arXiv:1102.5136v2 [math.DS] 19 Jul 2011

HAUSDORFF DIMENSION FOR FRACTALS INVARIANT
UNDER THE MULTIPLICATIVE INTEGERS

RICHARD KENYON, YUVAL PERES, AND BORIS SOLOMYAK

ABSTRACT. We consider subsets of the (symbolic) sequence space that are in-
variant under the action of the semigroup of multiplicative integers. A repre-
sentative example is the collection of all 0-1 sequences (zx) such that zxxar = 0
for all k. We compute the Hausdorff and Minkowski dimensions of these sets
and show that they are typically different. The proof proceeds via a variational

principle for multiplicative subshifts.

1. INTRODUCTION

Central objects in symbolic dynamics and the theory of fractals are shifts
of finite type, and more generally, closed subsets of the symbolic space X, :=
{0,...,m — 1} that are invariant under the shift (21, z2, 73,...) = (72, 73,...).
(we refer to them as “subshifts” for short). To a subset Q of ¥,, we can as-
sociate a subset of [0,1] by considering the collection of all reals whose base m
digit sequences belong to . Subshifts then correspond to closed subsets of [0, 1]
invariant under the map = — maz (mod 1). It is known [7] that all such sets
have the Hausdorff dimension equal to the Minkowski (box-counting) dimension,
which is equal to (logm)~! times the topological entropy of o on €.

Note that shift-invariance implies invariance under the action of the semi-
group of additive positive integers. In contrast, in this paper we consider
subsets of ¥,,, and the corresponding fractals in [0, 1], which arise from the action
of the semigroup of multiplicative integers. Namely, given a subset 2 C ¥,

and an integer q > 2, we let

(1) X = Xf(f) = {w = (Tr)pzy € Bt (Tig0) o, € Q for all 4, q{z}
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and consider the corresponding subset of [0, 1]:
[ee]

(2) Zq = {x = Zka_k o (z)] € XQ}.
k=1

If Q is shift-invariant, then Xq is invariant under the action of multiplicative
integers:

[e.e]

(1) € Xa = (2r1)5, € Xq forallr € N.

If Q is a shift of finite type, we refer to Xq (and Zq) as the “multiplicative shift
of finite type.”

Our interest in these sets was prompted by work of Ai-Hua Fan, Lingmin Liao
and Jihua Ma [5] who computed the Minkowski dimension of the “multiplicative

golden mean shift”
(3) Eg = {;1: = Zm;ﬂ*k : xg € {0,1}, zpaor =0 for all k}
k=1

and raised the question of computing its Hausdorff dimension. They showed that

the Minkowski dimension is

[e.e]

log, F
(4) dimp(Zy) =3 % —0.82429. ..,
k=1

where Fj, is the k-th Fibonacci number: Fy =1, Fo = 2, Fyy1 = Fy_1 + Fj. As

a special case of our results we obtain the Hausdorff dimension dimpy(Z,).

Proposition 1.1. We have

(5)  dimg(Z,) = —logyp =0.81137..., wherep® = (1—p)?, 0<p<1
Thus, dimp(Z,) < dimp(Zg).

Proposition [I.T] will follow from a more general result, Theorem [I.3] below. For

an exposition which focuses on the set =, see [§].

In order to visualize the set =, we show the set Eg in Figure 1, which is obtained

from =, by the transformation

(o] o0 o0
Z .’L‘]€2_IC — (Z :L‘Qk_12_k, Z :L‘ng_k) .
k=1 k=1 k=1

It is easy to see that this transformation doubles the Minkowski and Hausdorff

dimensions.
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FIGURE 1. Approximation of the set Eg.

The figure resembles pictures of self-affine carpets, see [I, [10], for which the
Hausdorff dimension is often less than the Minkowski dimension. In fact, our
proof bears some similarities with those of [I} 0] as well. An example of a self-

affine set is shown in Figure 2.

FIGURE 2. Approximation of a self-affine set. Letting M (x,y) =
($.4), this setis S = {20 Midi : di € {(0,0),(1,0), 0, 1), (1,1), (0,3)} } .

