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Abstract

Gregory McColm conjectured that positive elemen-

tary inductions are bounded in a class K of �nite

structures if every (FO + LFP) formula is equivalent

to a �rst-order formula in K. Here (FO + LFP) is

the extension of �rst-order logic with the least �xed

point operator. We disprove the conjecture. Our main

results are two model-theoretic constructions, one de-

terministic and the other randomized, each of which

refutes McColm's conjecture.

1 Introduction

Gregory McColm conjectured in [?] that, for every
class K of �nite structures, the following three claims
are equivalent:

M1 Every positive elementary induction is bounded
in K.

M2 Every (FO + LFP) formula is equivalent to a
�rst-order formula in K.

M3 Every L!1!-formula is equivalent to a �rst-order
formula in K.

The de�nitions of L!1;! and (FO+LFP) are recalled
in the next section.

Clearly, M1 implies M2. McColm observed that
M3 implies M1. Phokion Kolaitis and Moshe Vardi
proved that M1 implies M3 [?]. A nice exposition of
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all of that is found in [?] The question whether M2
implies M1 has been open though McColm made the
following important observation.

Let �n be the set f0; 1; ::; n� 1g with the standard
order. It is easy to see that no in�nite class of struc-
tures �n satis�es M1. List all (FO+LFP) sentences in
vocabulary f<g: '0; '1; : : :. Let Ki = f�n j �n j= 'ig
and construct an in�nite K such that every intersec-
tion K \ Ki is either �nite or co-�nite. Each 'i is
equivalent to a �rst-order sentence in K. Thus M1
does not follow from the restriction of M2 to formulas
without free variables.

The main results of this paper are two model the-
oretic constructions, one deterministic and the other
randomized, each of which gives a counterexample to
the implication M2!M1. Actually, each construction
implies the stronger result that M2 fails to imply M1
even when (FO + LFP) is replaced in M2 by an arbi-
trary countable subset of L!1;!, see Corollary ?? and
Theorem ??. We present the deterministic construc-
tion in full detail in Section 3. The randomized con-
struction is presented in Section ??; but, some of the
proofs are omitted due to lack of space.

Both constructions depend on the fact that the lan-
guage L!1;!, and thus (FO + LFP) is unable to count
the number of vertices in a large clique. The determin-
istic construction extends naturally to Theorem ??:
an extension of our counterexample to the stronger
language (FO+LFP +COUNT) in which counting is
present.

Recall that (FO + ITER), is �rst-order logic plus
an unbounded iteration operator (equivalent to the
\while", and \partial �xed point" operators). It
is known that the language (FO + ITER) captures
PSPACE on ordered structures [?, ?]. Abiteboul and
Vianu [?] showed that P = PSPACE if and only if,
(FO+LFP) = (FO+ITER) on all sets of �nite struc-
tures.

In light of this, another interesting consequence of
the deterministic construction is Corollary ?? which
says that if P is not equal to PSPACE, then there is
a set of �nite structures on which FO = (FO + LFP),



but on which FO 6= (FO + ITER).

2 Background

We brie
y recall some background material. More
information on Descriptive Complexity and Finite
Model Theory can be found for example in [?] and
[?].

Proviso Structures are �nite. Vocabularies are �-
nite and do not contain function symbols of positive
arity. In particular, the vocabulary of any L!

1;!-
formula is �nite. Classes of structures are closed under
isomorphism. 2

If M is a structure then jM j is the universe of M .
If X is a nonempty subset ofM (that is, of jM j) then
M j X is the induced substructure with universe X.

An r-ary global relation � on a class K of struc-
tures of the same vocabulary is a function that, given
a structure M 2 K, produces an r-ary (local) relation
�M on jM j. By de�nition, M j= �(�a) if and only if
�a 2 �M . It is supposed that, for every isomorphism �
fromM to a structure N and every r-tuple x1; : : : ; xr
of elements of M , M j= �(x1; : : : ; xr) () N j=
�(�(x1; : : : ; xr)).

In this paper, an in�nitary formula means an L!1;!

formula of �nite vocabulary. Recall that L!
1;! is the

generalization of �rst-order logic that allows arbitrary
in�nite conjunctions and disjunctions provided that
the total number of individual variables, bound or free,
in the resulting formula is �nite [?]. In other words,
in�nitary formulas are built from atomic formulas by
means of negation, existential quanti�cation, universal
quanti�cation and the following rule:

� If f'i j i 2 Ig is a collection of in�ni-
tary formulas that uses only a �nite vocabulary
and a �nite number of individual variables thenW
i'i and

V
i'i are in�nitary formulas.

The semantics is obvious. A j=
W
i 'i(�a) if and only

if A j= 'i(�a) for some i, and A j=
V
i 'i(�a) if and

only if A j= 'i(�a) for all i. Let Lk1;! be the sub-
set of L!1;! in which at most the k distinct variables
fx1; x2; : : : ; xkg occur.

