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Abstract

Motivated by computer science challenges, we suggest to extend the approach and
methods of �nite model theory beyond �nite structures. We study de�nability issues
and their relation to complexity on meta�nite structures which typically consist of (i) a
primary part, which is a �nite structure, (ii) a secondary part, which is a (usually
in�nite) structure that can be viewed as a structured domain of numerical objects, and
(iii) a set of \weight" functions from the �rst part into the second.

We discuss model-theoretic properties of meta�nite structures, present results on
descriptive complexity, and sketch some potential applications.
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1 Finite models and beyond

Although questions involving �nite structures have always been of interest to logicians, �-
nite model theory has emerged as a separate research area only in the 1970's and early
1980's. Part of the motivation came from applications in computer science, in particular
from databases and complexity theory. As was pointed out in [27], �nite structures pose
a nontrivial challenge for mathematical logic, in particular for model theory. Being closely
related to the foundations of mathematics, classical logic is preoccupied with in�nity. In
fact most important classical results and techniques of mathematical logic (such as com-
pactness, completeness, the usual preservation theorems) fail when only �nite structures are
considered. It was suggested in [27] that logicians should systematically develop a model
theory of �nite structures that is able to cope with the challenges from computer science.

1.1 Motivation

Many of the �nite objects appearing in computer science refer at least implicitly to in�nite
structures. In particular, this is the case with objects that consist of both structures and
numbers, like e.g. graphs with weights on the edges. Such objects arise in many areas
of mathematics and computer science, e.g. in optimization theory, databases, complexity
theory and combinatorics. Although a single such object may be representable by a �nite
structure, it is not always desirable to do so. The numbers appearing in it live in an in�nite
structured domain, e.g. the �eld of reals or the arithmetic of natural numbers, and the
arithmetical operations that we want to perform on these numbers may take us out of any a
priori �xed �nite subdomain. Thus it is desirable to work directly on the in�nite structure,
but to adjust the logical languages in an appropriate way so that certain complications
coming from the in�nity of the structure are avoided.

Databases. To explain the challenge of going beyond �nite models and integrating struc-
tures and numbers, we �rst look at database theory, a particularly important area for such
an approach. We refer to the books [1, 58] and the survey article [41] for background on
database theory.
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The common practice of viewing (a state of) a relational database as a �nite structure
is not always adequate; we are not the �rst to say that (see Sect. 1.4 in this connection).
Let us look a little closer at the relationship between databases and �nite model theory. In
fact, database theory doesn't start with identifying relational databases and �nite relational
structures. Informally, a relational database is a �nite collection of relations, each of which
is a �nite subset R � D1 � � � � � Dm of tuples in a cartesian product of domains Di.
The domains need not be �nite, in fact it is often assumed that all domains are countably
in�nite. The active domain of the database is the set of those domain elements that appear
in some relation. Since the relations are �nite, so is the active domain. So actually, a
database is a countably in�nite structure all whose relations are �nite. By considering the
substructure induced by the active domain, a �nite structure is obtained carrying all the
relevant information. For many theoretical considerations one can forget at this point where
the domain elements came from, and work with the �nite structure instead.

However, in real databases some of the domains are not just plain sets, but themselves
are (in�nite) mathematical structures, e.g., the natural numbers with arithmetic. Tradi-
tionally the relations and functions structuring these domains are not considered as parts of
the database; supposedly they are imposed \from outside". But of course, this additional
structure of the domains is used in database applications. Commercial query languages like
SQL have arithmetical operations and comparisons, as well as so-called aggregate functions
like mean, sum, max, min that are applicable to the appropriate domains. In this case the
restriction to the active domain is no longer convincing, since arithmetical operations may
produce new numbers that were not previously stored in the database.

We thus believe that a more realistic logical approach to databases should be systemati-
cally developed, that does not adhere to the strict �niteness condition, but but nevertheless
retains the essential achievements of �nite model theory.

Discrete dynamic systems. Databases evolve in time and can be viewed as special
discrete dynamic systems. Additional examples are ubiquitous in computer science: micro-
processors, operating systems, compilers, programming languages, communication proto-
cols. Discrete dynamic systems play an enormous rôle in computer science and engineering.
The problem of formal speci�cation of discrete dynamic system is very important and at-
tracts much attention. In practice, the most popular approaches to the speci�cation problem
are operational approaches which formalize states of discrete dynamic systems in one form
or another. For a logician, it is natural to formalize states as structures of �rst-order logic.
This avenue has been pursued in the evolving algebra approach; it is quite practical and
fruitful [29].

Since states are �nite they can be formalized as �nite structures. However, it turns out
that often it is more convenient and practical to incorporate various background structures
into states and deal with in�nite states. This is a rule, rather than an exception, in the
evolving algebra literature (see [11]). Here we restrict ourselves to one simple example.

Imagine that a state of interest includes a stack of some objects which may be popped
or pushed during the transition to the next state. There are many ways to implement a
stack. Respectively, there are many ways to represent a stack in a �nite structure. But
you may want to avoid excessive detailization, for example to make your veri�cation proof
simpler and cleaner. One solution is to have an auxiliary in�nite universe of stacks with
built-in pop and push operations and a nullary function that gives the stack of interest
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to us. The details of this simple example are explained in the EA Tutorial mentioned in
[11]. More involved variations of the example appear in many places, in particular in Jim
Huggins' correctness proof of the Kermit communication protocol (also referred to in [29])
where stacks are replaced by queues.

1.2 Meta�nite structures

Logics with counting. There are logics, studied in the framework of �nite model the-
ory, that go some way towards integrating logic and arithmetic. These are the logics with
counting, augmenting familiar logics like �rst-order logic or �xed-point logic with the ability
to count the number of tuples in any de�nable relation. Syntactically this can be done by
either counting terms or counting quanti�ers.

The motivation for considering these logics comes from the observation that from the
point of view of expressiveness, �rst-order logic (FO for brevity) has two main de�ciencies:
It has no mechanism for recursion or unbounded iteration, and it cannot count. There are
several well-studied logics and database query languages that add recursion in one way or
another to FO (or part of it), notably the various forms of �xed point logic, the query
language Datalog and its extensions.

On ordered �nite structures, some of these languages express precisely the queries that
are computable in Ptime or other complexity classes. However, this is not the case for classes
of arbitrary (not necessarily ordered) structures, and most of the known counterexamples
involve counting. Thus, Immerman [36] proposed to add counting quanti�ers to �xed point
logic and asked whether this would su�ce to capture Ptime. Although Cai, F�urer and
Immerman [12] eventually answered this question negatively, �xed point logic with counting
turned out to be an important logic, de�ning a natural level of expressiveness below Ptime,
with a number of equivalent characterizations [24].

Logics with counting are two-sorted. With a one-sorted �nite structure A with universe
A, one associates the two-sorted structure A� := (A;R) where R = (f0; : : : ; ng; <)) where
n = jAj and < ist the usual ordering on f0; : : : ; ng.

The two sorts are related by counting terms of the form #x['] taking values in the
second, numerical sort. The interpretation of #x['] is the number of �rst-sort elements a
that satisfy '(a). (Inationary) �xed point logic with counting (FP + C) and partial �xed
point logic with counting (PFP + C) are de�ned by closing �rst-order logic under counting
terms and the usual FP + C (respectively PFP + C) rules for constructing formulas.

The predicates de�ned by �xed point operators may be mixed, i.e. range over both sorts.
We refer to [24, 38, 48, 49] and to Sect. 4.3 and 5.3 below for more background and results
on �xed point logics with counting.

It should be noted, that although the second, numerical sort is of rather restricted
form | just a linear ordering | this su�ces to de�ne any polynomial-time computable
numerical function in �xed point logic. Thus it makes no di�erence if the numerical sort
has additional relations and functions, e.g. modular addition and multiplication, as long as
these are polynomial-time computable.

Here we will consider similar two-sorted structures with the following essential di�er-
ences:

� The numerical sort need not be �nite.
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� The structures may contain functions from the �rst to the second sort.

� We consider more general operations than counting.

Meta�nite structures. Meeting the challenge to extend the approach and methods of
�nite model theory beyond �nite models and integrating structures and numbers, we propose
here a more general class of structures, which we call meta�nite structures, and a number
of logics to reason about them. Typical meta�nite structures consist of (i) a primary part,
which is a �nite structure, (ii) a secondary part, which may be �nite or in�nite, and (iii) a
set of \weight" functions from the �rst part into the second. Here is an example: a graph,
the set of natural numbers with the usual arithmetical operations, and a weight function
from the vertices (or the edges) of the graph to the natural numbers.

By itself, the notion of meta�nite structures may seem to be an old hat. Indeed, they
are just a special kind of two-sorted structures. The novelty of our approach is not so much
in the structures themselves but rather in the logics for such structures, which access the
primary and the secondary part in di�erent ways.

The term \meta�nite structure" is loose; in most cases, in this paper, the secondary
part will be an in�nite numerical domain, so the structures will be in fact perfectly in�nite.
The term \meta�nite" reects our intention to apply the approach and methods of �nite
model theory to these structures. In fact the in�nity that we seek is very modest. It should
not manifest itself too obtrusively, deviating our attention to phenomena that are pertinent
to in�nite structures only. Therefore our logics of meta�nite structures | appropriate
modi�cations of the usual logics of interest in �nite model theory, such as �rst-order logic,
�xed point logics or L!1! | access the in�nite part only in a limited way, for instance without
variables (and therefore without quanti�ers) over the secondary part. An important feature
of these logics is that they contain, besides formulae and terms in the usual sense, a calculus
of functions from the primary to the secondary part, which we call weights.

Encoding problems. One may object that a weighted structure, which consists of a �nite
structure and a collection of numbers, can be represented as a pure �nite structure or a
binary string. This is true, but not always satisfactory.

To encode a graph with weights on edges by a unweighted graph one can for instance,
replace every edge (u; v) of weightm bym distinct nodes, each of them connected to u and v
but to no other nodes. While the graph obtained in this way contains all information about
the original weighted graph, it is very inconvenient to perform arithmetical computations
on the encoded weights.

On the other side, encoding a structure (with or without weights) as a binary string
requires that we order the structure and thus forces us to deal with presentations of struc-
tures rather than the structures themselves, which contradicts the spirit of the relational
database approach as well as the spirit of �nite model theory.

1.3 Potential applications

We have mentioned databases and discrete dynamic systems as motivations for meta�nite
model theory. There are numerous other areas where this approach may be useful. We
intended also to write a section on applications of meta�nite model theory but this has to
be deferred to a later paper. Instead we mention a few potential application areas here.
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Optimization theory. Many important optimization problems are NP-hard and thus
cannot be e�ciently solved, unless P = NP. One way to cope with such problems is to
design approximation algorithms which do not necessarily �nd optimal solutions, but at
least approximate ones. A typical requirement is that the cost of the approximate solution
is within a constant factor of the optimal one (see e.g. [50] and the references given there).
In fact many optimization problems admit e�cient approximation algorithms, whereas for
others it has been shown that �nding approximate solutions is NP-hard as well.

Papadimitriou and Yannakakis [51] set forth a new, logical approach for studying the ap-
proximation properties of optimization problems. Exploiting Fagin's logical characterization
of NP by means of existential second-order logic, they introduced two syntactically de�ned
classes of maximization problems, Max Snp and Max Np, and proved that all problems
in these classes admit e�cient approximation algorithms. The work of Papadimitriou and
Yannakakis, together with other developments in complexity theory, led to spectacular non-
approximability results. In particular, the characterization of NP in terms of probabilistically
checkable proofs, obtained by Arora et. al. [5], implies that no Max Snp-hard problem can
have a polynomial-time approximation scheme, unless P = NP.

Many practical optimization problems take inputs which are structures with weights,
e.g. graphs with one or more weight functions assigning numbers to vertices or edges.
Important examples are the Travelling Salesman Problem, Max Flow/Min Cut,
most scheduling problems, and so on (see [16] for additional examples).

As mentioned already in [51], the result of Papadimitriou and Yannakakis can be ex-
tended to problems with weights. However, the weighted versions of Max Snp and Max
Np, as de�ned in [51], use the weights only in a rather limited way. We claim that meta�nite
structures provide the right framework to extend this approach to a more general de�nabil-
ity theory of optimization problems with weights. This claim has been substantiated by
recent work of A. Malmstr�om [45] who used the approach of meta�nite model theory to
establish connections between the logical presentation and the approximation properties of
optimization problems with weights. In particular, Malmstr�om exhibits a syntactically de-
�ned class of optimization problems (with weights in N) that admit fully polynomial-time
approximation schemes.

Numerical invariants of structures. In many branches of mathematics, functions that
assign numerical parameters to mathematical structures play an important rôle. For in-
stance, a large part of graph theory is devoted to the study of numerical invariants of
graphs, such as genus, chromatic number, clique number, diameter, girth, etc. Meta�nite
model theory provides a framework for studying de�nability issues of numerical invariants
and relating them, for instance, to computational complexity.

Fault-tolerance of queries. Suppose we have a relational database where every entry
has some probability of being incorrect. What is the probability that the result of a given
query is correct? What is the expected di�erence between the results on the observed and
\actual" databases. Again, such questions involve �nite structures together with numbers.

An unreliable database can be de�ned as a pair (A; �) consisting of a �nite structure A and
a probability function � that assigns to each atomic or negated atomic fact a probability
of being wrong. With (A; �) we can associate a probability space of databases B with
probabilities �(B) to be understood as the probability that the `actual' database is B.

Given a query Q for an unreliable database (A; �), it is interesting to determine its fault-
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tolerance. For a Boolean query, the fault-tolerance is just the probability that the evaluation
against the observed database A gives the correct answer for the actual database B. For
queries of positive arity, the fault-tolerance is de�ned in terms of the expected Hamming
distance of Q(A) and Q(B), i.e. the expected number of tuples that distinguish between
Q(A) and Q(B). In Sect. 3.3 we will show how to address these questions in the framework
of meta�nite model theory. Note that we can also consider unreliable meta�nite databases.
This gives examples where the secondary part has itself several sorts, namely one or more
sorts for the numbers appearing in the database, and one sort over the real interval [0; 1]
for the error probabilities.

Computations over the real numbers. Blum, Shub, and Smale [10] introduced a model
for computations over the real numbers (and other mathematical structures as well) which
is now usually called a BSS machine. It is essentially a random access machine, with the
important di�erence that real numbers are treated as basic entities and that arithmetic
operations on the reals are performed in a single step, independently of the magnitude
or complexity of the numbers involved. Many basic concepts and fundamental results of
computability and complexity theory reappear in the BSS model: the existence of universal
machines, the classes PR and NPR (real analogues of P and NP) and the existence of NPR-
complete problems. An example of an NPR-complete problem is the question whether a
given multivariate polynomial of degree four has a real root.

In �nite model theory there exist numerous results relating computational complexity
and logical de�nability on �nite structures. The subarea investigating such questions is
sometimes called descriptive complexity theory. The question arises whether similar results
can be obtained for complexity over the reals. The main problem for characterising complex-
ity over R in a model-theoretic setting is to de�ne the right class of structures that permit a
clear separation between the �nite, discrete aspects of the problems and computations (like
indices of tuples, time, indices of registers, the �nite control of the machines) on one side
and the arithmetic of real numbers on the other side.

It has been shown by Gr�adel and Meer [23] that this can be achieved by R-structures,
a special case of meta�nite models, with the ordered �eld of reals as secondary part. R-
structures admit a number of results relating expressibility and complexity that parallel
those of descriptive complexity theory in the classical case. In particular, Gr�adel and Meer
established analogues to Fagin's logical characterization of NP in terms generalized spectra
[20], and to the Immerman-Vardi Theorem, that �xed point logic captures polynomial time
on ordered structures [35, 60]. We will explain some of these results in Sect. 4.

