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Abstract

We consider multitype branching processes arising in the study of random laminations of
the disk. We classify these processes according to their subcritical or supercritical behavior and
provide Kolmogorov-type estimates in the critical case corresponding to the random recursive
lamination process of [1]. The proofs use the infinite dimensional Perron-Frobenius theory and
quasi-stationary distributions.

1 Introduction

In this note we are interested in multitype branching processes that arise in the study of random
recursive laminations. In order to introduce and motivate our results, let us briefly recall the
basic construction of [1]. Consider a sequence U1, V1, U2, V2, . . . of independent random variables,
which are uniformly distributed over the unit circle S1. We then construct inductively a sequence
L1, L2, . . . of random closed subsets of the closed unit disk D. To start with, L1 is set to be the
(Euclidean) chord [U1V1] with endpoints U1 and V1. Then at step n+ 1, we consider two cases.
Either the chord [Un+1Vn+1] intersects Ln, and we put Ln+1 = Ln. Or the chord [Un+1Vn+1]
does not intersect Ln, and we put Ln+1 = Ln ∪ [Un+1Vn+1]. Thus, for every integer n > 1, Ln
is a disjoint union of random chords. See Fig. 1.

Figure 1: An illustration of the process creating the sequence (Ln)n>1. We use hyperbolic chords
rather than Euclidean chords for aesthetic reasons.

A fragment of Ln is a connected component of D\Ln. These fragments have a natural
genealogy that we now describe. The first fragment, D, is represented by ∅. Then the first
chord [U1V1] splits D into two fragments, which are viewed as the offspring of ∅. We then
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order these fragments in a random way: With probability 1/2, the first child of ∅, which is
represented by 0, corresponds to the largest fragment and the second child, which is represented
by 1, corresponds to the other fragment. With probability 1/2 we do the contrary. We then
iterate this device (see Fig. 2) so that each fragment appearing during the splitting process is
labeled by an element of the infinite binary tree

T2 =
⋃
n>0

{0, 1}n , where {0, 1}0 = {∅}.

If F is a fragment, we call end of F , any connected component of F ∩ S1. For convenience,
the full disk D is viewed as a fragment with 0 end. Consequently, we can associate to any
u ∈ T2 a label `(u) that corresponds to the number of ends of the corresponding fragment in
the above process. Lemma 5.5 of [1] then entails that this random labeling of T2 is described by
the following branching mechanism: For any u ∈ T2 labeled m > 0, choose m1 ∈ {0, 1, . . . ,m}
uniformly at random and assign the values 1 + m1 and 1 + m −m1 to the two children of u.
This is the multitype branching process we will be interested in. See Fig. 2.
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Figure 2: On the left-hand side, the first 7 chords of the splitting process. On the right-hand side, the
associated branching process corresponding to the number of ends of the fragments at their creations.
Notice that we split the fragments according to the order of appearance of the chords, thus the binary
tree on the right-hand side seems stretched.

We can also define a random labeling by using the above branching mechanism but starting
with a value a > 0 at the root ∅ of T2, the probability distribution of this process will be denoted
Pa and its relative expectation Ea. A ray is an infinite geodesic path u = (u1, u2, . . .) ∈ {0, 1}N
starting from the root ∅ in T2. For any ray u = (u1, . . . , un, . . .) or any word of finite length
u = (u1, . . . , un), we denote by [u]i or [u]i the word (u1, . . . , ui) for 1 6 i 6 n, and [u]0 = ∅.

Theorem ([1, Lemma 5.5]). Almost surely, there exists no ray u along which all the labels
starting from 4 are bigger than or equal to 4,

P4

(
∃u ∈ {0, 1}N : `([u]i) > 4, ∀i > 0

)
= 0.

