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Abstract. We consider subsets of the (symbolic) sequence space that are in-

variant under the action of the semigroup of multiplicative integers. A repre-

sentative example is the collection of all 0-1 sequences (xk) such that xkx2k = 0

for all k. We compute the Hausdorff and Minkowski dimensions of these sets

and show that they are typically different. The proof proceeds via a variational

principle for multiplicative subshifts.

1. Introduction

Central objects in symbolic dynamics and the theory of fractals are shifts

of finite type, and more generally, closed subsets of the symbolic space Σm :=

{0, . . . ,m− 1}N that are invariant under the shift σ(x1, x2, x3, . . .) = (x2, x3, . . .).

(we refer to them as “subshifts” for short). To a subset Ω of Σm we can as-

sociate a subset of [0, 1] by considering the collection of all reals whose base m

digit sequences belong to Ω. Subshifts then correspond to closed subsets of [0, 1]

invariant under the map x 7→ mx (mod 1). It is known [7] that all such sets

have the Hausdorff dimension equal to the Minkowski (box-counting) dimension,

which is equal to (logm)−1 times the topological entropy of σ on Ω.

Note that shift-invariance implies invariance under the action of the semi-

group of additive positive integers. In contrast, in this paper we consider

subsets of Σm and the corresponding fractals in [0, 1], which arise from the action

of the semigroup of multiplicative integers. Namely, given a subset Ω ⊂ Σm

and an integer q ≥ 2, we let

(1) XΩ = X
(q)
Ω :=

{
ω = (xk)

∞
k=1 ∈ Σm : (xiq`)

∞
`=0
∈ Ω for all i, q - i

}
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and consider the corresponding subset of [0, 1]:

(2) ΞΩ :=
{
x =

∞∑
k=1

xkm
−k : (xk)

∞
1 ∈ XΩ

}
.

If Ω is shift-invariant, then XΩ is invariant under the action of multiplicative

integers:

(xk)
∞
1 ∈ XΩ ⇒ (xrk)

∞
k=1 ∈ XΩ for all r ∈ N.

If Ω is a shift of finite type, we refer to XΩ (and ΞΩ) as the “multiplicative shift

of finite type.”

Our interest in these sets was prompted by work of Ai-Hua Fan, Lingmin Liao

and Jihua Ma [5] who computed the Minkowski dimension of the “multiplicative

golden mean shift”

(3) Ξg :=
{
x =

∞∑
k=1

xk2
−k : xk ∈ {0, 1}, xkx2k = 0 for all k

}
and raised the question of computing its Hausdorff dimension. They showed that

the Minkowski dimension is

(4) dimM (Ξg) =

∞∑
k=1

log2 Fk+1

2k+1
= 0.82429 . . . ,

where Fk is the k-th Fibonacci number: F1 = 1, F2 = 2, Fk+1 = Fk−1 + Fk. As

a special case of our results we obtain the Hausdorff dimension dimH(Ξg).

Proposition 1.1. We have

(5) dimH(Ξg) = − log2 p = 0.81137 . . . , where p3 = (1− p)2, 0 < p < 1

Thus, dimH(Ξg) < dimM (Ξg).

Proposition 1.1 will follow from a more general result, Theorem 1.3 below. For

an exposition which focuses on the set Ξg see [8].

In order to visualize the set Ξg we show the set Ξ̃g in Figure 1, which is obtained

from Ξg by the transformation

∞∑
k=1

xk2
−k 7→

( ∞∑
k=1

x2k−12−k,

∞∑
k=1

x2k2
−k
)
.

It is easy to see that this transformation doubles the Minkowski and Hausdorff

dimensions.
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Figure 1. Approximation of the set Ξ̃g.

The figure resembles pictures of self-affine carpets, see [1, 10], for which the

Hausdorff dimension is often less than the Minkowski dimension. In fact, our

proof bears some similarities with those of [1, 10] as well. An example of a self-

affine set is shown in Figure 2.

Figure 2. Approximation of a self-affine set. Letting M(x, y) =

(x2 ,
y
4 ), this set is S =

{∑
i≥0M

idi : di ∈ {(0, 0), (1, 0), (0, 1), (1, 1), (0, 3)}
}
.

The set Ξg is a representative example of a large family of sets for which we

compute the dimension. Let m ≥ 2 and let A = (A(i, j))m−1
i,j=0 be a primitive (a
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non-negative matrix is primitive if some power is strictly positive) matrix with

0-1 entries. The usual (additive) shift of finite type determined by A is defined

as

ΣA := {(xk)∞k=1 : xk ∈ {0, . . . ,m− 1}, A(xk, xk+1) = 1, k ≥ 1}.

Instead, we fix an integer q ≥ 2 and consider the multiplicative shift of finite type

(6) XA = X
(q)
A := {(xk)∞k=1 : xk ∈ {0, . . . ,m− 1}, A(xk, xqk) = 1, k ≥ 1},

as well as the corresponding subset of the unit interval:

ΞA :=
{
x =

∞∑
k=1

xkm
−k, (xk)

∞
k=1 ∈ XA}.