1.4 Related approaches

In database theory there have been a number of proposals for going beyond the strict
�niteness condition and taking care of in�nite data. In part this was motivated by new
areas of application, such as geographical databases, that involve spatial data. We mention
a few (by no means all) of the relevant papers.

The study of in�nite recursive structures has a long tradition in mathematical logic, by
the work of Malcev, Nerode, Rabin, Vaught and their scienti�c descendents. Recently there
have been some papers on recursive structures that study questions related to �nite model
theory. Hirst and Harel [31] investigated recursive databases, given by a �nite set of recursive
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relations over the natural numbers. They studied the notion of a computable query in this
context and exhibited complete languages for two speci�c classes of recursive databases.
On the class of all recursive databases, quanti�er-free �rst-order logic su�ces to de�ne
all computable queries, whereas a variant of QL { the complete language from [13] for the
classical relational model | is complete on highly symmetric recursive databases. In another
paper Hirst and Harel studied �nite model theory issues, such as 0-1 laws and descriptive
complexity, in the context of recursive structures [32]. Gr�adel and Malmstr�om [22] discuss
resource bounded measures on recursive structure and prove 0-1 laws. Stolboushkin [55]
shows that important properties of �rst-order logic (compactness, completeness, preservation
theorems) fail on the class of recursive structures. This work is related to ours by the
motivation to extend the questions and methods of �nite model theory to classes of in�nite
structures. However, meta�nite model theory is radically di�erent from recursive model
theory.

Kanellakis, Kuper and Revesz [42] considered databases that are given by semi-algebraic
constraints over the real (or rational) numbers. This model can handle spatial data and
geometric queries in a very nice and convincing way. Classical relational query languages can
be extended with mathematical theories that admit quanti�er elimination, such as the theory
of real closed �elds, to provide a generalized notion of query language, called constraint query
languages. Complexity issues for such query languages are addressed in [42], and it has been
shown that although the decision problem of the underlying mathematical theory may have
exponential complexity, the resulting constraint query languages admit e�cient evaluation
algorithms. In this context we refer to [8, 9, 26, 56] for further model theoretic results on
�nitely representable databases.

Kabanza, Stevenne and Wolper [40] present an extension of the relational database
model for reasoning abount in�nite temporal data. In this model, time is represented by a
second sort over the integers and generalized relations are de�ned by linear constraints, i.e.
in Presburger arithmetic. It is proved that �rst-order queries over such databases can be
evaluated in polynomial time.

A proposal that is by far the closest to our approach appears in the penultimate section
of the seminal paper of Chandra and Harel [13], the same paper that also laid much of the
foundation for the theory of computable queries in the classical, relational model. In that
section, Chandra and Harel de�ne the notion of an extended database. For a �nite domain
D and a countable in�nite domain F , an extended database is a �nite collection of �nite
mixed relations of the form R � Dk � F ` and functions of the form w : Dk ! F . Moreover
F is \intended to include interpreted features such as numbers, strings (if needed), etc.".
In our terminology, an extended database is a meta�nite structure with mixed relations.
Chandra and Harel de�ne the notion of an extended database query and show that their
language QL can be generalized to a complete query language EQL that expresses precisely
the extended computable queries. The internal structure of the secondary part F is not
really used, except for the assumption that F is e�ectively enumerable.

As far as we know, this proposal of Chandra and Harel has not been further pursued in
database theory, in sharp contrast to the ideas developed in the rest of their paper.

However, it should be noted that practical query languages, like SQL, have operations
for computing the maximum, the average, etc. for a given set of numbers and thus they
deal, in fact, with meta�nite structures.
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2 Meta�nite structures

2.1 Basic de�nitions

In the following, German letters A;B; : : : ;R; : : : ; stand for �nite or in�nite structures; their
universes are denoted by corresponding Latin letter A;B; : : : ; R; : : : .

There are many variations of meta�nite structures. We de�ne here three basic notions:

� Simple meta�nite structures.

� Meta�nite structures with multiset operations.

� Meta�nite algebras.

Meta�nite structures with multiset operations are the most general of these notions, and
we will refer to them just as meta�nite structures. However, to simplify the exposition we
start with the simple variant.

De�nition 2.1. A simple meta�nite structure is a triple D = (A;R;W ) consisting of

(i) a �nite structure A, called the primary part of D;

(ii) a �nite or in�nite structure R, called the secondary (or numerical) part of D.1 We
always assume that R contains two distinguished elements 0 and 1 (or true and
false);

(iii) a �nite set W of functions w : Ak ! R;

The vocabulary of D is the triple �(D) = (�a;�r;�w) where each component of �(D)
is the set of relation or function symbols in the corresponding component of D. (We always
consider constants as functions of arity 0.) The two distinguished elements 0,1 of R are
named by constants of �r.

In �nite model theory, we are mostly interested in de�nability questions concerning
classes of �nite structures. Contrary to classical model theory, a single �nite structure often
is of lesser interest; for instance, it can be characterized up to isomorphism in �rst-order
logic. Here our main interest are de�nability questions concerning classes of meta�nite
structures with �xed secondary part. We write M�[R] for the class of meta�nite structures
of vocabulary � with secondary part R and Fin(�a) for the class of �nite structures with
vocabulary �a.

Meta�nite structures with multiset operations. Multisets generalize sets in the sense
that they allow multiple occurrences of elements. For instance, a function f : A ! R,
de�nes a multiset mult(f) = fff(a) : a 2 Agg over R (the notation ff: : :gg indicates that we
allow multiple occurrences of elements).

A multiset M over R can also be described by a function m : R! N where m(r) is the
multiplicity of r in M . For any set R, let fm(R) denote the class of all �nite multisets over
R.

In some of the meta�nite structures that we will consider, the secondary part R is
not just a (�rst-order) structure in the usual sense; it comes with a collection of multiset

1We denote the numerical part by R for \ARithmetic".
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operations, i.e. operations � : fm(R) ! R, mapping �nite multisets over R to elements of
R. Natural examples on, say, the real numbers are addition, multiplication, counting, mean,
maximum, minimum.

De�nition 2.2. A structure with multiset operations is a pair R = (R0;Op) where R0

is a �rst-order structure and Op is a set of operations � : fm(R) ! R (where R is the
universe of R0). The vocabulary �r of R consists of the vocabulary of R0 together with the
names of the operations in Op. A meta�nite structure with multiset operations is a triple
D = (A;R;W ) as in De�nition 2.1 except that R is a structure with multiset operations.

Let us give some motivation for this de�nition. The logics that we will consider contain
formulae and terms. Terms may take values in both parts of a meta�nite structures. While
the rôle of terms over the primary part is rather limited, the terms taking values in the
secondary part are called weight terms and are of crucial importance here.

A weight term F (x1; : : : ; xk) de�nes, on a meta�nite structureD = (A;R;W ), a function
FD : Ak ! R. The collection of values assumed by FD forms a �nite multiset

mult(FD) = ffFD(�a) : �a 2 Akgg:

We want to have in our languages the expressive means to apply to weight terms natural
operations like, say, summation to build the new weight

P
�a F

D(�a). Algebraically, this
means that we want to have operations mapping �nite multisets over R to elements of R.
These multiset operations will allow us to build new weight terms.

Remark. We consider meta�nite structures with multiset operations as the default, and
will usually refer to them just as meta�nite structures.

Meta�nite algebras. In principle we can always reduce the primary part of a meta�nite
structure D to a naked set A by pushing all the data into the functions in W . Indeed, we
can �rst replace every function f : Ak ! A by a (k+1)-ary relation, and then encode every
predicate Q � Ak by its characteristic function �Q : Ak ! f0; 1g � R.
De�nition 2.3. A meta�nite algebra is a meta�nite structure (with or without multiset
operations) whose primary part is a plain set, i.e. �a = ?. The elimination of �a-symbols
as just described, associates with every meta�nite structure D a meta�nite algebra Da,
called the algebraic form of D.

As we will explain later, the passage to meta�nite algebras permits a lean presentation
of a logic as a pure calculus of terms. In many cases, this is convenient, in others it is not.

Other variations. There exist several other conceivable variations of meta�nite structures
that are worth exploring. For instance, instead of allowing only functions from the primary
to the secondary part, we may admit mixed relations P � Ak � Rm or mixed functions
f : Ak�Rm ! R. Mixed relations may be particularly interesting for database applications;
however, to allow for �nite presentations of the databases some restrictions on the admissible
relations have to be imposed. A natural restriction is that mixed relations be �nite and that
mixed functions map all but �nitely many elements to 0. But there are other possibilities
of �nite presentations, e.g., that the relations are recursive [31] or given by semi-algebraic
constraints [42, 26].
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We won't consider meta�nite structures with mixed relations in this paper. However,
the design and investigation of query languages for meta�nite databases of this kind is one
of the promising directions for future research.

Another variation, important in particular for databases, is when the secondary part
has several in�nite sorts, e.g. one for the natural numbers, one for strings, one for real
numbers, and so on. While this extension poses no principal di�culty, it often requires
heavier notation and we won't consider such structures in this paper.

2.2 Arithmetical structures and R-structures

Of particular interest to us are meta�nite structures, whose secondary part is a structure N
over the natural numbers such that the following hold:

� As a minimum, N has the constants 0,1, the functions +; � , the ordering relation <
and the multiset operations max;min;

P
;
Q
.

� All functions, relations and multiset operations of N can be evaluated in polynomial
time.

Let us make the second point more precise:

De�nition 2.4. Let Np be the structure with the universe N, with all polynomial-time
computable functions f : Nk ! N (for all �nite arities k) and with all relations R � Nk
(of arbitrary �nite arity k) whose characteristic functions are polynomial-time computable.
To de�ne the class of Ptime computable operations on fm(N), we have to be a little more
careful: we assume that multisets M 2 fm(N) are represented by listing all elements, re-
peatedly if they occur more than once. Thus, if multM (n) is the multiplicity of n in M , the
cost of M is kMk := PnmultM(n) logn. Now, OpP(N) denotes the set of all operations
� : fm(N) ! N that are computable in polynomial time (with respect to this representa-
tion). Polynomial-time arithmetic, denoted PTA, is the pair (Np;OpP). A PTA-structure
is a meta�nite structure whose secondary part is PTA.

On the other hand, as the minimal variant for the secondary part the structure, we have
N0 = (N; 0; 1;+; �;<;max;min;

P
;
Q
).

De�nition 2.5. An arithmetical structure is a meta�nite structure with secondary part N
such that N is an expansion of N0 and a reduct of PTA. A simple arithmetical structure is
obtained from an arithmetical structure by omitting the multiset operations.

Another interesting class are R-structures, used by Gr�adel and Meer [23] for developing
a descriptive complexity theory over the real numbers.

De�nition 2.6. An R-structure is a simple meta�nite structure with secondary part

R = (R;+;�; �; =;�; (cr)r2R):
It is convenient to include subtraction and division as primitive operations and assume that
every element r 2 R is named by a constant cr so that every rational function g : Rk ! R
can be written as a term (without quanti�ers)2.

2A rational function is a quotient of two polynomials.
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In [23] a slightly di�erent presentation has been used including also the sign function

sgn(x) :=

8><
>:
1 if x > 0

0 if x = 0

�1 if x < 0

as a basic function. Clearly, this function is e�ciently computable, but is not a rational
function. We don't need this function here, because we have chosen to include in our logics
a characteristic function rule (see De�nition 3.1) from which the sign function is easily
de�nable.

2.3 Global functions, numerical invariants and their complexity

Let K be a class of meta�nite structures with secondary part R.

De�nition 2.7. A global (weight) function on K of arity k is a function F that assigns to
every structure D = (A;R;W ) 2 K a (local) function FD : Ak ! R in such a way that
isomorphisms between structures are preserved: for every isomorphism h : D! D0 we have
that for all a1; : : : ; ak 2 A

hFD(a1; : : : ; ak) = FD
0

(ha1; : : : ; hak):

In most cases, R will be a \numerical" structure (e.g. the natural numbers with arith-
metical operations, or the �eld of rational, real or complex numbers) which is rigid, thus the
restriction to the secondary part of any isomorphism between structures of K is the identity
on R. In such cases, we call a nullary global function | assigning to each isomorphism class
of structures a numerical value | a numerical invariant.

There are many interesting examples of numerical invariants both in the case of struc-
tures without weights and in the case of structures with weights: the order of the automor-
phism group of the structure; in graph theory, the usual graph parameters like the chromatic
number, clique number or genus; and in optimization theory, the cost of an optimal solution,
e.g. the length of a shortest TSP tour.

Examples of global numerical functions of positive arity are the distance between vertices
x, y of a given graph, the order of an element x of a given group (i.e. the cardinality of the
cyclic subgroup generated by x), etc.

Our notion of global functions generalizes the notions of global functions and global
relations in �nite model theory and the notion of relational queries in database theory.

Thus questions concerning computability, complexity and expressibility of relational
queries on �nite structures can be viewed as special cases of the corresponding questions for
global functions on classes of meta�nite structures.

Complexity of global functions. The notion of complexity for global functions depends
on a given computational model and the cost (or size) associated with the elements of the
secondary part. For instance, if the secondary part consists of natural numbers or binary
strings, then we have a natural notion of cost given by the number of bits. On the other
side, if we study complexity over real numbers with respect to the Blum-Shub-Smale model,
then we treat every element of R as a basic entity of cost one.

12



To obtain a exible and general notion of the complexity of global functions, we associate
with the secondary part R a cost function

k k : R! N:

The cost of a weight function w : Ak ! R is then de�ned as kwk := P�a2Ak kw(�a)k.
The cost of a meta�nite algebra D = (A;R;W ) is kDk = P

w2W kwk and the cost of a
meta�nite structure can be de�ned as the cost of the associated meta�nite algebra. Note
that this cost is always �nite, and that the secondary part | which is assumed to be �xed
| is given for free.

Proviso. For arithmetical structures, we let knk = 1+ blog nc, i.e. the length of the binary
representation of n (with the convention that log 0 = 0). For R-structures, our default is
that krk = 1 for all r 2 R, which reects the use of R-structures for capturing complexity
classes with respect to the Blum-Shub-Smale model.

For a meta�nite structure D = (A;R;W ) we write jDj for the cardinality of the primary
part A and let

maxD := max
w2W

max
�a
kw(�a)k

be the cost of the maximal weight. Then kDk � p(jDj;maxD) for some polynomial p(n;m)
that depends only on the vocabulary of D. Since most of the popular complexity classes
are invariant under polynomial increase of the relevant input parameters, it therefore makes
sense to measure the complexity of a computation on a structure D in terms of jDj and
maxD.

For instance, an algorithm M on a class C of meta�nite structures runs in polynomial-
time (respectively, logarithmic space) if, on every input D 2 K, the computation of M
terminates in at most q(jDj;maxD) steps, for some polynomial q, (respectively, uses at
most O(log jDj+ logmaxD) of work space).

More generally, we can de�ne the following notion of complexity

De�nition 2.8. Let K be a class of meta�nite structures with secondary part R, and
k k : R! N a cost function. LetM be a computation model suitable for evaluating global
functions on K. A resource measure for M is a function T associating with every M-
algorithm M and every input x a number TM(x) 2 N[ f1g. We say that M evaluates the
global F on K with resource bound t(n;m) if, given any structure D 2 K, and any tuple �a of
length appropriate for F , M computes FD(�a) in such a way that TM(D; �a) � t(jDj;maxD).

3 Logics of meta�nite structures.

Fix any logic L suitable for �nite structures, e.g. �rst-order logic, �xed point logic or the
in�nitary logic L!1! . There are several ways to extend L to a logic of meta�nite structures.

3.1 Simple languages.

The �rst such extension, let us call it L� for the time being, is suitable for reasoning about
simple meta�nite structures. It is given by the following de�nition.
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De�nition 3.1. Let � = (�a;�r;�w) be a vocabulary of simple meta�nite structures (so
that �r does not contain multiset operations). Fix a countable set V = fx0; x1; : : : ; g of
variables. These variables range over the primary part only; we don't use variables taking
values in the secondary part.

