.1. In two dimensions, for any fixed λ and any g independent of the motions of the
nodes of Π0, we have that

P [Tdet > t] ≤ exp

(

−2πλ
t

log t
(1 + o(1))

)

.

In addition, if g is an independent Brownian motion then the above bound is tight, i.e.,

P [Tdet > t] = exp

(

−2πλ
t

log t
(1 + o(1))

)

. (1)

Remark 1.2. Theorem 1.1 is stated for d = 2. In Section 3 it is extended to all dimensions d ≥ 1
(see Theorem 3.5), where the tail of Tdet is shown to be exp(−Θ(

√
t)) for d = 1 and exp(−Θ(t))

for d ≥ 3. All these results exploit a connection between the detection time and the volume of the
Wiener sausage, as explained in Section 3.

Remark 1.3. From [24, 9], we have that for d = 2 the result in (1) also holds when u does not
move (i.e., g ≡ 0). Thus Theorem 1.1 establishes that, asymptotically, the best strategy for a
particle u (that is not informed of the motion of the nodes of Π0) to avoid detection is to stay
put. In Section 3 we show that this is true for d = 1 for any fixed t (not only asymptotically) and
conjecture that this holds in higher dimensions as well (see Conjecture 3.6).
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Coverage. Let A be a subset of Rd. We are interested in the time it takes for all the points of A
to be detected. We thus define

Tcov(A) = inf
{

t ≥ 0 : A ⊂
⋃

s≤t

⋃

i

B(Xi + ζi(s), r)
}

.

For R ∈ R+, let QR be the cube in R
d of side length R. A natural question proposed by Konstan-

topoulos [11] is to determine the asymptotics of E [Tcov(QR)] as R→ ∞.

In Section 4 we prove Theorem 1.4 below, which gives the asymptotics for the expected time to
cover the set QR as R → ∞ and shows that Tcov(QR) is concentrated around its expectation. We

write f ∼ g as x→ ∞, when f(x)
g(x) → 1 as x→ ∞.

Theorem 1.4. We have that as R→ ∞

ETcov(QR) ∼











π
8λ2

(logR)2 for d = 1
1
λπ logR log logR for d = 2

d logR
λc(d)rd−2 for d ≥ 3

and
Tcov(QR)

E [Tcov(QR)]
→ 1 in probability,

where c(d) =
Γ( d

2
−1)

2π
d
2

and Γ stands for the Gamma function.

Remark 1.5. Instead of covering a whole cube, we could ask for the coverage time of other sets.
We prove Theorem 1.4 in this general setting in Section 4; for instance, we show that E [Tcov]

for a line segment of length R is smaller than E [Tcov(QR)] by a factor of 1+o(1)
d and also obtain

asymptotics for fractal sets (see Theorem 4.2).

Percolation. Let u be an extra node initially at the origin and which moves independently of the
nodes of Π0 according to some function g. We now investigate the time it takes until u belongs
to the infinite connected component. We denote this time by Tperc, which can be more formally
written as

Tperc = inf{t ≥ 0 : ∃y ∈ C∞(t) s.t. ‖g(t) − y‖2 ≤ r}.

The detection time clearly provides a lower bound on the percolation time, so we may deduce from
Theorem 1.1 and Remark 1.2 above that P [Tperc > t] is at least exp (−O(t/ log t)) for d = 2 and at
least exp (−O(t)) for d ≥ 3, when u is non-mobile or moves according to an independent Brownian
motion. We will prove the following stretched exponential upper bound in all dimensions d ≥ 2 in
Section 5:

Theorem 1.6. For all dimensions d ≥ 2, if λ > λc(d) then there exist constants c and t0, depending
only on d, such that

P [Tperc > t] ≤ exp

(

−c λt

log3+6/d t

)

, for all t ≥ t0.

This holds when u is non-mobile or moves according to an independent Brownian motion.

Theorem 1.6 is the main technical contribution of the paper; we briefly mention some of the ideas
used in the proof. The key technical challenge is the dependency of the Gs’s over time. To overcome
this, we partition R

d into subregions of suitable size and show via a multi-scale argument that all
such subregions contain sufficiently many nodes for a large fraction of the time steps. This is the
content of Proposition 5.2 which we believe is of independent interest. This result allows us to
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couple the evolution of the nodes in each subregion with those of a fresh Poisson point process of
slightly smaller intensity λ′ < λ which is still larger than the critical value λc. After a number
of steps ∆ that depends on the size of the subregion, we are able to guarantee that the coupled
processes match up almost completely. As a result, we can conclude that there are Θ(t/∆) time
steps for which the mobile geometric graph contains an independent Poisson point process with
intensity λ′′ > λc. This fact, which we believe is of wider applicability, is formally stated in
Proposition 5.1. This independence is sufficient to complete the proof.

Finally, to illustrate a sample application of Theorem 1.6, we consider the time taken to broadcast
a message in a network of finite size. Consider a mobile geometric graph in a cube of volume n/λ
(so the expected1 number of nodes is n). Since the volume is finite, we need to modify the motion
of the nodes to take account of boundary effects: following standard practice, we do this by turning
the cube into a torus (so that nodes “wrap around” when they reach the boundaries). Suppose
a message originates at an arbitrary node at time 0, and at each integer time step t each node
that has already received the message broadcasts it to all nodes in the same connected component.
(Here we are making the reasonable assumption that the speed of transmission is much faster than
the motion of the nodes, so that messages can travel throughout a connected component before it
is altered by the motion.) Let Tbc denote the time until all nodes have received the message. We
prove the following result in Section 6.

Corollary 1.7. In a mobile geometric graph on the torus of volume n/λ with any fixed λ > λc, the
broadcast time Tbc is O(log n(log log n)3+6/d) w.h.p. in any dimension d ≥ 2.

2 Motivation and related work

A possible application of our results is in the study of mobile ad hoc networks, where nodes moving
in space cooperate to relay packets on behalf of other nodes without any centralized infrastructure.
This is the case, for example, in vehicular networks (where sensors are attached to cars, buses or
taxis), surveillance and disaster recovery applications (where mobile sensors are used to survey an
area), and pocket-switched networks based on mobile communication devices such as cellphones.

Random geometric graphs have long been used as a model for static wireless networks, and by now
their structural and algorithmic properties are rather well understood mathematically. We refer
the reader to the book [19] for extensive background on random geometric graphs and to [22] for a
selective survey of applications. We should mention that in many papers the model is defined over
a torus S ⊂ R

d of finite volume n/λ, so that the expected number of nodes is n. We choose to
work in the infinite volume R

d, which is mathematically cleaner, but most results obtained there
can be adapted to finite volumes with a little technical work; see Section 6 for an example. In
the finite setting it makes sense to talk about the random geometric graph being connected, which
is an important property when the nodes are static. This occurs at a sharp threshold value of λ,
which however grows with n [7, 17, 18].

The scope of mathematically rigorous work with mobile nodes is much more limited, and there is
as yet no widespread agreement on an appropriate model for node mobility. The model we use
in this paper is equivalent to the “dynamic boolean model” introduced by Van den Berg et al. [3]
(who also proved that almost surely an infinite component exists at all times if λ > λc). We point
out that in this model, in contrast to many others, node mobility is fixed and does not depend on n
(the number of nodes in a finite network).

1The result can be adapted to the case of a fixed number of nodes n using standard “de-Poissonization” argu-
ments [19]. See the Remark following the proof of Corollary 1.7 in Section 6.
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The detection time was addressed by Liu et al. [12], assuming that each node moves continuously
in a fixed randomly chosen direction; they show that the time it takes for the network to detect
a target is exponentially distributed with expectation depending on the intensity λ. Also, for
the special case of a stationary target, as observed in [9, 11] the detection time can be deduced
from classical results on continuum percolation: namely, in this case it follows from [24] that
Pr[Tdet ≥ t] = exp(−λE [vol (Wr(t))]), whereWr(t) is the “Wiener sausage” of radius r up to time t.
This volume in turn is known quite precisely [23, 2]. In a different model, in which nodes perform
continuous-time random walks on the square lattice, Moreau et al. [15] (see also [6]) establish that
the best strategy for a target to avoid detection is to stay put. (In these papers, a target is said to
be detected when there exists a node of the graph at the same lattice location as the target.) The
analysis of the coverage time was suggested as an open problem by Konstantopoulos [11].

The percolation time was first studied in [22], which also examined detection for moving targets.
This paper is a strengthened version of [22], with tighter results on percolation and detection as
well as the addition of coverage.