As is well-known, the dimensions of ΞA and XA coincide, if we use the standard

metric on the sequence space Σm:

%
(
(xk), (yk)

)
= m−min{n: xn 6=yn}+1

on the sequence space Σm; this is equivalent to restricting the covers of ΞA to

those by m-adic intervals. Thus, in the rest of the paper we focus on the sets XA.

In order to state our dimension result, we need the following elementary lemma.

Lemma 1.2. Let A = (A(i, j))m−1
i,j=0 be a primitive matrix, and q > 1. Then there

exists a unique vector (ti)
m−1
i=0 satisfying

(7) tqi =
m−1∑
j=0

A(i, j)tj , ti > 1, i = 0, . . . ,m− 1.

Below we use logarithms to base m, denoted logm, and write 1 for the vector

(1, . . . , 1)T ∈ Rm.

Theorem 1.3. (i) Let A be a primitive 0-1 matrix. Then the set XA given by

(6) satisfies

(8) dimH(XA) =
q − 1

q
logm

m−1∑
i=0

ti,

where (ti)
m−1
i=0 is from Lemma 1.2.

(ii) The Minkowski dimension of XA exists and equals

(9) dimM (XA) = (q − 1)2
∞∑
k=1

logm(Ak−11, 1)

qk+1
.
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We have dimH(XA) = dimM (XA) if and only if A has 1 as an eigenvector (i.e.

row sums of A are all equal).

The formula for the Minkowski dimension is not difficult to prove; it is included

for comparison.

1.1. Variational principle for multiplicative subshifts. We obtain Theo-

rem 1.3 as a special case of a more general result. Let Ω be an arbitrary closed

subset of Σm (it does not have to be shift-invariant), and define the sets XΩ

and ΞΩ by (1) and (2). We refer to XΩ as a “multiplicative subshift.” Precise

statements are given in the next section; here we just describe the results.

We can view our set XΩ as an infinite union of copies of Ω, starting at all

positive integers i not divisible by q (denoted q - i) and “sitting” along geometric

progressions of ratio q. More precisely, denote Ji = {qri}∞r=0 for q - i and let

x|Ji = (xqri)
∞
r=0. By definition (1),

(10) x ∈ XΩ ⇐⇒ x|Ji ∈ Ω for all i, q - i.

In order to compute (or estimate) the Hausdorff dimension of a set, one usually

has to equip it with a “good” measure and calculate the appropriate “Hölder

exponent”. For subshifts, “good” measures are ergodic invariant measures. For

multiplicative subshifts, their role is played by measures obtained in the following

construction, essentially as an infinite product of copies of a measure on Ω. Given

a probability measure µ on Ω we set

(11) Pµ[u] :=
∏

i≤|u|, q-i

µ[u|Ji],

where [u] denotes the cylinder set of all sequences starting with u and

u|Ji = uiuqi . . . uqri, qri ≤ |u| < qr+1i.

It is easy to verify that Pµ is a Borel probability measure supported on XΩ (see

the next section for details).

For a probability measure P , its Hausdorff dimension is defined by

dimH(P ) = inf{dimH(F ) : F Borel, P (F ) = 1},

and the pointwise dimension at x is given by

dimloc(P , x) = lim
r→0

logP (Br(x))

log r
,
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whenever the limit exists, where Br(x) denotes the open ball of radius r centered

at x. We consider measures on the sequence space Σm; then

(12) dimloc(P , x) = lim
n→∞

− logP [xn1 ]

log n
,

where xn1 = x1 . . . xn denotes the initial segment (prefix) of the sequence x. We

prove that for any measure Pµ defined above, the pointwise dimension exists

and is constant Pµ-a.e., which is then equal to dimH(Pµ) (see Proposition 2.3).

This can be viewed as a multiplicative analog of the Shannon-McMillan-Breiman

Theorem and the entropy formula for the dimension of an ergodic shift-invariant

measure ν, namely, dimH(ν) = h(ν)/ logm (see [2]). Further, we obtain the

“Variational Principle for multiplicative subshifts,” see Proposition 2.4. We can

summarize this discussion with the following dictionary between the classical and

multiplicative subshifts:

classical multiplicative

subshift Υ ⊂ Σm set XΩ

invariant ergodic measure ν on Υ measure Pµ
Shannon-McMillan-Breiman Theorem pointwise dimension of Pµ

dimH(ν) = h(ν)/ logm dimension of Pµ
Variational Principle: dimH(XΩ) = sup{dimH(Pµ) :

dimH(Υ) = sup{dimH(ν) : ν is ergodic on Υ} µ is a probability on Ω}

2. General result. Variational problem.

Let Ω be an arbitrary closed subset of Σm, and define the sets XΩ and ΞΩ

by (1) and (2). Our general theorem computes the Hausdorff and Minkowski

dimensions of XΩ (as discussed earlier, the dimensions of ΞΩ are the same as

those of XΩ).

