
Tailoring recursion for complexity

Erich Gr�adel

Lehrgebiet Math. Grundlagen der Informatik

RWTH Aachen

Ahornstr. 55

D-52074 Aachen

Germany

graedel@informatik.rwth-aachen.de

Yuri Gurevich�

EECS Department

University of Michigan

Ann Arbor

MI 48109-2122

USA

gurevich@umich.edu

August 1994

Abstract

We design functional algebras that characterize various complexity classes of global functions.

For this purpose, classical schemata from recursion theory are tailored for capturing complexity.

In particular we present a functional analogue of �rst-order logic and describe algebras of the

functions computable in nondeterministic logarithmic space, deterministic and nondeterministic

polynomial time, and for the functions computable by AC1-circuits.

1 Introduction

The design and investigation of logical languages that capture the major complexity classes has
been (and still is) one of the most important topics in �nite model theory. The modern history
starts with Fagin's theorem [8]: Let L be class of �nite structures of some �xed signature which is
closed under isomorphisms. Then L is in NP if and only if there exists an existential second-order
sentence such that L is precisely the class of �nite models of . But there were earlier relevant
results, most noticably, the characterization of the regular languages by means of monadic second-
order logic [4, 27]. Immerman and Vardi [18, 28] proved that, on ordered structures, the problems
solvable in polynomial time are exactly those de�nable in least �xed-point logic. A similar result was
obtained independently by Livchak [23]. Immerman [17]{[21] systematically studied the problem
of capturing complexity classes by logical languages and came up with logical characterizations for
most popular complexity classes. For instance, logarithmic space complexity classes are captured by
various forms of transitive closure logics [19]. The most important results in this �eld are surveyed
in [14, 21].

These logical characterizations of complexity are model theoretic and based either on fragments
of second-order logic [8, 10] or on extensions of �rst-order logic by additional means to construct
new relations (such as generalized quanti�ers or predicate transformers). They are mostly logics of
relations. Function symbols may appear in the signature, and may be composed to form terms, but

�partially supported by NSF and ONR

1

the rôle of terms is very limited: in most model-theoretic languages we can only construct formulae
from terms, not vice versa (for an exception, see [11]).

However, there is a related, but di�erent approach to capturing complexity by logic, which is
functional in nature and draws more on recursion theory than model theory. Gurevich noticed that
interpreting the classical calculus of primitive recursive functions (resp. recursive functions) over
�nite structures gives precisely the log-space (resp. polynomial time) computable global functions
[12, 14]. A variant of the latter result was obtained earlier by Sazonov [25] in a di�erent context.
Goerdt [9] and Libo Lo [24] extended Gurevich's results to higher complexity classes such as Pspace
and Exptime, and Compton and La
amme [7] constructed a functional algebra for NC1 in the
same spirit.

This paper develops the functional approach further. We design functional algebras that char-
acterize various complexity classes. We obtain new characterizations of the functions computable
within polynomial space, deterministic and nondeterministic polynomial time, nondeterministic
log-space and the functions computable by AC1-circuits. (Computability by AC1-circuits can be
seen as a reasonable de�nition for functions computable in parallel with polynomial hardware and
logarithmic time). We also de�ne an algebra that provides a functional analogue to �rst-order
logic, using maximum and minimum operators instead of Boolean connectives or quanti�ers. Our
algebras are constructed in a rather uniform way, with schemata using the max and min operators.
Thus, this paper can also be seen as a study of the expressive power of these operators.

The nondeterministic classes are the more challenging for the functional approach. A priori, it
is not even clear what the function is computed by agiven nondeterministic algorithm. We have
rediscovered a de�nition �rst used by Krentel [22]: The value of the function in question at a given
input is the maximum over all outputs produced by the algorithm on that input. In particular we
present an algebra that captures the functions computed in this way in nondeterministic polynomial
time. As an example, we construct a function in our algebra that computes the clique number of
a given graph. Our approach permits one to deal with NP optimization problems (which provided
one of the main motivations to study the notion of NP-completeness in the �rst place) in a direct
way: the cost of optimal solutions can be expressed without any reference to the related decision
problem.

Remark. It should be noted that there exists another approach to characterizing complexity
using functional algebras. In fact, one of the very �rst papers on polynomial-time computability,
by Cobham [6], constructs an algebra of polynomial-time computable functions. The distinction
between the two approaches is this: Cobham and his followers (see [3, 5] and references there)
deal with algebras of number-theoretic functions over N. One of their goals is to relate complexity
theoretic statements to proof-theoretic assertions about weak systems of arithmetic. Our algebras
instead consist of global functions (see section 2) over �nite structures.

2 Global functions

A signature is a �nite set of relation symbols and function symbols. Constants are considered as
functions of arity 0.

De�nition 2.1 A global function f of arity r and co-arity s on a class F(�) of �-structures asso-
ciates with every A 2 F(�) a function fA : Ar ! As, where A is the universe of A.

2

Let O be the class of �nite ordered structures, i.e. structures whose universe is an initial
segment n = f0; : : : ; n� 1g of N and whose signature contains a binary relation �, interpreted as
the canonical order relation on n, a unary function S, interpreted as the usual successor function
(subject to the convention that S(n � 1) = n � 1), and two constants 0 and e, interpreted as the
�rst and the last element of the universe. Let O(�) be the class of structures in O with signature
�.

Proviso. In this paper:

� Structures are �nite ordered structures

� Every global function is a global function on some O(�).

Remark. Usually it is required that a global function be abstract, i.e., invariant under isomor-
phisms. However, in this paper we deal with rigid structures only and thus do not need the
abstractness property.