The set Z, is a representative example of a large family of sets for which we

compute the dimension. Let m > 2 and let A = (A(i,j))zlj_:lo be a primitive (a
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non-negative matrix is primitive if some power is strictly positive) matrix with
0-1 entries. The usual (additive) shift of finite type determined by A is defined

as
Ya:={(vr)iey: zx€{0,...,m—1}, Az, xp41) =1, k> 1}.
Instead, we fix an integer ¢ > 2 and consider the multiplicative shift of finite type

6) Xa=X4{={@)i: me{0...,m—1}, Alwpzg) =1, k> 1},

as well as the corresponding subset of the unit interval:
o0
Ea = {:E =Y amm ™, (), € Xa}.
k=1

As is well-known, the dimensions of Z4 and X 4 coincide, if we use the standard

metric on the sequence space X,,:

o((zr), (y)) = m—mintn: @nyn}+l

on the sequence space >,,; this is equivalent to restricting the covers of Z4 to
those by m-adic intervals. Thus, in the rest of the paper we focus on the sets X 4.

In order to state our dimension result, we need the following elementary lemma.

Lemma 1.2. Let A = (A(i,j))g”j;lo be a primitive matriz, and g > 1. Then there

exists a unique vector (ti)zrfol satisfying

(7) th = A, j)ty, ti>1,i=0,...,m—1.

Below we use logarithms to base m, denoted log,,, and write 1 for the vector
1,...,DT e R™.

Theorem 1.3. (i) Let A be a primitive 0-1 matriz. Then the set X 4 given by
(@ satisfies

' 1 m—1
®) dimyy (X4) = © logy Y 1.
9 i=0
where (t;)75" is from Lemma .
(ii) The Minkowski dimension of X4 exists and equals

, = log,,(A*11,1
(9) iy () = (g — 12y Bl L)
k=1
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We have dimpy (X 4) = dimp;(X4) if and only if A has 1 as an eigenvector (i.e.

row sums of A are all equal).

The formula for the Minkowski dimension is not difficult to prove; it is included

for comparison.

1.1. Variational principle for multiplicative subshifts. We obtain Theo-
rem as a special case of a more general result. Let  be an arbitrary closed
subset of ¥,, (it does not have to be shift-invariant), and define the sets Xg
and ZEq by and . We refer to X as a “multiplicative subshift.” Precise
statements are given in the next section; here we just describe the results.

We can view our set X as an infinite union of copies of €1, starting at all
positive integers i not divisible by ¢ (denoted ¢ 1) and “sitting” along geometric
progressions of ratio q. More precisely, denote J; = {¢"i}72, for ¢ { i and let
z|J; = (xqri)p,- By definition (1),

(10) x € Xq < z|J; €Q foralli, q1i.

In order to compute (or estimate) the Hausdorff dimension of a set, one usually
has to equip it with a “good” measure and calculate the appropriate “Hélder
exponent”. For subshifts, “good” measures are ergodic invariant measures. For
multiplicative subshifts, their role is played by measures obtained in the following
construction, essentially as an infinite product of copies of a measure on 2. Given
a probability measure y on §2 we set

(11) Pulu] = [ plulJi),

i<|ul, qfs

where [u] denotes the cylinder set of all sequences starting with u and
ulJ; = uiugi . .. ugri, q'1 < |ul < ¢t

It is easy to verify that IP, is a Borel probability measure supported on Xq (see
the next section for details).

For a probability measure P, its Hausdorff dimension is defined by
dimpg (P) = inf{dimy (F) : F Borel, P(F) =1},
and the pointwise dimension at z is given by

dimyo. (P, z) = lim logP (B, (x)) (Br(2))
r—0 logr
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whenever the limit exists, where B, (x) denotes the open ball of radius r centered
at . We consider measures on the sequence space X,,; then

(12) dingo(P 2) = tim —E 7121

where 2] = x; ...z, denotes the initial segment (prefix) of the sequence x. We
prove that for any measure PP, defined above, the pointwise dimension exists
and is constant Py-a.e., which is then equal to dimg(P,) (see Proposition [2.3)).
This can be viewed as a multiplicative analog of the Shannon-McMillan-Breiman
Theorem and the entropy formula for the dimension of an ergodic shift-invariant
measure v, namely, dimg(v) = h(v)/logm (see [2]). Further, we obtain the
“Variational Principle for multiplicative subshifts,” see Proposition We can
summarize this discussion with the following dictionary between the classical and

multiplicative subshifts:

classical multiplicative ‘
subshift T C X,, set Xq
invariant ergodic measure v on T measure [P,
Shannon-McMillan-Breiman Theorem pointwise dimension of PP,
dimg(v) = h(v)/logm dimension of PP,
Variational Principle: dimy (Xq) = sup{dimg (P,) :
dimg (Y) = sup{dimyg(v) : v is ergodic on Y} p is a probability on Q}

2. GENERAL RESULT. VARIATIONAL PROBLEM.

Let 2 be an arbitrary closed subset of X,,, and define the sets Xq and Zq
by and . Our general theorem computes the Hausdorff and Minkowski
dimensions of Xq (as discussed earlier, the dimensions of Zq are the same as
those of Xq).