We next recall the de�nition of (FO + LFP). Con-
sider a �rst-order formula'(P; v1; : : : ; vr; vr+1; : : : ; vs)
with free individual variables v1; : : : ; vs where an r-
ary predicate P has only positive occurrences; let
� = Vocabulary(') � fPg. Given a � -structure M

and elements ar+1; : : : ; as ofM , we have the following
r-ary relations on the universe jM j of M :

P0 = ;; Pi+1 =

f(v1; : : : ; vr) jM j= '(Pi; v1; : : : ; vr; ar+1; : : : ; as)g

Since P is positive in ', P0 � P1 � P2 � : : :. M1
asserts that, for every such ', there exists a posi-
tive integer j such that, for every M 2 K and any
ar+1; : : : ; as 2M , Pj =

S
i Pi.

The least �xed point operator LFP can be applied
to the formula '. The result is a new formula

LFPP ;v1;:::;vr'(v1; : : : ; vs)

of vocabulary � . If M is a � -structure, a1; : : : ; as are
elements of M and relations Pi are as above then

M j= LFPP ;v1;:::;vr'(a1; : : : ; as) , (a1; : : : ; ar) 2
[
i

Pi:

(FO + LFP) is the extension of �rst-order logic with
this new formula-constructor. Applications of LFP
can be nested and interleaved with other formula-
constructors. It is obvious that (FO+LFP) is a subset
of L!1;!.

Pebble games are a convenient tool to deal with in-
�nitary formulas. A k-pebble game �k� (A;B) is played
by Spoiler and Duplicator on structures A;B of vocab-
ulary � . For each i 2 f1; : : : ; kg, there are two pebbles
numbered i; there are 2k pebbles altogether. Starting
with Spoiler, the players alternate making moves. A
move consists of placing a free pebble at an element
of one of the two structures or removing one of the
pebbles from some element. If Spoiler puts a pebble
of number i at an element x of A (resp., an element
y of B), Duplicator must answer by placing the other
pebble number i at some element y of B (resp., some
element x of A). If Spoiler removes a pebble number
i, Duplicator must remove the other pebble number i.
Initially, all pebbles are free. At each even-numbered
state S, the pebbles de�ne a partial map �S fromA to
B. Dom(�S) consists of the elements of A covered by
pebbles. If x 2 A is covered by a pebble i then �S(x)
is the element of B covered by the other pebble i. Ini-
tially, all 2k pebbles are free. The goal of Duplicator is
to ensure that every such �S is a partial isomorphism.
If the game reaches an even state S such that �S is
not a partial isomorphism, Spoiler wins; otherwise the
game continues forever and Duplicator wins.

Fact 2.1 ([?, ?]) Let l � k and consider the ver-

sion of �k� where the initial state is as follows: peb-

bles 1; : : : ; l are placed at elements x1; : : : ; xl of A and



at elements y1; : : : ; yl of B. If Duplicator has a win-

ning strategy in that game then, for every � -formula

'(v1; : : : ; vl) 2 Lk1;!,

A j= '(x1; : : : ; xl) () B j= '(y1; : : : ; yl):

3 The Deterministic Construction

We are now ready to state our main theorem:

Theorem 3.1 There exists a set of �nite directed

graphs, G = fG1; G2; : : :g, such that G admits �xed

points of unbounded depth and yet on G, FO = (FO+
LFP), i.e. every formula expressible with a least �xed

point operator is already �rst-order expressible.

The proof of Theorem 3.1 has two main ideas. The
�rst is the idea of a standard oracle construction from
Structural Complexity Theory. The second is Lemma
3.5: a formula in (FO + LFP) with only k distinct
variables cannot distinguish a k-clique from any larger
clique. We divide the proof up into several parts, that
of the oracle construction (Section 3.1), that with one
free variable (Section 3.2), and �nally the general case
(Section 3.3).

3.1 With Lots of Relation Symbols

In this subsection we concentrate on the oracle con-
struction by temporarily introducing in�nitely many
new relation symbols of each arity: Rj

i , i; j � 1. For
convenience in the proofs we will use the notation
var(') to denote the number of distinct variables free
or bound occurring in '. Let free(') denote the num-
ber of free variables occurring in '.

Lemma 3.2 There exists a set of �nite directed

graphs, D = fD1; D2; : : :g, which also interpret the

new relations: Rj
i , i; j � 1, such that D admits �xed

points of unbounded depth; and yet on D, FO =
(FO+LFP), i.e., every formula expressible with a least

�xed point operator is already �rst-order expressible.

proof Let �1;�2; : : : be a listing of all formulas in
(FO + LFP) in this expanded language. Let ui =
free(�i), the number of free variables occurring in �i.
Let Si be one of the new relation symbols of arity ui
such that,

Si does not occur in �r for any r � i. (3.3)

We will let the graph D0
j = hVj; Eji be a directed

segment of length j � 1:

Vj = fd1; d2; : : : ; djg

Ej =
�
hdk; dk+1i

�� 0 � k < j
	

We next show how to interpret the new relation
symbols in the Dj 's such that: For all i, for all j � i,
and for all a1; a2; : : : ; aui 2 jDjj,

Dj j= (�i(a1; a2; : : : ; aui) $ Si(a1; a2; : : : ; aui)) (3.4)

>From Equation 3.4, it follows that each �i is
equivalent to a �rst-order formula { in fact, to an
atomic formula { for all but �nitely many structures.
Of course, on any �xed �nite structure, the formula
�i is equivalent to a �rst-order formula. Lemma 3.2
follows immediately.