The question of broadcasting in mobile graphs has been studied by several authors in a setting
where messages travel only to immediate neighbors at each time step. Clementi et al. [5] establish
tight bounds for the broadcast time in this setting assuming that either the intensity λ or the
range of motion of the nodes grows with n. The case of smaller intensities and bounded range of
motion was studied by Pettarin et al. [21]. A problem similar to broadcast was studied by Kesten
and Sidoravicius [10], who derived the rate at which an infection spreads through nodes that are
performing continuous-time random walks on the square lattice.

3 Detection time

In this section we give the proof of Theorem 1.1. We first state a generalization of a well-known
result [24], which we will use in several proofs; we include its proof here for the sake of completeness.

Lemma 3.1. Suppose that u starts from the origin at time 0 and its position at time s is given by
a deterministic function g(s). Let Wg(t) = ∪s≤tB(g(s)− ζ(s), r) be the so-called “Wiener sausage
with drift” up to time t. Then, for any dimension d ≥ 1, the detection probability satisfies

P [Tdet > t] = exp(−λE [vol(Wg(t))]),

where vol (A) stands for the Lebesgue measure of the set A in R
d.

Proof. Let Φ be the set of points of Π0 that have detected u by time t, that is

Φ = {Xi ∈ Π0 : ∃s ≤ t s.t. g(s) ∈ B(Xi + ζi(s), r)}.
Since the ζi’s are independent we have that Φ is a thinned Poisson point process with intensity
given by

Λ(x) = λP [x ∈ ∪s≤tB(g(s)− ζ(s), r)] ,

where ζ is a standard Brownian motion.

So for the probability that the detection time is greater than t we have that

P [Tdet > t] = exp(−λ
∫

Rd

P [x ∈ ∪s≤tB(g(s)− ζ(s), r)] dx)

= exp(−λE [vol(∪s≤tB(g(s)− ζ(s), r))]) = exp(−λE [vol (Wg(t))]).
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Remark 3.2. The preceding lemma implies that when the motion g of u is random and independent
of the motions of the nodes of the Poisson point process Π0 then

P [Tdet > t] = E [exp(−λE [vol(Wg(t)) | (g(s))s≤t])] .
Remark 3.3. We note that the above proof can be easily generalized to show that the time Tdet(K)
until we detect some point in a compact set K ⊂ R

d satisfies

P [Tdet(K) > t] = exp(−λE [vol (∪s≤t(Kr − ζ(s)))]), (2)

where Kr stands for the r-enlargement of K, i.e. Kr = ∪x∈KB(x, r).

From Lemma 3.1 we see that estimating P [Tdet > t] translates to deriving estimates forE [vol (Wg(t))].
When u does not move (i.e., g ≡ 0), it is well known that in two dimensions [23, 2]

E [vol (W0(t))] =
2πt

log t
(1 + o(1)).

The following Lemma implies that E [vol (Wg(t))] ≥ E [vol (W0(t))] (1− o(1)) for any deterministic
continuous g.

Lemma 3.4. Let ζ be a standard Brownian motion in two dimensions and let g be a deterministic
continuous function, g : R+ → R

2. Let Wg(t) = ∪s≤tB(g(s) − ζ(s), r) be a Wiener sausage with
drift g up to time t. We then have that as t→ ∞

E [vol (Wg(t))] ≥
2πt

log t
(1− o(1)).

Proof. We may write

E [vol(Wg(t))] =

∫

R2

P [y ∈ ∪s≤tB(g(s)− ζ(s), r)] dy =

∫

R2

P
[

τB(y,r) ≤ t
]

dy,

where τA is the first hitting time of the set A by g − ζ. Define

Zy =

∫ t

0
1(g(s)− ζ(s) ∈ B(y, r)) ds,

i.e., the time that the process g − ζ spends in the ball B(y, r) before time t. It is clear by the

continuity of g− ζ that {Zy > 0} = {τB(y,r) ≤ t}. Clearly P [Zy > 0] =
E[Zy]

E[Zy | Zy>0] and for the first

moment we have

E [Zy] =

∫ t

0
P [g(s)− ζ(s) ∈ B(y, r)] ds

=

∫ t

0

∫

B(y,r)

1

2πs
e−

‖z−g(s)‖22
2s dz ds =

∫ t

0

∫

B(0,r)

1

2πs
e−

‖z+y−g(s)‖22
2s dz ds.

For the conditional expectation E [Zy | Zy > 0], if we write τ for the first time before time t that
g − ζ hits the boundary of the ball B(y, r), denoted by ∂B(y, r), then we get

E [Zy | Zy > 0] = E

[∫ t−τ

0
1(g(s + τ)− ζ(s+ τ) ∈ B(y, r)) ds

]

≤ 1 +E

[

∫ (t−τ)∨1

1
1(g(s + τ)− ζ(s+ τ) ∈ B(y, r)) ds

]

≤ 1 + max
x∈∂B(y,r)

∫ t

1

∫

B(y,r)
E

[

1

2πs
e−

‖z−g(s+τ)−x+g(τ)‖22
2s

]

dz ds

≤ 1 +

∫ t

1

∫

B(y,r)

1

2πs
dz ds ≤ 1 + r2

log t

2
.
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So, putting everything together we obtain that

E [vol(Wg(t))] =

∫

R2

E [Zy]

E [Zy | Zy > 0]
dy ≥

∫ t
0

∫

B(0,r)

(

∫

R2
1

2πse
− ‖z+y−g(s)‖22

2s dy

)

dz ds

1 + r2 log t2

=
2πtr2

2 + r2 log t

and hence as t→ ∞
E [vol (Wg(t))] ≥

2πt

log t
(1− o(1)).

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. From Remark 3.2 we have

P [Tdet > t] = E [exp(−λE [vol(Wg(t)) | (g(s))s≤t])] ,

where g is independent of ζ. By Lemma 3.4, we have the upper bound

P [Tdet > t] ≤ exp

(

−2πλ
t

log t
(1− o(1))

)

, as t→ ∞.

So it remains to show the lower bound on this probability for the case when g is a standard Brownian
motion independent of the motions of the nodes of Π0. Letting R = log t, it is clear that

P [Tdet > t] ≥ P
[

u stays in B(0, R) for all s ≤ t, TB(0,R) > t
]

, (3)

where TB(0,R) is the detection time of the ball B(0, R), i.e.,

TB(0,R) = inf{s > 0 : ∃i s.t. B(Xi + ζi(s), r) ∩B(0, R) 6= ∅}.

Since the motions of u and the nodes of Π0 are independent, we get that

P
[

u stays in B(0, R) for all s ≤ t, TB(0,R) > t
]

= P [u stays in B(0, R) for all s ≤ t]P
[

TB(0,R) > t
]

.
(4)

From Remark 3.3 with K = B(0, R) we get

P
[

TB(0,R) > t
]

= exp(−λE [vol (∪s≤tB(0, R + r)− ζ(s))])

and writing ∪s≤t(B(0, R + r) − ζ(s)) = R ∪s≤t B
(

− ζ(s)
R , 1 + r

R

)

and for R large enough we get

that, for all s,

B

(

−ζ(s)
R

, 1

)

⊂ B

(

−ζ(s)
R

, 1 +
r

R

)

⊂ B

(

−ζ(s)
R

, 2

)

.

For any x > 0 we have by Brownian scaling that

E



vol





⋃

s≤t
B

(

−ζ(s)
R

,x

)







 = E






vol







⋃

s′≤ t
R2

B
(

ζ̃(s′), x
)












,

where ζ̃ is a standard Brownian motion. So finally, using the asymptotic expression for the expected
volume of the Wiener sausage in two dimensions [2, 23], i.e., E [vol (∪s≤tB(ζ(s), x))] ∼ 2π t

log t as
t→ ∞, for any x independent of t, we get that

E [vol (∪s≤tB(0, R + r)− ζ(s))] ∼ R22π
t/R2

log t− logR2
∼ 2π

t

log t
.
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Hence,

P
[

TB(0,R) > t
]

= exp

(

−2πλ
t

log t
(1 + o(1))

)

, as t→ ∞.

Thus we only need to lower bound the probability that u stays in the ball B(0, R) for all times
s ≤ t.

For any t ≥ R2 and any dimension d ≥ 1, we have by [4] that

P [u stays in B(0, R) for all s ≤ t] ≥ exp(−ct/R2), (5)

for a positive constant c and hence, since R = log t, we get that

P [Tdet > t] ≥ exp

(

−2πλ
t

log t
(1 + o(1))

)

exp

(

−c t

(log t)2

)

= exp

(

−2πλ
t

log t
(1 + o(1))

)

.