The language of L�(�) contains the following expressions:

� Terms over the primary part, denoted by t1; t2; : : : , which are called point terms. On
a meta�nite structure D = (A;R;W ), a point term t(x1; : : : ; xk) de�nes a function
tD : Ak ! A.

� Terms over the secondary part, which are called weight terms and are denoted by
F;G;H; : : : . On D, a weight term F (x1; : : : ; xk) de�nes a weight function F

D : Ak !
R.

� Formulae. On D, a formula '(x1; : : : ; xk) de�nes a predicate over the primary part
of D, namely 'D = f�a : D j= '(�a)g � Ak .

The terms, weights and formulae of L�(�) are de�ned inductively by the following rules:

(i) the set of point terms is the closure of the set of V of variables under applications of
function symbols in �a.

(ii) If t1; : : : ; tk are point terms and w is a k-ary function symbol of �w , then the expres-
sion w(t1; : : : ; tk) is a weight term.

(iii) If F1; : : : ; Fk are weight terms and g is a k-ary function symbol of �r, then the
expression g(F1; : : : ; Fk) is a weight term. In particular, all closed terms (in the usual
sense) over �r are weight terms of L�(�).

(iv) Atomic formulae are either equalities of point terms, or equalities of weight terms, or
expressions P (t1; : : : ; tk) or Q(F1; : : : ; Fk) where P and Q are k-ary predicate symbols
in �a and �r, respectively.

(v) The set of formulae of L� is closed under all rules of L for building formulae. However,
note that all variables appearing in these formulae range over the primary part only.

(vi) The characteristic function rule: If ' is a formula of L�, then �['] is a weight term
of L�, with the same free variables as ' and the following semantics.

�[']D(�a) :=

(
1 if D j= '(�a)

0 otherwise.

The basic terms are the point terms and the weight terms that can be built using only the
rules (i) { (iv) and (vi). Note that the set of basic terms depends only on �, not on L.

Remark. The characteristic function rule has been included for reasons of convenience,
to make the set of weight terms more expressive. It is conceivable that in certain contexts,
logics without this rule may be more natural.
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3.2 Logics with multiset operations

We now turn to logics that make use of multiset operations. As described in Sect. 2.1,
multiset operations can be used to de�ne new weight terms. Their role is similar to that of
quanti�ers; in fact quanti�ers can be viewed as special multiset operations.

In the case where �w contains multiset operations, we add to the inductive de�nition of
L�(�) the following multiset operation rule:

Syntax: Let �x and �y be tuples of variables, F (�x; �y) be a weight term of vocabulary � and
' be a formula of vocabulary �. Then, for every multiset operation � of �r, the expression

��x(F (�x; �y) : ')

is a weight term of vocabulary �, with free variables �y.

Semantics: Let G(�y) be the weight term ��x(F (�x; �y) : '). The interpretation of G(�y) on
an �-structure D with valuation �b for �y is

GD(�b) := �(ffFD(�a;�b) : for all �a such that D j= '(�a;�b)gg):

To enhance readability, we will sometimes omit the free variables and use the abbreviated
notation ��x(F : '). Furthermore, we may omit true ' and write simply ��xF (�x; �y).

There are some important multiset operations that are invariant under adding arbitrary
occurrences of 0 to the multiset: �(S) = �(S [ ff0; 0; : : : ; 0gg) for all S 2 fm(R). On N, for
instance, this is the case for

P
and max. In such case, we may use ��x(F ��[']) rather than

��x(F : ').

Example 3.2. (Binary representations) Consider arithmetical structures with primary
part of the form A = (f0; : : : ; n � 1g; <; P ) where P is a unary relation. P is interpreted
as a bit sequence u0 � � �un�1 representing the natural number

Pn�1
i=0 ui2

i (where ui = 1 i�
A j= P (i)). The number represented by P is de�nable by the termX

x

(�[Px]
Y
y

(2 : y < x)):

Example 3.3. (Counting elements) On arithmetical structures, we can count in FO�.
For any formula '(�x) there is a weight term #�x['(�x)] counting the number of tuples �a such
that '(�a) is true. Indeed, let

#�x['(�x)] :=
X
�x

�[']:

Example 3.4. (Counting equivalence classes) Let D be an arithmetical structure and
'(x; y) be a binary formula, de�ning an equivalence relation �' on A. If we have division
as a basic function in N, then the index of �', denoted #[A='], is de�nable in FO� in the
following way.

By the previous example, F (x) = #y['(x; y)] is a weight term of FO�. The index of �'
can be written as a sum of rational numbers: #[A='] =

P
x(F (x))

�1. To do everything
over N, let G =

Q
x F (x); thus the weight G=F (x) is also FO�-de�nable and we get

#[A='] =
�X

x

G=F (x)
�
=G:
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Multiset operations play an important rôle in meta�nite model theory. They partially
compensate for the limited access to the secondary part and greatly enhance the expressive
power of the logics that we consider. We also believe that they provide the right logical
formalism for the aggregate operators used in real-life database query languages (see e.g. [1,
Chapter 7.3: \Confronting the Real World"]).

3.3 An excursion: reliability of database queries

We present here a more elaborate example for the use of multiset operations that addresses
the issue of fault tolerance of relational queries mentioned in Sect. 1.3.

De�nition 3.5. An unreliable database is a pair (A; �) where A is a �nite structure and �
a probability function on the set of atomic statements R�a about A.

Think about A as the observed database. For every �rst-order statement '(�a) about A,
let Wrong('(�a)) be the event that the truth-value of '(�a) in A di�ers from the truth-value
of '(�a) in the actual database. �(R�a) is the probability of the event Wrong(R�a). It is
supposed that the events Wrong(R�a) are independent.

Let B be a database of the same vocabulary as A and with the same universe as A. Let
D(B) be the collection of atomic statements R�a that are true in B. The probability that
B is the actual database is

�(B) :=
Y

'2jD(A)�D(B)j

�(')
Y

'2D(A),'2D(B)

(1� �('))

where jD(A)�D(B)j is the symmetric di�erence of D(A) and D(B).
Given a relational query  (�x) of arity k, let  A = f�a 2 Ak : A j=  (�a)g. The Hamming

distance between  A and  B is the cardinality of the symmetric di�erence j A �  Bj.
De�nition 3.6. Fix an unreliable database (A; �) and a k-ary query  . For every tuple
�a 2 Ak, let P (�a) be the probability of the event Wrong( (�a)). Summing up P (�a) over all
tuples �a 2 Ak gives the expectation E(H ) of the Hamming distance between  A and  B

where B is the actual database. The number F := 1� [E(H )=n
k] is the fault-tolerance of

 .

Note that the expected Hamming distance E(H ) is a numerical invariant on unreliable
databases. It assigns to any given (A; �) the expectation of j A �  Bj. Also the fault
tolerance F is a numerical invariant. If  has free variables, then P (�x) is a global function
of positive arity; if  is a sentence then P and E(H ) coincide and F = 1� P .

We are interested in de�nability and complexity questions for these invariants. Similar
notions for studying query reliability appear in [18].

Unreliable databases can be modeled by meta�nite structures where the secondary part
R is the �eld of reals with the multiset operations

P
;
Q
. Let (A; �) be an unreliable

database of relational vocabulary �a. View � as a tuple of probability functions �R where
R is a proper predicate (not the equality sign) in �a and �R is the restriction of � to atoms
of the form R�a. With an unreliable database (A; �), we associate the meta�nite structure
(A;R; f�R : R 2 �ag). We investigate the following questions:
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De�nability: Is it true that the expected Hamming distance (between the results of  on the
observed database and actual database) and the fault-tolerance F of every �rst-order
query are �rst-order de�nable numerical invariants?

If this should indeed be the case and if, moreover, a �rst-order de�nition of the fault-
tolerance of  can be uniformly and e�ciently generated from  , then one can automatically
modify any �rst-order query so that the evaluation gives not only the result of the query on
the observed database, but also its reliability. This brings us to the second question.

Complexity: What is the computational complexity (with respect to the size of the unreliable
database) of calculating the expected Hamming distance and the fault-tolerance of
�rst-order queries. Here we can either assume, that the given probabilities are rational,
or we take a real-number model of computation.

Of course the same questions can be asked for other query languages and for more
complicated (and more realistic) models for unreliable databases. But this will be done
elsewhere.

We �rst consider the quanti�er-free queries.

Proposition 3.7. Let  (�x) be a quanti�er-free. Then

(i) P (�x) is a �rst-order de�nable global weight function;

(ii) The expected Hamming distance and the fault-tolerance of  are �rst-order de�nable
numerical invariants.

(iii) The expected Hamming distance and the fault-tolerance of  on a given unreliable
database (A; �) are computable in polynomial time.

Proof. Note that (iii) is an immediate consequence of (ii). Since F = 1 � E(H )=nk and
E(H ) =

P
�x P (�x)), it su�ces to prove (i).

Let N(x1; : : : ; xk) be the assertion that xi 6= xj if i < j, and let N( (�x)) = N(�x). It
su�ces to �nd a weight term that expresses P only in the case when N( ) holds. Indeed,
let �1; : : : ; �m be all di�erent complete and consistent assertions about the equality relation
on the components of �x. P is the sum of probabilities P�i^ , and each �i ^ is equivalent
to a formula of the form N(�y) ^ '(�y).

If � is an atom R�x then, by de�nition, P�(�x) = �R(�x). Further P:�(�x) = P�(x). Let
now  (�x) = �1 ^ � � � ^ �m be a conjunction of m literals (i.e. atoms and negated atoms)
which are distinct and none is the negation of another one.

Let T be the set of the 2m formulae ' = �01 ^ � � �^ �0m where the literals �0i and �i either
coincide or one is the negation of the other. We identify each ' 2 T with the set of its
subformulae, i.e we sometimes write � 2 ' to express that � is one of the subformulae of '.

Suppose that for the observed database A, we have A j= '(�a) (and hence A j= :'0 for
all other '0 2 T ). Since the terms P�(�x) describe probabilities of independent events, the
term

G'; (�x) :=
Y

�2 \'

(1� P�(�x))
Y

�2 �'

P�(�x)

describes the probability that  (�a) holds in the actual database. The event Wrong( (�a)) is
the disjoint union of
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(a) the event that A j=  (�a), but : (�a) holds in the actual database,

(b) the events that A j= '(�a) for some ' 6=  from T , but  (�a) is true in the actual
database.

Thus, the probability of the event Wrong( (�a)) is described by

P (�x) := �[ (�x)](1� G ; (�x)) +
X

'2T�f g

�['(�x)]G'; (�x)

which is a �rst-order term.
This generalizes to quanti�er-free queries as follows. Let  (�x) be a quanti�er-free formula

satifyingN( ), and let �1; : : : ; �m be the atoms occuring in  . Again we form the set T of all
conjunctions �01^� � �^�0m where �0i = �i or �

0
i = :�i. Further, let T+( ) = f' 2 T : ' j=  g

and T�( ) = f' 2 T : ' j= : g = T � T+( ). Clearly  is logically equivalent toW
'2T+( ) '. It thus follows that the probabilty of the event Wrong( (�x)) is descibed by the

term

P (�x) :=
X

'2T+( )

�
�['(�x)]

X
#2T�( )

G';#(�x)
�
+

X
'2T�( )

�
�['(�x)]

X
#2T+( )

G';#(�x)
�
:

This proves the proposition.

Remark. Note that the term describing P may have exponential length with respect to
 . But this is no major problem because we are mainly interested in data complexity: the
query is �xed and the complexity is measured in terms of the size of the database. This
is the usual and reasonable practice in database theory because the length of the query is
usually much smaller than the size of the database.

As we prove next, it is unlikely that Proposition 3.7 can be generalized to all �rst-order
queries. In fact, unless P = #P, even the error probabilities of conjunctive queries cannot be
computed in polynomial time. (Thus a claim made in [18], to the e�ect that the reliability
of any �rst-order query is polynomial-time computable, appears to be incorrect.)

Recall that conjunctive queries are queries of the form 9x1 � � � 9xk('1 ^ � � � ^ '`) where
each 'i is atomic. The class #P consists of all functions f into N for which there exists
a nondeterministic polynomial-time Turing machine such that the number of accepting
computations on any input for M coincides with the value of f on that input. For many
NP-complete decision problems and also for some problems in P, the related problem of
counting the number of witnesses (rather than determining whether there exists at least
one) is #P-complete. For background on #P we refer to [50, 59].

Proposition 3.8. There exist conjunctive queries  such that calculating the value of P 
is #P-hard.

Proof. We will reduce the problem #Monotone 2-Sat to the problem of computing the
value of P for a conjunctive Boolean query  .

The problem #Monotone 2-Sat, proved to be #P-complete by Valiant [59], takes as
input instances propositional formula in 2-CNF without negations, i.e. formulae of the form
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Vn
i=1 Yi _Zi where Yi and Zi are propositional variables. The desired answer is the number

of satisfying assignments.
A propositional formula of this form can be modeled by structure (A;L;R) where the

universe A is the (disjoint) union of the set of clauses and the set of propositional variables
of the formula and the atomic statements Luv (resp. Ruv) express that the left (resp.
right) variable in clause u is v. Further, we model an assignment of truth values to the
propositional variables by the set S of variables that are set to false under this assignment.

Given a positive 2-CNF formula
Vn
i=1 Yi _ Zi one can construct in polynomial time the

unreliable database (A; �) where A = (A;L;R; S) models the given formula together with
the assignment that sets all variables to false (thus S is the set of all variables in the formula).
The error probability are de�ned as follows: All atomic statements Luv, Ruv have error
probability 0, and

�(Sv) =

(
1=2 if v is a variable

0 otherwise.

Thus the probability space associated with (A; �) is essentially the uniform distribution
over all assignments of truth values to the variables in the given 2-CNF formula.

Now, consider the conjunctive query

 := 9x9y9z(Lxy ^Rxz ^ Sy ^ Sz)

which expresses, on A = (A;L;R; S), that the assignment de�ned by S does not satisfy the
formula modeled by (A;L;R). Clearly A j=  and the error probabilty P is just the number
of assignments that satisfy the given formula, divided by the total number of assignments.
Thus, if we could calculate the error probability of  in polynomial time, we could solve
#Monotone 2-Sat (and thus any problem in #P) in polynomial-time.

Remark. It is easy to see that computing P is in #P for all �rst-order  .

3.4 Pure term calculi

We now explain how, for meta�nite algebras, logics can be presented as pure calculi of weight
terms. We �rst assume, for simplicity, that the secondary part R is an algebra, i.e. the
vocabulary �r contains no relation symbols. Thus we deal with vocabularies � = (�r;�w)
where �w is a set of function symbols and �r a set of function and multiset operation
symbols.

De�nition 3.9. FOT(�) is the calculus of �rst-order terms of vocabulary �. The set of
terms and the notion of the rank for the terms (that will be exploited later) are de�ned
inductively as follows:

(i) If x1; : : : ; xk are variables, and w is a k-ary weight function in �w , then w(x1; : : : ; xm)
is a term of rank 0 in FOT(�).

(ii) If F1; : : : ; Fm 2 FOT(�) and g 2 �r is a m-ary function symbol, then g(F1; : : : ; Fm)
is a term of FOT(�), whose rank is the maximum of the ranks of F1; : : : ; Fm.
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(iii) If F and G belong to FOT(�), then so does �[F = G]. The rank of �[F = G] is the
maximum of the ranks of F and G.

(iv) If F and G belong to FOT(�), �y is an `-tuple of variables and � a multiset operation
from �r , then ��y(F (�x; �y) : G = 1) is a term of FOT(�), of rank `+maxfrk(F ); rk(G)g.

We use also a simpli�ed form ��y F (�x; �y) as an abbreviation for (��y (F (�x; �y) : 1 = 1).