Functions computed by nondeterministic algorithms. While there is a standard notion of the
set of inputs accepted by a nondeterministic algorithm, it is not clear what the function computed
by a given nondeterministic algorithm should be, since di�erent computations on the same input
may produce di�erent outputs. One possibility is to require that all successful computations on a
given input produce the same output. But this creates the undecidable problem whether a given
nondeterministic algorithm satis�es this condition. Here we adopt a di�erent approach which seems
to �t the spirit of nondeterminism better.

De�nition 2.2 Given a nondeterministic Turing machine M we de�ne fM (x) to be the maximal
output ofM on input x with respect to the lexicographic ordering of strings in the output alphabet
of M . (As usual, to order strings of arbitrary length lexicographically, �rst order them by length
and then lexicographically.) Of course, fM (x) is unde�ned if no computation of M produces any
output.

Function classes de�ned in this way were �rst investigated by Krentel [22]. Note that in the
case thatM is an acceptor, i.e. produces only outputs 0 and 1, the function fM is the characteristic
function of the set accepted by M according to the usual de�nition. We are particularly interested
in global functions computed by nondeterministic algorithms.

De�nition 2.3 For every signature �, F-NLOG(�) denotes the class of all global functions on O(�)
that are computable in nondeterministic logspace in the following sense: There is a nondeterministic
algorithm M , which given (a suitable encoding of) a �nite ordered structure A and a tuple a of
elements of A, computes the value fA(a) using workspace at mostO(logn) where n is the cardinality
of A. Let F-NLOG =

S
� F-NLOG(�).

Remark. The notion of F-NLOG would not change if we required all successful computations
to compute the same value. Indeed, let M be a nondeterministic machine computing f with
logarithmic space according to De�nition 2.2. Then the set

L = f(A; a; b) j fA(a) � bg

3

is in Nlogspace, and by the result of Immerman and Szelepcs�enyi [20, 26], so is its complement.
Consider the algorithm M 0, which, given (A; a), guesses b and then decides whether (A; a; b) 2 L

and (A; a; b+1) 62 L. If yes, thenM 0 produces output b, otherwiseM 0 produces no output. Clearly,
this algorithm uses nondeterministic logspace and each successful computation produces the correct
output. Note that this argument crucially depends on the fact that Nlogspace is closed under
complementation.

3 An algebra for �rst-order logic

We start with constructing a functional algebra with the expressive power of �rst-order logic.

De�nition 3.1 Fix any signature �, containing S;�; 0; e. Let x, y, z, t etc. stand for tuples of
variables. The initial global �-functions are:

(i) The functions named in � and the characteristic functions of the predicates named in �.

(ii) The characteristic function of equality: eq(x; y) equals if x = y then 1 else 0.

(iii) The projections �ki1;:::;ij of arity k and co-arity j, for k; j 2 N and positive i1; : : : ; ij � k.

(iv) The selector function

if-then(x; y) =

�
y if x 6= 0
0 otherwise

The projection �ki1;:::;ij maps the given tuple (x1; : : : ; xk) to (xi1 ; : : : ; xij). In particular, �11 is
the identity function.

Composition is de�ned in the usual way: if h1; : : :hm are functions of the same arity, with
coarities summing up to the arity of g, then we can build the function f = g(h1; : : : ; hm).

The bounded maximum and minimum operators assign to functions f1(x; y), f2(x; z) with the
same coarity the functions

g(x; y; z) = minff1(x; y); f2(x; z)g

h(x; y; z) = maxff1(x; y); f2(x; z)g:

The unbounded maximum and minimum operators build from a function f(x; y) new functions

g(x) = min
y
[f(x; y)]

h(x) = max
y

[f(x; y)]:

De�nition 3.2 The class of �rst-order �-functions is the smallest class of global functions that
contains the initial �-functions and is closed under composition and the (bounded and unbounded)
maximum and minimum operators.

Theorem 3.3 The characteristic function of every �rst-order de�nable global relation is a �rst-
order function. Moreover, a global function is �rst-order if and only if its graph is de�nable in
�rst-order logic.

4

Proof. Let '(x) be a �rst-order formula; the characteristic function F'(x) is built by induction
on the complexity of '. Clearly atomic formulae yield �rst-order functions; conjunction, disjunc-
tion and quanti�ers are described by bounded and unbounded minimum and maximum operators.
Negation is handled as follows:

F:'(x) := eq(F'(x); 0):

To prove the second claim of the theorem, let f(x) be a global function. First, we suppose that
a �rst-order formula '(x; y) de�nes the graph of f . We have proved already that the characteristic
function F'(x; y) is �rst-order. To prove that f itself is �rst-order, we use the selector function:

f(x) = max
y

[if-then(F'(x; y); y)]:

Conversely, suppose that f is �rst-order. We have to describe the equation f(x) = y by a
�rst-order formula 'f(x; y). For initial functions this is obvious. If f is built by composition of
other functions, we can quantify over intermediate values: if f(x) = g(h1(x); h2(x)), then

'f(x; y) � (9z1)(9z2)('h1(x; z1) ^ 'h2(x; z2) ^ 'g(z1; z2; y)):

Finally the maximum and minimum operators are described in the obvious way. For instance,
if f(x) = max

y
g(x; y) then

'f(x; z) � (9y)'g(x; y; z)^ (8y)(8z0)('g(x; y; z
0)! z0 � z):

Thus, on ordered structures, the class of �rst-order functions indeed provides a functional
analogue to �rst order logic.