Now we construct the Dj 's so that Equation 3.4
holds. D0

j de�ned above is just a graph, which may
be thought of as interpreting all of the new relations as
false. Assuming Di�1

j has been de�ned, let Di
j be the

same as Di�1
j except that for all a1; a2; : : : ; aui 2 jDjj,

we interpret Si so that

Dj j= (�i(a1; a2; : : : ; aui) $ Si(a1; a2; : : : ; aui))

Note that by Equation 3.3, this doesn't a�ect any of
the previous steps.

Let Dj = Dj
j . This completes the construction,

guaranteeing that Equation 3.4 holds. This completes
the proof of Lemma 3.2. 2

3.2 One Free Variable Case: Relations
Replaced by Cliques

Now, we get rid of the new relation symbols, re-
placing them by cliques attached to the vertices in the
Dj 's. The main result we will need is that formulas
from Lk

1;!, i.e. in�nitary formulas with at most k
variables, cannot distinguish k-cliques from r-cliques
for any r > k.

Lemma 3.5 Let F be a �nite, directed graph and let

v be a vertex in F . For i � 1, let Fi be the result of

replacing v by a clique of i new vertices: v1; : : : ; vi.
Each edge hv; wi or hz; vi from F is replaced with i
new edges: hvj ; wi or hz; vji, j = 1; 2; : : : ; i. Let 1 �
k < r be natural numbers. Then Fk and Fr agree on

all formulas with at most k variables from L!
1;!.

proof This is proved by using the game �k� from
Fact 2.1. We have to show that the Duplicator has
a winning strategy for the k-pebble game on Fk and



Fr. Her strategy is to answer any move outside of the
cliques with the same vertex in the other graph. A
move on one of the new cliques is likewise matched by
a move on the new clique in the other graph. Since
there are only k pebbles, there is always an unpebbled
vertex in either of the cliques to match with. Thus the
Duplicator has a winning strategy. It follows that Fk
and Fr agree on all formulas from Lk

1;!. 2

To make the deterministic construction easier to
understand we begin by doing it just for formulas with
only one free variable:

Lemma 3.6 There exists a set of �nite directed

graphs, H = fH1;H2; : : :g, such that H admits �xed

points of unbounded depth, and yet on H, every for-

mula with at most one free variable that is expressible

with a least �xed point operator is already �rst-order

expressible.

proof Let �1;�2; : : : be the set of all formulas in
(FO + LFP) that have at most one free variable. The
construction of the Hj's is similar to that of the Dj 's
of Lemma 3.2. The di�erence is that instead of mak-
ing the relation Si(d) hold, we will modify the size of
a certain clique that is connected to d.

We next de�ne the sequence of natural numbers:
v0 < v1 < v2 < � � � that will be the sizes of the
initial cliques. Let v0 = 0, and inductively, let
vi = max(var(�i); vi�1 + 2i+1). In the construction
of Hj we will modify the sizes of cliques that are ini-
tially of size vi. The modi�cation will add a number
of vertices to these cliques while keeping them smaller
than vi+1.

De�ne the graph H0
j as follows: First, H0

j contains

D0
j , the directed segment of length j � 1. For each

d 2 jD0
j j and for each i � j, H0

j also contains the size
vi clique Cd;i which has edges from each of its elements
to the vertex d.

Assuming Hi�1
j has been de�ned, let Hi

j be the

same as Hi�1
j except that for each d 2 jD0

j j we add
n(d; i) vertices to the vi-vertex clique Cd;i. The num-
ber n(d; i) is an i+ 1 bit binary number such that:

(\Bit 0 of n(d; i) is one.") , (Hi�1
j j= �i(d))

And, for 1 � s � i, let as be a vertex in Cd;s. Then,

(\Bit s of n(d; i) is one.") , (Hi�1
j j= �i(as))

Finally, let Hj = Hj
j . De�ne the notation S �k T

to mean that S is a k-variable elementary substructure
of T . That is, S is a substructure of T and for all

�rst-order formulas ' with var(') � k, and for all
a1; a2; : : : ; ak 2 jSj,

S j= '(a1; a2; : : : ; ak) , T j= '(a1; a2; : : : ; ak)

We have constructed the Hj's so that,

Hi�1
j �vi Hj (3.7)

Equation 3.7 follows from Lemma 3.5 and the fact
the the construction of Hr

j for r � i proceeds by in-
creasing the size of cliques whose size is at least vi.

Let a 2 jHjj. If a = d 2 jD0
j j then,

(Hj j= �i(a)) , (Hi�1
j j= �i(d))

, (\Bit 0 of n(d; i) is one.")

If a is a member of a clique Cd;r, let s = min(i; r).
Then,

(Hj j= �i(a)) , (Hi�1
j j= �i(a))

, (\Bit s of n(d; i) is one.")

Remember that vi+1 is a �xed constant. Further-
more, there are at most 2i+1 possible values for n(d; i).
It follows that there is a �rst-order formula 'i(a) that
�nds the appropriate d and s, and determines n(d; i)
which is the size of largest maximal clique connected
to d that has fewer than vi+1 vertices. Next, compute
bit s of n(d; i) by table look up, and let 'i(a) be true
i� this bit is one.