General dimensions and the Wiener sausage

For d = 1, the volume of Wg(t) can be computed from the maximum and minimum values of g− ζ
via the formula

vol (Wg(t)) = 2r +max
s≤t

(g(s)− ζ(s))−min
s≤t

(g(s)− ζ(s)).

Let t⋆ and t⋆ be the random times in the interval [0, t] at which −ζ achieves its maximum and
minimum values respectively. Then we have

E [vol (Wg(t))] ≥ 2r +E [(g(t⋆)− ζ(t⋆))− (g(t⋆)− ζ(t⋆))]

= 2r +E [−ζ(t⋆) + ζ(t⋆)] = E [vol (W0(t))] , (6)

where E [g(t⋆)] = E [g(t⋆)] holds since t⋆ and t⋆ have the same distribution. Thus, for d = 1 the
inequality E [vol (Wg(t))] ≥ E [vol (W0(t))] holds for all fixed t; for d = 2 Lemma 3.4 gives this
inequality only asymptotically as t → ∞.

For dimensions d ≥ 3, the proof of Lemma 3.4 can be used to obtain the following weaker result:
there exists a positive constant c such that

E [vol (Wg(t))] ≥ cE [vol (W0(t))] . (7)

The expected volume of the Wiener sausage with g ≡ 0 is known to satisfy [23, 2]

V0(t) = E [vol (W0(t))] =











√

8t
π + 2r for d = 1

2πt
log t(1 + o(1)) for d = 2

c(d)rd−2t(1 + o(1)) for d ≥ 3,

(8)

where c(d) =
Γ( d

2
−1)

2πd/2 . (For d = 1 the quantity above follows from well-known results for Brow-

nian motion [16]; namely E [maxs≤t ζ(s)] = −E [mins≤t ζ(s)] =
√

2t
π .) Hence plugging (6–8) into

Lemma 3.1 gives an upper bound for P [Tdet > t] when d = 1 and d ≥ 3. Regarding the lower
bound, when g is an independent Brownian motion, the same strategy as in the proof of Theo-
rem 1.1 works for d = 1 and d ≥ 3 provided we set R properly. For d = 1 it suffices to take R = t1/3;
for d ≥ 3 we can set R = r. Then we obtain a positive constant c1 such that, as t→ ∞,

P
[

TB(0,R) > t
]

≥
{

exp
(

−
√

8t
π (1 + o(1))

)

for d = 1

exp
(

−c1rd−2t(1 + o(1))
)

for d ≥ 3.

This together with (4) and (5) give us the following theorem, which holds in all dimensions d ≥ 1.
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Theorem 3.5. Let g be a continuous process in R
d, for d ≥ 1. If g is a deterministic continuous

function, then we have

− 1

λ
logP [Tdet > t] = E [vol (Wg(t))] .

If g is random but independent of the motion of the nodes of Π0, we obtain a positive constant β1
such that as t→ ∞

− 1

λ
logP [Tdet > t] ≥







V0(t) for d = 1
(1− o(1))V0(t) for d = 2

(1− o(1))β1V0(t) for d ≥ 3,

where V0(t) is defined in (8).

If g is a standard Brownian motion, then we obtain a positive constant β2 such that as t→ ∞

− 1

λ
logP [Tdet > t] ≤

{

(1 + o(1))V0(t) for d = 1, 2
(1 + o(1))β2V0(t) for d ≥ 3.

We conclude this section with the following conjecture.

Conjecture 3.6. For d ≥ 2, any fixed t, and any function g, we have that

E [vol (Wg(t))] ≥ E [vol (W0(t))] .

Note that Theorem 3.5 establishes the conjecture for d = 1, and establishes it asymptotically as
t → ∞ for d = 2 provided g is continuous. A related statement for random walks was proved in
[15]; see also [6, Corollary 2.1].

4 Coverage time

In this section we will prove a more general version of Theorem 1.4. Let A be a subset of Rd. For
R ∈ R+ we define the set RA = {Ra : a ∈ A}. We recall the definition of Minkowski dimension,
which can be found, e.g., in [13].

Definition 4.1. Let A be a non-empty bounded subset of Rd. For ǫ > 0 let M(A, ǫ) be the smallest
number of balls of radius ǫ needed to cover A:

M(A, ǫ) = min

{

k : A ⊂
k
⋃

i=1

B(xi, ǫ) for some xi ∈ R
d

}

.

The Minkowski dimension of A is defined as

dimM (A) = lim
ǫ→0

logM(A, ǫ)

log ǫ−1
,

whenever this limit exists.

We now proceed to state the more general version of Theorem 1.4.

9



Theorem 4.2. Let A be a bounded subset of R
d of Minkowski dimension α. We have that as

R→ ∞

ETcov(RA) ∼











α2π
8λ2

(logR)2 for d = 1
α

2πλ logR log logR for d = 2
α logR

λc(d)rd−2 for d ≥ 3
and

Tcov(RA)

E [Tcov(RA)]
→ 1 in probability,

where c(d) =
Γ( d

2
−1)

2π
d
2

and Γ stands for the Gamma function.

Proof. In the proof we will drop the dependence on RA from Tcov(RA) and E [Tcov(RA)] to simplify
the notation. We will carry the proof for the case d = 2 only and discuss how to adapt the proof
for other dimensions at the end.

Let M(A, ǫ) = min{k ≥ 1 : ∃ B1, . . . , Bk balls of radius ǫ covering A}; then it is easy to see that
M(RA, ǫ) = M(A, ǫR). By the assumption that A has Minkowski dimension α, for any δ > 0 we
can find ǫ0 small enough such that

ǫ−α+δ ≤M(A, ǫ) ≤ ǫ−α−δ, for any ǫ < ǫ0. (9)

We will first show that

lim sup
R→∞

E [Tcov]
α

2πλ logR log logR
≤ 1.

To do so, we are going to cover the set RA by M =M(RA, ǫ) balls of radius 0 < ǫ < r.

From (9) we get that

( ǫ

R

)−α+δ
≤M ≤

( ǫ

R

)−α−δ
for R sufficiently large. (10)

Let Zt be the number of balls not covered by the nodes at time t. It is clear that {Tcov > t} ⊂
{Zt ≥ 1}. For the first moment of Zt we have

E [Zt] ≤M P [a given ball B(x, ǫ) is not covered by time t] .

The probability that a ball B(x, ǫ) is covered by time t is lower bounded by the probability that
a node of the Poisson point process Π0 has entered the ball B(x, r − ǫ) before time t. Hence,
P [B(x, ǫ) is not covered by time t] is at most the probability that x has not been detected by time
t by a mobile geometric graph with radius r − ǫ. From Lemma 3.1 we obtain

P [B(x, ǫ) is not covered by time t] ≤ e−λE[vol(W0,r−ǫ(t))],

where Wz,ρ(t) = ∪s≤tB(z + ζ(s), ρ).

We are now prove the upper bound. Let δ′ > 0 be small. For t large enough we have that (see
(8))

(1− δ′)2π
t

log t
≤ E [vol(W0,r−ǫ(t))] ≤ (1 + δ′)2π

t

log t
(11)

and hence,

E [Zt] ≤Me
−2πλ(1−δ′) t

log t . (12)

10



By Markov’s inequality we have that P [Tcov > t] ≤ E [Zt]. Also,

E [Tcov] =

∫ ∞

0
P [Tcov > t] dt ≤ t∗(R) +

∫ ∞

t∗(R)
Me

−2πλ(1−δ′) t
log t dt, (13)

where t∗(R) satisfies

M exp

(

−2πλ(1− δ′)
t∗(R)

log t∗(R)

)

= 1 and t∗(R) > e, for sufficiently large R. (14)

We claim that the last integral appearing in (13) is o(t∗(R)). To see this set c = 2πλ(1 − δ′) and
use a change of variable, x = t

log t , which gives dx
dt ≥ 1

2 log t ≥ 1
4 log x for t large enough. Hence setting

x∗ =
t∗(R)

log t∗(R)
the integral is upper bounded by

∫ ∞

x∗

4M(log x)e−cx dx ≤ c′(1/x∗ + log x∗) = o(t∗(R)).

So we finally obtain that
E [Tcov] ≤ t∗(R)(1 + o(1)), as R→ ∞.

From (14) and (10) we get

(α− δ) log
R

ǫ
≤ c

t∗(R)
log t∗(R)

≤ (α+ δ) log
R

ǫ
for R large enough,

and thus we conclude that

lim sup
R→∞

E [Tcov]
α

2πλ logR log logR
≤ 1,

which follows by letting δ and δ′ go to 0.