This new presentation of �rst-order logic suggests to extend the class of �rst-order global func-
tions in many ways that are natural in the functional approach. Let us mention one such extension:

For every �, let I+(�) be the collection of initial global functions of signature � together with

r(x) := e� x:

Let F+(�) be the closure of I+(�) under composition and maximum and minimum operators.
In F+ we have a generalized de Morgan identity

max
y
f(x; y) = e�min

y
[e� f(x; y)]:

Note that F+ contains functions that are not �rst-order. Indeed the function

� := max
x

[eq(x; r(x))]

evaluates to 1 precisely on the structures of odd cardinality. Since this property is not expressible
in �rst-order logic even on ordered structures [13], � cannot be �rst-order.

5

4 An algebra for F-NLOG

Gurevich considered in [12, 14] the closure of the initial functions under composition and the well-
known schema for primitive recursion:

f(x; 0) = g(x)

f(x; t+ 1) = h(x; t; f(x; t)):

For given signature �, we denote this class by L(�). Further, L =
S
� L(�). Although a slightly

di�erent class of initial functions is used in [12, 14], it is easy to see that semantically, the class L
remains unchanged.

Gurevich proved

Theorem 4.1 A global function is logspace computable if and only if it is in L.

In this section we present an algebra describing the global functions computable in nondeter-
ministic logspace.

De�nition 4.2 A specialization of a global function F is obtained by identifying certain variables
of F or by setting some of them to 0 or e. The positive �rst-order operations on a class of global
functions are specializations and applications of (bounded and unbounded) max and min operators.

De�nition 4.3 NL(�) is the closure of the class of �rst-order functions of signature � under
positive �rst-order operations and the following recursion schema:

f(x; 0) = f0(x)

f(x; t+ 1) = max
y

[if-then(h(x; y); f(y; t))]:

Further, NL =
S
� NL(�).

Example. The canonical Nlogspace-complete decision problem is Reachability: Given a di-
rected graph with two nodes a and b, decide whether there is a path from a to b. Let edge(x; y) be
the characteristic function of the edge predicate in the graph. Using the schema above, we build
the function

d(x; 0) = eq(x; b)

d(x; t+ 1) = max
y

[if-then(edge(x; y); d(y; t))]:

Obviously d(x; t) evaluates to 1 if there is a path of length t from x to b, and to 0 otherwise. Thus
Reachability is expressed by the global function reach = maxt d(a; t).

Theorem 4.4 F-NLOG = NL.

Proof. We �rst prove that every global function in NL is computable in nondeterministic
logarithmic space. The proof proceeds by induction on the construction of functions f 2 NL.
The only nontrivial case is when f(x; t) is recursively de�ned from NL-functions f0(x) and h(x; t)
using the new recursion schema. By induction hypothesis, there is a nondeterministic algorithm

6

A0 which given a structure A and a tuple x computes fA0 (x) using space O(logn) where n is the
cardinality of A. (Recall that, by the de�nition of nondeterministic computing of functions, if A0

makes a wrong guess then it computes the same or a smaller number, but not a larger number.)
Similarly, there is a nondeterministic algorithm B that computes hA(x; t) in space O(logn).

Given x and t, the desired algorithm A computes fA(x; t) as follows: If t = 0 then A0 is applied
on x. If t > 0 then A guesses y and simulates B to compute a number z � hA(x; y). If z = 0, it
outputs 0. Otherwise A makes the updates x := y and t := t � 1 and (recursively) applies A on
this updated input. Under an arbitrary sequence of guesses A computes a number � fA(x; t) and
A computes exactly fA(x; t) under some sequence of guesses.

Conversely, assume that f is a global function that is computed (according to De�nition 2.3)
by a nondeterministic Turing machine M with space O(logn). As input, M receives a pair (A; a)
where A is an ordered structure over universe n (for some n 2 N), and a a tuple of elements of A.
Without loss of generality, we may assume that every computation ofM ends after precisely nk�1
steps, for some k 2 N.

A con�guration in a computation of M on input (A; a) re
ects the input, the control state of
M , the content of the work tapes, the position of the heads on the input and the work tapes and
the content of the output tape. We call the collection of all these data, with the exception of the
structure A, a reduced con�guration of M . Clearly, every reduced con�guration of M on (A; a)
can be represented by a word of length O(logn). Note that we de�ne both the tuple a and the
content of the output tape to be parts of the reduced con�gurations. We can do this, because M
computes a global function; thus the output of M is (an encoding of) a tuple of elements of n
and thus has logarithmic length. Given that reduced con�gurations of M have logarithmic length,
we can represent them by tuples c = c1; : : : ; cr of �xed length (where ci 2 n). In particular, the
initial reduced con�guration on (A; a) is represented by the tuple a0 = (a; 0; : : : ; 0). Furthermore,
there are standard techniques to write down global functions N; V 2 NL satisfying the following
conditions: For every A

� N is the characteristic function of the next move relation ofM . More precisely NA(c; d) = 1 if
c; d are reduced con�gurations andM can reach d from c in one step; otherwise NA(c; d) = 0.

� V A(c) is the value on the output tape of the reduced con�guration represented by c.

Now let F be the global function of arity r + k, de�ned by the schema

F (c; 0) = V (c)

F (c; t+ 1) = max
d

[if-then(N(c; d); F (d; t))]

If c encodes a reduced con�guration, then FA(c; t) is the maximal content of the output tape
of all con�gurations that are reachable by M in t steps from c. Thus, f(x) = F (x0; e). (Here and
in the sequel, e denotes a tuple e; : : : ; e.)