Thus, we have that for all j � i and for all a 2 jHjj,

Hj j= (�i(a) $ 'i(a)) 2

3.3 General Case: Arbitrary Arity

The reason that the general case is more compli-
cated than the arity one case is that we must include
gadgets that identify tuples of nodes. We then must
contend with having arguments from these gadgets
and so the arities seem to multiply. We must therefore
be careful so that the arities remain bounded.
proof of Theorem 3.1: Let �1;�2; : : : be a listing of
all formulas in (FO + LFP). As we have mentioned,
arities might multiply. The base arity of the formula
�i is fi = free(�i). We will use increased arities A0 <
A1 < : : : < Aj de�ned by A0 = 1, and inductively,

Ai = 1 + (Ai�1)(2fi) (3.8)

Next de�ne the sequence of natural numbers: w0 <
w1 < w2 < � � � that will be the sizes of the ini-
tial cliques. Let w0 = 0, and inductively, let wi =
max(var(�i); 1 + wi�1 + Ai�1).



To de�ne the graph Gj, we begin as usual by includ-
ing the directed segment D0

j . For each i, we include
enough gadgets: T r

i , r = 1; 2; : : : ; ni, to encode all
possible sequences of length at most Ai of elements of
jD0

j j. (Here, ni is equal to (j + 1)Ai .)
Each gadget T r

i consists of j �Ai cliques of size wi.
For each d 2 jD0

j j there are Ai of these cliques, Cr
d;i,

with edges to d. T r
i also contains one vertex tri with

edges to all the Cr
d;i's, d = 1; : : : ; j. When we want T r

i

to encode the sequence d1; d2; : : : ; dAi
we will choose

Ai cliques, Cr
d1;i

; Cr
d2;i

; : : : ; Cr
dAi;i

and increase their

sizes by 1; 2; : : : ; Ai vertices respectively. Note that
we have enough copies of each Cr

d;i to tolerate any
number of repetitions of the same d. To skip one of the
members of the sequence, say dt, we increase no clique
by exactly t vertices. In this case we write dt = 0.
Thus, we have shown how to modify the gadget T r

i

so that it codes any sequence of length Ai from the
alphabet f0; 1; : : : ; jg. Note that no formula �t with
t � i can detect this modi�cation!

De�ne G0
j to include D0

j plus all of the T r
i 's, 1 �

i � j, 1 � r � ni.

Inductively, assume that Gi�1
j has been con-

structed. Now, for each tuple a1; a2; : : : ; afi 2 jG
i�1
j j,

if Gi�1
j j= �i(a1; a2; : : : ; afi), then we will mod-

ify one of the gadgets T r
i to encode the tuple,

a1; a2; : : : ; afi .

Let's �rst consider the case that a1 is a vertex from
some T r1

i�1. In this case, T r1
i�1 codes a sequence,

b11; b12; : : : ; b1;Ai�1
; each b1t 2 f0; 1; : : :; jg (??)

To reencode this sequence, we �rst just copy it.
Next, we have to indicate which vertex in T r1

i�1, a1
is. (It could be the vertex tr1i�1, or a vertex in one
of the unused cliques, Cr1

d;i�1, or in one of the cliques

Cr1
b1q;i�1 that codes the q

th element of the sequence of
Equation ??. In each case, we use the Ai�1 extra slots
to encode which of these cases apply1. This is the rea-
son for the factor of 2 in Equation 3.8 and while this
is slightly wasteful, it is simple and we are just trying
to prove that something is �nite.

We have just explained how to encode a1 in the �rst
2Ai�1 slots of T r

i . Similarly, code a2; : : : ; afi into the
next 2Ai�1(fi�1) slots. (If one of the as's comes from
a shorter sequence, then leave the rest of its positions
0.) Finally, in the one remaining slot, put a 1.

1For those who want to know, the coding is done as follows:

If a1 is the vertex t
r1
i�1

, then the extra Ai�1 slots are all 0's. If

a1 is in an unused C
r1
d;i�1

, then the �rst two extra slots contain

d's and the rest are 0's. Finally, if a1 is in C
r1
b1q;i�1

then put

b1q into the qth extra slot and leave the rest 0.

Let Gj = Gj
j. It follows just as in Equation 3.7

that, Gi�1
j �wi

Gj.
Again recall that each Ai and wi+1 is a �xed con-

stant. Thus, given a tuple, a1; : : : ; afi from jGjj, a
�rst-order formula, i(a1; : : : ; afi), can express the ex-
istence of the gadget T r

i that codes this tuple. Thus,
for all j � i,

Gj j= (�i(a1; : : : ; afi) $  i(a1; : : : ; afi))

This complete the proof of Theorem 3.1. 2

We should note that Theorem 3.1 did not use any
properties of (FO + LFP) except that the language is
countable and each formula had a constant number of
variables. We thus have the following extension:

Corollary 3.10 Let L be any countable subset of for-

mulas about graphs from L!
1! . Then there exists a

set of �nite graphs, F , that admits unbounded �xed

points and such that over F every formula from L is

equivalent to a �rst-order formula.