Consider the tree of prefixes of the set 2. It is a directed graph I' = I'(2)

whose set of vertices is

V(') = Pref(Q) = G Pref,(Q),
k=0

where Pref((£2) has only one element, the empty word &, and

Pref,(Q) = {u € {0,...,m —1}*, QN [u] # 0}.
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There is a directed edge from a prefix u to a prefix v if v = wui for some i €
{0,...,m — 1}. In addition, there is an edge from @ to every i € Pref;(Q).
Clearly, I'(2) is a tree, and it has the outdegree bounded by m. Note that if  is
shift-invariant, then the set Pref(Q2) coincides with the set of allowed (admissible)
words in € (sometimes referred to as the language of ().

The next lemma generalizes Lemma [1.2

Lemma 2.1. Let I' = (V,E) be a directed graph (finite or infinite) with the
outdegree bounded by M < oo, such that from each vertex there is at least one

_ 1
outgoing edge. Let ¢ > 1. Then there exists a unique vector t € [1, Ma-1]V" such
that

(13) th="> tw, vEV.

It is clear that Lemma [1.2] is a special case, with I' being the directed graph
with the incidence matrix A.

Note that we only claim uniqueness of solutions in the given range. In fact,
uniqueness of positive solutions holds if we assume a priori bounds from zero and
infinity; without this assumption there may be infinitely many solutions on an

infinite graph.

Theorem 2.2. Let Q C X, and let t be the vector from Lemma corresponding
to the tree of prefives I'(Q2). Then

(i)
(14) dimp (Xq) = (¢ — 1) log,, ty;
(ii)

o

. log,,, |Pref; (2

(15) dimyr(Xa) = (g 1)° Y ’qk+1’“( )
k=1

We have dimpg(Xq) = dimy,(Xq) if and only if the tree of prefizes is spherically
symmetric, i.e. for every k € N, all prefizes of length k have the same (equal)

number of continuations in Prefyi1().

Observe that Theorem is a special case of Theorem For part (i), we
note that for a shift of finite type ¥ 4 the graph I'(¥ 4) has the property that the
tree of descendants of a prefix u = u; ... u depends only on the last symbol uy.

Denote by T; this tree, which has uy = i as its root vertex, for ¢ =0,...,m — 1,
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and let t; be the solution of the system of equations evaluated at the root.
Here we use Lemma with the uniqueness statement. Then we obtain from
that the vector (ti)ﬁ_ol satisfies . Finally, note that t% = Z;l_ol t; by ,
hence reduces to (§]).

For part (ii), we just note that (A*~11,T) is the number of allowed words of
length k in the shift of finite type X 4.

2.1. Scheme of the proof. Statement of the Variational Principle. Recall
that, given a probability measure i on ) we define a measure on X¢q by
(16) Py[u] == H plulJ;], where |u| =n and J; = {q¢"i}32;.

i<n,qfi

This is a well-defined pre-measure on the semi-algebra of cylinder sets. Indeed,

we have P,[i] = pli] for i =0,...,m —1, and for n+1 = ¢4, ¢ 11,

Pyulur .. uptpn 1] _ pluitgi . . . ugri]
Pylut ... up) Pl . . ugr-1;]’
whence
m—1

Pulug ... uy) = Z Pulur ... unjl.

j=
The extension of P, is a Borel measure supported on Xg, since () is a closed
subset of ¥, and hence
00
o= U MWl
k=1 u€Pref), ()

Observe that is not the only way to put a measure on Xq: we could make
the measure p = p; in depend on i; however, this is not necessary for the
purpose of computing the Hausdorff dimension.

We compute the Hausdorff dimension dimg (P,), which yields a lower bound
on dimy(Xgq). In order to state the result, we need to introduce some notation.

For k > 1 let oy be the partition of 2 into cylinders of length k:

ar ={QN[u]: uePrefr ()} ={QN[u]: ue{0,...,m-1}* Qnlul #0}.