5 Substitutions and an algebra for Ptime

As we have mentioned above, by interpreting the classical calculus of recursive functions over
ordered �nite structures, we obtain precisely the polynomial-time computable global functions.
Here, we introduce a new schema that also gives the Ptime functions and which generalizes in a

7

nice way to capture the Nptime functions. The crucial feature is that some of the functions are
not necessarily static, but may evolve. We �rst consider a general notion of substitution of global
functions.

De�nition 5.1 Let G be a global function of signature � [fhg, arity r0 and coarity s0 with h of
arity r and coarity s. Let F be a global function of signature � , arity r + k and coarity s. Then

[G where h(x) = F (x; y)]

is the global function of signature �[� , arity r0+k and coarity s0, de�ned on a given (�[�)-structure
A by:

[G where h(x) = F (x; y)]A(z; y) = GB(y)(z)

where B(y) is a structure of signature � [fhg which has the same universe as A and the same
interpretation for symbols in � � fhg but with h interpreted by hB(y)(x) = FA(x; y).

In this paper we restrict attention to the case when � � �[fhg. Furthermore, for describing the
polynomial-time computable functions it su�ces to consider the case where the tuple y is empty,
so that the function obtained by substitution does not depend on more variables than the original
one. In such a case we drop x and write

[G where h = F]:

Example. Let g be a global function on directed graphs, and let edge(x; y) = maxfarc(x; y); arc(y; x)g.
Then the global function [~g = g where arc = edge] assigns to a directed graph G = (n; arc) the
value of g at the corresponding undirected graph G0 = (n; edge).

We now make use of the fact, that substitutions G 7�! [G where h = F] can be iterated if the
substituting function F does again depend on h.

De�nition 5.2 Let FP be the closure of the �rst-order functions under composition, substitution
and the following recursion schema:

F (x; 0) = F0(x)

F (x; t+ 1) = [F where h = G](x; t):

where F0; G are given global functions of signature � and h is one of the function symbols in �. The
signature of the new function is also �. Note that the function h evolves: To compute F (x; t + 1)
we must evaluate F (x; t) with an updated value for h.

Example: The number of connected components of a graph. We construct a function
that assigns to a given undirected graph the number of its connected components. The graphs are
given by the characteristic function of the edge predicate. To do this we use the new recursion
schema to build a function F of signature fedge; hg. By substitution we then obtain the function
[F where h = �11] (of signature fedgeg) whose value on large enough arguments t will be the number
of connected components.

We suppose that we have already constructed (a notation for) the 0-ary function F0 whose value
(for any given h) is the cardinality of the image of h, i.e. F0 = jfx : 9y(h(y) = x)gj. This function
is in L(fhg), i.e. it is de�nable by primitive recursion over the signature fhg. The function h is
updated using the �rst-order function

8

G(z) = maxfh(z);max
y

[if-then(edge(y; z); h(y))]g:

The update h = G de�nes h(z) to be the maximal previous value of h on z itself and all its
neighbours. If we start with h = �11 (the identity function) and iterate this process, then the value
of h(z) will �nally be the maximal node in the connected component of z. The function

F (0) = F0

F (t+ 1) = [F where h = G](t)

has the property that [F where h = �11](t) for large enough t is the number of connected components
of the graph.

Theorem 5.3 A global function is Ptime-computable if and only if it is in FP.

Proof. We �rst show that every function in FP can be evaluated in polynomial time. It is clear
that this holds for �rst-order functions and that the polynomial-time computable functions are
closed under substitution and composition. Suppose that F is given by the recursion schema

F (x; 0) = F0(x)

F (x; t+ 1) = [F where h = G](x; t):

from functions G and F0 which are already known to be polynomial-time computable.
To compute, for given A, a and t, the value of FA(a; t), we update h repeatedly using the

function G and obtain a sequence At;At�1; : : : ;A0 where At = A and Ai�1 = [Ai where h = G].
Note that FA(a; t) = FA00 (a) which can be evaluated in polynomial-time.

To prove the converse, let M be a polynomial time Turing machine which operates on inputs
(A; a) where A is a �nite ordered structure of signature � and a is an i-tuple of elements of A,
and which produces as output a j-tuple b = fA(a) of elements in A. Here i and j are �xed once
and for all. To simplify notation, we will omit a, i.e. we asume that f has arity 0 (which is no
loss of generality since we can incorporate the elements of a as constants into A). It is convenient
to assume that M has an input tape holding a suitable encoding of (A; a), one work tape and a
special output tape of length O(logn). A con�guration of M can be described by a function C(z)
which provides the necessary information about the control state, the head positions, content of
the work tape at cell z, and the current content of the output tape. Furthermore, we assume that
after reaching a �nal con�guration,M does not halt but becomes idle executing an instruction that
does not change the con�guration.

It is a matter of routine to de�ne �rst-order functions C0; N and V with the following properties:

� C0 has signature �, and C
A
0 describes the input con�guration of M on A.

� N has signature �[fCg. If C describes a con�guration ofM on input A, then NA;C describes
the successor con�guration of C.

� V has signature � [fCg. If C describes a con�guration of M on input A, then V A;C is the
value on the output tape at con�guration C (so V is just a simple projection).

We now de�ne a global function F (t) of signature � [fCg by

F (0) = V

F (t+ 1) = [F where C = N](t):

9

We claim that, for any con�guration given by C, F (t) describes the content of the output tape of
M after t steps, starting at C.

For t = 0, this is clear. The value of F (t + 1) is F (t) with C updated to the successor
con�guration of the given C, so the claim follows by induction.