3.4 Two Extensions and an Open Prob-
lem

The deterministic construction relied heavily on
Lemma 3.5. This in turn depends on the fact that
L!1;! on unordered structures is not expressive enough
to count.

In [?] a lower bound was proved on the lan-
guage (FO + COUNT + LFP). This is a language
over two-sorted structures: one sort is the numbers:
f0; 1; : : :; n�1g equipped with the usual ordering. The
other sort is the vertices: fv0; v1; : : : ; vn�1g with the
edge predicate. The interaction between the two sorts
is via counting quanti�ers. For example, the formula,

(9i x)'(x)

means that there exist at least i vertices x such that
'(x). Here i ranges over numbers and x over ver-
tices. The least �xed point operator may be applied
to relations over a combination of number and vertex
variables. De�ne the language (L + COUNT)!1;! to
be the superset of (FO+COUNT+LFP) obtained by
adding counting quanti�ers to L!

1;! .
In [?] it is shown that the language (FO+COUNT+

LFP) { and in fact even (L + COUNT)!1;! { does
not express all polynomial-time properties, even over
structures of color class size four. Such structures are
\almost ordered": they consist of an ordered set of
n=4 color classes, each of size four. Only the vertices
inside these color classes are not ordered. We glean
the following fact from [?].



Fact 3.11 ([?]) For each n > 0 there exist noniso-

morphic graphs Tn and fTn each with O(n) vertices,

such that Tn and fTn are indistinguishable by all for-

mulas with at most n variables from (FO + LFP +
COUNT), or even from (L+ COUNT)!

1;!.

Useful in the proof of Fact ?? as well as in the next
theorem is the following modi�cation of the game �k�
of Fact 2.1. Given a pair of � -structures G and H
de�ne the Ck� game on G and H as follows: Just as
in the �k� game, we have two players and k pairs of
pebbles. The di�erence is that each move now has
two parts.

1. Spoiler picks up the pair of pebbles numbered i
for some i. He then chooses a set A of vertices
from one of the graphs. Now Duplicator answers
with a set B of vertices from the other graph. B
must have the same cardinality as A.

2. Spoiler places one of the pebbles numbered i on
some vertex b 2 B. Duplicator answers by placing
the other pebble numbered i on some a 2 A.

The de�nition for winning is as before. What is go-
ing on in the two part move is Spoiler asserts that there
exist jAj vertices in G with a certain property. Dupli-
cator answers with the same number of such vertices in
H. Spoiler challenges one of the vertices in B and Du-
plicator replies with an equivalent vertex fromA. This
game captures expressibility in (L +COUNT)!1;!:

Fact 3.12 ([?]) The Duplicator has a winning strat-

egy for the Ck� game on G;H if and only if G and H
agree on all formulas with at most k variables from

(L + COUNT)!
1;!.

Using the above facts, we now prove a counterex-
ample to a weaker version of McColm's Conjecture:

Theorem 3.13 There exists a set of �nite directed

graphs, J = fJ1; J2; : : :g, such that J admits �xed

points of unbounded depth and yet on J , FO = (FO+
COUNT+LFP), i.e., every formula expressible with a

least �xed point operator and counting is already �rst-

order expressible. In fact, this statement remains true

when (FO+COUNT+LFP) is replaced by an arbitrary

countable subset of (L + COUNT)!1;! .

proof The idea of this construction is that everywhere
we started with a clique of size n in the previous proof,
we will start with a chain of copies of the graph Tn
from Fact ??. Then where previously we increased the
size of the clique to code some number b of bits, we

will instead 
ip some copies of Tn tofTn, in a particular
length b chain of Tn's.

The main di�erences are that unlike the cliques,
there is not an automorphism mapping every point
in Tn to every other point in Tn. Furthermore, Tn
is distinguishable from Tn+1 using a small number of
variables.

Let f(j) be the number of formulas that are han-
dled by the structure Gj, and let v(j) be vf(j), the
number of variables to be handled as in the proof of
Theorem 3.1. Observe that f(j) and thus v(j) may
be chosen to grow very slowly. In particular, we will
make sure that f(j), and in fact the number of vertices
in each Tv(j) is less than j. Recall also that the graphs
Tn from Fact ?? are ordered up to sets of size four. We
introduce two new binary relations: Red edges from
each vertex in each Tv(i) to the vertex i 2 D0

j , and
Blue edges from each of the four vertices numbered
k in any of the Tv(i)'s to the vertex k 2 D0

j . Thus,
any vertex chosen from Gj will have a \name" that
consists of a pair of vertices from D0

j , together with a
bounded number of bits.

The construction and proof now follow as in the
proof of Theorem 3.1. 2

We also show,

Corollary 3.14 If P 6= PSPACE, then there exists a

set C of �nite structures such that FO = (FO + LFP)
on C; but, FO 6= (FO+ ITER) on C.

proof Let G be the set of all �nite, ordered graphs.
If P 6= PSPACE, then there is a property S � G such
that S 2 PSPACE � P. Now, do the construction of
Theorem 3.1, starting with G. This construction as-
sures that FO = (FO + LFP) on the resulting set C.
However, any �rst-order formula' has a �xed number,
k, of variables. Thus, to ', the noticeable changes dur-
ing the construction involve at most k PTIME proper-
ties. Therefore, S is still not recognizable in FO over
C. 2

One special case of McColm's conjecture remains
open. This is a fascinating question in complexity the-
ory and logic related to uniformity of circuits and log-
ical descriptions, cf. [?]. Consider the structures B =
fB1; B2; : : :g where Bi = hf0; 1; : : :; i � 1g;�;BITi.
Here � is the usual ordering on the natural numbers
and BIT(x; y) holds i� the xth bit in the binary rep-
resentation of the number y is a one.