For a measure p on ¥, and a finite partition «, denote by H,(«) the p-entropy

of the partition, with base m logarithms:

Ht (o) = = > p(C)log,, u(C).

Cea



MULTIPLICATIVE FRACTALS 9

Now define
= Hh Qay
(17) () = (=17 Y T
k=1

Proposition 2.3. Let 2 be a closed subset of 3., and u a probability measure on
Q. Then

(18) dimioe(Py, ) = s(2, ) for By-a.e. x € Xq.
Therefore, dimg (P,) = s(, ), and dimg(Xq) > s(, p).
We also have the Variational Principle:

Proposition 2.4. Let Q) be a closed subset of 3,,. Then
(19) dimy(Xq) = supdimg(P,) = sup s(£2, p),
I I

where the supremum is over Borel probability measures on §2.

It is clear from that the function u — s(€2, 1) is continuous on the compact
space of probability measures with the w*-topology. Thus, the supremum in

is actually a maximum. Let
(20) s(Q) := max{s(Q, u) : p is a probability on }.

We call a measure p for which s(Q2) = s(€, 1) an optimal measure. The next

theorem characterizes such measures.

Proposition 2.5. Let Q be a closed subset of ¥, and let t be the solution of
the system of equations for the tree of prefives of Q. For any k > 1 and
u € Prefy(Q) let

bt

(21) ] o= T e

q
j=1 tul...u]-_l

This defines a probability measure i on ). Moreover,

(i) p is the unique optimal measure;
(i) s(Q2, 1) = (g — 1)log,, to.

Combining Propositions and yields part (i) of Theorem .
In the case when ) is a shift of finite type, the optimal measure turns out to
be Markov.
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Corollary 2.6. Let A be a primitive m x m 0-1 matriz and X 4 the corresponding
shift of finite type. Let t = (ti)?:ol be the solution of the system of equations (@
Then the unique optimal measure on %4 is Markov, with the vector of initial
probabilities p = (Z?:Ol t;) "' and the matriz of transition probabilities
m—1 2 ;o
(pij)ij—o where pij = g if A(i,j) = 1.

7
3. EXAMPLES

11
0

Example 3.1 (golden mean). Let ¢ = 2,m = 2, and A = Then

E4 = Zg, the multiplicative golden mean shift from (@)
The system of equations reduces to
te = to+t1, t5 = to,

which immediately implies 3 = ¢; + 1. According to Corollary the optimal
measure 4 on X 4 is Markov, with initial probability of 0 equal to p = to/(to+t1) =
tal = t1_2, and the initial probability of 1 equal to 1 —p = t1/(to + t1) = t1_3,

whence p? = (1 — p)2. The matrix of transition probabilities is [ Pl ;p
Then, by ,
dimp (Eg) = (1/2)logy(to +t1) = —logy p,
which proves Proposition [1.1 O
1 1 1
Example 3.2 (Tribonacci). Let q=2, m=3,and A= |1 0 0 |. Then
010

Xa={(zp)*€{0, 1,2 : 2 =1 = 29, =0, 3, =2 = a9, = 1}.

We have
(22) dimypr (X4) = 4logy t ~ 0.726227, where 1 —t —1 =0,
and
dimyr (X)) = S 1083 Tho1 (oo
imar(Xa) =Y =27 ~ 075373,
k=1

where TO = 3, T1 = 5, T2 = 9, T]H_Q = Tk:—l + Tk + Tk+1.
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To verify , we note that the equations in this case are
t2=to+t1+ta, t] =to, t3 =11,

whence t§ = t5-+t3-+to. Thus, t = t, satisfies 7 = t34+t+1, and since " — 3 —t—1 =
(t*—t—1)(t3+1), Theorem (1) yields the formula for the Hausdorff dimension.
The optimal measure is Markov, with the matrix of transition probabilities equal
= 76 T
to 1 0 0 |[,and the vector of initial probabilities (t=4,¢76,¢=7).
0 1 0

Example 3.3 (2-step Markov). Let ¢ =2, m =2, and
X = {(xk)fo e {0, l}N D TpTopxar = 0, k> 1}.

Then X = Xq where Q is the shift of finite type on the alphabet {0,1} with the
only forbidden 3-letter word 111.