In the cases e.g. of arithmetical or R-structures with maximization as a multiset op-
eration, �rst-order logic can be simulated by FOT, in the sense that the characteristic
function of every �rst-order formula is equivalent to a term in FOT. Indeed, this follows by
a straightforward induction using the following equalities:

�[ ^ '] = �[ ]�[']

�[: ] = 1� �[ ]
�[9x ] = max

x
(�[ ]):

In fact, this holds for all secondary parts as long as we have two de�nable functions ^ and
:, interpreted on f0; 1g � R in the usual way, and any multiset operation that distinguishes,
say, multisets with occurrences of 1 from those without (or the empty multiset from the
nonempty ones).

Remark. The restriction to algebraic structures is not necessary. When we deal with
an arbitrary vocabulary � = (�a;�r;�w) for meta�nite structures, we can still present
�rst-order logic as a pure calculus of weight terms. We just have to replace in clause (i)
of De�nition 3.9 the variables xi by arbitrary point terms over �a (as in clause (ii) of
De�nition 3.1), and add the rules de�ning for every predicate Q and already de�ned terms
F1; : : : ; Fm also the term �[Q(F1; : : : ; Fm)].

3.5 Second-order multiset operations

In several contexts, for instance for dealing with NP-optimization problems or with counting
problems in the class #P, it is convenient to have logics with second-order constructs.

Multiset operations can be viewed as a generalization of quanti�ers. Therefore, natural
variants of second order logics can be de�ned by applying multiset operations to predicate
variables.

De�nition 3.10. Suppose we have a logic L in the usual sense (say, second-order logic
or its existential fragment �1

1), then L
�� is the smallest logic closed under the rules of L�

together with the following rule.

Multiset operation rule (second order):

Syntax: Let � = (�a;�r;�w) be a vocabulary and �0 = (�a [ f �Xg;�r;�w) where �X is
a tuple of relation variables. If F is a weight term and ' a formula of vocabulary �0 with
free variables among �x; �y, then, for every multiset operation � of �r , the expression

� �X;�x(F : ')

is a weight term of vocabulary �, with free variables �y.
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Semantics: The interpretation of this expression on an �-structure D with valuation �b for
�y is

�ffF (D; �X)(�a;�b) : (D; �X) j= '(�a;�b)gg:
Example 3.11. (The Travelling Salesman Problem) NP-optimization problems like
the TSP can be expressed in a very direct way in this framework, since the arithmetic that
is necessary to determine the length of a tour and to minimize is separated from the graph.

Let order(<) express that < is a linear ordering, and let succ(<; x; y) be a formula
which, for any given linear ordering <, says that either y is the successor of x, or x is the
maximal and y the minimal element of the ordering. Then the length of the shortest tour
of any instance (V; w) of the TSP, where w : V � V ! N is the weight function giving the
distances, is de�ned by the weight

optTSP(V; w) = min
<

�X
x;y

(w(x; y) : succ) : order
�
:

A more challenging example: the genus of a graph. The genus (G) of an undirected
graph G is the smallest g 2 N such that G can be embedded into the sphere with g handles.

The genus is one of the most important graph parameters. It is hard to compute;
the corresponding decision problem | given a graph G and a number k, decide whether
(G) � k | is NP-complete.

It is more convenient for us to work with a di�erent, purely combinatorial characteriza-
tion of the genus.

De�nition 3.12. A rotation system on a undirected graphG = (V;E) is a ternary predicate
P 2 V 3 which de�nes for every node a cycle on the edges incident to it. More precisely:
if (x; y; z) 2 P , then (x; y) 2 E and (y; z) 2 E, and for all y 2 V , the directed graph
Hy = (Sy; Cy) with

Sy := fx : (x; y) 2 Eg
Cy := f(x; z) : (x; y; z) 2 Pg

is a cycle. A P -face is de�ned by a cycle x0; : : : ; xr�1 in G such that, for all i < r,
(xi�1; xi; xi+1) 2 P (here, indices are expressed modulo r). The P -genus of G, denoted
(P ) is de�ned by Euler's formula

n� e + f(P ) = 2� 2(P )

where n is the number of vertices, e the number of edges and f(P ) the number of P -faces.

The following result is well-known in graph theory (see e.g. [25])

Proposition 3.13. The genus of G is the minimal P -genus of G.

For convenience our logical de�nition of the genus is based on transitive closure logic.
This is a familiar logic in �nite model theory which augments �rst-order logic by the ability
to de�ne transitive closures. It admits, for every formula '(�x; �y) with k-tuples �x; �y of free
variables, also the formula [TC�x;�y '](�a;�b) expressing that (�a;�b) is contained in the reexive
and transitive closure of the binary relation that ' de�nes on k-tuples.
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It is easy to see that there exists a formula  of vocabulary fE; Pg in transitive closure
logic such that for every graph G and every ternary predicate P on G

(G;P ) j=  if and only if P is a rotation system on G.

The number of P -faces is the number of equivalence classes of directed edges with respect
to the reachability relation de�ned by P . It is not di�cult to construct a formula �(P;Q)
in transitive closure logic saying that Q is a binary relation containing at most one directed
edge on each P -face:

�(P;Q) = 8x8y8u8v((Qxy ^Quv ^
[TCxy;uvy = u ^ P (x; y; v)](xy; uv))! (x; y) = (u; v)):

Given that  (P ) expresses that P is a rotation system, that the weight #Q is de�nable in
FO�(fQg) and that n and e are obviously de�nable, we can de�ne the genus of an undirected
graph by

 = 1 + 1
2(e� n�max

P;Q
(#Q :  ^ �)):

4 Descriptive complexity

One of the goals of meta�nite model theory is the descriptive complexity theory of problems
with weights. For �nite models, the results of Fagin, Immerman, Vardi and others provide
logical characterizations of NP, P and also for most of the other important complexity
classes, at least on ordered structures. We refer to the survey articles [21, 28, 36, 37], to
Chapter 6 in [19] and Chapter 2.3 in [7] for background on descriptive complexity.

Here we investigate generalizations of these results in the realm of meta�nite structures.
For simplicity, we focus on arithmetical structures; we also mention R-structures but refer to
[23] for proofs. However, the approach can be extended to problems on meta�nite structures
with arbitrary secondary part. This requires the de�nition of a suitable computation model
and a suitable notion of complexity. We will defer the detailed development to a subsequent
paper.

We start with the observation that �rst-order formulae can be evaluated in polynomial-
time.

Proposition 4.1. If the basic functions, relations and multiset operations of R can be eval-
uated in polynomial time (with respect to the given cost function), then the same is true for
every �rst-order de�nable global function on M�[R].

The proof is a straightforward induction.

4.1 Meta�nite spectra

We �rst consider Fagin's characterization of NP by existential second-order logic [20].
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De�nition 4.2. A class K of �nite �a-structures is a generalized spectrum if there exists
a �rst-order sentence  of a vocabulary �a [ fR1; : : : ; Rmg such that A 2 K if and only if
there exists an expansion B of A with B j=  .

Remark. An equivalent de�nition is that a generalized spectrum is the class of �nite models
of an existential second-order sentence 9R1 � � � 9Rm . However, as discussed below, there
are several possibilities of generalizing second-order logic to meta�nite structures, and we
don't want to commit ourselves to one particular variant. We will therefore mostly work
with (generalizations of) the de�nition given above.

Informally, Fagin's Theorem states that the generalized spectra are precisely the model
classes recognizable in nondeterministic polynomial time. For a precise statement of this
result, we have to keep in mind that to serve as an input for a classical computational device
like a Turing machine, a �nite structure needs to be encoded by a string. At least implicitly,
such an encoding requires that an ordered representation of the structure is chosen. The
precise form of the encoding is not important, as long as it satis�es some reasonable simple
properties. So when we say that a class of structures is in NP we actually mean that the
set of encodings of structures in that class is in NP.

Theorem 4.3 (Fagin). Let K be a class of �nite structures of a �xed �nite vocabulary
which is closed under isomorphisms. Then K is in NP if and only if it is a generalized
spectrum.

Does Fagin's Theorem generalize to meta�nite structures? To address this problem, we
need to make precise two notions:

� The notion of a meta�nite spectrum, i.e. a generalized spectrum of meta�nite struc-
tures.

� The notion of nondeterministic polynomial time complexity in the context of meta�nite
structures.

We start with two notions of meta�nite spectra. Recall the M�[R] is the class of meta�-
nite structures with secondary part R and vocabulary � = (�a;�r;�w) (where of course
�r is the vocabulary of R).

De�nition 4.4. A class K � M�[R] is a meta�nite spectrum if there exists a �rst-order
sentence  of a vocabulary �0 � � such that D 2 K if and only if there exists an expansion
D0 2M�0 [R] of D with D0 j=  . (Note that the secondary part is not expanded.) A primary
meta�nite spectrum is de�ned in a similar way, except that only the primary part of the
structures is expanded, but not the set of weight functions. This means that the expanded
structures D0 have the same set of weight functions as D.

Remark. These two notions of meta�nite spectra correspond to two variants of (existential)
second-order logic. The more restrictive one allows second-order quanti�ers only over pri-
mary relations, whereas the general one allows quanti�cation over weight functions as well.
Thus, a primary meta�nite spectrum is the class of models D 2M�[R] which are models of
an existential second-order sentence of the form 9R1 � � � 9Rm where R1; : : : ; Rm are rela-
tion variables over the primary part and  is �rst-order (in the sense of De�nition 3.1). Since
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relations over the primary part can be replaced by their characteristic functions, a meta�nite
spectrum in the more general sense is the class of models of a sentence 9F1 � � �9Fm where
Fi are function symbols ranging over weight functions.

4.2 Generalizations of Fagin's Theorem

We show that both notions of meta�nite spectra capture (suitable variants of) nondeter-
ministic polynomial-time in certain contexts, but fail to do so in others.

First we consider arithmetical structures where the secondary part is N, as given by
De�nition 2.5. We assume that the cost of natural numbers is given by the length of
their binary representations. As described in Sect. 2.3, this gives a natural notion of the
complexity of global functions, and in particular of an NP-class of arithmetical structures.
So the question is whether, or under what circumstances, NP is captured by the class of
meta�nite spectra or primary meta�nite spectra.

The original proof of Fagin's Theorem generalizes to the case of arithmetical structures
with not too large weights.

De�nition 4.5. A class K of meta�nite structures has small weights if there exists a k 2 N
such that maxD � jDjk for all D 2 K:

Recall that maxD stands for the cost of the largest weight. Thus, a class of arithmetical
structures has small weights if the values of the weights are bounded by a function 2p(jDj)

for some polynomial p. We obtain the following �rst generalization of Fagin's result.

Theorem 4.6. Let K � M�[N] be a class of arithmetical structures with small weights,
which is closed under isomorphisms. The following are equivalent:

(i) K is in NP.

(ii) K is a primary generalized spectrum.

Proof. It is obvious that (ii) implies (i). The converse can be reduced to Fagin's Theorem as
follows. We assume that for every structure D = (A;N;W ) in K, we have that maxD � nk
where n = jDj = jAj; further we suppose without loss of generality that an ordering <
on A is available (otherwise we expand the vocabulary with a binary relation < and add
a conjunct �(<) asserting that < is a linear order). We can then identify Ak with the
initial subset f0; : : : ; nk � 1g of N, viewed as bit positions of the binary representations of
the weights of D. With every D 2 K we associate a �nite structure Df by expanding the
primary part A as follows: For every weight function w 2 W of arity j we add a new relation
Pw of arity j + k with

Pw := f(�a; �t) : the �t-th bit of w(�a) is 1g:
Then K is in NP if and only if Kf = fDf : D 2 Kg is an NP-set of �nite structures,

and in fact, we can choose the encodings in such a way that D and Df are represented by
the same binary string. Thus, if K is in NP, then by Fagin's Theorem Kf is a generalized
spectrum, de�ned by a �rst-order sentence  .

As in Example 3.2, one can construct a �rst-order sentence � (whose vocabulary con-
sists of the weight functions w 2 �w and the corresponding primary relations Pw), which
expresses that the Pw encode the weight functions w in the sense de�ned above. Then  ^�
is a �rst-order sentence witnessing that K is a primary meta�nite spectrum.
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Remark. The same result holds for simple arithmetical structures.

However, without the restriction that the weights be small, it is no longer true that every
NP-set is a primary meta�nite spectrum. If we have inputs with huge weights compared to
the primary part, then relations over the primary part cannot encode enough information
to describe computations that are bounded by a polynomial in the length of the weights.

It is tempting to use unrestricted meta�nite spectra instead. However, meta�nite spectra
in the general sense capture a much larger class than NP, namely the class of all recursively
enumerable sets!

We �rst note that any tuple �a 2 Nk can be viewed as an arithmetical structure with the
empty primary vocabulary and k nullary weight functions a1; : : : ; ak. Thus an arithmetical
relation S � Nk can be viewed as a special class of arithmetical structures.

Theorem 4.7. Every recursively enumerable set S � N
k is a meta�nite spectrum. In

particular, there exist undecidable meta�nite spectra.

Proof. By Matijasevich's Theorem (see [46]) every recursively enumerable set S � Nk is
Diophantine, i.e. can be represented as

S = f�a 2 Nk : there exists b1; : : : ; bm 2 N such that Q(�a;�b) = 0g
for some polynomial Q 2 Z[x1; : : : ; xk; y1; : : : ; ym]. Let P; P 0 2 N[�x; �y] such that Q(�x; �y) =
P (�x; �y) � P 0(�x; �y). Thus S is a meta�nite spectrum; the desired �rst-order sentence uses
additional weight functions b1; : : : ; bm and asserts that P (�a;�b) = P 0(�a;�b).

This can be extended to any r.e. class of arithmetical structures, with arbitrary vocab-
ulary. To prove this, we describe how to encode structures D �M�[N] by tuples c(D) 2 Nk
where k depends only on �. (In fact, it is no problem to reduce k to 1.) For future use of
such encodings we will be more restrictive than necessary for this result.

Similar to the case of �nite structures, an encoding involves the selection of a linear order
on the primary part. In fact we �nd it more convenient to have a ranking of the primary
part rather than just a linear ordering.

De�nition 4.8. Suppose that R contains a copy of (N; <). A ranking of a meta�nite
structure D = (A;R;W ) is a bijection r : A ! f0; : : : ; n� 1g � R. A class K � M�[R] is
ranked if � contains a weight function r whose interpretation on every D 2 K is a ranking.

From a ranking one can trivially de�ne a linear order of the primary part. Also a ranking
r can be extended to a ranking rm : Am ! f0; : : : ; nm�1g ofm-tuples. On the other hand, a
ranking need not be �rst-order de�nable from a linear order; take e.g. R = (N; <). However,
on arithmetical structures,

P
is available and thus a ranking is de�nable from a linear order

by r(x) =
P

y �[y < x].

We write R� for the class of ranked arithmetical structures of vocabulary �.

Lemma 4.9 (Coding Lemma.). For every vocabulary � of ranked arithmetical structures
there exists an encoding function

c : R� �! Nk
D 7�! c(D) = c1(D); : : : ; ck(D)

with the following properties:
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(i) c is de�nable by �rst-order terms;

(ii) The primary part and the weight functions of D can be reconstructured from c(D) in
polynomial time;

(iii) there exists a polynomial p(n;m) such that ci(D) � 2p(jDj;maxD) for every i � k.
Proof. Encode every weight function w : Am ! N by a pair (q; s) of natural numbers, where

q = max
�x
w(�x) + 1

s =
X
�x

w(�x)qrm(�x):

This encoding is �rst-order de�nable: for q this is obvious, and

s =
X
�x

�
w(�x)

Y
�y

(q : rm(�y) < rm(�x))
�
:

To encode D we pass to the associated algebra Da and represent it by the sequence of
pairs (q; s) that encode the weight functions of Da. Obviously, properties (i), (ii), (iii) are
satis�ed.