Consider the tree of prefixes of the set Ω. It is a directed graph Γ = Γ(Ω)

whose set of vertices is

V (Γ) = Pref(Ω) =

∞⋃
k=0

Prefk(Ω),

where Pref0(Ω) has only one element, the empty word ∅, and

Prefk(Ω) = {u ∈ {0, . . . ,m− 1}k, Ω ∩ [u] 6= ∅}.
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There is a directed edge from a prefix u to a prefix v if v = ui for some i ∈
{0, . . . ,m − 1}. In addition, there is an edge from ∅ to every i ∈ Pref1(Ω).

Clearly, Γ(Ω) is a tree, and it has the outdegree bounded by m. Note that if Ω is

shift-invariant, then the set Pref(Ω) coincides with the set of allowed (admissible)

words in Ω (sometimes referred to as the language of Ω).

The next lemma generalizes Lemma 1.2.

Lemma 2.1. Let Γ = (V,E) be a directed graph (finite or infinite) with the

outdegree bounded by M < ∞, such that from each vertex there is at least one

outgoing edge. Let q > 1. Then there exists a unique vector t ∈ [1,M
1
q−1 ]V such

that

(13) tqv =
∑
vw∈E

tw, v ∈ V.

It is clear that Lemma 1.2 is a special case, with Γ being the directed graph

with the incidence matrix A.

Note that we only claim uniqueness of solutions in the given range. In fact,

uniqueness of positive solutions holds if we assume a priori bounds from zero and

infinity; without this assumption there may be infinitely many solutions on an

infinite graph.

Theorem 2.2. Let Ω ⊂ Σ, and let t be the vector from Lemma 2.1 corresponding

to the tree of prefixes Γ(Ω). Then

(i)

(14) dimH(XΩ) = (q − 1) logm t∅;

(ii)

(15) dimM (XΩ) = (q − 1)2
∞∑
k=1

logm |Prefk(Ω)|
qk+1

.

We have dimH(XΩ) = dimM (XΩ) if and only if the tree of prefixes is spherically

symmetric, i.e. for every k ∈ N, all prefixes of length k have the same (equal)

number of continuations in Prefk+1(Ω).

Observe that Theorem 1.3 is a special case of Theorem 2.2: For part (i), we

note that for a shift of finite type ΣA the graph Γ(ΣA) has the property that the

tree of descendants of a prefix u = u1 . . . uk depends only on the last symbol uk.

Denote by Ti this tree, which has uk = i as its root vertex, for i = 0, . . . ,m− 1,



8 RICHARD KENYON, YUVAL PERES, AND BORIS SOLOMYAK

and let ti be the solution of the system of equations (13) evaluated at the root.

Here we use Lemma 2.1, with the uniqueness statement. Then we obtain from

(13) that the vector (ti)
m−1
i=0 satisfies (7). Finally, note that tq∅ =

∑m−1
i=0 ti by (13),

hence (14) reduces to (8).

For part (ii), we just note that (Ak−11, 1) is the number of allowed words of

length k in the shift of finite type ΣA.

2.1. Scheme of the proof. Statement of the Variational Principle. Recall

(11) that, given a probability measure µ on Ω we define a measure on XΩ by

(16) Pµ[u] :=
∏

i≤n, q-i

µ[u|Ji], where |u| = n and Ji = {qri}∞r=1.

This is a well-defined pre-measure on the semi-algebra of cylinder sets. Indeed,

we have Pµ[i] = µ[i] for i = 0, . . . ,m− 1, and for n+ 1 = qri, q - i,

Pµ[u1 . . . unun+1]

Pµ[u1 . . . un]
=

µ[uiuqi . . . uqri]

µ[uiuqi . . . uqr−1i]
,

whence

Pµ[u1 . . . un] =
m−1∑
j=0

Pµ[u1 . . . unj].

The extension of Pµ is a Borel measure supported on XΩ, since Ω is a closed

subset of Σm and hence

Ω =
∞⋂
k=1

⋃
u∈Prefk(Ω)

[u].

Observe that (16) is not the only way to put a measure on XΩ: we could make

the measure µ = µi in (16) depend on i; however, this is not necessary for the

purpose of computing the Hausdorff dimension.

We compute the Hausdorff dimension dimH(Pµ), which yields a lower bound

on dimH(XΩ). In order to state the result, we need to introduce some notation.

For k ≥ 1 let αk be the partition of Ω into cylinders of length k:

αk = {Ω ∩ [u] : u ∈ Prefk(Ω)} = {Ω ∩ [u] : u ∈ {0, . . . ,m− 1}k, Ω ∩ [u] 6= ∅}.

For a measure µ on Σm and a finite partition α, denote by Hµ
m(α) the µ-entropy

of the partition, with base m logarithms:

Hµ
m(α) = −

∑
C∈α

µ(C) logm µ(C).
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Now define

(17) s(Ω, µ) := (q − 1)2
∞∑
k=1

Hµ
m(αk)

qk+1
.

Proposition 2.3. Let Ω be a closed subset of Σm and µ a probability measure on

Ω. Then

(18) dimloc(Pµ, x) = s(Ω, µ) for Pµ-a.e. x ∈ XΩ.