The graph I'(2) has the property that the tree of descendants of a prefix u =
uq ... uy of length |u| > 2 depends only on the last pair of symbols ug_jup = ij.
Denote by Tj; this tree, for 4,5 € {0,1}, and let t;; be the solution of the system
of equations ([13) evaluated at its root (we are using Lemma with uniqueness
here). Then on I'(Q?) yields

8y = too+tor
t = tio+tn
tly = too+to1
th = to,

and also ty = tgg. Denoting z = t11 we obtain, after a simple computation, that

(2% = 2%)? = 22 + 2 whence

' —24+2—z2-1=0.
Note also that tgg = t3; = z2. Thus, by ,
dimpg(X) = 2logy z ~ 0.956651.

The Minkowski dimension in this example is
o0
. Z logy Rp—1

k=1
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where R; is the number of allowed sequences of length j: Ry = 2, Ry = 4, R3 =
7,Rp12 = Rp—1 + Rg + Ryy1.

By the same method as in this example, one can easily compute the Hausdorff

dimension of X where is an arbitrary (multi-step) shift of finite type.

Example 3.4 (Multiplicative S-shift). Let 8 > 1 and Q = Qg be the 3-shift (see
[11L B] for the definition and basic properties of [3-shifts). Let ¢ = 2. Then

(23) dimpy (Xq,) = logyt, where t = \/dlt + \/dgt +\/dst+ ...,

and didods ... is the infinite greedy expansion of 1 in base 5. Moreover,
dimys (Xq,) < dimpg(Xq,) for all B ¢ N.

S

1+

Notice that Xq, is the multiplicative golden mean shift X, when 8 = ~5=,

for which the infinite S-expansion of 1 is 101010. ..
The equation may be justified as follows. Assume that § ¢ N. By [11],
z = (z1)]° € Qp if and only if every shift of z, that is (xy)," for £ > 2, is less

oo

than or equal to (di)]" in the lexicographic order. This implies that the tree of
followers of the symbols 0,...,d; — 1 in §g is isomorphic to the entire Pref(Q3),
and we obtain the following equation at the root from :

t2 = dity + tq,.
Similarly, we obtain
t31~--dn = dn+1t® + tdl...dn+17 n Z 17
which easily reduces to (23)).
4. PROOF OF PROPOSITION 2.5

Recall that for two partitions o and 3, the conditional entropy is defined by

(24) HE(a]B) = 3 (= D 1A B)10g,, w(A|B) ) u(B).

Bep Aca
Proof of Proposition[2.5(i). We have for k > 2,

(25) Hy, (ar) = Hp,(aglar) + Hy, (),

by the properties of conditional entropy. From ,

m—1
HA (o) =Y piHE (on—1()),
i=0
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where p; = pli] and Hp (ap_1(£;)) is the entropy of the partition of €);, the
follower set of ¢ in €2, into cylinders of length k — 1, with respect to the measure

i, which is the normalized measure induced by p on €2;. Substituting this and

into we obtain

() = L)+ 2 3 pis(m)

m—1
(26) = o)+ S pis(@i,m)].
i=0

Now, the measure p is completely determined by the probability vector p =
(pi)1" and the conditional measures p1;. The optimization problems on ; are
independent, so if p is optimal for €2, then p; is optimal for €;, for all ¢ < m.
Thus,

m—1

[l () + qil > pis(e)]
=0

qg—1

s(2) = max

Observe that Hf,(a1) = — Z?lﬁl pilog,, pi- It is well-known that

m—1 m—1
max Z pi(a; — log,, p;) = log,, (Z mai) 7
=0 =0

m—1

which is achieved if and only if p; = m®/ ijo m% for i =0,...,m — 1. We
have a; = s(€2;)/(¢ — 1), which yields the optimal probability vector

m—1 t; s(9) s()
p:(pi)izo ’ p’l:tT7 Where t@ ::mq717 tl =m ! ) zém_la
%)
and
m—1
1 = Z t.
=0

This is the equation at the root of the graph I'(2). However, the problem
is analogous at each vertex, so replacing the set (2 with the set of followers of a
prefix and repeating the argument, we obtain it for the entire graph. We also
get the formulas for the optimal measure p from the form of the optimal
probability vector above. Observe that the solution ¢ of the system which we
get this way is in the range [1, mt/ (q_l)], where we have uniqueness by Lemma
(Indeed, for any subtree I'(€2,,) of the tree I'(2) we have the outdegree bounded

by m, and s(Q,) <1 by and , in view of Hf,(ag) < k.)
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This concludes the proof of Proposition (i), including the uniqueness state-

ment. OJ

Proof of Proposition [2.5(%). In order to compute s(€2, 1), it is useful to rewrite

it in terms of conditional entropies. We have
Hj (apsa) = Hp (o) + HY, (g |oe).