The starting label 4 does not play any special role and can be replaced by any value bigger
than 4. This theorem was proved and used in [1] to study certain properties of the random closed
subset L∞ = ∪Ln, and in particular to prove that it is almost surely a maximal lamination
(roughly speaking that the complement of L∞ is made of disjoint triangles), see [1, Proposition
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5.4]. One of the purposes of this note is to provide quantitative estimates related to this theorem.
Specifically let

Gn =
{
u ∈ {0, 1}n : `([u]i) > 4,∀i ∈ {0, 1, . . . , n}

}
be the set of paths in T2 joining the root to the level n along which the labels are bigger than
or equal to 4.

Theorem 1.1. The expected number of paths starting from the root and reaching level n along
which the labels starting from 4 are bigger than or equal to 4 satisfies

E4 [#Gn] −→
n→∞

4

e2 − 1
. (1)

Furthermore, there exist two constants 0 < c1 < c2 < ∞ such that the probability that Gn 6= ∅
satisfies

c1
n

6 P4

(
Gn 6= ∅

)
6

c2
n
. (2)

Remark 1.2. These estimates are reminiscent of the critical case for Galton-Watson processes
with finite variance σ2 <∞. Indeed if Hn denotes the number of vertices at height n in such a
process then E [Hn] = 1 and Kolmogorov’s estimate [2] implies that P (Hn 6= 0) ∼ 2

σ2n
.

The proof of Theorem 1.1 relies on identifying the quasi-stationary distribution of the labels
along a fixed ray conditioned to stay bigger than or equal to 4. This is done in Section 2.
In Section 3, we also study analogues of this branching random walk on the k-ary tree, for
k > 3, coming from a natural generalization of the process (Ln)n>0 where we replace chords by
triangles, squares... see Fig. 3.

Figure 3: Extension of the process (Ln)n>1 where we throw triangles or squares instead of chords.

We prove in these cases that there is no critical value playing the role of 4 in the binary case.

Acknowledgments. The first author thanks Microsoft Research and the University of
Washington, where most of this work was done, for their hospitality. We are also grateful to
Jean-François Le Gall for precious comments and suggestions on a first version of this note.

2 The critical case

2.1 A martingale

Fix an arbitrary ray u0 in T2, for example u0 = (0, 0, 0, 0, 0, . . .) and define Xn = `([u0]n) for
n > 0, so that Xn is the value at the n-th vertex on the fixed ray u0 of the T2-indexed walk `
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starting from x0 > 4 at the root. Then (Xn)n>0 is a homogeneous Markov chain with transition
probabilities given by

P2(x, y) =
1

x+ 1
116y6x+1.

We first recall some results derived in [1]. If Fn is the canonical filtration of (Xn)n>0 then
a straightforward calculation leads to Ex0 [Xn+1 | Fn] = 1 + Xn/2, hence the process Mn =
2n(Xn − 2) is a martingale starting from x0 − 2. For i > 1, we let Ti be the stopping time
Ti = inf{n > 0 : Xn = i}, and T = T1 ∧ T2 ∧ T3. By the stopping theorem applied to the
martingale (Mn)n>0, we obtain for every n > 0,

x0 − 2 = Ex0 [Mn∧T ] = Ex0 [−2T11{T1=T6n}] + 0 +Ex0 [2T31{T3=T6n}] +Ex0 [2n(Xn − 2)1{T>n}].

One can easily check from the transition kernel of the Markov chain (Xn)n>0 that for every
i > 1, Px0 [T1 = T = i] = Px0 [T2 = T = i] = Px0 [T3 = T = i] . Hence, the equality in the last
display becomes

x0 − 2 = Ex0 [2n(Xn − 2)1{T>n}],

or equivalently

x0 − 2 = 2nPx0 [T > n] Ex0 [Xn − 2 | T > n]. (3)

Our strategy here is to compute the stationary distribution of Xn conditionally on the non
extinction event {T > n}, in order to prove the convergence of E4[Xn | T > n] and finally to
get asymptotics for P4[T > n]. Before any calculation, we make a couple of simple remarks.
Obviously Ex0 [Xn − 2 | T > n] > 2, and thus we get 2nPx0(T > n) 6 x0−2

2 . Since there are
exactly 2n paths joining the root ∅ of T2 to the level n, we deduce that the number #Gn of
paths joining ∅ to the level n along which the labels are bigger than or equal to 4 satisfies

Ex0 [#Gn] 6
x0 − 2

2
. (4)

Notice that a simple argument shows that if 4 6 x0 6 x1 then the chain Xn starting from x0
and the chain X ′n starting from x1 can be coupled in such a way that Xn 6 X ′n for all n > 0.