Theorem 4.10. Every recursively enumerable class of arithmetical structures is a meta�-
nite spectrum.

Proof. Let K �M�[N] be recursively enumerable. Then the set

c(K) := fc(D; r) : D 2 K; r is a ranking of Dg � Nk

is also recursively enumerable and therefore Diophantine. The desired �rst-order sentence
 uses, besides the symbols of �, a unary weight function r and nullary weight functions
b1; : : : ; bm and expresses (i) that r is a ranking and (ii) that Q(c(D; r);�b)) = 0 for a suitable
polynomial Q 2Z[x1; : : : ; xk; y1; : : : ; ym] de�ning c(K).

Conversely, it is easy to see that every meta�nite spectrum of arithmetical structures is
recursively enumerable, so we obtain:

Corollary 4.11. On arithmetical structures, meta�nite spectra capture the r.e. sets.

But there are other contexts where meta�nite spectra do indeed capture (a suitable
notion of) nondeterministic polynomial-time. An important example are computations over
the real numbers with the model of Blum-Shub-Smale.

Theorem 4.12 (Gr�adel, Meer). NPR coincides with the class of meta�nite spectra of
R-structures.

The proof is given in [23].

De�nition 4.13. Let K � M�[R], and suppose that we have �xed a cost function on R.
We say that K is a polynomially bounded meta�nite spectrum if there exists a �rst-order
sentence  of vocabulary �0 � � and a polynomial p(n;m) such that K is the class of all
D 2M�[R] for which there exists an expansion D0 with
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� D0 j=  

� maxD0 � p(jDj;maxD)

Remark. If the cost function is universally bounded by a constant (as in the case of
R-structures), then trivially every meta�nite spectrum is polynomially bounded.

Conjecture 4.14. Let K � M�[N] be a class of arithmetical structures, which is closed
under isomorphism. Then the following are equivalent:

(i) K 2 NP.

(ii) K is a polynomially bounded meta�nite spectrum.

It is not di�cult to prove that every polynomially bounded meta�nite spectrum is in
NP, i.e. that (ii) implies (i). The other direction is related to a conjecture of Adleman and
Manders concerning the notion of Diophantine complexity (see [3, 4, 33, 39, 43, 46]).

Adleman and Manders introduced the class D of all relations S � Nk that can be
represented in the form

�a 2 S () 9y1 � � � 9ym
� m̂

i=1

yi � 2maxi kaik` ^ Q(�a; �y) = 0
�

for some ` 2 N and some polynomial Q with integer coe�cients. They conjectured that
every arithmetical relation in NP can be given such a Diophantine representation, i.e. that
D = NP. This conjecture implies (and in fact is equivalent to) Conjecture 4.14.

It is obvious that the analogue of Conjecture 4.14 for PTA-structures is true, since there
we have all polynomial-time computable functions available. But in fact, much weaker
expansions of N0 will do as well. Let ~N be obtained from N0 by adding at least one of the
following functions or relations:

� the so-called logical and function, mapping numbers a; b with binary expansions a =Pm
i=0 ai2

i and b =
P`

i=0 bi2
i to

a&b :=

min(`;m)X
i=0

min(ai; bi)2
i:

� the partial order � with a � b i� a&b = a, (i.e. every bit of a is less than or equal to
the corresponding bit of b);

� the function (a; b; c) 7! �ab� (mod c);

� the modular factorial function (a; b) 7! a! (mod b).

Then, results of Jones and Matijasevich [39] imply

Theorem 4.15. Every class in NP of arithmetical structures with secondary part ~N is a
polynomially bounded meta�nite spectrum.
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The ordering � or the logical and can be directly used to describe computations. Bino-
mial coe�cients, and therefore factorials, su�ce to de�ne � since a � b if and only if

�a
b

�
is

odd. This follows from Lucas' theorem that, for every prime p, given p-ary representations
a =

P
i aip

i and b =
P

i bip
i we have that

�a
b

�
=
Q
i

�ai
bi

�
(mod p):

We can reformulate Theorem 4.15 as follows. If K is an isomorphism-closed class of
arithmetical structures with secondary part ~N (or PTA), then K is in NP if and only if it
can be characterized as the model class of a second-order sentence with bounded quanti�ers
in the following way:

D 2 K i� D j= (9F1 � 2p(n;m)) � � �(9Fk � 2p(n;m)) 

where  is �rst-order and p is a polynomial. Here (9Fi � 2p(n;m)) : : : is to be understood
as an abbreviation for 9Fi[8�x(Fi(�x) � 2p(jDj;maxD)) ^ : : : ].

From results of Hodgson and Kent [33, 43], we obtain a more involved characteriza-
tion that works also for the secondary part N, and in fact also for simple arithmetical
structures. Here, the second-order pre�x has besides the exponentially bounded existen-
tial quanti�ers (9Fi � 2p(n;m)), also polynomially bounded universal quanti�ers of the form
(8Gi � p(n;m)). Hodgson and Kent proved that if one generalizes the class D of Adleman
and Manders by allowing also polynomially bounded universal quanti�ers in the pre�x, then
one obtains a precise arithmetical characterization of NP. In fact one can even do away with
all but one of these universal quanti�ers and obtain a normal form which is the analogue
to the so-called Davis normal form for r.e sets. The Davis normal form theorem says that
every recursively enumerable set S � Nk can be represented as

S = f�a 2 Nk : 9y1(8z � y1)9y2 � � �9ymQ(�a; �y; z) = 0g
(where Q 2 Z[x1; : : : ; xk; y1; : : : ; ym; z]); it was an important step towards the eventual
solution of Hilbert's 10th problem by Matijasevich. For NP-classes of arithmetical structures
this gives the following logical characterization.

Theorem 4.16. An isomorphism-closed class K � M�[N] is in NP if and only if there
exists a �rst-order formula  and a polynomial p(n;m) such that K is the class of all
D 2M�[N] with

D j= (9F1 � 2p(n;m))(8G � p(n;m))(9F2 � 2p(n;m)) � � �(9Fk � 2p((n;m)) :

4.3 Fixed point logics and polynomial-time

Fixed point logics on �nite structures. In �nite model theory, �xed point logics play
a central rôle. They provide a general and exible method of inductively de�ning new
predicates and thus remedy one of the main de�ciencies (with respect to expressiveness) of
�rst order logic: the lack of a mechanism for unbounded recursion or iteration.

We recall the de�nition of (inationary) �xed point logic [27]. Let �a be a vocabulary,
R 62 �a an r-ary predicate and  (�x) a formula of vocabulary �a [ fRg with free variables
�x = x1; : : : ; xr. Then  de�nes, for every �nite �a-structure A, an operator FA : P(Ar)!
P(Ar) on the class of r-ary relations over A by

FA : R 7�! R [ f�a : (A; R) j=  (�a)g:
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By de�nition, this operator is inationary, i.e R � FA (R) for all R � Ar. Therefore the

inductive sequence R0; R1; : : : de�ned by R0 := ? and Rj+1 := FA (R
j) is increasing, i.e.

Rj � Rj+1 and therefore reaches a �xed point Rj = Rj+1 for some j � jAjr. It is called the
inationary �xed point of  on A, and denoted by R1.

De�nition 4.17. The (inationary) �xed point logic FP is de�ned by adding to the syntax
of �rst order logic the �xed point formation rule: if  (�x) is a formula of vocabulary �[ fRg
as above and �u is an r-tuple of terms, then

[FPR;�x  ](�u)

is a formula of vocabulary �a, whose semantics is that �u 2 R1.
Example 4.18. Here is a �xed point formula that de�nes the reexive and transitive closure
of the binary predicate E:

TC(u; v) � [FPT;x;y (x = y) _ (9z)(Exz ^ Tzy)](u; v):

Many other variants of �xed point logics have been studied, most notably the least �xed
point logic, denoted LFP, and the partial �xed point logic, denoted PFP. It was proved
independently by Immerman [35] and Vardi [60] that, on ordered �nite structures, LFP
characterizes precisely the queries that are computable in polynomial time. Gurevich and
Shelah [30] proved that FP and LFP have the same expressive power on �nite structure, so
in particular, FP also characterizes Ptime in the presence of a linear ordering. On the class
of arbitrary (not necessarily ordered) �nite structures, FP and LFP are strictly weaker than
Ptime-computability. In fact, on very simple classes of structures, such as structures with
the empty vocabulary (i.e. pure sets), FP collapses to �rst-order logic. Also, the 0-1 law
holds for FP, which shows that, on arbitrary �nite structures, FP cannot express non-trivial
statements about cardinalities.

The �xed point logic FP�. De�nition 3.1 gives a general way of extending a logic L
for �nite structures to a logic L� for meta�nite structures. Applying this de�nition to FP,
we get the logic FP�, the extension of �rst-order logic FO� by the rule for building �xed
point formulae [FPR;�x  ](�u) of vocabulary (�a;�r;�w) from already given formulae  of
vocabulary (�a [ fRg;�r;�w). It is important to emphasize that the inductively de�ned
predicate R is a predicate over the primary part and that �u is a tuple of point terms. We
�rst observe that the �xed point construction preserves Ptime-computability.

Proposition 4.19. If the basic functions, relations and multiset operations of R can be
evaluated in polynomial time (with respect to the given cost function), then the same is true
for all FP�-de�nable global functions on M�[R].

As in the case of Fagin's Theorem we can also transfer Immerman's and Vardi's logical
characterization of Ptime to the case of arithmetical structures with small weights.

Theorem 4.20. Let K � R� be a class of ranked arithmetical structures with small weights.
For every global function G on K the following are equivalent

(i) G is computable in polynomial time.
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(ii) G is FP�-de�nable.

We omit the proof, which follows by straightforward application of the same arguments
as in the proof of Theorem 4.6.

Again, as in the case of meta�nite spectra, the restriction to small weights is necessary.
For an extreme example, consider polynomial-time predicates S � N. Each such S gives
rise to a decision problem where an instance is an arithmetical structure D, with a single
nullary weight a, and the question is whether a 2 S. Of course this problem is completely
independent of the primary part of the structure, which in particular can be trivial. Fixed
point constructions are of absolutely no help here and neither are quanti�ers or multiset
operations. Thus FP� can decide S if and only if the characteristic function �S(a) is available
as a basic term. Obviously there exist polynomial-time predicates S for which this is not
the case.

Thus, FP� cannot fully capture Ptime on arithmetical structures, even in the presence
of a ranking.

But this is not the only weakness of FP�. Another important limitation is the absence
of any recursion mechanism over numbers and weight functions. We will exhibit certain
interesting consequences of this, by comparing the power of FP� with the �xed point logic
with counting (FP + C) on unordered structures. This logic does not include large numbers
in the secondary sort, but it has recursion over relations that range over both parts.

Fixed point logic with counting. As we mentioned already in the introduction, among
the logics studied in �nite model theory, (FP + C) is the closest to our approach. It was
�rst proposed by Immerman, who started from the observation that counting is probably
the most basic class of low-complexity queries not expressible in �xed point logic. The
original hope was that the addition of counting to FP in a reasonable way should give a
logic that could express all of Ptime. It should be pointed out, that there are di�erent ways
of adding counting mechanisms to a logic, which are not necessarily equivalent. The most
straightforward possibility is the addition of quanti�ers of the form 9�2, 9�3, etc., with the
obvious meaning. While this is perfectly reasonable for the in�nitary logics Lk1! , it is not
general enough for �xed point logic, because it does not allow recursion over the counting
parameters i in quanti�ers 9�ix. In fact if the counting parameters are �xed numbers, then
adjoining the quanti�ers 9�ix does not give additional power to logics whose formulae may
have an arbitrary number of variables (as FO or FP). These counting parameters should
therefore be considered as variables that range over the natural numbers. To de�ne in a
precise way a logic with counting and recursion which is applicable also to counting the
numbers, one extends the original objects of study, namely �nite (one-sorted) structures A
to two-sorted auxiliary structures A� with a second numerical (but also �nite) sort.

We are now ready to formally introduce (FP + C). With any one-sorted �nite structure
A, one associates the two-sorted structure A� := (A; (n; <)) with a copy of A on the �rst
sort elements and the linear order (n; <) on the second sort elements, where n = jAj + 1
and < is the standard order on n = f0; : : : ; n� 1g.

We take n = jAj+ 1 rather than n = jAj to be able to represent the cardinalities of all
subsets of jAj within n.

We start with �rst-order logic and two-sorted vocabularies (�a; f<g), with the usual
semantics over structures A�. Latin letters x; y; z; : : : are used as variables over the �rst
sort, and Greek letters �; �; �; : : : as variables over the second sort. Note that, contrary
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to logics of meta�nite structures, we have here no restriction on the access of the logic to
second sort elements. For instance, we can quantify over number variables to build formulae
of the form 9�'.

The two sorts are related by counting terms, de�ned by the following rule: Let '(x) be
a formula with a free variable x of sort one, then #x['] is a second-sort term, with the set
of free variables free(#x[']) = free(')� fxg. The interpretation of #x['] is the number of
�rst-sort elements a that satisfy '(a). First-order logic with counting, denoted (FO + C),
is the closure of two-sorted �rst-order logic under counting terms.

Example 4.21. To illustrates the use of counting terms we present a formula  (E1; E2) 2
(FO + C) expressing that two equivalence relations E1 and E2 over the �rst sort are iso-
morphic.

 (E1; E2) := (8�)(#x[#y[E1xy] = �] = #x[#y [E2xy] = �]):

The (inationary) �xed point logic with counting (FP + C) is obtained by adding to (FO
+ C) the mechanism for building �xed point predicates that may range over both sorts.

De�nition 4.22. The logic (FP + C) is the closure of two-sorted �rst-order logic under

(i) the rule for building counting terms;

(ii) the usual rules of �rst-order logic for building terms and formulae;

(iii) the �xpoint formation rule: Suppose that  (�x; ��) is a formula of vocabulary �[fRg
where �x = x1; : : : ; xk, �� = �1; : : : ; �`, and R has mixed arity (k; `), and that (�u; ��) is
a k + `-tuple of �rst- and second-sort terms, respectively. Then

[FPR;�x;��  ](�u; ��)

is a formula of vocabulary �.

The semantics of [FPR;�x;��  ] on A
� is de�ned in the same way as for the logic FP, namely

as the inationary �xed point R1 of the operator

FA
�

 : R 7�! R [ f(�u; ��) j (A�; R) j=  (�u; ��)g:

(FP + C) was �rst introduced by Immerman, in a di�erent but equivalent form, with
counting quanti�ers rather than counting terms. The present version appeared �rst in [24].

Example 4.23. An interesting example for an (FP + C)-computable global function is the
stable colouring of a graph. Given a graph G with a colouring f : V ! 0; : : : ; r of its vertices,
we de�ne a re�nement f 0 of f , where vertex x has the new colour f 0x = (fx; n1; : : : ; nr)
where ni = #y[Exy^(fy = i)]. The new colours can be sorted lexicographically so that they
form again an initial subset of N. Then the process can be iterated until a �xed point, the
stable colouring of G is reached. It is known that almost all graphs have the property that
no two vertices have the same stable colour. Thus stable colourings provide a polynomial-
time graph-canonization algorithm for a dense class of graphs. It should be clear that the
stable colouring of a graph is de�nable in (FP + C) (see [38] for more details).
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Over arithmetical structures, we can de�ne counting in FO� and hence FP�, as shown
in Example 3.3. One might therefore feel that FP�, having both a �xed point constructor
and the ability to count, is at least as powerful as (FP + C).

To make this a precise question, we have to consider a setting where the two logics can be
compared. We compare their expressive powers on classes K � Fin(�a) of �nite, one-sorted
structures.