Applying this formula repeatedly, we obtain from :

o] _ 217 «a . 00 #1 o N
@) st =3 ) - (T [+ 3 ),
k=1 1

Observe that

m—1 t t:
i) = - g, (%)
: %) %)
=0
m—1 + m—1
= qlog,, ty — Z t—; log,, ti = qlog,, ts — Z wli]log,, t;.
i=0 0 i=0
Further,
(29 (291
Hiylapla) = Y wlul(= Y “Zlog, )
[ul€ay jilujl€onir “
t .
= > uly (qlogm b= >, i logy, tuj)
[u]€ay J: [ugl€ak41 “
= g Z M[U] logm tu_ Z H[U] 1Ogm tva
[u]l€ay [v]l€akt1

in view of ufuj] = u[u]tt% Now it is clear that the sum in telescopes, and
s(,p) = (¢ — 1)log,, tz, as desired. O

We point out that Proposition (1) is not necessary for the proof of Theorem
only Proposition [2.5[(ii) is needed.
5. PROOF OF THE MAIN THEOREM [2.2]
Proof of Proposition . Fix a probability measure p on ). We are going to

demonstrate that for every £ € N,

l
—log,, P [z} i,
(28) lim inf —logy, Puli] > (g —1)? g Hinlow) for Py-a.e. x,

n—00 n qk—i—l
k=1
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and
(29)
)4
, —log,, P[] Hl(ag) ~ (£+1)log,,(2m)
1 _om R 0 1)2 m m for P -a.e. x.
im sup - <(¢g-1) E T + 7 or P,-a.e. x

k=1
Then, letting ¢ — oo will yield dimjoe(Py, x) = s(2, u) for Py-a.e. x, as desired.
Fix £ € N. To verify and , we can restrict ourselves to n = ¢‘r, r € N.
(Indeed, if ¢‘r <n < ¢‘(r + 1), then
—log P, [27] . —log }P’M[as‘fzr] " —log Pu[m(fér]
n ¢ r+1) T r+1 q‘r

)

which implies that

V4
—log P, [z} —logP,[z4"
lim inf — o8 Tultl “[xl] = lim inf o tulty | “[xl ] .

n—00 n r—00 qgr

The lim sup is dealt with similarly.)
Let

Gn=0p, ={j<n: Elz'>n/qe7 qti, je J;} and Hyp:={j<n: j&G,}.
Then we have by the definition of the measure P,:
(30) Pu[21] = Bulx|Gn] - Byl Hon]

where [x|G,] (resp. [z|H,]) denotes the cylinder set of y € X whose restriction
to G, (resp. [z|H,]) coincides with that of z.
First we work with P,[z|G,]. In view of we have

¢

(31) BulelGl =[] I wlatl)

1 on .
k=1 qk <1<

n
‘qkfl
qfi

Note that 27|J; is a word of length k for i € (n/q*,n/q"71], q 1 i, which is a
beginning of a sequence in Q. Thus, [z}|.J;] is an element of the partition a. The
random variables = + — log,, u[x7|J;] are i.i.d for i € (n/q¢*,n/¢"*"'], ¢ 14, and
their expectation equals Hp,(ay), by the definition of entropy. Note that

n n n

62 #iem/d /e ati) = (U0 (5 - o) = - VP

Fixing k, ¢ with k& < ¢ and taking n = ¢‘r, r — 0o, we get an infinite sequence of

i.i.d. random variables. Therefore, by a version of the Law of Large Numbers, we
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have
(33)
—log,,, p[z7|Ji] ¢
VEk<U{, Z = 1)2(n/c11k+1) — HJ (o) asn=qr — oo, forP,-a.e. .
qik<i§ qk7i1
qti
By and , for P,-a.e. x,
(34)

k+1 _ k+1 kJrl
o T, S e/
q q

¢ ¢
—log,, P, [7|G,] Z (q—1)? Z —log,,, [z J;] (g — 1)?Hp (o)
i Ly |
=1

qfi

Since P[] < P,[x]Gy], this proves (28). Observe that suffices for the lower
bound dimg(Xq) > dimg(P,) > s(€, 1), so the rest of the proof of this proposi-

tion may be skipped if one is only interested in the computation of dimy(Xq).