We now proceed to show the lower bound

lim inf
R→∞

E [Tcov]
α

2πλ logR log logR
≥ 1.

To do so, we are going to use the equivalent definition of Minkowski dimension involving packings
[13, Chapter 5]. Letting

K(A, ǫ) = max{k ≥ 1 : ∃ B1, · · · , Bk disjoint balls of radius ǫ centered in A},

it is clear that K(RA, ǫ) = K(A, ǫR ). For δ > 0 there exist K = K(RA, 1) disjoint balls with centers
in RA and radius 1 satisfying

Rα−δ ≤ K ≤ Rα+δ, for R large enough.

So, for R large enough, we can pack the set RA with points x1, · · · , xK (the centers of the balls)
that are at distance at least 2 from each other. Let Ut denote the number of centers x1, · · · , xK
that have not been detected by time t. Obviously we have that {Tcov > t} ⊃ {Ut ≥ 1}.
Recall that the Wiener sausage Wz,r(t) = ∪s≤tB(z+ ζ(s), r) in two dimensions satisfies, for δ′ > 0,

(1− δ′)2π
t

log t
≤ E [vol (Wz,r(t))] ≤ (1 + δ′)2π

t

log t
, for t large enough. (15)

11



Let ǫ > 0 be small and let t∗ = t∗(R) > e satisfy the equation

t∗

log t∗
=

α− ǫ− δ

2πλ(1 + δ′)
logR. (16)

Applying the second moment method to the random variable Ut∗ we obtain

P [Tcov > t∗] ≥ (E [Ut∗ ])
2

E
[

U2
t∗
] ,

so in order to obtain a lower bound for P [Tcov > t∗] it suffices to lower bound the first moment of
Ut∗ and upper bound its second moment. We will show that P [Tcov > t∗] ≥ 1

1+o(1) , hence we will

get that E [Tcov] ≥ t∗ 1
1+o(1) .

We have that E [Ut∗ ] =
∑K

i=1 P [xi not detected by time t∗], and using Lemma 3.1 we obtain that

P [xi not detected by time t∗] = exp(−λE [vol(Wxi)]),

where Wx =Wx,r(t
∗) =

⋃

s≤t∗ B(x+ ζ(s), r).

Obviously E [vol(Wx)] is independent of x, and hence we get that

E [Ut∗ ] = K exp(−λE [vol(W0)]). (17)

Now, for the second moment of Ut∗ we have

E
[

U2
t∗
]

=

K
∑

i=1

∑

j 6=i
P [xi, xj not detected by time t∗] +E [Ut∗ ] (18)

and using Remark 3.3 we get that

P [xi, xj not detected by time t∗] = exp(−λE
[

vol(Wxi ∪Wxj)
]

).

(Note that the two Wiener sausages Wxi and Wxj use the same driving Brownian motion.)

Writing
vol(Wxi ∪Wxj) = vol(Wxi) + vol(Wxj )− vol(Wxi ∩Wxj),

equation (18) becomes

E
[

U2
t∗
]

≤ exp (−2λE [vol(W0)])
N
∑

i=1

∑

j 6=i
exp(λE

[

vol(Wxi ∩Wxj )
]

) +E [Ut∗ ] . (19)

Thus it remains to upper bound E
[

vol(Wxi ∩Wxj)
]

for all i and j. If ‖xi − xj‖2 ≤ (logR)2, then
we may use the bound vol(Wxi ∩Wxj ) ≤ vol(Wxi).

Recall from (16) that t∗(R) = Θ(logR log logR). The idea is that if xi and xj are at distance
greater than (logR)2 apart, then it is very unlikely that the two sets Wxi and Wxj will intersect.
Specifically, when ‖xi−xj‖2 ≥ (logR)2 it is easy to see that the probability that the two sausages,
Wxi and Wxj , intersect is smaller than the probability that a 2-dimensional Brownian motion has
traveled distance greater than 1

2(logR)
2 in t∗ time steps, and this last probability is bounded above

by ce−c(logR)
2
by the standard bound for the tail of a Gaussian.
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When ‖xi − xj‖2 ≥ (logR)2, writing S1 = B(xi, R) for the ball of radius R centered at xi and
defining inductively Sk = B(xi, 2

k−1R) \ B(xi, 2
k−2R) for all k ≥ 2, we can split the volume of

Wxi ∩Wxj as follows:

E
[

vol(Wxi ∩Wxj)
]

=

∞
∑

n=1

E
[

vol(Wxi ∩Wxj ∩ Sn)
]

≤ cπR2e−c(logR)
2
+

∞
∑

n=2

c′22nR2e−c
′22nR ≤ c′′R−M ,

where c, c′, c′′ and M are all positive constants. The first part of the first inequality follows from
the discussion above, namely that if the intersection is nonempty, then the Brownian motion must
have traveled distance greater than 1

2(logR)
2 in less than t∗ steps. If this has happened, then we

simply bound the intersection of the two Wiener sausages in the ball B(x,R) by the volume of
the ball. The second part of the first inequality follows by the same type of argument, since now
in order to have a nonempty intersection in the set Sn, the Brownian motion must have traveled
distance at least 2n−2R in less than t∗ steps, which again is exponentially small.

Finally, the sum appearing in (19) is bounded above by

K
∑

i=1

∑

j 6=i
1(‖xi − xj‖2 ≤ (logR)2)eλE[vol(W0)] +

K
∑

i=1

∑

j 6=i
1(‖xi − xj‖2 > (logR)2)ec

′′λR−M
. (20)

By (15) and the definition of t∗ given in (16) we get that (20) is bounded from above by

c1K(logR)4Rα−δ−ǫ +K2ec
′′λR−M

and hence

E
[

U2
t∗
]

≤ exp(−2λE [vol(W0)])
(

c1K(logR)4Rα−δ−ǫ +K2ec
′′λR−M

)

+E [Ut∗ ] . (21)

Therefore, putting all the estimates together we get that

P [Ut∗ > 0] ≥ (E [Ut∗ ])
2

E
[

U2
t∗
] ≥ 1

ec′′λR−M + 1
K ((logR)4Rα−δ−ǫ + eλE[vol(W0)])

.

Using the lower bound K ≥ Rα−δ, the upper bound for the expected volume from (15) and the
definition (16) of t∗, we deduce that

P [Ut∗ > 0] ≥ 1

1 + o(1)
,

and thus E [Tcov] ≥ 1
1+o(1) t

∗. Since t∗ satisfies (16), we deduce that

lim inf
R→∞

E [Tcov]
α

2πλ logR log logR
≥ 1− ǫ

α − δ
α

1 + δ′

and hence, letting ǫ, δ and δ′ go to 0, we get that

lim inf
R→∞

E [Tcov]
α

2πλ logR log logR
≥ 1.
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So, we have shown that

E [Tcov] ∼
α

2πλ
logR log logR, as R→ ∞. (22)

Now, for d = 2 it only remains to show the last part of the theorem, namely that Tcov
E[Tcov ]

converges
to 1 in probability as R→ ∞. For any γ > 0 we have that

P

[∣

∣

∣

∣

Tcov
E [Tcov]

− 1

∣

∣

∣

∣

> γ

]

= P [Tcov > (1 + γ)E [Tcov]] +P [Tcov < (1− γ)E [Tcov]]

≤ E
[

Z(1+γ)E[Tcov ]

]

+P [Tcov < (1− γ)E [Tcov]] .

From (12) and the definition of M we have that

E [Zt] ≤ Rα+δ exp

(

−2πλ(1− δ′)
t

log t

)

.

Plugging in t = (1 + γ)E [Tcov], using (22) and taking δ′ sufficiently small gives that

E
[

Z(1+γ)E[Tcov ]

]

→ 0, as R→ ∞.

For ǫ, δ, δ′ small enough we get that (1− γ)E [Tcov] < t∗, so

P [Tcov < (1− γ)E [Tcov]] ≤ P [Tcov ≤ t∗] ≤ P [Ut∗ = 0] ≤ 1− (E [Ut∗ ])
2

E
[

U2
t∗
] = o(1).

Hence we get the desired result that

P

[∣

∣

∣

∣

Tcov
E [Tcov]

− 1

∣

∣

∣

∣

> γ

]

→ 0, as R→ ∞.