2.2 The quasi-stationary distribution

We consider the substochastic matrix of the Markov chain Xn killed when it reaches 1, 2 or 3:
This is the matrix (P̃2(x, y))x,y>4 given by

P̃2(x, y) =
1

x+ 1
1y6x+1.

We will show that P̃2 is a 2-recurrent positive matrix, in the sense of [3, Lemma 1]. For
that purpose we seek left and right non-negative eigenvectors of P̃2 for the eigenvalue 1/2. In
other words we look for two sequences (g(x))x>4 and (f(x))x>4 of non-negative real numbers
such that f(4) = g(4) = 1 (normalization) and for every x > 4

g(x) = 2
∑
y>4

g(y)P̃2(y, x) = 2

∞∑
y=(x−1)∨4

g(y)

y + 1
, (5)

f(x) = 2
∑
y>4

P̃2(x, y)f(y) =
2

x+ 1

x+1∑
y=4

f(y). (6)
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We start with the left eigenvector g. From (5), we get g(5) = g(4) = 0, and g(i) − g(i + 1) =
2
i g(i− 1) for i > 5. Letting

G(z) =
∑
i>4

zi+1

i+ 1
g(i), 0 6 z < 1,

the last observations lead to the following differential equation for G

2G(z) = z−1(z − 1)G′(z) + z3,

with the condition G(z) = z5/5 + o(z5). A simple computation yields G(z) = 3/4 exp(2z)(z −
1)2+(z3/2+3z2/4−3/4). After normalization, the generating function G1/2(z) =

∑
i>4 g1/2(i)z

i

of the unique probability distribution g1/2 which is a left eigenvector for the eigenvalue 1/2 is
given by

G1/2(z) =
z

2

(
exp(2z)(z − 1) + z + 1

)
,

that is

g1/2(i) =
2i−3(i− 3)

(i− 1)!
1i>4.

This left eigenvector is called the quasi-stationary distribution of Xn conditioned on non-
extinction. For the right eigenvector f, a similar approach using generating functions is possible,
but it is also easy to check by induction that

f(i) =
i− 2

2
1i>4,

satisfies (6). Hence the condition (iii) of Lemma 1 in [3] is fulfilled and the substochastic
matrix P̃2 is 2-recurrent positive. For every x > 4, set qn(x) = P4(Xn = x | T > n) = P4(T >
n)−1P̃n2 v (x) where v stands for the “vector” (vi)i>4 with v4 = 1 and vi = 0 if i > 5. Theorem
3.1 of [3] then implies that

qn(x) −→
n→∞

g1/2(x). (7)

Unfortunately this convergence does not immediately imply that E4[Xn | T > n] −→ E [X]
where X is distributed according to g1/2. But this will follow from the next proposition.

Proposition 2.1. For every n > 0 the sequence

(
qn(x)

g1/2(x)

)
x>4

is decreasing.