Question 3.15 Is FO = (FO+ LFP) over B?

The answer to Question ?? is \Yes," i� every
polynomial-time computable numeric predicate is al-
ready computable in (FO + BIT). Equivalently, the



answer to Question ?? is \Yes," i� deterministic log-
time uniformAC0 is equal to polynomial-time uniform
AC0, cf. [?]. A resolution of this question would thus
answer an important question in complexity theory.

4 The Randomized Construction

We now sketch a quite di�erent construction that
also disproves McColm's conjecture. Throughout this
construction, P is a binary predicate. We will prove:

Theorem 4.1 Suppose that K1 is a class of struc-

tures of some vocabulary �1, and L is an arbitrary

countable subset of L!
1;!. Let �2 be the extension of

�1 with an additional binary predicate P . There exist

a class K2 of �2-structures such that:

1. K1 is precisely the class of �1-reducts of substruc-
tures M2 j fx j P (x; x)g where M2 ranges over

K2.

2. Every L-formula is equivalent to a �rst-order for-

mula in K2.

The idea of the proof is relatively simple. Let
�1; �2; : : : be a list of all L-de�nable global relations
on K1. We attach a graph G to every M 2 K1 and
de�ne a projection function from elements of the new
sort to elements of the old sort. Relations �Mi on the
old sort are coded by cliques of G; a tuple �a belongs
to �Mi if and only if there is clique of cardinality i
projected in a certain way onto �a. The necessity to
have appropriate cliques is the only constraint on G;
otherwise the graph is random. We check that ev-
ery L-de�nable global relation reduces by �rst-order
means to L-de�nable global relations on the old sort
and thus is �rst-order expressible. In fact, we beef L
up before executing the idea.

Let H be a hypergraph of cardinality � 2.

De�nition 4.2 An envelope for H is a fPg-structure
E satisfying the following conditions:

� jHj � jEj, and P is the identity relation on jHj.

� P is irre
exive and symmetric on jEj � jHj.

� For every x 2 jEj � jHj, there is a unique a 2 H
with E j= P (x; a).

� For every a 2 jHj and every x 2 jEj � jHj, E j=
:P (a; x).

2

Let E range over envelopes for H such that jEj �
jHj 6= ;.

De�nition 4.3 Elements of H are nodes of E and
elements of jEj�jHj are vertices ofE. GE is the graph
formed by P on the vertices. IfE j= P (x; a) and a 2 H
then a is called the projection of x and denoted F (x)
(or Fx). IfX is a set of elements ofE then F (X) is the
multiset ffFx j x 2 Xgg. If �x is a sequence (x1; : : : ; xl)
of elements of E then F (�x) = (F (x1); : : : ; F (xl)). 2

Let k be a positive integer � 3.

De�nition 4.4 A clique X of GE is a k-clique if
F (X) 2 HE(H) and jjXjj < k. A vertex that does
not belong to any k-clique is k-plebeian. The k-closure
Ck(X) of a subset X of E is the union of X and all
k-cliques intersected by X. 2

De�nition 4.5 E is k-good for H if it satis�es the
following conditions.

G0(k) All k-cliques are pairwise disjoint.

G1(k) For every X � jEj of cardinality < k, there is
a k-plebeian vertex z 2 jEj�X with a prede�ned
projection Fz which is P -related to Ck(X) in any
prede�ned way that does not destroy any k-clique
C � Ck(X). In other words, if a is a node,
Y � Ck(X) and Y does not include any k-clique,
then there is a k-plebeian vertex z 2 F�1(a)�X
adjacent to every vertex in Y and to no vertex in
Ck(X) � Y .

G2(k) For every X � jEj of cardinality < k, there is
a k-clique fy1; : : : ; ylg � jEj �X with any prede-
�ned projections Fym and any prede�ned pattern
R = f(x;m) j E j= P (x; ym)g that does not de-
stroy any k-clique C � Ck(X). In other words,
if �a = (a1; : : : ; al) is a tuple of nodes, l < k,
MS(�a) is a hyperedge, R � Ck(X) � f1; : : : ; lg,
no vertex is R-adjacent to all the numbers, and
no number is R-adjacent to all vertices of any
k-clique C � Ck(X), then there is a tuple �y =
(y1; : : : ; yl) of distinct vertices such that F (�y) =
�a, fy1; : : : ; ylg is a clique disjoint from X, and
E j= P (x; ym) () (x;m) 2 R for all x 2 Ck(X)
and all m.

2

Lemma 4.6 1. If E is k-good, X � E and jjEjj< k
then jjCk(X)jj � (k1)2.



2. If E is k-good then every hyperedge of cardinality

< k is the projection of some k-clique.