For dimensions d 6= 2, the same arguments carry through by employing the proper expression for
the expected volume of the Wiener sausage given in (8). Then, we need to set t⋆(R) and t⋆(R)
correspondingly. From (14) and (16), it suffices to set t⋆ to satisfy

exp

(

λ(1− δ′)

√

8t⋆(R)

π

)

=M for d = 1

exp
(

λ(1− δ′)c(d)rd−2t⋆(R)
)

=M for d ≥ 3,

and t⋆ to satisfy

λ(1 + δ′)

√

8t⋆(R)

π
= (α− ǫ− δ) logR for d = 1

λ(1 + δ′)c(d)rd−2t⋆(R) = (α− ǫ− δ) logR for d ≥ 3.

Remark 4.3. While the limit defining Minkowski dimension in Definition 4.1 may not exist, the
corresponding lim sup is denoted by dimM (A) and always exists. The proof of Theorem 4.2 also
shows that for d = 2

lim sup
R→∞

E [Tcov(RA)]
1

2πλ logR log logR
= dimM (A)

and similarly for lim inf and other dimensions.

Remark 4.4. The estimates in the proof of Theorem 4.2 actually imply that a.s. Tcov(RA)
E[Tcov(RA)]

→ 1
as R→ ∞.
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5 Percolation time

In this section we give the proof of Theorem 1.6. We will observe the process (Gi)i≥0 in discrete
time steps i = 0, 1, . . . in order to be able to apply a multi-scale argument. For a nonnegative
integer i we define the event Ji that u does not belong to the infinite component at time i; more
formally,

Ji = {u /∈ ∪y∈C∞(i)B(y, r)}.
Then it is easy to see that, for all t, we have

P [Tperc > t] ≤ P
[

∩⌊t⌋
i=0Ji

]

.

We define QL to be the cube with side length L centered at the origin and with sides parallel to
the axes of Rd. We tessellate QL into subcubes of side length ℓ < L , which we call cells. We now
state two key propositions that lie at the heart of our argument.

The first proposition says that, provided every cell of the tessellation contains sufficiently many
nodes, then we can couple the positions of these nodes after sufficiently many steps with the nodes
of an independent Poisson point process of only slightly smaller intensity on a smaller cube. We
prove this proposition in Section 5.1.

Proposition 5.1. Fix K > ℓ > 0 and consider the cube QK tessellated into cells of side length
ℓ. Let Φ0 be an arbitrary point process at time 0 that contains at least βℓd nodes at each cell of
the tessellation for some β > 0. Let Φ∆ be the point process obtained at time ∆ from Φ0 after the
nodes have moved according to standard Brownian motion for time ∆. Fix ǫ ∈ (0, 1) and let Ξ be an
independent Poisson point process with intensity (1−ǫ)β. Then there exists a coupling of Ξ and Φ∆

and constants c1, c2, c3 depending only on d such that, if ∆ ≥ c1ℓ2

ǫ2
and K ′ ≤ K− c2

√

∆ log ǫ−1 > 0,
then the nodes of Ξ are a subset of the nodes of Φ∆ inside the cube QK ′ with probability at least

1− Kd

ℓd
exp(−c3ǫ2βℓd).

The second proposition, which we prove in Section 5.2, says that the above condition that each
cell contains sufficiently many nodes is satisfied at an arbitrary constant fraction of time steps with
high probability.

Proposition 5.2. Let t > 0 be a sufficiently large integer and ξ, ǫ ∈ (0, 1) be two constants. Suppose
that the cube QL, for L = t, is tessellated into cells of side length ℓ, where ℓd ≥ C log3 t for some
sufficiently large constant C. For i = 0, 1, . . . let

Ai = {at time i all cells contain ≥ (1− ξ)λℓd nodes of Πi}.

Then there exists a positive constant c such that

P

[

t−1
∑

i=0

1(Ai) ≥ (1− ǫ)t

]

≥ 1− exp

(

−c λt

log3+6/d t

)

. (23)

Proof of Theorem 1.6. Let u be a node that is at the origin at time 0 independent of the nodes of
Π0. We assume that u is non-mobile; the proof can easily be extended to mobile u using translated
cubes that track the motion of u as in [22, Section 4].

15



Let t be an integer sufficiently large. We consider the cube QL, for L = t. Set Ht to be the event
that u has never been in the infinite component from time 0 to t− 1. More formally, we define

Ht = ∩t−1
i=0Ji = ∩t−1

i=0{u /∈ ∪y∈C∞(i)B(y, r)}.

We say that a cube QL has a crossing component at a given time i if among the nodes in QL there
exists a connected component that has a path connecting each pair of opposite faces of QL. (A
path connects two faces of QL if for each face there is at least one node of the path within distance
r of the face.) We then define H̃t to be the event that u has never been within distance r of a
crossing component of QL from time 0 to t − 1. Let Kt be the event that, in each step from 0
to t− 1, there exists a unique crossing component of QL and it intersects the infinite component.
Therefore, if Kt holds and u belongs to a crossing component of QL at some time step from 0 to
t−1, then at the same time step u will also belong to the infinite component. We can then conclude
that Kt ∩ H̃c

t ⊆ Hc
t , which gives

P [Ht] ≤ P[Kc
t ∪ H̃t] ≤ P[Kc

t ] +P[H̃t].

By [20, Theorems 1 and 2] and by taking the union bound over all time steps, we have

P [Kc
t ] ≤ t exp(−c1L). (24)

We will now derive an upper bound for P[H̃t]. Let ξ > 0 be a sufficiently small constant such that
(1− ξ)λ > λc. Take the cube Q2L and tessellate it into cells of side length ℓ, where ℓ = C1 log

3/d t,
for C1 a sufficiently large constant in order to satisfy the assumptions of Proposition 5.2. Call a
cell dense if it contains more than (1 − ξ)λℓd nodes. For δ > 0, let D be the event that all cells
inside Q2L are dense for at least (1− δ)t time steps. Applying Proposition 5.2 we obtain a constant
c2 such that

P [D] ≥ 1− exp

(

−c2
λt

log3+6/d t

)

.

We use the event D to obtain an upper bound for P[H̃t] via

P[H̃t] ≤ P[H̃t ∩D] +P[Dc] ≤ P[H̃t ∩D] + exp

(

−c2
λt

log3+6/d t

)

. (25)

On the event D, by definition, we can find a collection S of (1− δ)t time steps for which all cells of
side length ℓ are dense inside the cube Q2L. We set ∆ = C2ℓ

2 for some sufficiently large constant
C2. We define τ1 as the first time step for which all cells of Q2L are dense. We now define τi+1

recursively as the first time step after τi+∆ for which all cells are dense. Obviously, τ1 < τ2 < · · ·
and if we take k = c3t/∆ = c′3t/ log

6/d t for some constant c3, then we can ensure that on D we
have τk ≤ t− 1.

For each i, let Ai be the event that u does not belong to a crossing component of QL at time τi+∆.
Since when D holds we have τk ≤ t− 1, we can write

P[H̃t ∩D] ≤ P

[

k
⋂

i=1

Ai ∩D
]

. (26)

For each i, let Fi be the σ-field induced by the locations of the nodes of Π0 from time 0 to τi. We
now claim that for t sufficiently large there exists a positive constant c4 such that

P [Ai | Fi] < e−c4 . (27)
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We will define two events E1, E2 such that for any F ∈ Fi we have

P [Ai | F ] ≤ P [Ec
1 | F ] +P [Ec

2 | F ] . (28)

Take ǫ > 0 sufficiently small so that (1 − ǫ)(1 − ξ)λ > λc, and let Ξ be an independent Poisson
point process of intensity (1− ǫ)(1 − ξ)λ. We define the events

E1 = {u belongs to a crossing component of Ξ in QL} and

E2 = {∃ a coupling of Ξ and Πτi+∆ so that Ξ ⊂ Πτi+∆ in QL},

where “Ξ ⊂ Πτi+∆ in QL” means that the nodes of Ξ that lie inside the cube QL are a subset of
the nodes of Πτi+∆.

Note that when E1 and E2 both hold, then u belongs to a crossing component of QL at time τi+∆,
which implies that Ai does not hold. Since the intensity of Ξ is strictly larger than λc and E1 is
independent of F by construction, we obtain P [E1 | F ] ≥ c5 for some constant c5 ∈ (0, 1) by [20,
Theorem 1].

All cells are dense at time τi, by the definition of τi. Taking K and K ′ appearing in Proposition 5.1
to be K = 2L and K ′ = L, we see by the choice of ∆ that for large enough t the condition for K ′

in Proposition 5.1 is satisfied and thus we obtain, uniformly over all F ∈ Fi, that, for a positive
constant c6,

P [Ec
2 | F ] ≤ exp

(

−c6λ log3 t
)

.

Plugging everything into (28) we get

P [Ai | F ] ≤ 1− c5 + exp
(

−c6λ log3 t
)

,

which can be made strictly smaller than 1 by taking t sufficiently large. This establishes (27).