This implies that [F where C = C0](e) describes the output ofM at the end of the computation
on input A.

An alternative schema for the polynomial time computable functions. As we showed in
the proof of Theorem 5.3, the recursion schema

F (x; 0) = F0(x)

F (x; t+ 1) = [F where h = G](x; t)

can be e�ciently evaluated in a top-down fashion: To compute F (x; t), the function h is modi�ed
t times using G, and then F0(x) is evaluated with this updated value for h. There is an alternative
schema which lends itself easily to a bottom-up evaluation:

Given functions f0 of signature � and g of signature � [fhg, a new function f of signature �
is de�ned by

f(x; 0) = f0(x)

f(x; t+ 1) = [g where h(z) = f(z; t)](x):

To evaluate, for a given structure A, the function fA(a; t+1), we have to compute the function
ft(z) = fA(z; t) and evaluate g(a) at the �[fhg-structure (A; ft) (where ft interprets h, of course).
Thus, a natural way to evaluate f is by computing the functions f0; f1; : : : ; ft in a bottom-up
fashion.

It is easy to see that the closure of the �rst-order functions under composition, substitution and
the alternative schema also coincides with the polynomial-time computable global functions.

Indeed, it is obvious that also the alternative schema can be evaluated in polynomial time.
For the converse we assume that F is a global function, of signature � which is computable in
polynomial time by a Turing machine M ; we can use precisely the same functions C0, N and V as
in the proof of Theorem 5.3. Recall that N and V have signature � [fCg. With the alternative
schema we can then build a function f(x; t) of signature � as follows:

f(x; 0) = C0(x)

f(x; t+ 1) = [N where C(z) = f(z; t)](x):

At stage t the function C(z) = ft(z) = f(z; t) describes the con�guration of M at time t in the
same way as in the proof above. Finally, recall that V gives the content of the output tape at a
given con�guration C. Thus

[V where C = f(z; e)]

is the desired description of F .

Exercise. Give direct translations from functions de�ned by the original schema to the alternative
schema and vice versa.

10

6 An algebra for nondeterministic polynomial time

We now generalize the approach of the previous section to obtain a similar description of the global
functions computable in nondeterministic polynomial time. First, it should be noted that the
class of these functions is not closed under arbitrary compositions or substitutions, unless NP is
closed under complementation. Indeed, if F is the characteristic function of a set L 2 NP, then
[eq(f; 0) where f = F] or, equivalently eq(F; 0) is the characteristic function of the complement of
L.

However, substituting [G where f = F] will not take us out of nondeterministic polynomial
time if F is, say, �rst-order. Given a global function G, we say that G0 is obtained by a substitution
of a �rst-order function if

G0 = [G where f = F]

where f is a function symbol in the signature of G and F is �rst-order.

De�nition 6.1 Consider the global functions de�nable by the schema

F (x; 0) = F0(x)

F (x; t+ 1) = max
y

[F where h(z) = G(z; y)](x; t)

where F0 and G are �rst-order functions and h is one of the function symbols in the signature of
F0 and the signature of G. We de�ne FNP to be the closure of these functions under substitutions
of �rst-order functions and under positive �rst-order operations.

The semantics of the function F (x; t) at a given �-structure A can be explained by induction
on t. It is obvious what FA(x; 0) is. For each y in A, the substitution h(z) = G(z; y) de�nes a
function hy(z) = GA(z; y) of z. The value of the function

F 0(y; x; t) = [F where h = hy](x; t)

at structure A is the value of F (x; t) at the structure Ay obtained from A by replaing h with
hy . This de�nes F

A(x; t+ 1). So let us understand F (x; 3) for example. It is the maximum over y
of the function F 0(y; x; 2), that is the maximum over y of F (x; 2) at all structures Ay. And F (x; 2)
at Ay is the maximum over y0 of F (x; 1) at all structures Ay;y0 = (Ay)y0 . And F (x; 1) at Ay;y0 is
the maximum over y00 of F (x; 0) at all structures Ay;y0 ;y00 . In general, F (x; t) at structure A is the
maximum over sequences Y = (y1; ::; yt) of F (x; 0) at all structures AY . Thus to evaluate F (x; t)
at structure A, one can guess a sequence Y = (y1; ::; yt) and evaluate FAY (x; 0). Since the class of
global functions computable in nondeterministic polynomial time is obviously closed under positive
�rst-order operations and under substitutions of �rst-order functions, we obtain

Theorem 6.2 Every global function in FNP can be computed in nondeterministic polynomial time
(in the sense of De�nition 2.2).

Example: The clique number of a graph. In this example, a graph is always an undirected
graph with vertex set n = f0; : : : ; n � 1g. The clique number of a graph G, denoted !(G), is the
size of the largest clique in G. The related decision problem | to decide whether there exists a

11

clique of size k in G | is NP-complete. We show that the global function ! on graphs is in FNP.
For simplicity, we restrict attention to incomplete graphs where !(G) < jGj = n.

Let us be a little bit more precise. By default, the domain of a global function of signature �
is the class of all �nite �-structures. In this case, we consider smaller domains. For every global
function f below, the signature �f of f includes the binary function edge | to be understood as the
characteristic function of the edge predicate | and the domain of f consists of �nite �f -structures
satisfying the following two restrictions:

1. For all x and y, edge(x; y) = edge(y; x), and edge(x; x) = 0.

2. There are distinct x and y such that edge(x; y) = 0.

Let c(x) be a unary function on the vertex set of a graph G = (n; edge). We say that c de�nes
an ordered clique if there exists a clique C = fx1; : : : ; xrg in G such that c(xj) = j for j = 1; : : : ; r
and c(y) = 0 for all y 62 C. We also permit the case where r = 0, i.e. also the function c = 0 de�nes
an ordered clique.