Proof. By induction on n > 0. For n = 0 the statement is true. Suppose it holds for n > 0. By
the definition of qn+1, for x > 4 we have

qn+1(x) = P4(Xn+1 = x | T > n+ 1)

=
1

P4(T > n+ 1)

∑
z>4

P4(Xn = z , Xn+1 = x , T > n)

=
P4(T > n)

P4(T > n+ 1)

∑
z>(x−1)∨4

qn(z)

z + 1
(8)

We need to verify that, for every x > 4, we have qn+1(x)g1/2(x + 1) > qn+1(x + 1)g1/2(x) or
equivalently, using (8) and (5) with g = g1/2, that( ∑

z>x∨4

g1/2(z)

z + 1

) ∑
z>(x−1)∨4

qn(z)

z + 1

 >

 ∑
z>(x−1)∨4

g1/2(z)

z + 1

( ∑
z>x∨4

qn(z)

z + 1

)
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For x = 4 this inequality holds. Otherwise, if x > 4, we have to prove that

qn(x− 1)
∑
z>x∨4

g1/2(z)

z + 1
> g1/2(x− 1)

∑
z>x∨4

qn(z)

z + 1
. (9)

Set Ax = qn(x−1)
g1/2(x−1)

to simplify notation. The induction hypothesis guarantees that qn(z) 6

Axg1/2(z) for every z > x, and therefore

∑
z>x∨4

qn(z)

z + 1
6 Ax

∑
z>x∨4

g1/2(z)

z + 1
.

This gives the bound (9) and completes the proof of the proposition.

By Proposition 2.1 we have for every x > 1, qn(x)
g1/2(x)

6 qn(4)
g1/2(4)

6 C, where C = supn>0
qn(4)
g1/2(4)

<

∞ by (7). This allows us to apply dominated convergence to get

E4[Xn|T > n] =
∑
x>4

xqn(x) −−−→
n→∞

∑
x>4

xg1/2(x) = G′1/2(1) =
e2 + 3

2
.

Using (3) we then conclude that

2nP4[T > n] −−−→
n→∞

4

e2 − 1
. (10)

2.3 Proof of Theorem 1.1

We first introduce some notation. We denote the tree T2 truncated at level n by T(n)
2 . For

every u = (u1, . . . , un) ∈ {0, 1}n, and every j ∈ {0, 1, . . . , n}, recall that [u]j = (u1, . . . , uj),
and if j > 1, also set [u]∗j = (u1, . . . , uj−1, 1 − uj). We say that j ∈ {0, 1, . . . , n − 1} is a
left turn (resp. right turn) of u if uj+1 = 0 (resp. uj+1 = 1). A down step of u is a time
j ∈ {0, 1, . . . , n− 1} such that

`([u]j)− `([u]j+1) > 2.

Note that if j is a down step of u then `([u]∗j+1) = 2 + `([u]j) − `([u]j+1) > 4. The set of all
j ∈ {0, 1, . . . , n − 1} that are left turns, resp. right turns, resp. down steps, of u is denoted by
L(u), resp. R(u), resp D(u). We endow T2 with the lexicographical order � , and say that a path
u ∈ {0, 1}n is on the left (resp. right) of v ∈ {0, 1}n if u � v (resp. v � u). A vertex of {0, 1}n

will be identified with the path it defines in T(n)
2 . If u, v ∈ T2 we let u ∧ v be the last common

ancestor of u and v.

Proof of Theorem 1.1. Lower bound. We use a second moment method. Recall that

Gn =
{
u ∈ {0, 1}n : `([u]i) > 4,∀i ∈ {0, 1, . . . , n}

}
is the set of all paths in T(n)

2 from the root to the level n along which the labels are bigger than
or equal to 4. A path in Gn is called ”good”. Using (10), we can compute the expected number
of good paths and get

E4[#Gn] = 2nP4[T > n] −→
n→∞

4

e2 − 1
,

as n→∞, which proves the convergence (1) in the theorem. For u ∈ Gn and j ∈ {0, 1, . . . , n},
we let Right(u, j) be the set of all good paths to the right of u that diverge from u at level j,

Right(u, j) = {v ∈ Gn : u � v and u ∧ v = [u]j}.