De�nition 4.24. With every �nite structure A and every secondary part R we associate
the meta�nite structure AR := (A;R;?), with primary part A, secondary part R and the
empty set of weight functions. We say, that a model class K � Fin(�a) of �nite structures
is FP�-de�nable over R, if there exists a sentence  2 FP� such that

K = fA 2 Fin(�a) : AR j=  g:

As usual we say that K is (FP + C)-de�nable if there exists a sentence � 2 (FP + C) such
that

K = fA 2 Fin(�a) : A� j= �g:

Proposition 4.25. Let N be any reduct of PTA. Then every model class K � Fin(�a)
which is FP�-de�nable over N, is also (FP + C)-de�nable.

Proof. This follows by straightforward induction over terms and formulae of FP�, using the
facts that (i) every FP�-de�nable global function can be evaluated in polynomial time and
that (ii) every polynomial-time computable function or relation appearing in the secondary
part can be expressed by an (FP + C)-de�nition over the numerical sort (since the numerical
sort is ordered).

The converse is not always true. Indeed, let N = N0. If we consider the case that
�a = ?, then, by taking cardinalities, a class K � Fin(?) can be viewed as a set of natural
numbers. On Fin(?), (FP + C) captures polynomial-time with respect to the cardinality of
the structures, i.e. K � Fin(?) is (FP + C)-de�nable if and only if f1n : n 2 Kg is decidable
in polynomial time. On the other hand, FP� on structures (A;N0;?) is equivalent to FO�

whose power can be precisely described as follows: Every sentence ' can be written as a
Boolean combination of inequalities f(n) � g(n) where f; g 2 T are terms in one variable n
that represents the cardinality of A. Since all elements of A are indistinguishable, the termsP

x F or
Q
x F produced by means of the multiset operations can simply be rewritten as

n �F and Fn respectively. (Applications of max and min have no e�ect at all.) Thus the set
T of terms can be de�ned by closing the constants and n under addition, multiplication and
under raising to nth power (i.e. given t(n), one can form t(n)n). A simple diagonalization
arguments proves that there exist predicates S � N which cannot be de�ned in this way,
but nevertheless f1n : n 2 Sg is decidable in polynomial time.

Indeed, let ' be a Boolean combination of inequalities f � g with f; g 2 T . Syntactically,
' is a string in a �nite alphabet whose symbols are 0; 1; n;+; �; etc. We can order this
alphabet and assign numbers to strings in the usual way. Let n(') be the number associated
with ' and S be the set of those numbers n(') such that ' is false at n('). Clearly, S is
not de�ned by any '. Moreover, since ' is equivalent to (' ^ 0 < 1), (' ^ 0 < 1 ^ 0 < 1)
etc., fn : ' holds at ng di�ers from S on in�nitely many numbers.
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It thus su�ces to prove that there exists a polynomial-time algorithm that, given 1n('),
computes the truth value of ' at n(') and inverts the result. This is obvious, once we have
checked, by an easy induction on the formation rules of T , that for every term f 2 T , the
logarithm of the value f(n) is bounded by a polynomial in n.

We thus have proved the following result.

Proposition 4.26. There exist model classes K of �nite structures which are (FP + C)-
de�nable, but not FP�-de�nable over N0.

The fact that N0 forms a counterexample to the converse of Proposition 4.25 survives
various enrichments of N0. In fact, the same proof works if N0 is extended by any �nite
collection of polynomial-time computable functions and any �nite collection of multiset
operations � such that the value of � at multisets fft; t; : : : ; tgg, consisting of n occurrences
of t, can be computed in polynomial-time with respect to n and log t. However, there is a
limit to such generalizations. We will prove in Sect. 5 that the converse of Proposition 4.25
does hold in the case that N = PTA.

Remark. Note that the problem of capturing polynomial-time on ranked PTA-structures
is trivial and does not require a �xed-point construction. As pointed out above, if a ranking
is available, then the primary part can be encoded by a tuple of natural numbers and this
encoding is de�nable by �rst-order terms. Any polynomial-time property is thus reducible
to a Ptime property of numbers which is a basic relation of PTA. Thus a global function
on ranked PTA-structures is Ptime-computable if and only if it is �rst-order de�nable.
Furthermore FO� and FP� coincide on ranked PTA-structures.

4.4 A functional �xed point logic

One possibility to overcome the limitations of languages of type L� is to apply recursion in
one way or another to weight functions.

We discuss here, as one particular example, a �xed-point calculus for partially de�ned
weight functions. It is convenient to deal with partial functions by extending the secondary
part R with a new element to a structure R� with universe R [ fundefg in the following
way:

The relations of R� coincide with their restrictions to R, and the functions and multiset
operations of R are extended to R� in some arbitrary way. For many functions, the natural
choice will be to set fR

�
(�a) = undef whenever the argument �a contains undef. However, for

some functions there are other reasonable possibilities: For multiplication, it actually makes
more sense to set

a � undef = undef � a =
(
0 if a = 0

undef if a 6= 0.

Fix a signature � and a function symbol Z not contained in �. Let G(Z; �x) be a weight
term of signature (�a;�r;�w [ fZg) and free variables �x = x1; : : : ; xr where r is the arity
of Z. We write GD;Z(�x) for the value of G(Z; �x) for a given interpretation (D; Z).

For every structure D 2 M�[R�], the term G(Z; �x) gives rise to an operator FDG which
updates partially de�ned functions Z as follows:
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FDG (Z)(�a) :=

(
GD;Z(�a) if Z(�a) = undef

Z(�a) otherwise.

This gives an inductive de�nition of a sequence of partial weight functions Zj : Ar ! R.
Z0 is unde�ned everywhere (i.e. Z0(�a) = undef for all �a)

Zj+1 = FDG (Z
j):

The operator FDG updates Z only at points where Z is unde�ned, so this process reaches
a �xed point after a polynomial number of iterations: Zj = Zj+1 for some j � jAjr. We
denote this �xed point by Z1 and call it the �xed point of G(Z; �x) on D.

De�nition 4.27. Functional �xed point logic, denoted FFP, is obtained by augmenting the
�rst-order logic FO� with the following rule for building terms:

If G(Z; �x) is a weight term of signature (�a;�r;�w [ fZg), if �x = x1; : : : ; xr is a tuple
of variables (where r is the arity of Z), and if �u = u1; : : : ; ur is a tuple of point terms, then

fp[Z(�x) G(Z; �x)](�u)

is a weight term of signature (�a;�r;�w). Its value on a given structure D, is Z1(�u).

Note that, on arithmetical structures, FFP can de�ne weights of double exponential
magnitude. Indeed suppose we have an arithmetical structure with a ranking r and let us
adopt the conventions that max and + produce undef whenever any of the arguments is
unde�ned, and that 0 � undef = 0. Set

G(Z; x) := 2�[r(x) = 0] + max
y

�
�[r(x) = r(y) + 1]

Y
z

Z(y)
�
:

Then, for every structure D with jDj = n we have that

fp[Z(x) G(Z; x)](y) = 2n
r(y)
:

This even works for simple arithmetical structures, because the term
Q
z Z(y) | which

evaluates to Z(y)n | can be simulated by a �xed point construction.

However, in the context of computations over R with the Blum-Shub-Smale model, the
magnitude of the numbers is no serious problem, since one assumes unit cost for each r 2 R.
In fact it has been shown in [23] that functional �xed-point logic is the right logic for
describing polynomial-time computability in that model, in the sense that it gives rise to
the following analogue of the Immerman-Vardi Theorem.

Theorem 4.28 (Gr�adel, Meer). On ranked R-structures, FFP captures PR.

Remark. For some applications the update operator FDG , used for FFP, may not be
adequate, since the values di�erent from undef are never updated. Instead we may consider
a di�erent update operator ~FDG with

~FDG (Z)(�a) := GD;Z(�a):
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Of course, the inductive process de�ned by such an operator need not reach a �xed
point. But | as in the case of the partial �xed point logic PFP considered in �nite model
theory | we can de�ne Z1 to be the �xed point of the sequence Z0; Z1; : : : , de�ned by ~FDG ,
if the �xed point exists, and some default value, e.g. the everywhere unde�ned function,
otherwise.

We don't further investigate this approach here. The study of this, and related variants
of functional �xed point logics, as well as other means of inductive de�nability of weight
functions, is one of the promising directions for future research.

5 Back and forth from �nite to meta�nite structures

As explained in the introduction, our goal is to extend the approach and methods of �nite
model theory to the more general class of meta�nite structures. We show in this section that
an important methodology of �nite model theory, namely the Ehrenfeucht-Fra��ss�e games and
their various generalizations, is indeed applicable in our more general context.

The aspect that we consider here is the indistinguishability of two meta�nite struc-
tures by (in�nitary) logics with a bounded number of variables, but with arbitrary multiset
operations. We show that this reduces to the indistinguishability of two associated �nite
structures by �rst-order formulae with counting.

Throughout this section, we consider structures with a �xed secondary part R and
assume that the primary part is always relational.

5.1 Indistinguishability by logics with k variables

De�nition 5.1. Let D = (A;R;W ) and D0 = (B;R;W 0) be structures in M�(R), let �a
and �b be `-tuples of elements of A and B respectively, and let L be a logic of meta�nite
structures. We say that (D; �a) and (D0;�b) are L-equivalent | in symbols: (D; �a) �L (D0;�b)
| if for every weight term F (x1; : : : ; x`) of L,

FD(�a) = FD
0

(�b):

Since in our logics we have for every formula its characteristic function available as a
weight term, the L-equivalence of (D; �a) and (D0;�b) implies in particular that for every
formula '(�x) of L

D j= '(�a) if and only if D0 j= '(�b):

The converse does not necessarily hold, i.e., two structures may be indistinguishable by
formulae of L but there nevertheless may exist a weight term that separates them. This
may be the case when R contains unreachable elements which do not appear as values of
any closed �r-term.

Logics with k variables. We �rst recall the de�nitions of some logics with bounded
number of variables that are of great importance in �nite model theory. Lk is the fragment
of �rst-order logic with variables, free and bound, among x1; : : : ; xk. The in�nitary logic
Lk1! is the closure of Lk under conjunctions and disjunctions applied to arbitrary sets of
formulae. Further, L!1! =

S
k2! L

k
1!. It is well-known that the familiar �xed point logics

LFP, IFP and PFP are sublogics of L!1! .
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The logics Ck, Ck1! and C!1! are the extension of Lk, Lk1! and L!1! by means of
counting quanti�ers 9�2, 9�3, etc., with the obvious semantics. One of the reasons why
these logics are important is that C!1! is an extension of �xed point logic with counting
(FP + C).

Equivalence with respect to Lk1! has an elegant characterization in terms of the k-pebble
game [6, 34, 52], an in�nitary variant of Ehrenfeucht-Fra��ss�e games. There is a similar pebble
game appropriate to Ck1! [38]. It is played by two players, I and II, on two structures A
and B of the same relational signature. They have k pairs of pebbles.

A move of the game is played as follows.

1. Player I chooses i � k and picks up the i-th pair of pebbles. He selects a nonempty
subset X of either A or B. Player II chooses a subset Y in the other structure with
jY j = jX j. If no such set exists, the game is over and Player I has won.

2. Player I places an i-pebble on an element y 2 Y . Player II puts the other i-pebble on
an element x 2 X .

After any move, the pebbles on the `board' de�ne a partial map from A to B, taking
every pebbled element of A to the element of B carrying the corresponding pebble. Player
II has to maintain the condition that the pebble map is a partial isomorphism. We say
that Player II wins the Ck-game on (A; a1; : : : ; a`) and (B; b1; : : : ; b`) if she has a strategy
to maintain this condition forever, when initially the �rst ` pairs of pebbles are placed on
(a1; b1); : : : ; (a`; b`).

Theorem 5.2 (Immerman, Lander). The following are equivalent

(i) Player II wins the Ck-game on (A; �a) and (B;�b).

(ii) A j= '(�a) i� B j= '(�b) for every formula '(�x) 2 Ck1!.

Here is another way to put and to re�ne this (see [24, 49]). For a tuple �a 2 (A [ f�g)k
(where � serves as a dummy value in the case that not all k variables are actually used) we
write �a c| for the tuple obtained by substituting (or adding) c at position j to �a.

We write (A; �a) �i (B;�b) if Player II has a strategy to maintain the winning condition
for at least i moves of the Ck-game, starting at position (A; �a) and (B;�b). Note that
(A; �a) �0 (B;�b) if and only if p : �a 7�! �b is a partial isomorphism from A to B.

Theorem 5.3. (A; �a) �i+1 (B;�b) if and only if (A; �a) �i (B;�b) and for every �i-equivalence
class C and every j � k we have that

#fc 2 A : (A; �ac| ) 2 Cg = #fd 2 B : (B;�bd| ) 2 Cg:

Since Ck1!-equivalence is the intersection of all equivalence relations �i one obtains the
following characterization.

Theorem 5.4. Ck1!-equivalence is the coarsest equivalence relation � with the following
property: If (A; �a) � (B;�b) then

(i) The function p : �a 7�! �b is a partial isomorphism from A to B;
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(ii) for every �-equivalence class C and every j � k we have that

#fc 2 A : (A; �ac| ) 2 Cg = #fd 2 B : (B;�bd| ) 2 Cg:

An in�nitary k-variable term calculus for meta�nite structures with multiset
operations. L1! generalizes �rst-order logic. In a similar vein, we generalize the �rst-
order term calculus FOT(�) given by De�nition 3.9 and the subsequent remark (because
�a is not necessarily empty). Let FOTk(�) be FOT(�) with terms using only the variables
x1; : : : ; xk.

De�ne a set operation on a set R to be a unary operation from subsets of R to R. Let
�� be the extension of � with names for all multiset operations over R, and let R� be the
corresponding expansion of R.

De�nition 5.5. The term calculus T k1!(�; R) is the extension of FOTk(��) (with the
secondary part R�) by the following rule: If S is a set operation on R and � is a set (any
set) of terms, then S(�) is a term. The rank of S(�) is the supremum of the ranks of terms
in � (which may be an in�nite ordinal). The semantics is as follows: Given an evaluation
of the variables, compute the set X � R of the values of terms in � under that evaluation,
and then apply S to X .

Remark. The relation of F being a proper subterm of a term G is well founded.

Remark. Let us see that the characteristic function of every Ck1! formula ' about the
primary part is given by some term t' in T k1!. The characteristic functions of the primary
relations are always available. If ' = : then the desired t' = S(ft g) where S is any
set operation such that S(f0g) = 1 and S(f1g) = 0. If ' is a disjunction of formulas 'i
where i 2 I then t' = S(ft'i : i 2 Ig) where S is any operation that coincides with max on
nonempty subsets of f0; 1g. To handle counting quanti�ers, let �i be a multiset operation
such that �i(m) = 1 if m contains at least i occurrences of 1 and �i(m) = 0 otherwise. If
 = 9�ix' then t = (�i)xt'.

Example 5.6. Suppose that a meta�nite structure D = (A;N;W ) is such that every el-
ement a 2 A is de�nable in A by some formula 'a(x), and W contains a unary weight
function w. Let S be a set function such that S(X) = 1 if and only if every number in X
is prime. The term

S(f�['a](x) � w(x) : a 2 Ag)
evaluates to 1 in D if and only if the range of w consists of primes.

Remark. In the remainder of this section, we prove various theorems about the term
calculus T k1!. The developed theory is quite robust with respect to the de�nition of T k1!. It
does not change if the T k1! is further enriched by means of even fancier super-operations over
R; for example we may require that, for every �nitary or in�nitary operation f(r1; r2; : : :)
over R and terms ti 2 T k1!, the possibly in�nitary expression f(t1; t2; : : :) is a term in
T k1!. On the other hand, as the remark above shows, we actually use only very simple set
operations.
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5.2 Partial isomorphisms and the multiset pebble game.

Consider a meta�nite structure D = (A;R;W ) 2 M�(R). We associate with D a �nite
structure �n(D) with universe A, by expanding A with relations

Pw;r := f�a : wD(�a) = rg
for every function w 2 W and every element r 2 R. Although the set of these new predicates
is in�nite, only �nitely many relations are nonempty for each w 2 W .