We �rst describe a global �rst-order function g(y; z) of signature fc; edgeg which will be used
to update global functions c(z) that describe ordered cliques. Suppose that c de�nes the clique C
in G, and that y is a vertex of G. Then the function cy de�ned by cy(z) := g(y; z) will de�ne a new
clique

Cy =

�
C [fyg if this happens to be a clique
C otherwise.

Moreover, cy(z) = c(z) for all z, with the following (possible) exception: if y 2 Cy � C then
cy(y) = jCyj. The update function g(y; z) that gives this, is:

g(y; z) = if [y = z ^ c(y) = 0 ^ 8x(c(x) > 0! edge(x; y) = 1)]

then max
x

c(x) + 1 else c(z):

It is not di�cult to see that this is a �rst-order function: Let f(y; z) be the characteristic
function of the �rst-order formula in the brackets. Then

g(y; z) = maxfc(z); if-then(f(y; z);max
x
c(x) + 1)g:

Next, we de�ne a global function F of signature fc; edgeg by the schema

F (0) = max
x
c(x)

F (t+ 1) = max
y

[F where c(z) = g(y; z)](t)

Finally, we de�ne the 0-ary global function

maxclique = [F where c = 0](e)

of signature fedgeg.

Proposition 6.3 For every graph G with !(G) < jGj

maxcliqueG = !(G):

12

This proposition follows immediately from the following lemma that describes the semantic of
F on structures (G; c) where G is a graph and c is a unary function de�ning an ordered clique on
G:

Lemma 6.4 If c de�nes an ordered clique C in G, then

F (G;c)(t) = maxfjC0j : C0 is a clique in G;C � C0 and jC0j � jCj+ tg:

Proof. We proceed by induction on t. For t = 0 the statement is obvious.
By the de�nition of F we obtain

F (G;c)(t+ 1) = max
y
F (G;cy)(t)

where cy(z) = g(G;c)(y; z). Thus, by the construction of g(y; z), the function cy also de�nes an
ordered clique Cy on G, namely Cy = C [fyg, if this happens to be a clique, or Cy = C otherwise.
We can therefore apply the induction hypothesis and obtain

F (G;cy)(t) = maxfjC0j : C0 is a clique in G;Cy � C0 and jC0j � jCyj+ tg:

But this immediately implies

F (G;c)(t+ 1) = maxfjC0j : C 0 is a clique in G;C � C0 and jC0j � jCj+ t+ 1g:

For t = jGj � 1 and c = 0, the lemma implies the proposition.

With the same method, one can de�ne functions in FNP that describe the length of the longest
path, of the longest induced path, of the longest cycle in a graph, and so on.

Theorem 6.5 A global function is computable in nondeterministic polynomial time if and only if
it is in FNP.

Proof. One direction has already been established. The proof of the other direction is analogous
to the proof of Theorem 5.3. The only di�erence is that the function N , which updates the
con�guration function C, depends on an additional parameter y, the nondeterministic choice: If
CA(-) describes a con�guration of the nondeterministic Turing machine M on input A, and y is
one of the possible choices of M , then NA;C(- ; y) describes the corresponding next con�guration.
The functions C0 and V are de�ned precisely as in the proof of Theorem 5.3. The value computed
by M after t + 1 steps from con�guration C is the maximum over the values computed in t steps
from one of the possible successor con�gurations. This is described by the function F de�ned by
the schema

F (0) = V

F (t+ 1) = max
y

[F where C(z) = N(z; y)](t):

Again, the function computed by M is [F where C = C0](e) which is obtained from F by a
substitution of a �rst-order function and a specialization, and which is therefore in FNP.

13

7 Fixed points

The idea of iterating function updates suggests a �xed point construction: Instead of performing
the update a �xed number of times, we can do so until a stable situation is reached, starting from
some default initial value.

De�nition 7.1 Suppose F is a global function over � where g is a function symbol in � with the
same arity and coarity as F . Then

�xpoint[g := F]

is a global function of signature � whose semantic is de�ned by the following process. Set:

G0 := g; Gi+1 = [F where g = Gi]

If, on a given structure A, this process converges, i.e. if there exists a number i such that
Gi+1 = Gi then we de�ne the semantic of �xpoint[G := F] on A to be the function Gi, otherwise
we de�ne �xpoint[G := F] to be identically 0.

Note that convergence is not guaranteed: for instance, if g = 0 and F (z) = eq(g(z); 0) then Gi

is identically 0 for even i, and identically 1 for odd i.
In fact this �xpoint construction is analogous to partial �xed point logic which captures Pspace

on ordered structures (see [1, 28]).
So, if we denote the closure of the �rst-order functions under composition, substitution and

under this �xpoint construction by FFP (for functional �xed points), then it is not surprising that
we have

Theorem 7.2 A global function is computable in Pspace if and only if it is equivalent to a function
in FFP.

Proof. It is clear that every function in FFP is computable with polynomial space. To prove the
converse, we can use the same representation of Turing machine computations by functions C0 (for
the initial con�guration), N (for the next-move update of con�gurations) and V (for the value on
the output tape) as in the proof of Theorem 5.3. Without loss of generality we can assume that
we have a Turing machine M computing f within polynomial space and which has the following
additional property: every con�guration c of M has a well-de�ned successor con�guration which
equals c if and only if c is a �nal con�guration.