3. In every k-good envelope, every clique C of car-

dinality < k is a k-clique. Moreover, if a clique

C � Ck(X) for some X of cardinality < k then

C is a k-clique.

4. Let H0 be the hypergraph obtained from H by dis-

carding all hyperedges of cardinality � k. Then E
is k-good for H if and only if it is k-good for H0.

5. If E is k0-good for H where k0 > k then E is

k-good for H.

proof Omitted due to lack of space. 2

Theorem 4.7 There exists a k-good envelope for H.

proof Omitted due to lack of space. 2

4.1 The Game

Let M be a structure of some vocabulary �0 such
that every element of M interprets some individual
constant. It is supposed that �0 does not contain the
�xed binary predicate P . Let H be a hypergraph on
jM j, so that jHj = jM j. An envelope E for H can be
seen as a structure of vocabulary � = �0 [ fPg where
the �0-reduct of the substructure E j jHj equals M
and no �0 relation involves elements of jEj � jHj.

Fix a positive integer k and let E and E0 range over
k-good envelopes forH. We will prove that Duplicator
has a winning strategy in �k� (E;E

0).

De�nition 4.8 A partial isomorphism � from E to
E0 is k-correct if it satis�es the following conditions
where x ranges over Dom(�).

� If x is a node then �(x) = x.

� If x is a vertex then �(x) is a vertex and F (�(x)) =
Fx.

� x is k-plebeian if and only if �(x) is k-plebeian.

� If x belongs to some k-clique X then �(x) belongs
to some k-clique X0 such that F (X0) = F (X).

2

De�nition 4.9 A k-correct partial isomorphism �
from E to E0 is k-nice if there exists an extension of
� to a k-correct partial isomorphism �� with domain
Ck(Dom(�)). 2

Lemma 4.10 Suppose that � is a k-nice partial iso-

morphism from E to E0. Then �� and ��1 are k-nice,
(��)�1 = (��1)�, and Range(��) = Ck(Range(�)). ��

maps every k-clique onto k-clique of the same size,

di�erent k-cliques are mapped to di�erent k-cliques.

proof Obvious. 2

De�nition 4.11 An even-numbered
state of �k� (E;E

0) is good if the pebble-de�ned map
is a k-nice partial isomorphism. A strategy of Dupli-
cator in �k� (E;E

0) is good if every move of Duplicator
creates a good state. 2

Theorem 4.12 Every good strategy of Duplicator

wins �k� (E;E
0), and Duplicator has a good strategy.

proof Omitted due to lack of space. 2

De�nition 4.13 A 0-table is a conjunction
�(v1; : : : ; vl) of atomic and negated atomic formulas
in vocabulary fPg which describes the isomorphism
type of a fPg-structure of cardinality � l which can
be embedded into some envelope for some hypergraph.
2

De�nition 4.14 Let j < k be a positive inte-
ger. A (j; k)-table is a �rst-order fPg-formula
�(v1; : : : ; vl) which says that there are distinct ele-
ments u1; : : : ; uj such that fu1; : : : ; ujg is a clique
intersecting fv1; : : : ; vlg and a particular 0-table
�0(u1; : : : ; us; v1; : : : ; vl) is satis�ed. 2

De�nition 4.15 A k-table 
(v1; : : : ; vl) is a conjunc-
tion such that:

� Some 0-table �(v1; : : : ; vl) is a conjunct of

(v1; : : : ; vl).

� If j < k and �(v1; : : : ; vl) is a (j; k)-table consis-
tent with �(v1; : : : ; vl) then either �(v1; : : : ; vl) or
:�(v1; : : : ; vl) is a conjunct of 
(v1; : : : ; vl).

� There are no other conjuncts.

2

Fix a k-
variable in�nitary � -formula '(u1; : : : ; ul; v1; : : : ; vm)
and let �(�u; �v) be the conjunction of '(�u; �v) and some
k-table 
(�v). Let �a be an l-tuple of nodes of H and
b be an m-tuple of nodes H. We introduce a relation
��(�u; �v) on H.



De�nition 4.16

��(�a;�b) () E j= (9�v)[(�(�a; �v)) ^ F (�v) = �b]:

2

Lemma 4.17 �� does not depend on the choice of

E: any other k-good envelope for H yields the same

relation.

proof It su�ces to check that E0 yields the same
relation. Since Duplicator has a winning strategy in
�k� (E;E

0), no in�nitary k-variable � -sentence distin-
guishes between E and E0. In particular, no sentence

(9v1; : : : ; vm)[P (v1; d1) ^ : : : ^ P (vm; dm)

^ �(c1; : : : ; cl; v1; : : : ; vm)];

where c1; : : : ; cl; d1; : : : ; dm are individual constants,
distinguishes between E and E0. 2

Theorem 4.18 Let �x be an m-tuple of vertices in E.
The following claims are equivalent:

1. E j= �(�a; �x):

2. H j= ��(�a; F (�x)) and E j= 
(�x).

proof Omitted due to lack of space. 2

In the case m = 0, � = �� = ' and we have the
following corollary.

Corollary 4.19

E j= '(�a) () H j= '(�a):

4.2 Proof of Theorem ??

We start with a couple of auxiliary de�nitions. Call
an r-ary relation R irre
exive if every tuple in R con-
sists of r distinct elements. Call a global relation �
irre
exive if every local relation �M is so.