6



In particular, if j is a right turn for u, that is uj+1 = 1, then Right(u, j) = ∅. Furthermore
Right(u, n) = {u}. Let us fix a path u ∈ {0, 1}n, and condition on u ∈ Gn and on the labels
along u. Let j ∈ {0, 1, 2, . . . , n}. Note that the first vertex of a path in Right(u, j) that is not
an ancestor of u is [u]∗j+1 and its label is 2 + `([u]j)− `([u]j+1), so if we want Right(u, j) to be
non-empty, the time j must be a down step of u. If j is a left turn and a down step for u, the

subtree {w ∈ T(n)
2 : w ∧ [u]∗j = [u]∗j} on the right of [u]j is a copy of T(n−j−1)

2 , whose labeling
starts at `([u]∗j+1). Hence thanks to (4) we get

E4[# Right(u, j) | u ∈ Gn , (`([u]i))06i6n] 6
`([u]∗j+1)− 2

2
=
`([u]j)− `([u]j+1)

2
.

Since the labels along the ancestral line of u cannot increase by more that one at each step, if
u ∈ Gn we have

∑n−1
i=0 | `([u]i+1)−`([u]i) | 1i∈D(u) 6 n. Combining these inequalities, we obtain

E4

 n∑
j=0

# Right(u, j)
∣∣∣ u ∈ Gn , (`([u]i))06i6n

 6
n

2
.

We can now bound E4[#G
2
n] from above:

E4[#G
2
n] 6 2E4

 ∑
u∈{0,1}n

∑
u�v

1u∈Gn1v∈Gn


= 2

∑
u∈{0,1}n

P4(u ∈ Gn)E4

∑
u�v

1v∈Gn

∣∣∣ u ∈ Gn


= 2
∑

u∈{0,1}n
P4(u ∈ Gn)E4

 n∑
j=0

# Right(u, j)
∣∣∣ u ∈ Gn


6 n. (11)

The lower bound of Theorem 1.1 directly follows from the second moment method : Using (1)
and (11) we get the existence of c1 > 0 such that

P (#Gn > 0) >
E [#Gn]2

E [(#Gn)2]
>
c1
n
. (12)

Upper Bound. We will first provide estimates on the number of down steps of a fixed path
u ∈ {0, 1}n. Recall that L(u), R(u) and D(u) respectively denote the left turns, right turns, and
down steps times of u.

Lemma 2.2. There exists a constant c3 > 0 such that, for every n > 0 and every u0 ∈ {0, 1}n

P4(u0 ∈ Gn , # D(u0) 6 c3n) 6 c−13 2−n exp(−c3n).

Proof. We use the notation of Section 2.1. For any set A ⊂ {0, 1, . . . , n − 1} and m ∈
{0, 1, . . . , n − #A}, with the notation NA

n = #{j ∈ {0, 1, . . . , n − 1}\A : Xj = 5} we have
from [1, formula (27)]

P
[
Xj+1 > (Xj − 1) ∨ 4 , ∀j ∈ {0, 1, . . . , n− 1}\A , NA

n = m
]
6
(1

2

)m(3

7

)n−m−#A
,

We will first obtain crude estimates for NA
n . Note that NA

n 6 N∅
n and that supi>1 P2(i, 5) = 1

5 ,
so that for any B ⊂ {0, 1, . . . , n} we have

P (Xi = 5 , ∀i ∈ B) 6 5−#B.

7



By summing this bound over all choices of B with #B > m we get P (N∅
n > m) 6 2n5−m for

every m ∈ {0, 1, . . . n}. Let κ1 ∈ (0, 1/2) and κ2 ∈ (0, 1) such that κ1 + κ2 < 1. We have

P (u0 ∈ Gn , # D(u0) 6 κ1n)

6 P
(
u0 ∈ Gn , # D(u0) 6 κ1n , N

∅
n 6 κ2n

)
+ P

(
N∅
n > κ2n

)
6

∑
A⊂{0,1,...,n−1}

#A6κ1n

P
[
Xj+1 > (Xj − 1) ∨ 4, ∀j ∈ {0, 1, . . . , n− 1}\A ;NA

n 6 κ2n
]