De�nition 5.7. Let D = (A;R;W ) and D0 = (B;R;W 0) belong to M�(R). A partial
isomorphism from D to D0 is an injective function p : A0 ! B whose domain is A0 � A
such that

� for every relation symbol R 2 �a and all elements a1; : : : ; am 2 A0

D j= R(a1; : : : ; am) if and only if D0 j= R(pa1; : : : ; pam):

� for every function symbol w 2 �w and all elements a1; : : : ; am 2 A0 we have that

wD(a1; : : : ; am) = wD
0

(pa1; : : : ; pam):

Thus, the partial isomorphisms fromD toD0 are precisely the partial isomorphisms from
�n(D) to �n(D0).

We now describe the `obvious' pebble game appropriate to the logic T k1!. Given two
meta�nite structures D = (A;R;W ) and D0 = (B;R;W 0) in M�(R), the T

k-game on
(D;D0) is played with k pairs of pebbles on the `board' (A;B). A move of the T k-game is
played as follows:

1. Player I selects ` � k pairs of pebbles and selects a function f : A` ! R. Player II
chooses a function g : B` ! R such that mult(f) = mult(g). (Recall that mult(f) =
fff(�a) : �a 2 A`gg.) If no such function exists, the game is over and Player I has won.

2. Player I puts the selected pebbles on elements b1; : : : ; b` 2 B. Player II puts the
corresponding pebbles on a1; : : : ; a` such that f(a1; : : : ; a`) = g(b1; : : : ; b`).

Remark. It might seem that there is an asymmetry here, since Player I always selects a
function on the �rst structure and always pebbles elements on the second one, and that
instead, he should be allowed to choose on which structure he de�nes a function. However,
this would not change the game in an essential way. The condition that Player II answers
with a function de�ning the same multiset is very restrictive and makes it unnecessary to
let Player I choose the structure �rst. In particular, I wins immediately if the primary
parts of the two structures do not have the same cardinality. It should be noted that if two
structures A and B are known to have the same number of elements, then also the Ck-game
on A and B can be restricted such that Player I always chooses his sets in A and pebbles
elements of B, but never vice versa.

The moves in the T k-game simulate the use of the multiset operations. However, it turns
out that the T k-game is equivalent to the Ck-game of Immerman and Lander. We prove
this by way of two Lemmata.
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Lemma 5.8. Let F (�x) be a weight term in T k1! of rank � such that FD(�a) 6= FD
0
(�b). Then

(i) Player I wins the Ck-game on (�n(D); �a) and (�n(D0);�b). Furthermore if � is �nite
then he wins the game in at most � moves.

(ii) Player I wins the T k-game on (D; �a) and (D0;�b). Furthermore if � is �nite then he
wins the game in at most � moves.

Proof. Obviously, (i) implies (ii). We prove (i) by induction on �, the case � = 0 being
trivial. Let FD(�a) 6= FD

0
(�b) for some term F of rank � > 0. If F = S(�) for some

operation S and set of terms �, then GD(�a) 6= GD
0
(�b) for at least one G 2 �; similarly, if

F = g(F1; : : : ; Fm) then at least one subterm Fi separates (D; �a) and (D0;�b).
Since the process of descending to proper subterms is well-founded, F contains at least

one subterm separating (D; �a) and (D0;�b) which either is of rank zero, in which case we are
done, or of the form

��y(G(�x; �y) : H(�x; �y) = 1)

where G and H have ranks < �. For ease of notation, we assume that �x and �y are disjoint
tuples of variables among x1; : : : ; xk. In the case of �nite �, the ranks of G and H are
bounded by �� ` where ` is the length of �y.

Thus, G and H de�ne distinct multisets on the two structures:

ffGD(�a; �c) : �c 2 A`; HD(�a; �c) = 1gg 6= ffGD0(�b; �d) : �d 2 B`; HD0(�b; �d) = 1gg:

As a consequence there exists r 2 R such that

#f�c 2 A` : GD(�a; �c) = r ^HD(�a; �c) = 1g 6= #f �d 2 B` : GD0(�b; �d) = r ^HD0(�b; �d) = 1g:

This implies that there exist natural numbers m1; : : : ; m` such that

9�m1y1 � � � 9�m`y`[G
D(�a; �y) = r ^HD(�a; �y) = 1] but

not 9�m1y1 � � � 9�m`y`[G
D0(�b; �y) = r ^HD0(�b; �y) = 1]

(or vice versa). Player I wins by the following strategy: in his �rst ` moves he selects
appropriate sets A1; : : : ; A` � A of cardinalities m1; : : : ; m` so that GD(�a; �c) = r and
HD(�a; �c) = 1 for the tuples �c = c1; : : : ; c` with ci 2 Ai. By induction on ` it follows easily
that whatever sets B1; : : :B` � B are chosen by Player II in these �rst ` moves, Player I
can pebble elements d1; : : : ; d` such that GD

0
(�b; �d) 6= r or HD

0
(�b; �d) 6= 1. Since both G and

H have ranks < �, the induction hypothesis implies that Player I wins the remaining game,
and, in the case of �nite �, that he wins the remaining game in �� ` moves.

Lemma 5.9. If Player II wins the Ck-game on (�n(D); �a) and (�n(D0);�b), then she also
wins the T k-game on (D; �a) and (D0;�b).

Proof. For �xed structures D, D0, the positions in both games are given by the tuples �a;�b
of pebbled elements. Since the winning conditions of the two games are identical it su�ces
to show the following: Suppose that Player II has a winning strategy for the Ck-game from
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position (�a;�b). Then Player II has a strategy for one move of the T k-game from position
(�a;�b) to reach a position from which she again has a winning strategy for the Ck-game. It
then follows that also in the T k-game, Player II can forever maintain the condition that the
pebbled elements de�ne a partial isomorphism between the primary parts.

Suppose that Player I, in the T k-game from position (�a;�b), starts by selecting pebbles
j1; : : : ; j` and de�ning a function f : A` ! R. By the assumption, Player II wins the Ck-
game from (�a;�b). Thus (�n(D); �a) �Ck1!

(�n(D0);�b). By Theorem 5.4, this implies that, for

every Ck1!-equivalence class C and every j � k, we have that

#fc 2 A : (�n(D); �ac| ) 2 Cg = #fd 2 B : (�n(D0);�bd| ) 2 Cg:

Repeating the argument, we get that for every equivalence class C and every j = j1; : : : ; j`

#f�c 2 A` : (�n(D); �a�c
|
) 2 Cg = #fd 2 B` : (�n(D0);�b

�d
|
) 2 Cg:

Thus, there exists a bijection � : A` ! B` such that for all �c 2 A`

(�n(D); �a�c
|
) �Ck

1!
(�n(D0);�b��c

|
):

Now, Player II de�nes g : B` ! R as g := f � �, and, if Player I pebbles �d 2 B`, she
answers with the unique tuple �c 2 A` such that ��c = �d. The resulting positions are in the
same Ck1!-equivalence class, so Player II has again reached a winning position.

Thus, we have established the following result.

Theorem 5.10. Let D = (A;R;W ) and D0 = (B;R;W 0) be structures in M�(R) and �a
and �b be `-tuples of elements of A and B, respectively. The following are equivalent

(i) Player II wins the T k-game on (D; �a) and (D0;�b).

(ii) (D; �a) and (D0;�b) are T k1!-equivalent.

(iii) Player II wins the Ck-game on (�n(D); �a) and (�n(D0);�b).

(iv) (�n(D); �a) and (�n(D0);�b) are Ck1!-equivalent.

5.3 Invariants

The descriptions of Lk1!- or C
k
1!-equivalence in terms of the k-pebble games give rise to

invariants that represent in a compact way, by means of an ordered �nite structure, the
complete Lk1!- or C

k
1!-theory of a given �nite structure.

The �rst such invariants were found by Abiteboul and Vianu [2]. They were formulated
in terms of computability by relational machines rather than Lk1!-de�nability, but the
notions are very closely related. With these invariants, Abiteboul and Vianu could prove
that the logics FP and PFP coincide (with respect to expressive power) if and only if Ptime
= Pspace. We refer to [17] for a very nice exposition in terms of Lk1!-equivalence.

Invariants for Ck1!-equivalence have been de�ned in [24] and have been extensively
studied by Otto [48, 49] who used them to prove a number of results on the structure of
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�xed point logic with counting, on the relationship of (FP + C) with other logics and on
the canonization problem with respect to C2

1!-equivalence.
We give an informal description of Ck1!-invariants. For k-tuples �a; �a

0 from a �xed struc-
ture A, we write �a � �a0 to denote that (A; �a) and (A; �a0) are Ck1!-equivalent. We write [�a]
for the �-equivalence class of �a, also called the Ck1!-type of �a.

The desired Ck1!-invariant of a structure A has the form

Ik(A) = (B; v1; : : : ; vk)

where B = (Ak=� ;�; : : :) is an ordered structure over the set of Ck1!-equivalence classes
in Ak , and where weight functions vj : (Ak= �) �! N associate with every type [�a] the
number

vj([�a]) := #fb 2 A : �a � �a b|g:

With the game characterization of Ck1!-equivalence it can be shown that both � and a
total order � on Ak=� (which is a pre-order on Ak) can be inductively de�ned. One starts
with an arbitrary ordering �0 of the atomic types in k variables. At every stage a pre-order
�i on Ak is de�ned such that the associated equivalence relation �i (i.e. �a �i �a0 i� neither
�a �i �a0 nor �a0 �i �a) describes that Player II can maintain her winning condition for at least
i moves. The re�nement step can be derived from Theorem 5.3: �a �i+1 �a0 if either �a �i �a0,
or �a �i �a0 and the following condition holds:

For the sequence C1 �i C2 �i � � � �i Cr of �i-equivalence classes, there exist
m � r and j � k such that #fb 2 A : �a b| 2 Cmg < #fb 2 A : �a0 b| 2 Cmg and for

all pairs (`; i) <lex (m; j) we have that #fb 2 A : �a b{ 2 C`g = #fb 2 A : �a0 b{ 2
C`g.

Note that this re�nement process is a variant of the colour re�nement method leading
to the stable colouring of a graph (see Example 4.23).

It follows from this description that the limits � and � of this inductive process are
de�nable in (FP + C). In fact, a weaker logic is su�cient, namely �xed point logic together
with a simple form of cardinality comparison which is captured by the so-called Rescher
quanti�er.

De�nition 5.11. The Rescher quanti�er is a generalized quanti�er which combines two
given formulae together, binding a single variable in each of the two formulae. From  (x; �z)
and '(y; �z), the new formula [Resch xy  (x; �z); '(y; �z)] is formed. Its semantics is de�ned
by the equivalence

j= [Resch xy  (x; �z); '(y; �z)] !
�
#x[ (x; �z)] < #y['(y; �z)]

�
:

We write FP[Resch] for the logic obtained by adjoining the Rescher quanti�er to FP.

Besides the relation � (for equality), � (for the linear order), and the already described
weight functions v1; : : : ; vk, the structure I

k(A) is endowed with some additional relations
to make sure that it encodes the entire Ck1!-theory of A.
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Atomic types: For every atomic type t(x1; : : : ; xk) of vocabulary �a, Ik(A) contains a
unary relation Pt := f[�a] 2 Ak= �: A j= t(�a)g.

Reachability relations: For j = 1; : : : ; k, Ik(A) contains a binary relation Ej([�a][�a0])
which indicates that the type [�a0] can be obtained from [�a] by changing the j-th
coordinate. In other words,

Ej := f([�a][�a0]) : (9b 2 A) �a b| � �a0g = f([�a][�ab| ]) : b 2 Ag:

Permutations: For every permutation � 2 Sk, we incorporate a binary relation T� :=
f([�a][�a0]) : �(�a) � �a0g where �(a1; : : : ; ak) := a�(1); : : : ; a�(k).

Obviously these additional relations are easily de�nable from A and �. Further, it should
be noted that there is some redundancy in this description in the sense that some relations
are de�nable from others.

We can summarize the result on Ck1!-invariants as follows.

Theorem 5.12. [24, 48, 49] For every k and every �nite relational vocabulary �a, there
exists a function Ik associating with every structure A 2 Fin(�a) the Ck1!-invariant I

k(A) =
(B; v1; : : : ; vk) such that the following hold:

(i) The mapping A 7! B is de�nable in FP[Resch].

(ii) For every j � k, the weight function vj : (A
k= �) �! N is de�nable from A by a

counting term v(�x) = #y['(�x; y] with ' 2 FP[Resch].
(iii) A and A0 are Ck1!-equivalent if and only Ik(A) �= Ik(A0).

Corollary 5.13. [24, 48] For every class K � Fin(�a), the following are equivalent

(i) K is de�nable in (FP + C).

(ii) For some k 2 N, fIk(A) : A 2 Kg is decidable in polynomial time.

Since the distinguishing power of the in�nitary term calculus T k1! can be reduced
to Ck1!-inequivalence of the corresponding �nite structures, we obtain a notion of T k1!-
invariants. It turns out that the T k1!-invariant J

k(D) of an arithmetical structure D can
be represented by a single natural number, and that Jk actually is an FP�-de�nable global
function.

Theorem 5.14. For every k and every vocabulary � of arithmetical structures there exists
a numerical invariant Jk :M�[N]! N with the following properties

(i) Jk is FP�-de�nable.

(ii) For all D;D0 2M�[N]

D �T k1!
D
0 Longleftrightarrow Jk(D) = Jk(D0):
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We sketch a proof. From Theorem 5.10 we know thatD andD0 are T k1!-equivalent, if and
only if the corresponding �nite structures �n(D) and �n(D0) are Ck1!-equivalent. We cannot
directly use the invariant Ik(�n(D)), due to the in�nite vocabulary of �n(D). However, an
inductive process, similar the the one de�ned above, can be used to work directly with
D, rather than with �n(D). It is obvious that FP[Resch] and the simple applications of
counting needed for de�ning the weight functions can be simulated in FP� with secondary
part N. Further an ordering (or pre-ordering) on the primary part induces a ranking (or
pre-ranking) of points: just assign to a point the number of smaller points. We thus obtain
an FP� de�nable function, mapping every D 2 M�[N] to a ranked arithmetical structure
that characterizes D up to T k1!-equivalence. Finally we can use the same techniques as in
the proof of the Coding Lemma in the previous section to encode this structure by a natural
number.

With these invariants, we easily get a converse for Proposition 4.25 for the case that N
= PTA.

Theorem 5.15. A class K � Fin(�a) is FP
�-de�nable over PTA, if and only if K is (FP

+ C)-de�nable.

Proof. The only-if direction has already been established. Suppose K is (FP + C)-de�nable.
This and the FP�-de�nability of Jk imply that the class fJk(AN) : A 2 Kg � N is decidable
in polynomial-time and therefore expressible by a basic PTA-predicate. Since Jk is FP�-
de�nable, the result follows.

6 Asymptotic probabilities

Among the most beautiful results in �nite model theory are the limit laws (in particular 0-1
laws) for various logics and probability distributions (see [14] for a survey).

We consider similar questions for meta�nite structures, with �xed secondary part. It
turns out, that limit laws hold only in rather restricted cases. Nevertheless, it is interesting
to investigate and classify these cases.

Probability distributions. Fix a vocabulary � = (�a;�r;�w) where �a and �w are
�nite. Furthermore, �x a �r-structure R, together with a probability distribution � on
the universe R. Finally, �x for every n 2 N a probability distribution, over the �nite set of
�a-structures with universe n = f0; : : : ; n�1g. In this paper, �n will always be the uniform
distribution, giving equal probability to all structures with universe n.

We de�ne, for every n 2 N, a measure �n on the space Sn of meta�nite structures
D 2 M�[R] whose primary part has universe n. The measure is de�ned by means of the
following experiment:

� The primary part A of D is chosen according to the distribution �n.