Then, for any function C representing a con�guration, the function

F = �xpoint[C := N]

de�nes the �nal con�guration reached eventually by M from C if it exists, otherwise F = 0.
Thus, the function computed by M can be represented

[V where C = [F where C = C0]]:

We can ensure the convergence of the �xpoint construction by imposing a condition on the
function updates that makes the �xpoint operator in
ationary:

14

De�nition 7.3 Suppose F is a global function over � [fGg where G has the same arity and
coarity as F . Then

�xpoint[G := maxfF;Gg]

is a global function whose semantic is as in the previous de�nition. We denote the closure of
the �rst-order function under this schema by IFFP (for in
ationary functional �xed points).

IFFP is a functional analogue to the in
ationary �xed point logic of Gurevich and Shelah [16].
On �nite structures in
ationary �xed point logic has the same expressive power as least �xed point
logic [16], even without a built-in order. Therefore, it captures Ptime on ordered structures. It
easy to see that this implies the following theorem.

Theorem 7.4 IFFP = FP and contains therefore precisely the functions that are computable in
Ptime.

8 Functions computed by circuits

For our purpose it is convenient to consider a circuit of size at most nk , where n is the number
of input bits as an algebra C = (n; edge; and; or; neg ; in; out) where the nodes of the circuits are
represented by k-tuples over the universe n, where the function edge(x; y) has arity 2k and is the
characteristic function of the edge predicate of the circuit (considered as a directed acyclic graph);
the other functions have arity k and determine the type of a node.

It is useful to restate the uniformity condition in circuit complexity (see e.g. [2]) in algebraic
terms. Note, that L(?) is the algebra of primitive recursive, i.e. logspace-computable, global
functions over the empty signature. Thus a function in L(?) depends only on the cardinality of
the input structure. We therefore can say, that a sequence (Cn)n2N is log-uniform if the global
functions edge, and, or, neg, in, out that characterize (Cn)n2N belong to L(?).

We are interested in circuit sequences that compute global functions. The following de�nition
is taken from [7]:

De�nition 8.1 Let � be a signature and f a global function on O(�) of arity r and coarity s. We
say that a family (Cn)n2N of Boolean circuits implements f if the following conditions hold:

� The input nodes of each Cn specify a pair (A; a) where A is a �-structure with universe n
and a is an r-tuple of elements of A.

� Cn has sdlog ne output nodes. The output computed by Cn on input (A; a) is considered as
the binary representation of an s-tuple of elements of A: the �rst log n output nodes code the
�rst component, and so on. We denote this tuple by fn(A; a).

� For all n and all inputs (A; a) for Cn,

fn(A; a) = fA(a):

De�nition 8.2 Given a signature �, let S(�+L(?)) be the closure under composition, maximum
and minimum operators of the initial functions over � and the functions de�ned by the schema for
primitive recursion over the empty signature.

15

The algebra S(� + L(?)) provides a characterization of the functions in AC0. The following
result is due to Gurevich and Lewis [15]:

Theorem 8.3 A global function over � can be implemented by a log-uniform sequence of constant-
depth polynomial-size circuits if and only if it is in S(� + L(?)).

We will now de�ne a recursion schema to build a more powerful algebra on top of S(�+L(?))
that captures the global functions in AC1, that is the functions computable by a log-uniform
sequence of Boolean circuits of polynomial size and of depth O(logn) with unbounded fan-in. It
is well-known that, without loss of generality, such circuits can be assumed to have the following
properties. Negations occur only at the leafs, i.e., we have circuits of ^- and _-gates over inputs
and negated inputs. Further, nodes of odd depth are or-nodes whose incoming arcs come from
and-nodes and leafs, and nodes of positive even depth are and-nodes whose incoming arcs come
from leafs and or-nodes.

De�nition 8.4 Let A1(�) be the closure of S(� + L(?)) under composition and the following
schema: If g 2 A1(�) is already de�ned, and h1; h2 belong to S(�+L(?)), then we de�ne the new
function

f(x; 0) = g(x)

f(x; 2t+ 1) = max
y
h1(x; y; f(y; t))

f(x; 2t+ 2) = min
y
h2(x; y; f(y; t)):

Theorem 8.5 A global function over � can be implemented by a log-uniform sequence of polynomial-
size, log-depth circuits if and only if it belongs to A1(�).

Proof. Let f 2 A1(�). Since functions in S(� + L(?)) can be implemented by constant-depth
polynomial-size circuits, we can suppose that f is de�ned by the recursion schema given above
from the functions g which is computed by a circuit-family of depth c logn, and from the functions
h1; h2 computable by constant depth circuits.

Thus, f(x; 2t+ 1) and f(x; 2t+ 2) can be computed by log-uniform circuits of constant depth
d using input-gates for the bits of f(x; t). By induction, it then follows that the bits of f(x; t) are
computable by circuits of depths c logn+dblog(t+1)c. Thus f can be implemented by AC1-circuits.

Conversely, suppose we have a global function that is implemented by a sequence (Cn)n2N of
AC1-circuits. Since the sequence is log-uniform, the global functions edge, and, or, in, out describing
the circuit family are in L(?).

The inputs for the circuits are encodings of structures B such that every atom or negated atom
(i.e. the diagram of the structure) is represented by an input node. We can choose this encoding
to be �rst-order. Let g(x) be the characteristic function of the (global) predicate expressing that x
is an input node getting the value 1. This function is in S(� + L(?)). It su�ces to show that the
global function F (x), whose value FB(x) at a given input structure B of cardinality n is the value
computed by the circuit Cn at node x on input B, is in A1(�).