Next we turn to (29), which requires working with P, [x|#,]. In view of (32),

nk
M| =n—|Gn| = n—Z(q—1)2F

k=1

n l
(35) = ? [(f + 1) — 5]

{+1
(36) <! Zz i (L+1)r.
From ,
(37) Z 9~ Mot < oo

r=1
Define
S(Hy) = {x € Xo: Pulz|H,] < (2m)7|7'tn‘}'

Clearly,

Pu(S(Hn)) < 27",

since there are at most m!*~l cylinder sets [z|#,]. In view of (37),

Py ﬂ U S(”qur)) =0,

N>1r=N
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hence for P,-a.e. © € X there exists N(z) such that z ¢ S(H,,) for all n = ¢‘r >
N(z). For such z and n > N(z) we have (the last inequality from (36))
—log,, P, [z|H,] - |H,|log,, (2m) - (£ +1)log,,(2m) .
n n q*
Combining this with , which also holds P,-a.e., and with , yields . O

Proof of Proposition[2.]] and the upper bound in Theorem[2.2 Often upper bounds
for the Hausdorff dimension are obtained by explicit efficient coverings, which is
easier than getting lower bounds. This is not the case here, a feature shared with
self-affine carpets from [I}, [10]. In fact, we proceed similarly to [10], by exhibiting
the “optimal” measure on the set X to get an upper bound on the Hausdorff
dimension. We use the following well-known result; it essentially goes back to

Billingsley [2].

Proposition 5.1 (see [4]). Let E be a Borel set in ¥, and let v be a finite Borel

measure on X,. If
1 n
lim inf —198m V1711
n—oo

<s forallxeFE,
then dimpy (E) < s.

It should be emphasized that the lower pointwise dimension of v needs to be
estimated from above for all x € E, unlike in the proof of the lower bound, where

the lower estimate for lim inf is required only v-a.e.

Lemma 5.2. Let p be the measure on §) defined by , and let P, be the
corresponding measure on Xq, defined by @ Then for any x € Xq, denoting

—1 P,|x?
CW(%‘) — Ogmn H[‘T;l] fO’I"TL _ qﬁ,

we have

9 L 0@+ aa)

{— o0 Y4

Thus, liminf,_, ag(z) < (¢ — 1)log,, tz for all x € Xq.
Once we prove the lemma, we are done with Theorem since by Proposi-

tion[5.1) we will then get dimpy (Xq) < (¢—1)log,, tz. Proposition[2.4] then follows
by Proposition [2.5(ii).

Proof of Lemma . Let n = ¢* and denote
).

) ._ .
X, = XL xqgi.
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We will also write t(u) for ¢, in this proof, to make the formulas more readable.
Combining with yields

l+1 k—1

n 7P
g, Blrt] = =Y D (log k] + 3 log, L))
k=1 L<i< e j=1 N[Xz‘ ]
q q
qfi
0+1 k—1 ()
_ t(x;) t(x;")
(39) = 2 X (logu gy + X los Wj—n))
k:1%<i§ kn_l J=1 7
q q
afi

For k € N and z € ) denote

Ya(K) = log,, t(x), where k= ¢'i, g 1i.

7

Then, telescoping the sum 25;11 in we obtain

n/q n
—log,,, Pulz}] = n(q — 1)10g,, t(2) + (¢ = 1) Y _va(k) = D 7als).
k=1 k=n/q+1

(Note that we pick up glog,, t(&) from each number in [1,n] that is not divisible
by ¢, for a total of n(q — 1)log,, t(&).) Denote

Sy 1= Z%(Fc);
k=1
then
—log,, Pu[z]] = n(q — 1) log,, (D) + ¢Sy /g — Sn for n = ¢

We have for n = ¢/, ¢ > 1:

a(z) = W = (¢ —1)log,,, t(2) + i’}/; — %
This implies
w =(q—1)log,, t(2) + % — Z‘]IZ — (¢ —1)log,, t(@), asl— oo,
as desired. 0

Proof of Lemma[2.1. We follow the scheme of the proof of [9, Theorem 5.1].
Let V' be the set of vertices of the graph and let M be the maximal outdegree.
Consider the space of functions Y := [1, M'/(@=D]V from V to [1, M*/(4=D)], which
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is compact in the topology of pointwise convergence, and the transformation

F:Y =Y, given by

F(yv):( > yw)l/q'

w: vweE

(It is easy to see that F' maps Y into Y.)