Therefore, dimH(Pµ) = s(Ω, µ), and dimH(XΩ) ≥ s(Ω, µ).

We also have the Variational Principle:

Proposition 2.4. Let Ω be a closed subset of Σm. Then

(19) dimH(XΩ) = sup
µ

dimH(Pµ) = sup
µ
s(Ω, µ),

where the supremum is over Borel probability measures on Ω.

It is clear from (17) that the function µ 7→ s(Ω, µ) is continuous on the compact

space of probability measures with the w∗-topology. Thus, the supremum in (19)

is actually a maximum. Let

(20) s(Ω) := max{s(Ω, µ) : µ is a probability on Ω}.

We call a measure µ for which s(Ω) = s(Ω, µ) an optimal measure. The next

theorem characterizes such measures.

Proposition 2.5. Let Ω be a closed subset of Σm and let t be the solution of

the system of equations (13) for the tree of prefixes of Ω. For any k ≥ 1 and

u ∈ Prefk(Ω) let

(21) µ[u] :=
k∏
j=1

tu1...uj

tqu1...uj−1

.

This defines a probability measure µ on Ω. Moreover,

(i) µ is the unique optimal measure;

(ii) s(Ω, µ) = (q − 1) logm t∅.

Combining Propositions 2.4 and 2.5 yields part (i) of Theorem 2.2.

In the case when Ω is a shift of finite type, the optimal measure turns out to

be Markov.
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Corollary 2.6. Let A be a primitive m×m 0-1 matrix and ΣA the corresponding

shift of finite type. Let t = (ti)
m−1
i=0 be the solution of the system of equations (7).

Then the unique optimal measure on ΣA is Markov, with the vector of initial

probabilities p = (
∑m−1

i=0 ti)
−1t and the matrix of transition probabilities

(pij)
m−1
i,j=0 where pij =

tj
tqi

if A(i, j) = 1.

3. Examples

Example 3.1 (golden mean). Let q = 2,m = 2, and A =

[
1 1

1 0

]
. Then

ΞA = Ξg, the multiplicative golden mean shift from (3).

The system of equations (7) reduces to

t20 = t0 + t1, t
2
1 = t0,

which immediately implies t31 = t1 + 1. According to Corollary 2.6, the optimal

measure µ on ΣA is Markov, with initial probability of 0 equal to p = t0/(t0+t1) =

t−1
0 = t−2

1 , and the initial probability of 1 equal to 1 − p = t1/(t0 + t1) = t−3
1 ,

whence p3 = (1 − p)2. The matrix of transition probabilities is

[
p 1− p
1 0

]
.

Then, by (8),

dimH(Ξg) = (1/2) log2(t0 + t1) = − log2 p,

which proves Proposition 1.1. �

Example 3.2 (Tribonacci). Let q = 2, m = 3, and A =

 1 1 1

1 0 0

0 1 0

. Then

XA =
{

(xk)
∞
1 ∈ {0, 1, 2}

N : xk = 1 ⇒ x2k = 0, xk = 2 ⇒ x2k = 1
}
.

We have

(22) dimH(XA) = 4 log3 t ≈ 0.726227, where t4 − t− 1 = 0,

and

dimM (XA) =
∞∑
k=1

log3 Tk−1

2k+1
≈ 0.75373,

where T0 = 3, T1 = 5, T2 = 9, Tk+2 = Tk−1 + Tk + Tk+1.
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To verify (22), we note that the equations (7) in this case are

t20 = t0 + t1 + t2, t
2
1 = t0, t

2
2 = t1,

whence t82 = t42+t22+t2. Thus, t = t2 satisfies t7 = t3+t+1, and since t7−t3−t−1 =

(t4−t−1)(t3 +1), Theorem 1.3(i) yields the formula for the Hausdorff dimension.

The optimal measure is Markov, with the matrix of transition probabilities equal

to

 t−4 t−6 t−7

1 0 0

0 1 0

, and the vector of initial probabilities (t−4, t−6, t−7).

Example 3.3 (2-step Markov). Let q = 2, m = 2, and

X :=
{

(xk)
∞
1 ∈ {0, 1}

N : xkx2kx4k = 0, k ≥ 1
}
.

Then X = XΩ where Ω is the shift of finite type on the alphabet {0, 1} with the

only forbidden 3-letter word 111.

The graph Γ(Ω) has the property that the tree of descendants of a prefix u =

u1 . . . uk of length |u| ≥ 2 depends only on the last pair of symbols uk−1uk = ij.

Denote by Tij this tree, for i, j ∈ {0, 1}, and let tij be the solution of the system

of equations (13) evaluated at its root (we are using Lemma 2.1 with uniqueness

here). Then (13) on Γ(Ω) yields

t200 = t00 + t01

t201 = t10 + t11

t210 = t00 + t01

t211 = t10,

and also t∅ = t00. Denoting z = t11 we obtain, after a simple computation, that

(z4 − z2)2 = z2 + z whence

z7 − 2z5 + z3 − z − 1 = 0.

Note also that t00 = t211 = z2. Thus, by (14),

dimH(X) = 2 log2 z ≈ 0.956651.