+ P
(
N∅
n > κ2n

)

6 (bκ2nc+ 1)
∑

A⊂{0,1,...,n−1}
#A6κ1n

(
7

6

)bκ2nc(3

7

)n−bκ1nc
+ P

(
N∅
n > κ2n

)

6 n

(
n

bκ1nc

)(
7

6

)bκ2nc(3

7

)n−bκ1nc
+ 2n5−bκ2nc (13)

Notice that for every A > 1 we can choose κ1 > 0 small enough so that n
(

n
bκ1nc

)
6 An for n

large enough. Furthermore(
7

6

)bκ2nc(3

7

)n−bκ1nc
= 2−n2bκ1nc

(
6

7

)n−bκ1nc−bκ2nc
,

and by choosing κ1 even smaller if necessary we can ensure that the right hand side of (13) is
bounded by c−13 2−n exp(−c3n) for some c3 > 0.

We use the last lemma to deduce that

nP4 (∃u ∈ Gn , # D(u) 6 c3n) 6
n

c3
exp(−c3n) −→

n→∞
0. (14)

We now argue on the event EL = {∃u ∈ Gn , #(D(u) ∩ L(u)) > c3n/2}. On this event there
exists a path u ∈ Gn with at least c3n/2 down steps which are also left turns. Conditionally on
this event we consider the left-most path P of Gn satisfying these properties, that is

P = min
�

{
u ∈ Gn , #(D(u) ∩ L(u)) > c3n/2

}
.

A moment’s thought shows that conditionally on P and on the values of the labels along the

ancestral line of P , the subtrees of T(n)
2 hanging on the right-hand side of P , that are the

offsprings of the points [P ]∗j+1 for j ∈ L(P ), are independent and distributed as labeled trees
started at `([P ]∗j+1).

Hence conditionally on P and on the labels ((`([P ]i), 0 6 i 6 n), for any j ∈ L(P ) ∩ D(P )
the expected number of paths belonging to the set Right(P, j) (defined in the proof of the lower
bound) is

E4

[
# Right(P, j)

∣∣∣ P , (`([P ]i))06i6n

]
= 2n−j−1P`([P ]∗j+1)

(T > n− j − 1)

> 2n−j−1P4(T > n− j − 1)

> κ3 > 0, (15)

where κ3 is a positive constant independent of n whose existence follows from (10). Thus we
have

E4[#Gn | EL] = E4

E
 n∑
j=0

# Right(P, j)
∣∣∣ P , (`([P ]i))06i6n

 ∣∣∣ EL


> κ3E4[#(D(P ) ∩ L(P )) | EL].

>
c3κ3

2
n. (16)
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Since P4(EL) 6 E4[#Gn]/E4[#Gn | EL] we can use (1) to obtain P4(EL) 6 κ4/n for some
constant κ4 > 0. By a symmetry argument, the same bound holds for the event ER = {∃u ∈
Gn , #(D(u) ∩ R(u)) > c3n/2}. Since {Gn 6= ∅} is the union of the events ER, EL and
{∃u ∈ Gn , # D(u) 6 c3n}, we easily deduce the upper bound of the theorem from the previous
considerations and (14).

3 Extensions

Fix k > 2. We can extend the recursive construction presented in the introduction by throwing
polygons instead of chords: This will yield an analogue of the multitype branching process on the
full k-ary tree. Formally if x1, . . . , xk are k (distinct) points of S1 we denote by Pol(x1, . . . , xk)
the convex closure of {x1, . . . , xk} in D. Let (Ui,j : 1 6 j 6 k , i > 1) be independent random
variables that are uniformly distributed over S1. We construct inductively a sequence Lk1, L

k
2, . . .

of random closed subsets of the closed unit disk D. To start with, Lk1 is Pol(U1,1, . . . , U1,k).
Then at step n+ 1, we consider two cases. Either the polygon Pn+1 := Pol(Un+1,1, . . . , Un+1,k)
intersects Lkn, and we put Lkn+1 = Lkn. Or the polygon Pn+1 does not intersect Lkn, and we
put Lkn+1 = Lkn ∪ Pk. Thus, for every integer n > 1, Lkn is a disjoint union of random k-gons.
In a way very similar to what we did in the introduction we can identify the genealogy of the
fragments appearing during this process with the complete k-ary tree

Tk =
⋃
i>0

{0, 1, . . . , k − 1}i, where {0, 1, . . . , k − 1}0 = {∅}.