Observe that F' is monotone in the sense that
y,z€Y, y<z = F(y) < F(z),

where “<” is the pointwise partial order. Let 1 be the constant 1 function. Then

1< F(1) < F%(1) < ... By compactness, there is a pointwise limit
t= lim F"(1),

which is a fixed point of F, hence ¢ satisfies the system of equations .
It remains to verify uniqueness. Suppose ¢ and ¢/ are two distinct fixed points

of F. Without loss of generality, we can assume that # £ ¢/. Then let
o =inf{¢ >1: <)

Clearly o < M1/(@=1) By continuity we have f < at’, and so 1 < a by assumption.

Now,
T=F() < F(at') = oF(¥) = a7,
contradicting the definition of a. The proof is complete. O

Proof of the statements on Minkowski dimension in Theorem[2.9 Tt is well-known
that one can use covering by cylinder sets in the definition of lower Minkowski

dimension, so we have for X C X,,:

log,, |Pref, (X
(40) dim (X)) = lim inf 228m [Prefn(X)]

n—oo n

where |Pref,,(X)]| is the number of prefixes over all sequences in X; equivalently,
the number of cylinder sets of length n which intersect X. We get the upper
Minkowski dimension dim(X) by replacing lim inf with limsup in (40)).

For dimension computations, we can restrict ourselves to n from an arithmetic
progression, so we can take n = ¢‘r for a fixed ¢ € N. Recall that = € Xq if and
only if z|J; € Q for all ¢ such that ¢ { 7. It follows that |Pref,(Xq)| is bounded
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below by the product of |Pref,(Q)| for each i € (n/q* n/¢*'], with ¢ { 4, over
k=1,...,£ Thus, in view of , we have
nlog,, |Pref; ()]

4
10g,,, [Pref,(Xo)| > (¢ — 1)*) e
k=1

On the other hand,

L L

nlog,, |Pref; (92 n
log,, |Pref,(Xaq)| < (¢ — 1)22 q|k+1 () —I—n—Zk(q— I)ZF
k=1 k=1

by putting arbitrary digits in the remaining places. Dividing by n and letting

n — oo we obtain

l
. log,,, |Prefi(£2)]
dimy (Xo) > (¢—1)*) pa

k=1
and
_— 2 log,, [Prefy ()] R
dimy (Xa) < (¢—1)*) s +(0+1)g =g
k=1

Since ¢ € N is arbitrary, this yields .

It remains to verify that dimp;(Xq) = dimy(Xq) if and only if the tree of
prefixes I'(2) is spherically symmetric. Compare the formula with .
Observe that

HE (o) < log,, |[Prefy ()],

with equality if and only every cylinder set [u], for u € Prefy(€2), has equal
measure . To get dimpy(Xq), we have u the optimal measure from . It
is immediate from the equations that the solution ¢, depends only on the
length of the prefix u if and only if I'(Q2) is spherically symmetric. This implies
the desired claim. O

6. CONCLUDING REMARKS

1. The motivation to consider the multiplicative golden mean shift =, in [5]
came from the study of the dimension spectrum of certain multiple ergodic aver-
ages. For 6 € [0,1] let

1 n
Ay = {(l’k)(ljo €39 : lim — kax% = (9}
k=1

n—oo n
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The authors of [5] ask what is the Hausdorff dimension of Ay. It is easy to see
that dimp(Ap) = dimpy(Z,), and moreover, recently the methods developed in
the present paper have been adapted to compute the full dimension spectrum
0 — dimpg(Ap) [12]. Independently, the dimension of Ay and other sets of this
type has been computed in [6].

2. Not all subsets of X,, that are invariant under the action of multiplicative
integers are of the form Xq considered in this paper. In fact, the sets of the form
Xq behave rather like full shifts, because they are “composed” of independent

copies of the set €2, albeit in a “staggered” pattern. On the other hand, let
X :={z € Xy apworasy =0 for all k}.

Then clearly
(p)pey € X = (Trk)pey € X forallr €N,

but our methods are inadequate to compute the dimension of X.

Acknowledgment. We are grateful to Jorg Schmeling for passing to us the

question about the Hausdorff dimension of the “multiplicative golden mean shift”
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