The Minkowski dimension in this example is

dimM (X) =
∞∑
k=1

log2Rk−1

2k+1
≈ 0.961789,
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where Rj is the number of allowed sequences of length j: R1 = 2, R2 = 4, R3 =

7, Rk+2 = Rk−1 +Rk +Rk+1.

By the same method as in this example, one can easily compute the Hausdorff

dimension of XΩ where is an arbitrary (multi-step) shift of finite type.

Example 3.4 (Multiplicative β-shift). Let β > 1 and Ω = Ωβ be the β-shift (see

[11, 3] for the definition and basic properties of β-shifts). Let q = 2. Then

(23) dimH(XΩβ ) = log2 t, where t =

√
d1t+

√
d2t+

√
d3t+ . . . ,

and d1d2d3 . . . is the infinite greedy expansion of 1 in base β. Moreover,

dimM (XΩβ ) < dimH(XΩβ ) for all β 6∈ N.

Notice that XΩβ is the multiplicative golden mean shift Xg when β = 1+
√

5
2 ,

for which the infinite β-expansion of 1 is 101010 . . .

The equation (23) may be justified as follows. Assume that β 6∈ N. By [11],

x = (xk)
∞
1 ∈ Ωβ if and only if every shift of x, that is (xk)

∞
` for ` ≥ 2, is less

than or equal to (dk)
∞
1 in the lexicographic order. This implies that the tree of

followers of the symbols 0, . . . , d1 − 1 in Ωβ is isomorphic to the entire Pref(Ωβ),

and we obtain the following equation at the root from (13):

t2∅ = d1t∅ + td1 .

Similarly, we obtain

t2d1...dn = dn+1t∅ + td1...dn+1 , n ≥ 1,

which easily reduces to (23).

4. Proof of Proposition 2.5

Recall that for two partitions α and β, the conditional entropy is defined by

(24) Hµ
m(α|β) =

∑
B∈β

(
−
∑
A∈α

µ(A|B) logm µ(A|B)
)
µ(B).

Proof of Proposition 2.5(i). We have for k ≥ 2,

(25) Hµ
m(αk) = Hµ

m(αk|α1) +Hµ
m(α1),

by the properties of conditional entropy. From (24),

Hµ
m(αk|α1) =

m−1∑
i=0

piH
µi
m (αk−1(Ωi)),
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where pi = µ[i] and Hµi
m (αk−1(Ωi)) is the entropy of the partition of Ωi, the

follower set of i in Ω, into cylinders of length k − 1, with respect to the measure

µi, which is the normalized measure induced by µ on Ωi. Substituting this and

(25) into (17) we obtain

s(Ω, µ) =
q − 1

q
Hµ
m(α1) +

1

q

m−1∑
i=0

pis(Ωi, µi)

=
q − 1

q

[
Hµ
m(α1) +

1

q − 1

m−1∑
i=0

pis(Ωi, µi)
]
.(26)

Now, the measure µ is completely determined by the probability vector p =

(pi)
m−1
i=0 and the conditional measures µi. The optimization problems on Ωi are

independent, so if µ is optimal for Ω, then µi is optimal for Ωi, for all i ≤ m.

Thus,

s(Ω) = max
p

q − 1

q

[
Hµ
m(α1) +

1

q − 1

m−1∑
i=0

pis(Ωi)
]
.

Observe that Hµ
m(α1) = −

∑m−1
i=0 pi logm pi. It is well-known that

max
p

m−1∑
i=0

pi(ai − logm pi) = logm

(m−1∑
i=0

mai
)
,

which is achieved if and only if pi = mai/
∑m−1

j=0 maj for i = 0, . . . ,m − 1. We

have ai = s(Ωi)/(q − 1), which yields the optimal probability vector

p = (pi)
m−1
i=0 , pi =

ti
tq∅
, where t∅ := m

s(Ω)
q−1 , ti := m

s(Ωi)

q−1 , i ≤ m− 1,

and

tq∅ =
m−1∑
i=0

ti.

This is the equation (13) at the root of the graph Γ(Ω). However, the problem

is analogous at each vertex, so replacing the set Ω with the set of followers of a

prefix and repeating the argument, we obtain it for the entire graph. We also

get the formulas (21) for the optimal measure µ from the form of the optimal

probability vector above. Observe that the solution t of the system (13) which we

get this way is in the range [1,m1/(q−1)], where we have uniqueness by Lemma 2.1.

(Indeed, for any subtree Γ(Ωu) of the tree Γ(Ω) we have the outdegree bounded

by m, and s(Ωu) ≤ 1 by (17) and (20), in view of Hµ
m(αk) ≤ k.)
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This concludes the proof of Proposition 2.5(i), including the uniqueness state-

ment. �

Proof of Proposition 2.5(ii). In order to compute s(Ω, µ), it is useful to rewrite

it in terms of conditional entropies. We have

Hµ
m(αk+1) = Hµ

m(αk) +Hµ
m(αk+1|αk).