Note that by definition we have τi +∆ < τi+1 for all i, which gives Ai ∈ Fi+1. We can write (26)
as

P[H̃t ∩D] ≤ P
[

∩ki=1Ai

]

=

k
∏

i=2

P
[

Ai

∣

∣

∣
∩i−1
j=1Aj

]

P [A1] ,

which by (27) translates to

P[H̃t ∩D] ≤ exp (−c4k) ≤ exp

(

−c7
t

log6/d t

)

,

for a positive constant c7. Plugging this into (25) concludes the proof of Theorem 1.6.

5.1 Coupling

In this section we give the proof of Proposition 5.1. We begin by stating and proving a small
technical lemma that will be used in the proof.

Lemma 5.3. Assume ǫ ∈ (0, 1) and ρ > 0. Let ∆ ≥ 16d2ρ2/ǫ2 and R ≥ 2
√

d∆ log(8dǫ−1). Define

g(z) =
1

(2π∆)d/2
exp

(

−(‖z‖2 + ρ)2

2∆

)

on R
d. Then we have

∫

B(0,R)
g(z) dz ≥ 1− ǫ/2.
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Proof. Let ψ(x) = 1
(2π∆)1/2

exp
(

− (|x|+ρ)2
2∆

)

, for x ∈ R.

Note that
∑d

i=1(|zi|+ ρ)2 = ‖z‖22 + 2ρ‖z‖1 + ρ2d ≥ (‖z‖2 + ρ)2, so

d
∏

i=1

ψ(zi) ≤ g(z), for z = (z1, . . . , zd) ∈ R
d. (29)

Next observe that
∫ ∞

−∞
ψ(x) dx = 1−

∫ ρ

−ρ

1

(2π∆)1/2
exp

(

− y2

2∆

)

dy ≥ 1− 2ρ√
2π∆

≥ 1− ρ√
∆

≥ 1− ǫ

4d
.

By the Gaussian tail bound we have that

∫ ∞

R/
√
d
ψ(x) dx ≤ exp

(

− R2

2d∆

)

≤ ǫ2

64d2
≤ ǫ

8d
,

for any ǫ ∈ (0, 1). Thus
∫ R/

√
d

−R/
√
d
ψ(x) dx ≥ 1 − ǫ

2d . Since [−R/
√
d,R/

√
d]d ⊂ B(0, R), we deduce

from (29) that

∫

B(0,R)
g(z) dz ≥

∫

[−R/
√
d,R/

√
d]d

d
∏

i=1

ψ(zi) dz ≥
(

1− ǫ

2d

)d
≥ 1− ǫ/2.

We now proceed to the proof of Proposition 5.1.

Proof of Proposition 5.1. We will construct Ξ via three Poisson point processes. We start by
defining Ξ0 as a Poisson point process over QK with intensity (1−ǫ/2)β. Recall that Φ0 has at least
βℓd nodes in each cell of QK . Then, in any fixed cell, Ξ0 has fewer nodes than Φ0 if Ξ0 has less than
βℓd nodes in that cell, which by a standard Chernoff bound (cf. Lemma A.1) occurs with probability

larger than 1− exp
(

− ǫ′2(1−ǫ/2)βℓd
2 (1− ǫ′/3)

)

for ǫ′ such that (1 + ǫ′)(1− ǫ/2) = 1. Since ǫ ∈ (0, 1)

we have ǫ′ ∈ (ǫ/2, 1), and the probability above can be bounded below by 1 − exp
(

−cǫ2βℓd
)

for
some constant c = c(d). Let {Ξ0 � Φ0} be the event that Ξ0 has fewer nodes than Φ0 in every cell
of QK . Using the union bound over cells we obtain

P [Ξ0 � Φ0] ≥ 1− Kd

ℓd
exp(−cǫ2βℓd). (30)

If {Ξ0 � Φ0} holds, then we can map each node of Ξ0 to a unique node of Φ0 in the same cell. We
will now show that we can couple the motion of the nodes in Ξ0 with the motion of their respective
pairs in Φ0 so that the probability that an arbitrary pair is at the same location at time ∆ is
sufficiently large.

To describe the coupling, let v′ be a node from Ξ0 located at y′ ∈ QK , and let v be the pair of v′

in Φ0. Let y be the location of v in QK , and note that since v and v′ belong to the same cell we
have ‖y − y′‖2 ≤

√
dℓ. We will construct a function g(z) that is smaller than the densities for the

motions of v and v′ to the location y′ + z, uniformly for z ∈ R
d. That is,

g(z) ≤ 1

(2π∆)d/2
exp

(

−max{‖z‖22, ‖y′ + z − y‖22}
2∆

)

(31)
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for all z ∈ R
d.

To this end we set

g(z) =
1

(2π∆)d/2
exp

(

−(‖z‖2 +
√
dℓ)2

2∆

)

. (32)

Note that this definition satisfies (31) since by the triangle inequality ‖y′+z−y‖2 ≤ ‖y′−y‖2+‖z‖2
and ‖y′ − y‖2 ≤

√
dℓ. Define ψ = 1 −

∫

Rd g(z) dz. Then, with probability 1 − ψ we can use the

density function g(z)
1−ψ to sample a single location for the position of both v and v′ at time ∆, and

then set Ξ′
0 to be the Poisson point process with intensity (1−ψ)(1−ǫ/2)β obtained by thinning Ξ0

(i.e., deleting each node of Ξ0 with probability ψ). At this step we have crucially used the fact that
the function g(z) in (32) is oblivious of the location of v and, consequently, is independent of the
point process Φ0. (If one were to use the maximal coupling suggested by (31), then the thinning
probability would depend on Φ0, and Ξ′

0 would not be a Poisson point process.)

Let Ξ′
∆ be obtained from Ξ′

0 after the nodes have moved according to the density function g(z)
1−ψ .

Thus we are assured that the nodes of the Poisson point process Ξ′
∆ are a subset of the nodes of

Φ∆ and are independent of the nodes of Φ0, where Φ∆ is obtained by letting the nodes of Φ0 move
from time 0 to time ∆.

By Lemma 5.3 we get that if ∆ and K −K ′ are large enough, then the integral of g(z) inside the
ball B = B(0, (K − K ′)/2) is larger than 1 − ǫ/2. (We are interested in the ball B since for all
z ∈ QK ′ we have z +B ⊂ QK .)

When {Ξ0 � Φ0} holds, Ξ′
∆ consists of a subset of the nodes of Φ∆. Note that Ξ′

∆ is a non-
homogeneous Poisson point process over QK . It remains to show that the intensity of Ξ′

∆ is strictly
larger than (1−ǫ)β in QK ′ so that Ξ can be obtained from Ξ′

∆ via thinning; since Ξ′
∆ is independent

of Φ0, so is Ξ.

For z ∈ R
d, let µ(z) be the intensity of Ξ′

∆. Since Ξ′
0 has no node outside QK , we obtain for any

z ∈ QK ′ ,

µ(z) ≥ (1− ψ)(1 − ǫ/2)β

∫

z+B

g(z − x)

1− ψ
dx = (1− ǫ/2)β

∫

B
g(x) dx,

where the inequality follows since z + B ⊂ QK for all z ∈ QK ′ . From Lemma 5.3, choosing
the constants c1 and c2 sufficiently large we have

∫

B g(x) dx ≥ 1 − ǫ/2. We then obtain µ(z) ≥
(1− ǫ/2)2β ≥ (1− ǫ)β, which is the intensity of Ξ. Therefore, when {Ξ0 � Φ0} holds, which occurs
with probability given by (30), the nodes of Ξ are a subset of the nodes of Φ∆, which completes
the proof of Proposition 5.1.

5.2 Density

In this section we prove Proposition 5.2 using a multi-scale argument. Since the argument is rather
involved, we begin with a high-level overview.

Proof overview

Our goal is to show that if we tessellate the cube QL, with L = t, into cells of volume of order
(log t)c, then the probability that all cells contain sufficiently many nodes for a fraction 1− ǫ of the
time steps is at least the expression given in Proposition 5.2.