Lemma 4.20 Every global relation �(v1; : : : ; vr) is a
positive boolean combination of irre
exive global rela-

tions de�nable from � in a quanti�er-free way.

proof Omitted due to lack of space. 2

Call a multisetA is oriented if the relation MP(a) <
MP(b) is a linear order on Set(A); let OSet(A) be the
corresponding linearly ordered set.

Now we are ready to prove Theorem ??. Suppose
that K1 is a class of structures of some vocabulary �1,

and �2 is the extension of �1 with binary predicate P .
Let L be an arbitrary countable set of L!

1;!-formulas.
A global relation � on a class K is decidable if there

exists an algorithm that, given (the encodings of) a
structure M 2 K and a tuple �a of elements of M
of appropriate length, decides whether M j= �(�a) or
not. We are interested in a relativized version of this
de�nition where K is the collection of all structures
(that is, all �nite structures) in the vocabulary of �.
Let


 = f(';M; �a; 1) j ' 2 L ^M j= '(�a)g [

f(';M; �a; 0) j ' 2 L ^M 6j= '(�a)g

De�nition 4.21 A global relation � of vocabulary �
is L-decidable if there is an algorithm with oracle 

that, given a � -structure M and a tuple �a of elements
ofM of appropriate length, decides whetherM j= �(�a)
or not. 2

Every global relation de�ned by a formula in L is
L-decidable, and there there are only countably many
L-decidable relations. List all L-decidable irre
exive
global relations on K1 of positive arities: �2; �3 �4; : : :,
and let ri be the arity of �i. We suppose that ri(ri +
1)=2 � i. Let M range over K1 and i range over
positive integers � 2.

For each M and each i, let �Mi be the collection
of oriented multisets A such that OSet(A) 2 �Mi and
jjAjj = i. Since 1 + 2+ : : :+ ri = ri(ri + 1)=2 � i, �Mi
is empty. Let H(M ) be the hypergraph�

jM j ;
[
f�Mi j 1 � i � jjM jjg

�
:

Set �2 = �1 [ fPg and let E(M ) be the collection
of jjM jj-good envelopes for H(M ) of minimal possible
cardinality. (The minimal cardinality is not impor-
tant; we will use only the following two consequences:
(i) E(M ) is �nite, and (ii) there is an algorithm that,
givenM constructs some E 2 E(M ).) View envelopes
E 2 E(M ) as �2-structures where the �1-reduct of the
substructure E j jM j equals M and no �1-relation in-
volves elements of jEj � jM j. For every K � K1, let
E(K) =

S
M2K E(M ). Finally, let K2 = E(K1). By

the de�nition of envelopes (De�nition ??), K2 satis-
�es requirement 1 of Theorem ??. In order to prove
requirement 2, it su�ces to prove that every in�nitary
formula with L-decidable global relation is �rst-order
de�nable in K2.

For any global relation �(�v) on K1, let �+(�v) be the
global relation on K2 such that

E j= �+(�x) () M j= �(F (�x))



if M 2 K, E 2 E(M ) and �x is a tuple of elements of
E of the appropriate length.

Lemma 4.22 If � is L-decidable then �+ is �rst-

order de�nable in K2.

proof Omitted due to lack of space. 2

Now let ' be an arbitrary in�nitary �2-formula
whose global relation is L-decidable. We prove that '
is equivalent to a �rst-order formula in K2. Without
loss of generality, ' = '(u1; : : : ; ul; v1; : : : ; vm) and '
implies

P (u1; u1); : : : ; P (ul; ul);:P (v1; �v1); : : : ;:P (vm; vm)

In other words, variables ui are node variables, and
variables vj are vertex variables.

Let k be the total number of variables in ', K 0

1 =
fM j jjM jj � kg and K0

2 = E(K0
1), so that every

E 2 K0
2 is k-good. Since K2�K0

2 is �nite, it su�ces to
prove that '(�u; �v) is equivalent to a �rst-order formula
in K0

2. Let 
(�v) be an arbitrary k-table. Since there
are only �nite many k-tables, it su�ces to prove that
the formula �(�v) = '(�v)^
(�v) is equivalent to a �rst-
order formula over K0

2.
De�ne a global relation �� on K1 as follows:

M j= ��(�a;�b) () (9�x)[(E j= �(�x)) ^ F (�x) = �a]

where E 2 E(M ). The choice of E does not matter.
Indeed, extend �1 with individual constants for each
element of M ; call the resulting vocabulary �0. Now
apply Lemma ?? with H = H(M ).

Lemma 4.23 �� is L-decidable.

proof Clear. 2

It is not quite true that (��)+ is the global relation
of the formula � on K0

2 but this is close to truth. By
virtue of Theorem ??,

�(�u; �v) () [(��)+(�u; �v) ^ 
(�v)

on K0
2. Indeed, consider any M 2 K0

1. Extend �1
with individual constants for each element of M ; call
the resulting vocabulary �0. Now apply Theorem ??
with H = H(M ). By Lemma ??, (��)+ is �rst-order
de�nable in K2. It follows that � is equivalent to a
�rst-order formula on K0

2.
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