Applying this formula repeatedly, we obtain from (17):

(27) s(Ω, µ) =
∞∑
k=1

(q − 1)2Hµ
m(αk)

qk+1
=
(q − 1

q

)[
Hµ
m(α1) +

∞∑
k=1

Hµ
m(αk+1|αk)

qk

]
.

Observe that

Hµ
m(α1) = −

m−1∑
i=0

ti
tq∅

logm
( ti
tq∅

)
= q logm t∅ −

m−1∑
i=0

ti
tq∅

logm ti = q logm t∅ −
m−1∑
i=0

µ[i] logm ti.

Further,

Hµ
m(αk+1|αk) =

∑
[u]∈αk

µ[u]
(
−

∑
j: [uj]∈αk+1

tuj
tqu

logm
tuj
tqu

)
=

∑
[u]∈αk

µ[u]
(
q logm tu −

∑
j: [uj]∈αk+1

tuj
tqu

logm tuj

)
= q

∑
[u]∈αk

µ[u] logm tu −
∑

[v]∈αk+1

µ[v] logm tv,

in view of µ[uj] = µ[u]
tuj
tqu

. Now it is clear that the sum in (27) telescopes, and

s(Ω, µ) = (q − 1) logm t∅, as desired. �

We point out that Proposition 2.5(i) is not necessary for the proof of Theorem

2.2, only Proposition 2.5(ii) is needed.

5. Proof of the main theorem 2.2

Proof of Proposition 2.3. Fix a probability measure µ on Ω. We are going to

demonstrate that for every ` ∈ N,

(28) lim inf
n→∞

− logm Pµ[xn1 ]

n
≥ (q − 1)2

∑̀
k=1

Hµ
m(αk)

qk+1
for Pµ-a.e. x,
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and

(29)

lim sup
n→∞

− logm Pµ[xn1 ]

n
≤ (q − 1)2

∑̀
k=1

Hµ
m(αk)

qk+1
+

(`+ 1) logm(2m)

q`
for Pµ-a.e. x.

Then, letting `→∞ will yield dimloc(Pµ, x) = s(Ω, µ) for Pµ-a.e. x, as desired.

Fix ` ∈ N. To verify (28) and (29), we can restrict ourselves to n = q`r, r ∈ N.

(Indeed, if q`r ≤ n < q`(r + 1), then

− logPµ[xn1 ]

n
≥ − logPµ[xq

`r
1 ]

q`(r + 1)
≥ r

r + 1
· − logPµ[xq

`r
1 ]

q`r
,

which implies that

lim inf
n→∞

− logPµ[xn1 ]

n
= lim inf

r→∞

− logPµ[xq
`r

1 ]

q`r
.

The lim sup is dealt with similarly.)

Let

Gn = Gq`r := {j ≤ n : ∃ i > n/q`, q - i, j ∈ Ji} and Hn := {j ≤ n : j 6∈ Gn}.

Then we have by the definition (11) of the measure Pµ:

(30) Pµ[xn1 ] = Pµ[x|Gn] · Pµ[x|Hn]

where [x|Gn] (resp. [x|Hn]) denotes the cylinder set of y ∈ XΩ whose restriction

to Gn (resp. [x|Hn]) coincides with that of x.

First we work with Pµ[x|Gn]. In view of (11) we have

(31) Pµ[x|Gn] =
∏̀
k=1

∏
n
qk
<i≤ n

qk−1

q-i

µ[xn1 |Ji].

Note that xn1 |Ji is a word of length k for i ∈ (n/qk, n/qk−1], q - i, which is a

beginning of a sequence in Ω. Thus, [xn1 |Ji] is an element of the partition αk. The

random variables x 7→ − logm µ[xn1 |Ji] are i.i.d for i ∈ (n/qk, n/qk−1], q - i, and

their expectation equals Hµ
m(αk), by the definition of entropy. Note that

(32) #
{
i ∈ (n/qk, n/qk−1] : q - i

}
=
(q − 1

q

)( n
qk
− n

qk−1

)
= (q − 1)2 n

qk+1
.

Fixing k, ` with k ≤ ` and taking n = q`r, r →∞, we get an infinite sequence of

i.i.d. random variables. Therefore, by a version of the Law of Large Numbers, we



16 RICHARD KENYON, YUVAL PERES, AND BORIS SOLOMYAK

have

(33)

∀ k ≤ `,
∑

n
qk
<i≤ n

qk−1

q-i

− logm µ[xn1 |Ji]
(q − 1)2(n/qk+1)

→ Hµ
m(αk) as n = q`r →∞, for Pµ-a.e. x.

By (31) and (33), for Pµ-a.e. x,

(34)

− logm Pµ[x|Gn]

n
=
∑̀
k=1

(q − 1)2

qk+1

∑
n
qk
<i≤ n

qk−1

q-i

− logm µ[xn1 |Ji]
(q − 1)2(n/qk+1)

→
∑̀
k=1

(q − 1)2Hµ
m(αk)

qk+1
.