We start at scale 1 with the cube QL1 where L1 > L. We tessellate QL1 into cells that are so large
that we can easily show that with very high probability during all time steps all these cells contain
sufficiently many nodes. We refer to this as the event that “the density condition is satisfied at
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QLj-1
QLj

(a) (b)

j-1

Lj-1Lj

(c)

j

QLj-1

QLj

Figure 1: (a) The cube QLj−1 and the smaller cube QLj obtained when going from scale j − 1 to
scale j. (b) The tessellation of QLj−1 into cells of side length ℓj−1. (c) The finer tessellation of QLj

into cells of side length ℓj < ℓj−1.

all steps for scale 1.” Then, when going from scale j − 1 to scale j, we take a smaller cube QLj

with Lj < Lj−1, and tessellate it into cells that are smaller than the cells at the previous scale (see
Figure 1). We define the density condition for scale j at a given time step as the event that all the
cells at scale j contain a number of nodes that is sufficiently large but strictly smaller than the one
used for the density condition for scale j − 1. Since this density requirement becomes less strict
when going from scale j−1 to scale j, we will be able to show that the density condition for scale j
is satisfied for a large fraction of the time steps at which the density condition is satisfied for scale
j − 1. We repeat this procedure until we obtain, at the last scale, the cube QL and cells of side
length ℓ.

The importance of the multi-scale approach is that it allows us to recover quickly from instances
of low density, i.e., if the density condition holds in scale j − 1 but fails (at some time) in scale j,
there are enough nodes nearby to recover density shortly thereafter.

We now proceed to the detailed argument.

Full proof

Let κ be the number of scales; we will see in a moment that κ = O(log t) will suffice. Let L1 >
L2 > · · · > Lκ = L such that L1 = t2 and Lκ = t.

Let ℓ1 > ℓ2 > · · · > ℓκ = ℓ. At scale j, we consider the cube QLj and tessellate it into cells of
side length ℓj (see Figure 1(b–c)). We say that a cell is dense at a given time step for scale j if it
contains more than (1− ξj)λℓ

d
j nodes at that step, where the ξj satisfy

ξ

2
= ξ1 < ξ2 < · · · < ξκ = ξ and ξj − ξj−1 =

ξ

2(κ − 1)
, for all j.

We start by analyzing the event that all cells are dense for scale 1 during all time steps, which we
denote by D1. The next lemma shows that D1 occurs with very high probability.

Lemma 5.4. If ℓd1 > C log t for some large enough constant C, then there exists a constant c such
that

P [D1] ≥ 1− exp
(

−cλℓd1
)

.

Proof. For any fixed time i and cell k, the number of nodes in k at time i is given by a Poisson
random variable with mean λℓd1. Then, using a Chernoff bound (cf. Lemma A.1), we obtain that
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scale j-1

∆j-1

scale j

 mj-1 

 mj 

∆j-1 ∆j-1 ∆j-1

 mj  mj  mj 

Figure 2: Illustration for how 1 time interval of scale j − 1 gives 4 subintervals of scale j.

there are more than (1 − ξ1)λℓ
d
1 nodes in that cell at that time step with probability larger than

1− exp(−ξ21λℓd1/2). The number of cells inside QL1 is O(t2d) by our choice of L1 and ℓ1. The proof
is completed by taking the union bound over all cells and time steps, and using the assumption on
ℓ1.

We will need to disregard some time steps when going from one scale to the next. During this
discussion it will be useful to refer to Figure 2. Let sj be the number of time steps considered
for scale j. We start with s1 = t so that at scale 1 all time steps are considered; we will have
s1 > s2 > · · · > sκ. For each scale j, we will split time into intervals of mj consecutive time steps.
We start with m1 = t, so that at scale 1 we have only one time interval of length t.

In each interval [a, a+mj−1) at scale j− 1 we consider the following four separated subintervals of
length mj (see Figure 2):

[a+ k∆j−1 + (k − 1)mj , a+ k∆j−1 + kmj), for k = 1, 2, 3, 4, (33)

where

mj =
mj−1 − 4∆j−1

4
. (34)

We will set the ∆j in a moment. We skip ∆j−1 steps in order to allow the nodes to move far
enough and enable the application of the coupling from Proposition 5.1. Note that this gives

sj = sj−1

(

1− 4∆j−1

mj−1

)

.

For a given scale j, we say that a time interval is dense if all cells are dense during all the time
steps contained in this time interval, i.e., each cell contains more than (1− ξj)λℓ

d
j nodes at all time

steps.

Let 0 = ǫ1 < ǫ2 < · · · < ǫκ = ǫ satisfy ǫj − ǫj−1 =
ǫ

κ−1 . For each scale j ≥ 1, we define the event

Dj = {a fraction of at least ≥
(

1− ǫj
2

)

time intervals of scale j are dense}. (35)

If Dκ holds, the number of time steps for which all cells are dense for the last scale κ is at least

(

1− ǫκ
2

)

sκ =
(

1− ǫκ
2

)

s1

κ−1
∏

j=1

(

1− 4∆j

mj

)

≥
(

1− ǫ

2

)

t



1−
κ−1
∑

j=1

4∆j

mj



 . (36)

Since we are aiming to obtain (1− ǫ)t time steps for which the density condition is satisfied for the
last scale, we set ∆j to satisfy

∆j

mj
=

ǫ

8κ
(37)
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for all j. The value of ∆j must be sufficiently large to allow nodes to move over a distance ℓj. We
then define ℓj by

∆j = C ′ℓ2jκ
2, (38)

where C ′ is a sufficiently large constant.

From (34), (37) and (38), we obtain

ℓ2j
mj

=
ǫ

8C ′κ3
and ℓj+1 = ℓj

√

1

4
− ǫ

8κ
. (39)

Since m1 = t, we get that ℓ21 = ǫ
8C′κ3

t ≤ ǫ
8C′ t and since we want to get ℓdκ = ℓd ≥ C(log t)3, it is

easy to see that κ = O(log t) is sufficient.

For any time step i, let Fi be the σ-field induced by the locations of the nodes of Π0 from time 0
up to time i.

Lemma 5.5. Let A = [a, a+mj) be a time interval considered in scale j. We write b = a−∆j−1

and E = {at time b all cells are dense for scale j − 1}. Let ℓd ≥ C(log t)3 for some sufficiently
large constant C > 0. Then there exists a constant c such that

P [A not dense, E | Fb] ≤ exp
(

−cλℓdj/κ2
)

.

Proof. For any F ∈ Fb such that F ∩ E = ∅ the lemma clearly holds. We then take F ∩ E 6= ∅
and give an upper bound for P [A not dense | E,F ]. Let Φb be the point process obtained at time
b after conditioning on F ∩ E. We first fix a time w ∈ A and derive an upper bound for

P [at time w not all cells are dense for scale j | E,F ] .

Since we condition on E, all cells are dense for scale j − 1 at time b. We now set δ such that
(1 − δ)2(1 − ξj−1) = 1 − ξj , which implies δ = Θ(ξj − ξj−1). We also choose a constant c and the
constant C ′ appearing in the definition of ∆j in (38) so that, setting

Lj ≤ Lj−1 − c

√

∆j−1 log
1

δ
, (40)

allows us to apply Proposition 5.1 with K = Lj−1 and K ′ = Lj. Thus we obtain a fresh Poisson
point process Ξ with intensity (1− δ)(1 − ξj−1)λ that can be coupled with Φw (which is the point
process obtained at time w after the points of Φb have moved for time w− b) in such a way that Ξ
is stochastically dominated by Φw inside QLj with probability at least

1− exp
(

−c1δ2(1− ξj−1)λℓ
d
j−1

)

, (41)

for some positive constant c1. We note that the choice of L1 = t2 and the fact that κ = O(log t)
together with equation (38) gives that it is always possible to choose the Lj’s satisfying (40) and
such that Lκ = t.

A given cell is dense for scale j at time w if Ξ contains at least (1− ξj)λℓdj nodes in that cell, which

by the choice of δ happens with probability at least 1− exp
(

−c2δ2(1− δ)(1 − ξj−1)λℓ
d
j

)

for some

constant c2 (cf. Lemma A.1). The proof is completed by taking the union bound over all cells and
over all time steps in A and using the condition for ℓ.
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We now use Lemma 5.5 to give an upper bound for P
[

Dc
j ∩Dj−1

]

that holds for all j, where Dj

was defined in (35).

Lemma 5.6. If ℓd ≥ C(log t)3 for some large enough C, then there exists a constant c such that
for any j ≥ 2 we have

P
[

Dc

j ∩Dj−1

]

≤ exp

(

−cλt(log t)
3−6/d

κ6

)

.

Proof. If Dj−1 happens, then there are at least
(

1− ǫj−1

2

) sj−1

mj−1
dense time intervals for scale j− 1.