� For every function symbol w 2 �w and every tuple �a, the value wD(�a) is selected
according to distribution �.

Thus the measure �n de�ned in this way on Sn is the product measure of the uniform
distribution �n over the �nite set of primary parts with the product of

P
w2�w

narity(w)
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copies of �. We denote the sequence �1; �2; : : : by �: For any class C �M�[R] of meta�nite
structures we let

�n(C) := �n(C \ Sn):

We now can de�ne the corresponding probabilities of a sentence ' in any logic L of
meta�nite structures as follows:

�n(') = �n(fD 2 Sn : D j= ')g:

If the limit �(') = limn!1 �n(') exists, we call it the asymptotic probability of ': If this
limit exists for every sentence of L, then we say that the convergence law holds for L with
respect to �. If, in addition, every sentence has asymptotic probability either 0 or 1, we say
that the 0-1 law holds for L with respect to �.

There are also other, weaker notions of limit laws, such as the existence of Cesaro limits

lim
n!1

(�1(') + �2(') + � � �+ �n('))=n

or the weak convergence law (introduced by Shelah who called it the very weak 0-1 law [53]),
saying that

lim
n!1

�n+1(')� �n(') = 0:

It is clear that already very little of arithmetic present in R su�ces to refute the con-
vergence law. If R contains the natural numbers and parity is de�nable, and if we have
summation over multisets then we can say that the number of elements of A is even. This
holds even for the trivial situation that �a = �w = ?.

Thus, the question whether a convergence law or a 0-1 law holds, is interesting only for
rather limited secondary parts R. In the sequel, we consider classes of simple meta�nite
structures, with various cases of R;� and �.

6.1 The uncountable case

It should be noted that �n(') is not de�ned in all situations. In fact, if ' is in�nitary, then
the set fD 2 Sn : D j= 'g need not be measurable. We show this by means of an example
(that uses the axiom of choice and the continuum hypothesis).

Proposition 6.1. Let R = (R; 0; 1; 12 ;+; �;�); where R is the real interval [0; 1] and + is
addition modulo 1. Let �a = ?;�w = fcg where c is nullary. Then, even for n = 1 and
all k � 0, there is no probability distribution on [0; 1] under which every sentence of Lk1!

de�nes a measurable subset of Sn and every singleton has probability 0.

Proof. It is known that, on the basis of the axiom of choice and the continuum hypothesis,
there exists no probability distribution on [0; 1], giving probability 0 to singletons, such that
all subsets of [0; 1] are measurable.

It therefore su�ces to show that for every setX � [0; 1] there exists a sentence  X 2 Lk1!

such that for every structure D 2M�[R]

D j=  X if and only if cD 2 X:
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Every real number r 2 [0; 1] can be approximated by sequences (an)n2! and (bn)n2! of
dyadic rational numbers (i.e. rationals whose denominators are powers of two) such that
an � r � bn and

lim
n!1

an = lim
n!1

bn = r:

Every dyadic rational in [0; 1] is representable by a basic weight term in our language. Thus,
in Lk1!, we can form the sentence

'r :=
^
n2!

(an � c ^ c � bn)

expressing that that c = r: Now the sentence  X :=
W
r2X 'r asserts that c 2 X; which is

what we wanted to prove.

Even though atomic formulae over R de�ne very simple sets, measurability need not be
preserved under unrestricted conjunctions and disjunctions available in L!1! : Fortunately,
there exist reasonable conditions on a logic L and a secondary part R such that all L-
de�nable model subclasses in Sn are measurable.

De�nition 6.2. Let R be a structure over �r and � a probability distribution on R. We
say that R has measurable atoms with respect to � if every (�rst-order) atomic formula
'(z1; : : : ; zt) of vocabulary �r de�nes a measurable set, i.e. �(f�u 2 Rt : R j= '(�u)g) is
de�ned.

Proposition 6.3. If R has measurable atoms with respect to �, then every L!!1!-de�nable
model class in Sn (for every n) is measurable with respect to �n.

Proof. Fix a primary part A with universe n and let S(A) be the set of structures D 2 Sn
with primary part A. Since, for �xed n, there are only �nitely many primary parts, it
su�ces to show that the set fD 2 S(A) : D j=  g is measurable for every �xed A and every
sentence  2 L!!1!. Then fD 2 Sn : D j=  g is a �nite union of measurable sets and thus
measurable.

It su�ces to prove the claim for the expansion of the structure A with names for all
elements of A. We therefore suppose without loss of generality, that every element of A is
an individual constant. On S(A), the logic L!!1! then admits the elimination of quanti�ers
and of all primary relation and function symbols, except the constants: Every quanti�er
9x� is replaced by

W
a2A �(a=x), every primary term by the name of its value and every

primary atomic subformula Q(�a) by its truth value. Thus the given sentence  is equivalent
to a quanti�er-free sentence '. Since weight terms w(�a) are random variables with respect
to the distribution � and since R has measurable atoms with respect to �, it follows that
for every atomic formula � = P (w1(�a1); : : : ; wk(�ak)) that may occur in ', the set fD : D 2
S(A)^D j= �g is measurable. Since the measurable sets are closed under complementation
and under countable unions and intersections, the claim follows.

Examples. We now consider some speci�c examples for R, �, �a and �w such that the
existence of a convergence law or a 0-1 law for �rst-order logic can be easily reduced to
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known results in �nite model theory. We write FO for �rst-order logic in the classical sense,
and FO� for its extension to �rst-order logic of meta�nite structures.

One unary weight function into an uncountable linear order. Let R = ([0; 1]; <
) with the uniform (Lebesgue) measure on [0; 1], let �a be an arbitrary �nite relational
vocabulary and let �w = fwg with w unary.

For any meta�nite structure D = (A;R; fwg)�M�[R], the weight function w de�nes a
partial order on A by

a < b i� D j= w(a) < w(b):

If D is chosen randomly, then almost surely D j= 8x8y w(x) 6= w(y), so < is in fact a
random total order on A. Replacing w(x) by x we can translate every sentence  2 FO� to
a sentence ' 2 FO such that, almost surely, D j=  if and only if (A; <) j= '.

The problem is thus reduced to a problem on a class of random �nite ordered structures.
For speci�c results, we distinguish several cases according to the vocabulary �a of the

primary part:

�a = ?: In this case the structures have the formD = (n;R; fwg) and the reduction gives a
pure linear order (n; <). It is well-known that no �rst-order sentence ' can distinguish
between linear orders (n; <) and (m; <) if both n and m are larger than a constant
n0 that depends only on the quanti�er-rank of '. Thus, we have a 0-1 law for FO.

However, in logics with recursion, such as transitive closure logic or �xed point logic,
the presence of a linear order su�ces to express that the structure has an even number
of elements, and we therefore do not have any convergence law for these stronger logics.
The same applies to monadic second-order logic MSO.

�a is monadic: Clearly, we no longer have a 0-1 law. The sentence

8x([8y w(x) � w(y)]! Px)

expresses, that the elements with minimal weights satisfy P . This is true with proba-
bility 1=2 in all cardinalities.

However, we still have the convergence law, because of the convergence law for the
�rst-order logic of random monadic structures with a linear order. This results appears
in [44] but is attributed there to Ehrenfeucht.

�a contains at least one binary predicate. Here we have non-convergence, due to the
result of Compton, Henson and Shelah [15], according to which, on the class of random
ordered graphs there exist �rst-order sentences without an asymptotic probability.

Two unary functions into an uncountable linear order. For structures of the form
D = (A;R; fv;wg) with two unary weight functions into R = ([0; 1]; <), it is easy to see
that we no longer have a 0-1 law. For instance, the sentence

9x9y(8z(v(x) � v(z) ^ w(y) � w(z))^ v(x) < w(y));

expressing that the minimal v-weight is smaller than the minimal w-weight, is true with
probability 1=2 in all cardinalities. In fact, we don't even have the convergence law. With
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two weight functions we can almost surely interpret two-dimensional partial orders (i.e. the
intersection of two linear orders), and it is a result of Spencer [54], that there exist �rst-
order sentences without asymptotic probabilities for k-dimensional partial orders, whenever
k � 2.

Field of reals as secondary part. A di�erent class of examples is obtained by taking for
the secondary part the �eld of reals R = (R;+; �; 0; 1). Here we have a 0-1 law for arbitrary
relational �a and arbitrary �w . This might come as a surprise, but it is true for rather
trivial reasons: Take any pair of basic weight terms F (�x); G(�y). Then almost surely either
D j= 8�x8�y F (�x) = G(�y) or D j= 8�x8�y F (�x) 6= G(�y). Thus, the secondary part almost surely
provides no information at all, so the 0-1 law holds whenever it holds on �nite structures.

6.2 The countable case

The other interesting case is when the secondary part is countable. We may assume that
its universe is the set of natural numbers. Then � is given by a sequence pn of nonnegative
reals such that

P1
n=0 pn = 1 and pn = �(fng). We �rst show that one gets a strong form

of non-convergence even in very simple cases. As above, � = �1; �1; : : : is the sequence of
distributions induced by �.

De�nition 6.4. A distribution � decreases rapidly if limn!1
pn+1
pn

= 0:

An example of a rapidly decreasing distribution is the Poisson distribution pn := e���n=n!
with the mean value �.

Proposition 6.5. Suppose that �a = �r = ? and �w consists of one unary function name
w, and let � be induced by a rapidly decreasing distribution �. Then the sentence

' = 9x8y(y 6= x! w(x) 6= w(y)):

has no asymptotic probability with respect to �. Even the Cesaro probabilities

�k(') = [(�1(') + � � �+ �k(')]=k

do not converge.

Proof. We start with preliminary observations. Since pn+1=pn = 0 tends to 0, for every
c < 1, there exists m = m(c) such that pn+1=pn < c for all n > m. Thus we may assume
without loss of generality that pn+1 < pn=4 for all n.

The sum
P

j�n pj

.
pn converges to 1 as n grows to in�nity. Indeed, for every " > 0,

there exists a positive c < 1 such that (c=(1 � c)) < ". Let m = m(c) be as above and
suppose that n > m. We have

X
j�n

pj
pn

<
X
j�n

cj�n = 1 + c=(1� c) < 1 + ":
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Finally, e�2 < (1� p)1=p < e�1 if 0 < p < 1=2. Indeed, apply the Mean Value Theorem
to the function f(t) = � log(1� t) on the interval [0; p]. There is a point t 2 (0; p) such

f(p)� f(0) = � log(1� p) = (p� 0)f 0(t) = p=(1� t):

Since p < p=(1 � t) < p=(1 � p) < p=(1 � 1=2) = 2p, we have p < � log(1 � p) < 2p and
therefore e�2p < 1� p < e�p. Now raise the terms to power 1=p.

Now we are ready to prove the proposition. The idea is as follows. Let p = pi and M =
b1=pc, so thatMp! 1 andM grows much faster than i. We will check that the probabilities
�M(9! x[w(x) = i]) converge to a positive number and therefore the probabilities �M(') have
a positive limes inferior. Further, let N = b1=ppi+1pic; so that Npi ! 1 and Npi+1 ! 0:
We will check that the probabilities �N(9x[w(x) > i]) converge to zero and the probabilities
�N(

W
j�i 9! x[w(x) = j]) converge to zero. Therefore probabilities �N(') converge to zero,

because, for every n,

�n(') � �n(
_
j�i

9! x[w(x) = j]) + �n(9x[w(x) > i]):

Now let us do the necessary computations.
Part 1. Let n range over the interval [M; 2M ] and �(p) = (1�p)1=p�e�1, so that �(p) = o(1)
as p tends to 0. We have

�n(') � �(9!x[w(x) = i]) � np(1� p)n�1 > np[(1� p)1=p]np
= np[e�1 + �(p)]np > Mp[e�1 + �(p)]2Mp = e�2 + o(1):

It follows that

lim inf
k

�k(') � lim inf �2M (') � 1

2M
[0 +M(e�2 + o(1))] >

1

18
:

Part 2. Let n range over [N + 1; 18N ]. We have

�n(9x[w(x) > i]) � 18N
1X

j=i+1

pj

� 18
1p
pipi+1

1X
j=i+1

pj

=
1p
pipi+1

pi+1(1 + o(1))

=

r
pi+1
pi

(1 + o(1)) = o(1):

Further, let j range over natural numbers � i. We have
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�n(
_
j

9! x[w(x) = j]) �
X
j

�n(9! x[w(x) = j])

=
X
j

npj(1� pj)n�1

<
X
j

18Npj(1� pj)N

= 18N
X
j

pj

"�
1� 1

pj

�1=pj#Npj

< 18N
X
j

pje
�Npj

� 18
X
j

Npje
�Npj :

Notice that Npj � Npj+1 > 1 if j < i. Indeed, Npj > Npi �
p
pi=pi+1 > 2 because

every pm+1 < pm=4. Further, Npj+1 < Npj=4. Hence Npj � Npj+1 > (3=4)Npj > 1.
Therefore

�n(
_
j

9! x[w(x) = j]) � 18 �
1X

m=bNpic

me�m;

which converges to 0 when i grows to in�nity because the series
P1

m=0me
�m is convergent

and Npi � pi=ppipi+1 =
p
pi=pi+1 !1: Consequently, �n(') = o(1) and therefore

lim inf
k

(�k(')) � �18N (') � 1

18N

�
[
NX
m=1

�n(')] + 17N o(1)
� � 1=18:

However, there is a weaker form of limit law, introduced by Shelah, which is of interest
for this case.

De�nition 6.6. We say that a class of sentences L satis�es the weak convergence law with
respect to � = (�n)n2N if for all  2 L we have that

lim
n!1

�n+1( )� �n( ) = 0:

For instance, it has been proved by Shelah [53], that �rst-order logic satis�es the weak
convergence law on ordered random graphs and also on a random binary function. We
can prove a similar result for monadic classes of meta�nite structures with an arbitrary
countable secondary part.
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Theorem 6.7. Let R be any structure with universe N, endowed with an arbitrary prob-
ability distribution �, and let �a and �w be unary. Then for the induced sequence � of
probability distributions, �rst-order logic satis�es the weak convergence law.

Proof. Let D = (A;R;W ) and D0 = (B;R;W 0) be two structures in M�[R]. Recall that
for a 2 A and b 2 B,

(D; a) �0 (D0; b)

means that the function p : a 7! b is a partial isomorphism from D to D0, i.e. that a and
b satisfy the same �a-relations over A and B, respectively, and that the weight functions
map a and b to the same values of N. For every m 2 N, we say that a �0-equivalence class
C is m-bounded, if wD(a) � m for all w 2 �w and (D; a) 2 C.

The structures D and D0 are k-equivalent, i.e. cannot be distinguished by formulae of
quanti�er depth k, if every�0-equivalence class C contains the same number of elements inD
and D0, or more than k elements in both structures. This can be proved by a straightforward
application of the Ehrenfeucht-Fra��ss�e game. For every " > 0 take a large enough natural
number m so that

Pm
i=0 pi � 1 � ": Given k, choose n0 large enough such that for every

n > n0, a random D 2 Sn contains, with probability at least 1� ", more than k elements in
every m-bounded �0-equivalence class.

The process of drawing a random structure D 2 Sn+1 can be described as follows: �rst
we choose a random structure D0 2 Sn; then we add a new element a and determine at
random the truth values of atoms Pa for P 2 �a and the values of the weight terms w(a)
for w 2 �w . With probability at least (1 � ")` (where ` = j�wj), the �0-equivalence class
of a is m-bounded. As a consequence, if n > n0, then D and D0 di�er by an element that
almost surely belongs to a class with more than k representants in both structures. Thus,
D is almost surely k-equivalent to D0.

Since k was arbitrary, it follows that that for every �rst-order formula  

lim
n!1

�n( )� �n+1( ) = 0:

Remark. With the same argument, the weak convergence law also holds for L!!1!.
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