Then the number of ends of the fragments created during this process gives a labeling `k of Tk
whose distribution can be described inductively by the following branching mechanism (this is
an easy extension of [1, Lemma 5.5]): For u ∈ Tk with label m > 0 we choose a decomposition
m = m1 +m2 + . . .+mk with m1,m2, . . . ,mk ∈ {0, 1, . . . ,m}, uniformly at random among all(
m+k−1
k−1

)
possible choices, and we assign the labels m1 + 1,m2 + 1, . . . ,mk + 1 to the children

of ∅. Again the distribution of the labeling `k of Tk obtained if we use the above branching
mechanism but started from a > 0 at the root will be denoted by Pa and its expectation by Ea.
We use the same notation as in the binary case and are interested in a similar question: For
which a > 0 does there exist with positive probability a ray u such that `k([u]i) > a for every
i > 0? Specifically, the value a is called subcritical for the process (`k(u), u ∈ Tk) when there
exists a constant c > 0 such that

Pa(∃u ∈ {0, 1, . . . , k − 1}n : `k([u]i) > a , ∀i ∈ {0, 1, . . . , n}) 6 exp(−cn).

It is called supercritical when there exists a constant c > 0 such that we have both{
Pa

(
∃u ∈ {0, 1, . . . , k − 1}N : `k([u]i) > a , ∀i ∈ {0, 1, . . .}

)
> c,

Ea[#
{
u ∈ {0, 1, . . . , k − 1}n : `k([u]i) > a , ∀i ∈ {0, 1, . . . , n}

}
] > exp(cn).

Note that a deterministic argument shows that if k > 2 and a = 2, there always exists a ray
with labels greater than or equal to 2, also when k = 2 and a = 3 there exists a ray with labels
greater than 3. The case k = 2 and a = 4 has been treated in our main theorem. We have the
following classification of all remaining cases:

Theorem 3.1. We have the following properties for the process `k,

• for k = 2 and a > 5 the process is subcritical,

• for k = 3 the process is subcritical for a > 4, and supercritical for a = 3,

• for k > 4 and a > 3 the process is subcritical.
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Proof. Supercritical Case k = 3 and a = 3. We will prove that for k = 3 and a = 3, the
process is supercritical. Similarly as in Section 2.1 we consider the tree-indexed process `3 on a
fixed ray of T3, say {0, 0, 0, . . .}. Then the process Yn given by the n-th value of `3 started from
3 along this ray is a homogeneous Markov chain with transition matrix given by

P3(x, y) =
2(x+ 2− y)

(x+ 1)(x+ 2)
116y6x+1.

We introduce the stopping times Ti = inf{n > 0, Yn = i} for i = 1, 2 and set T = T1 ∧ T2. We
consider a modification of the process Yn that we denote Y n, which has the same transition
probabilities as Yn on {1, 2, 3, 4} , but the transition between 4 and 5 for Yn is replaced by a
transition from 4 to 4 for Y n. Thus we have Y n 6 4 and an easy coupling argument shows that
we can construct Yn and Y n simultaneously in such a way that Y n 6 Yn for all n > 0. Hence
we have the following stochastic inequality

T 6 T,

with an obvious notation for T . To evaluate T we consider the subprocess Y n∧T which is again
a Markov chain whose transition matrix restricted to {3, 4} is(

1/5 1/10
1/5 1/5

)
.