Since Pµ[xn1 ] ≤ Pµ[x|Gn], this proves (28). Observe that (28) suffices for the lower

bound dimH(XΩ) ≥ dimH(Pµ) ≥ s(Ω, µ), so the rest of the proof of this proposi-

tion may be skipped if one is only interested in the computation of dimH(XΩ).

Next we turn to (29), which requires working with Pµ[x|Hn]. In view of (32),

|Hn| = n− |Gn| = n−
∑̀
k=1

(q − 1)2 nk

qk+1

=
n

q`

[
(`+ 1)− `

q

]
(35)

<
(`+ 1)n

q`
= (`+ 1)r.(36)

From (35),

(37)

∞∑
r=1

2
−|H

q`r
|
<∞.

Define

S(Hn) :=
{
x ∈ XΩ : Pµ[x|Hn] ≤ (2m)−|Hn|

}
.

Clearly,

Pµ(S(Hn)) ≤ 2−|Hn|,

since there are at most m|Hn| cylinder sets [x|Hn]. In view of (37),

Pµ
( ⋂
N≥1

∞⋃
r=N

S(Hq`r)
)

= 0,
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hence for Pµ-a.e. x ∈ XΩ there exists N(x) such that x 6∈ S(Hn) for all n = q`r ≥
N(x). For such x and n ≥ N(x) we have (the last inequality from (36))

− logm Pµ[x|Hn]

n
<
|Hn| logm(2m)

n
<

(`+ 1) logm(2m)

q`
.

Combining this with (34), which also holds Pµ-a.e., and with (30), yields (29). �

Proof of Proposition 2.4 and the upper bound in Theorem 2.2. Often upper bounds

for the Hausdorff dimension are obtained by explicit efficient coverings, which is

easier than getting lower bounds. This is not the case here, a feature shared with

self-affine carpets from [1, 10]. In fact, we proceed similarly to [10], by exhibiting

the “optimal” measure on the set XΩ to get an upper bound on the Hausdorff

dimension. We use the following well-known result; it essentially goes back to

Billingsley [2].

Proposition 5.1 (see [4]). Let E be a Borel set in Σm and let ν be a finite Borel

measure on Σm. If

lim inf
n→∞

− logm ν[xn1 ]

n
≤ s for all x ∈ E,

then dimH(E) ≤ s.

It should be emphasized that the lower pointwise dimension of ν needs to be

estimated from above for all x ∈ E, unlike in the proof of the lower bound, where

the lower estimate for lim inf is required only ν-a.e.

Lemma 5.2. Let µ be the measure on Ω defined by (21), and let Pµ be the

corresponding measure on XΩ, defined by (16). Then for any x ∈ XΩ, denoting

a`(x) :=
− logm Pµ[xn1 ]

n
for n = q`,

we have

(38) lim
`→∞

a1(x) + · · ·+ a`(x)

`
= (q − 1) logm t∅.

Thus, lim inf`→∞ a`(x) ≤ (q − 1) logm t∅ for all x ∈ XΩ.

Once we prove the lemma, we are done with Theorem 2.2, since by Proposi-

tion 5.1 we will then get dimH(XΩ) ≤ (q−1) logm t∅. Proposition 2.4 then follows

by Proposition 2.5(ii).

Proof of Lemma 5.2. Let n = q` and denote

x
(j)
i := xixqi · · ·xqji.
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We will also write t(u) for tu in this proof, to make the formulas more readable.

Combining (16) with (21) yields

− logm Pµ[xn1 ] = −
`+1∑
k=1

∑
n
qk
<i≤ n

qk−1

q-i

(
logm µ[xi] +

k−1∑
j=1

logm
µ[x

(j)
i ]

µ[x
(j−1)
i ]

)

= −
`+1∑
k=1

∑
n
qk
<i≤ n

qk−1

q-i

(
logm

t(xi)

tq(∅)
+

k−1∑
j=1

logm
t(x

(j)
i )

tq(x
(j−1)
i )

)
.(39)

For κ ∈ N and x ∈ Ω denote

γx(κ) := logm t(x
(j)
i ), where κ = qji, q - i.

Then, telescoping the sum
∑k−1

j=1 in (39) we obtain

− logm Pµ[xn1 ] = n(q − 1) logm t(∅) + (q − 1)

n/q∑
κ=1

γx(κ)−
n∑

κ=n/q+1

γx(κ).

(Note that we pick up q logm t(∅) from each number in [1, n] that is not divisible

by q, for a total of n(q − 1) logm t(∅).) Denote

Sn :=

n∑
κ=1

γx(κ);

then

− logm Pµ[xn1 ] = n(q − 1) logm t(∅) + qSn/q − Sn for n = q`.

We have for n = q`, ` ≥ 1:

a`(x) =
− logm Pµ[xn1 ]

n
= (q − 1) logm t(∅) +

Sn/q

n/q
− Sn

n
.

This implies

a1 + · · ·+ a`
`

= (q − 1) logm t(∅) +
S1

`
−
Sq`

`q`
→ (q − 1) logm t(∅), as `→∞,

as desired. �

Proof of Lemma 2.1. We follow the scheme of the proof of [9, Theorem 5.1].