When we go to scale j, these intervals will give us

4
(

1− ǫj−1

2

) sj−1

mj−1
(42)

time intervals that we will consider for scale j. On the other hand, if the event Dc
j holds, then

there are less than
(

1− ǫj
2

) sj
mj

(43)

dense intervals for scale j. Let w be obtained by subtracting (43) from (42), that is,

w =
sj
mj

(

ǫj − ǫj−1

2

)

.

Let Z be the number of subintervals [a, a +mj) of scale j that are not dense for scale j, but are
such that the time step a−∆j−1 is dense for scale j − 1. (We call a time step dense if all cells are
dense at that time.) It is easy to see that if both Dj−1 and Dc

j happen, then Z ≥ w.

We can write Z as a sum of sj/mj indicator random variables Ik, one for each time interval of scale
j. Although the Ik’s depend on one another, Lemma 5.5 gives that the probability that Ik = 1 given

an arbitrary realization of the previous k − 1 indicators is smaller than ρj = exp
(

−c1ξ2λℓdj/κ2
)

for some constant c1. Therefore, Z is stochastically dominated by a random variable Z ′ obtained
as a sum of sj/mj i.i.d. Bernoulli random variables with mean ρj . Using a Chernoff bound (cf.
Lemma A.2), we obtain

P
[

Z ′ ≥ w
]

= P

[

Z ′ −E
[

Z ′] ≥ sj
mj

(

ǫj − ǫj−1

2
− ρj

)]

≤ exp

(

− sj
mj

(

ǫj − ǫj−1

2

)(

log

(

ǫj − ǫj−1

2ρj

)

− 1

))

. (44)

Note that ǫj − ǫj−1 =
ǫ

κ−1 and log(ρ−1
j ) = Θ(ξ2λℓdj/κ

2). Also ℓdj ≥ ℓd ≥ C(log t)3 and κ = O(log t),
so we obtain a constant c2 such that

P
[

Z ′ ≥ w
]

≤ exp

(

−c2ξ2λsj
ℓdj
mj

ǫ

κ3

)

.

Recall from (39) that
ℓ2j
mj

= ǫ
8C′κ3

. By (36) and (37) we have that sj−1 = Θ(t) for all j, so we finally

obtain

P
[

Z ′ ≥ w
]

≤ exp

(

−c3
ǫ2ξ2

κ6
λℓd−2
j t

)

for some constant c3 > 0. Using ℓj ≥ ℓ and the assumption on ℓ in the statement of the lemma
completes the proof.
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We are now in a position to prove Proposition 5.2.

Proof of Proposition 5.2. To prove Proposition 5.2, we need to derive an upper bound for
P [Dc

κ]. Note that P [Dc
κ] ≤ P [Dc

κ ∩Dκ−1]+P
[

Dc
κ−1

]

. Applying this inequality recursively for the
term P

[

Dc
κ−1

]

we obtain

P [Dc
κ] ≤

κ
∑

j=2

P
[

Dc
j ∩Dj−1

]

+P [Dc
1] .

Each term in the sum can be bounded using Lemma 5.6 and the last term can be bounded using
Lemma 5.4. The proof is completed since κ = O(log t) and the initial value

ℓ1 =
ǫ

8C ′κ3
t ≥ c1

t

(log t)3
.

6 Broadcast time

In this section we use Theorem 1.6 to prove Corollary 1.7 for a finite mobile network of volume
n/λ.

We may relate the mobile geometric graph model on the torus to a model on R
d as follows. Let Sn

denote the cube Q(n/λ)1/d . The initial distribution of the nodes is a Poisson point process over Rd

with intensity λ on Sn and zero elsewhere. We allow the nodes to move according to Brownian
motion over R

d as usual, and at each time step we project the location of each node onto Sn so
that nodes “wrap around” Sn when they reach the boundary.

Proof of Corollary 1.7. Let t = C log n(log log n)3+6/d for some sufficiently large constant C =
C(d). We define a giant component as a connected component that contains at least two nodes

at distance larger than (n/λ)1/d

4 . It follows from [20, Theorem 2] and the union bound over time

steps that, with probability 1 − e−Θ(n1/d), Gi contains a unique giant component for all integer
i ∈ [0, 2t − 1].

The proof proceeds in two stages. First, we show that for any fixed i ∈ [0, 2t− 1], w.h.p. the giant
component of Gi has at least one node in common with the giant component of Gi+1. This means
that, once the message has reached the giant component, it will reach any node v as soon as v itself
belongs to the giant component. Then we show that, after t steps, all nodes have belonged to the
giant component w.h.p. This implies that broadcast is achieved after 2t steps w.h.p.

To establish the first stage, let ǫ > 0 be sufficiently small so that (1−ǫ)λ > λc. We use the thinning
property to split Πi into two Poisson point processes, Π′

i and Π′′
i , with intensities (1 − ǫ)λ and ǫλ

respectively. Let G′
i and G′

i+1 be the graphs induced by Π′
i and Π′

i+1 respectively. Then with

probability 1− e−Θ(n1/d) both G′
i and G

′
i+1 contain a unique giant component [20, Theorem 2]. We

show that at least one node from Π′′
i belongs to both giant components. For any node v of Π′′

i ,
the probability that v belongs to the giant component of G′

i is larger than some constant c = c(d).
Moreover, using the FKG inequality we can show that v belongs to the giant components of both
G′
i and G

′
i+1 with probability larger than c2. Therefore, using the thinning property again, we can

show that the nodes from Π′′
i that belong to the giant components of both G′

i and G′
i+1 form a

Poisson point process with intensity ǫλc2, since c does not depend on Π′′
i . Hence, there will be at
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least one such node inside Sn with probability 1− e−ǫc
2n, and this stage is concluded by taking the

union bound over time steps i.

We now proceed to the second stage of the proof. We first need to show that the tail bound on
Tperc from Theorem 1.6 also holds when applied to the finite region Sn defined above. Note that
all the derivations in the proof of Theorem 1.6 were restricted to the cube QL1 , where L1 = t2 was
defined in Section 5.2. We have that QL1 is contained inside Sn for all sufficiently large n since
L1 = t2 = O(log2 n(log log n)6+12/d) while Sn has side length (n/λ)1/d. In order to check that the
toroidal boundary conditions do not affect the result, it suffices to observe that, during the time

interval [0, 2t], no node moved distance larger than (n/λ)1/d

2 w.h.p.

Now note that, by a Chernoff bound, G has at most (1 + δ)n nodes with probability larger than
1−e−Ω(n) for any fixed δ > 0. These nodes are indistinguishable, so letting ρ be the probability that
an arbitrary node has percolation time at least t, we can use the union bound to deduce that this
applies to at least one node in G with probability at most (1+δ)nρ. Let v be an arbitrary node. In
order to relate ρ to the result of Theorem 1.6, we can use translation invariance and assume that v
is at the origin. Then, by the “Palm theory” of Poisson point processes [24], ρ is equivalent to the
tail of the percolation time for a node added at the origin, which is precisely P [Tperc > t]. Thus
finally, using Theorem 1.6 we get ρ ≤ exp(−c t

(log t)3+6/d ), which can be made o(1/n) by setting C

sufficiently large in the definition of t.

We then obtain that with probability 1− o(1/n) all nodes of G have been in the giant component
during the time interval [0, t − 1], which implies that at time step t − 1, the nodes of the giant
component contain the message being broadcast. By stationarity, with probability 1 − o(1/n) all
nodes have been in the giant component during the time interval [t, 2t− 1], and thus have received
the message by time 2t. This completes the proof of Corollary 1.7.

Remark 6.1. It is easy to see that the above result also holds in the case where the graph
has exactly n nodes. The proof above shows that, by setting C large enough, we can ensure
P [Tbc > 2t] = o(1/n) for the given value of t. Also, it is well known that a Poisson random
variable with mean n takes the value n with probability p = Θ(1/

√
n). Therefore, for a graph with

exactly n nodes, we have Pr[Tbc < t] = p−o(1/n)
p = 1− o(1/

√
n).
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A Standard large deviation results

We use the following standard Chernoff bounds and large deviation results.

Lemma A.1 (Chernoff bound for Poisson). Let P be a Poisson random variable with mean λ.
Then, for any 0 < ǫ < 1,

P [P ≥ (1 + ǫ)λ] ≤ exp

(

−λǫ
2

2
(1− ǫ/3)

)

,

and

P [P ≤ (1− ǫ)λ] ≤ exp

(

−λǫ
2

2

)

.

Lemma A.2 (Chernoff bound for binomial [1, Corollary A.1.10]). Let X be the sum of n i.i.d.

Bernoulli random variables with mean p. Then, P [X ≥ np+ a] ≤ exp
(

a− (pn+ a) log
(

1 + a
pn

))

.
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