The largest eigenvalue λmax of this matrix is greater than 0.34, which implies that

P3T > n > P3(T > n) > κ5(0.34)n,

for some constant κ5 > 0 independent of n. It follows that the expected number of paths starting
at the root ∅ of T3 that have labels greater than or equal to 3 up to level n, which is 3nP (T > n),
eventually becomes strictly greater that 1: There exists n0 > 1 such that P3(T > n) > 3−n for
n > n0. A simple coupling argument shows that the process `3 started from a > 3 stochastically
dominates the process `3 started from 3. Consequently, if we restrict our attention to the levels
that are multiple of n0 and declare that v is a descendant of u if along the geodesic between u and
v the labels of `3 are larger than 3, then this restriction stochastically dominates a supercritical
Galton-Watson process. Hence the value 3 is supercritical for `3.
Subcritical Case k = 3 and a = 4. As in the binary case we let

P̃3(x, y) =
2(x+ 2− y)

(x+ 1)(x+ 2)
146y6x+1,

be the substochastic matrix of the process Yn started at 4 and killed when it hits 1, 2 or 3. We
will construct a positive vector (h(x))x>4 such that

∑
x h(x) <∞ and

h · P̃3 6 λh, (17)

for some positive λ < 1/3, where we use the notation h · P̃3(y) =
∑

x h(x)P̃3(x, y). This will
imply that

P (T > n) 6

∑
x h(x)

h(4)
λn,

where T is the first hitting time of {1, 2, 3} by the process Yn started at 4. The subcriticality
of the case k = 3 and a = 4 follows from the preceding bound since there are 3n paths up to
level n and λ < 1/3. To show the existence of a positive vector x satisfying (17) we begin by
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studying the largest eigenvalue of a finite approximation of the infinite matrix P̃3. To be precise

let P̃
(30)
3 = (P̃3(i, j))46i,j630. A numerical computation with Maple c© gives

λmax := max
{

Eigenvalues(P̃
(30)
3 )

}
' 0.248376642883065 < 1/3.

The vector (h(x))x>4 is then constructed as follows. Let (h(x))46x630 be an eigenvector asso-

ciated with the largest eigenvalue λmax of P̃
(30)
3 , such that min46x630 h(x) = h(30) = 1. Note

that the vector h can be chosen to have positive coordinates by the Perron-Frobenius theorem
and it is easy to verify that x→ h(x) is decreasing. For x > 31 we then let

h(x) = 13x−30
(

30!

x!

)2

.

We now verify that this vector satisfies (17) with λ slightly greater than λmax. Suppose first
that y ∈ {4, . . . , 30}. In this case

∑
46x630 h(x)P̃3(x, y) equals λmaxh(y) by definition, whereas

the contribution of
∑

x>31 h(x)P̃3(x, y) is less than
∑

x>31 h(x) < 0.014, thus

h · P̃3(y) 6 0.263h(y). (18)

Now, if y > 31 we have

∑
x>y−1

h(x)P̃3(x, y) 6 13y−30

13−1P̃3(y − 1, y)

(
30!

(y − 1)!

)2

+ P̃3(y, y)

(
30!

y!

)2

+
∑
x>y+1

13x−y
(

30!

x!

)2


6 13y−30
(

30!

y!

)2
(

2

13

y2

y(y + 1)
+

4

(y + 1)(y + 2)
+
∑
i>1

13i
(

y!

(y + i)!

)2
)

6 0.3 · h(y)

which proves (17).
Other critical cases. The other critical cases are treated in the same way. We only provide
the reader with the numerical values of the maximal eigenvalues of the truncated substochastic
matrices that are very good approximations of the maximal eigenvalues of the infinite matrices,

max{eigenvalues(P2(i, j))56i,j630} ' 0.433040861268365 < 1/2,

max{eigenvalues(P4(i, j))36i,j630} ' 0.231280689028977 < 1/4.
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