Let V be the set of vertices of the graph and let M be the maximal outdegree.

Consider the space of functions Y := [1,M1/(q−1)]V from V to [1,M1/(q−1)], which
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is compact in the topology of pointwise convergence, and the transformation

F : Y → Y , given by

F (yv) =
( ∑
w: vw∈E

yw

)1/q
.

(It is easy to see that F maps Y into Y .)

Observe that F is monotone in the sense that

y, z ∈ Y, y ≤ z =⇒ F (y) ≤ F (z),

where “≤” is the pointwise partial order. Let 1 be the constant 1 function. Then

1 ≤ F (1) ≤ F 2(1) ≤ . . . By compactness, there is a pointwise limit

t = lim
n→∞

Fn(1),

which is a fixed point of F , hence t satisfies the system of equations (13).

It remains to verify uniqueness. Suppose t and t′ are two distinct fixed points

of F . Without loss of generality, we can assume that t 6≤ t′. Then let

α := inf{ξ > 1 : t ≤ ξt′}.

Clearly α ≤M1/(q−1). By continuity we have t ≤ αt′, and so 1 < α by assumption.

Now,

t = F (t) ≤ F (αt′) = α1/qF (t′) = α1/qt′,

contradicting the definition of α. The proof is complete. �

Proof of the statements on Minkowski dimension in Theorem 2.2. It is well-known

that one can use covering by cylinder sets in the definition of lower Minkowski

dimension, so we have for X ⊂ Σm:

(40) dimM (X) = lim inf
n→∞

logm |Prefn(X)|
n

where |Prefn(X)| is the number of prefixes over all sequences in X; equivalently,

the number of cylinder sets of length n which intersect X. We get the upper

Minkowski dimension dim(X) by replacing lim inf with lim sup in (40).

For dimension computations, we can restrict ourselves to n from an arithmetic

progression, so we can take n = q`r for a fixed ` ∈ N. Recall that x ∈ XΩ if and

only if x|Ji ∈ Ω for all i such that q - i. It follows that |Prefn(XΩ)| is bounded
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below by the product of |Prefk(Ω)| for each i ∈ (n/qk, n/qk−1], with q - i, over

k = 1, . . . , `. Thus, in view of (32), we have

logm |Prefn(XΩ)| ≥ (q − 1)2
∑̀
k=1

n logm |Prefk(Ω)|
qk+1

.

On the other hand,

logm |Prefn(XΩ)| ≤ (q − 1)2
∑̀
k=1

n logm |Prefk(Ω)|
qk+1

+ n−
∑̀
k=1

k(q − 1)2 n

qk+1

by putting arbitrary digits in the remaining places. Dividing by n and letting

n→∞ we obtain

dimM (XΩ) ≥ (q − 1)2
∑̀
k=1

logm |Prefk(Ω)|
qk+1

and

dimM (XΩ) ≤ (q − 1)2
∑̀
k=1

logm |Prefk(Ω)|
qk+1

+ (`+ 1)q−` − `q−`−1.

Since ` ∈ N is arbitrary, this yields (15).

It remains to verify that dimM (XΩ) = dimH(XΩ) if and only if the tree of

prefixes Γ(Ω) is spherically symmetric. Compare the formula (15) with (17).

Observe that

Hµ
m(αk) ≤ logm |Prefk(Ω)|,

with equality if and only every cylinder set [u], for u ∈ Prefk(Ω), has equal

measure µ. To get dimH(XΩ), we have µ the optimal measure from (21). It

is immediate from the equations (13) that the solution tu depends only on the

length of the prefix u if and only if Γ(Ω) is spherically symmetric. This implies

the desired claim. �

6. Concluding remarks

1. The motivation to consider the multiplicative golden mean shift Ξg in [5]

came from the study of the dimension spectrum of certain multiple ergodic aver-

ages. For θ ∈ [0, 1] let

Aθ =
{

(xk)
∞
1 ∈ Σ2 : lim

n→∞

1

n

n∑
k=1

xkx2k = θ
}
.
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The authors of [5] ask what is the Hausdorff dimension of Aθ. It is easy to see

that dimH(A0) = dimH(Ξg), and moreover, recently the methods developed in

the present paper have been adapted to compute the full dimension spectrum

θ 7→ dimH(Aθ) [12]. Independently, the dimension of Aθ and other sets of this

type has been computed in [6].

2. Not all subsets of Σm that are invariant under the action of multiplicative

integers are of the form XΩ considered in this paper. In fact, the sets of the form

XΩ behave rather like full shifts, because they are “composed” of independent

copies of the set Ω, albeit in a “staggered” pattern. On the other hand, let

X := {x ∈ Σ2 : xkx2kx3k = 0 for all k}.

Then clearly

(xk)
∞
k=1 ∈ X ⇒ (xrk)

∞
k=1 ∈ X for all r ∈ N,

but our methods are inadequate to compute the dimension of X.

Acknowledgment. We are grateful to Jörg Schmeling for passing to us the

question about the Hausdorff dimension of the “multiplicative golden mean shift”

Ξg.
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