We construct a function f(x; t) with the following properties: if x is a node of depth d(x) then
for some t < 2d(x), f(x; t) is the value computed by the circuit at node x; for all other t, f(x; t) = 0.
In particular, the value F (x) computed at node x is maxt f(x; t).

16

Setting f(x; 0) = g(x) satis�es the required properties for the leafs. It remains to specify
functions h1; h2 2 S(� [fedge; and; org) such that these properties translate, via the recursion
schema, to nodes of higher depths. Let

h1(x; y; z) = if-then(or(x); if-then(edge(y; x); z)):

Then, maxy h1(x; y; f(y; t)) evaluates to 1 if and only if x represents an or-node, and f(y; t) = 1
for at least one predecessor y of x. Thus f(x; 2t+ 1) = maxy h1(x; y; f(y; t)) satis�es the required
condition (for x being an or-node). Similarly, let h2(x; y; z) be the characteristic function of the
predicate

(and(x) = 1) ^ (edge(x; y) = 1! z = 1)

which is obviously �rst-order. Then f(x; 2t + 2) = miny h2(x; y; f(y; t)) satis�es the required
properties also for and-nodes.

References

[1] S. Abiteboul and V. Vianu, Datalog Extensions for Database Queries and Updates, J. Computer
and System Sciences 43 (1991), 62{124.

[2] J. Balc�azar, J. D��az and J. Gabarr�o, Structural Complexity, vol I and II, Springer Verlag
1988/1990.

[3] S. Bellantoni and S. Cook, A New Recursion-Theoretic Characterization of the Polytime Func-
tions, Proceedings of 24th ACM Symposium on the Theory of Computing (1992), 283{293.

[4] J. B�uchi, Weak second-order arithmetic and �nite automata, Z. Math. Logik Grundlagen Math.
6 (1960), 66{92.

[5] S. Buss, Bounded Arithmetic, Bibliopolis, Napels 1986.

[6] A. Cobham, The intrinsic computational di�culty of functions, in: Y. Bar-Hillel (Ed.), Logic,
Methodology and Philosophy of Science II, North-Holland, Amsterdam 1965.

[7] K. Compton and C. La
amme, An Algebra and a Logic for NC1, Information and Computation
87 (1990), 241{263.

[8] R. Fagin, Generalized �rst-order spectra and polynomial-time recognizable sets, SIAM-AMS
Proc. 7 (1974), 43{73.

[9] A. Goerdt, Characterizing complexity classes by general recursive de�nitions in higher types,
Proceedings of 2nd workshop on Computer Science Logic CSL `88, Lecture Notes in Computer
Science Nr. 385, Springer (1989), 99{117.

[10] E. Gr�adel, Capturing Complexity Classes by Fragments of Second Order Logic, Theoretical
Computer Science 101 (1992), 35{57.

[11] E. Gr�adel and M. Otto, Inductive De�nability with Counting on Finite Structures, Proceedings
of CSL92, Lecture Notes in Computer Science Nr ??? (1993), 231{247.

17

[12] Y. Gurevich, Algebras of feasible functions, Proceedings of 24th IEEE Symposium on Founda-
tions of Computer Science 1983, 210{214.

[13] Y. Gurevich, Toward logic tailord for computational complexity, in: M. M. Richter et al. (Eds),
Computation and Proof Theory, Springer Lecture Notes in Mathematics Nr. 1104 (1984),
175{216.

[14] Y. Gurevich, Logic and the Challenge of Computer Science, in: E. B�orger (Ed), Trends in
Theoretical Computer Science, Computer Science Press (1988), 1{57.

[15] Y. Gurevich and H. Lewis, A Logic for Constant-Depth Circuits, Information and Control 61
(1984), 65{74.

[16] Y. Gurevich and S. Shelah, Fixed Point Extensions of First Order Logic, Annals of Pure and
Applied Logic 32 (1986), 265{280.

[17] N. Immerman, Upper and lower bounds for �rst-order expressibility, J. Comput. System Sci.
25 (1982), 76{98.

[18] N. Immerman, Relational queries computable in polynomial time, Information and Control 68
(1986), 86{104.

[19] N. Immerman, Languages that Capture Complexity Classes, SIAM J. Comput. 16 (1987),
760{778.

[20] N. Immerman, Nondeterministic space is closed under complementation, SIAM J. Comput. 17
(1988), 935{939.

[21] N. Immerman, Descriptive and Computational Complexity, in: J. Hartmanis (Ed.), Computa-
tional Complexity Theory, Proc. of AMS Symposia in Appl. Math. 38 (1989), 75{91.

[22] M. Krentel, The Complexity of Optimizaton Problems, Journal of Computer and System Sci-
ences 36 (1988), 490{509.

[23] A. Livchak, The Relational Model for Process Control, Automatic Documentation and Math-
ematical Linguistics 4 (1983), 27{29 (in Russian).

[24] Libo Lo, Functions and Functionals on Finite Systems, Journal of Symbolic Logic 57 (1992),
118{130.

[25] V. Sazonov, Polynomial computability and recursivity in �nite domains, Elektronische Daten-
verarbeitung und Kybernetik 16 (1980), 319{323.

[26] R. Szelepcs�enyi, The Method of Forced Enumeration for Nondeterministic Automata, Acta
Informatica 26 (1988), 279{284.

[27] B. Trakhtenbrot, Finite automata and the logic of monadic predicates, Doklady Akademii Nauk
SSR 140 (1961), 326{329.

[28] M. Vardi, Complexity of Relational Query Languages, Proc. of 14th Symposium on Theory of
Computing (1982), 137{146.

18

