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Presented by
We compute the Hausdorff dimension of the “multiplicative golden mean shift” defined
as the set of all reals in [0, 1] whose binary expansion (xy) satisfies zxzo, = 0 for all
k > 1, and show that it is smaller than the Minkowski dimension.

Résumé

Dimension de Hausdorff du shift de Fibonacci multiplicatif. Nous calculons la
dimension de Hausdorff du “shift de Fibonacci multiplicatif”, c’est-a-dire ’ensemble des
nombres réels dans [0, 1] dont le développement en binaire (xy) satisfait zzzor = 0 pour
tout k& > 1. Nous montrons que la dimension de Hausdorff est plus petite que la
dimension de Minkowski.

1. Introduction

A classical result of Furstenberg [5] says that if X is a closed subset of [0, 1], invariant under the map
T : 2+~ mz (mod 1), then its Hausdorff dimension equals the Minkowski (box-counting) dimension,
which equals the topological entropy of T;,|x divided by logm. A simple example is the set ¥g :=

{;v => r27F 0 2y, € {0,1}, zpazper = 0 for all k} for which we have dimy (¥¢) = dimy (Vg) =

log, (12—‘/5) (the subscript G here stands for the “Golden Ratio”). Instead, we consider the set
2g = {x = Z:E;ﬂfk : xp € {0,1}, apwar =0 for all k}
k=1
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which we call the “multiplicative golden mean shift.” The reason for this term is that the set of binary
sequences corresponding to the points of Z¢ is invariant under the action of the semigroup of multiplicative
positive integers N*: M, (zx) = (xyx) for r € N. Fan, Liao, and Ma [4] showed that dimp(Eg) =
220:1 2*’“*110g2 Fry1 = 0.82429. .., where Fy is the k-th Fibonacci number: F; = 1, Fy = 2, Fp41 =
Fy_1 + F}, and raised the question of computing the Hausdorff dimension of Z¢.

Theorem 1.1 We have dimg(Eqg) < dimp (Eq). In fact,
dimpg (Eg) = —logyp = 0.81137..., where p* = (1 —p)?, 0<p<1. (1)

Our manuscript [6] contains substantial generalizations of this result, extending it to a large class of
“multiplicative subshifts.” We state one of them at the end of the paper.

Although the set =¢ is on the real line, it appears to have a strong resemblance with a class of self-affine
sets on the plane, namely, the Bedford-McMullen “carpets” [1,7], for which also the Hausdorff dimension
is typically smaller than the Minkowski dimension. However, this seems to be more of an analogy than a
direct link.

An additional motivation to study the multiplicative subshifts comes from questions on multifractal
analysis of multiple ergodic averages raised in [4]. Perhaps, the simplest non-trivial case of such multifrac-

tal analysis is the study of the sets Ay := {x =Y w27 ay € {0,1}, limy oo 2 300 2ok = 9} )

It is not hard to show that dimgy(Ap) = dimgy (=g ), which we compute in Theorem 1.1. With more work,
our method can be used to compute the Hausdorff dimension of Ay, but the details are beyond the scope
of this note.

In this paper, we focus on Zg to explain our ideas and methods in the simplest possible setting. To

conclude the introduction, we should mention that the dimensions of some analogous sets, e.g., == {:v =

Y orey 2278 2, €{0,1}, apaopwsr = 0 for all k } are so far out of reach.

2. Proof of Theorem 1.1

It is more convenient to work in the symbolic space Yo = {0, 1}, with the metric o((xk), (vx)) =
2—min{n: #n#yn} Tt is well-known that the dimensions of a compact subset of [0,1] and the corresponding
set of binary digit sequences in ¥4 are equal (this is equivalent to replacing the covers by arbitrary interval
with those by dyadic intervals). Thus, it suffices to determine the dimensions of the set Xg—the collection
of all binary sequences (xy) such that xpxar = 0 for all k. Observe that

Xg = {w = (Tp) ey €B2: (@izr)pey € X for all g odd} (2)

where X is usual (additive) golden mean shift: X¢ := {(zx)pe; € X2, zpapi1 =0, Yk > 1}

We will use the following well-known result; it essentially goes back to Billingsley [2]. We state it in
the symbolic space 3o where [u] denotes the cylinder set of sequences starting with a finite “word” u and
T} =21 ... Tp.

Proposition 1 (see [3]) Let E be a Borel set in o and let v be a finite Borel measure on Y.
(i) Ifliminf,oo(—2)logy v[z}] > s for v-a.e. x € E, then dimpy (E) > s.
(ii) If liminf, oo (— 1) logy v[z}] < s for all z € E, then dimg(E) < s.

Given a probability measure p on ¥, we can define a probability measure on X¢g by
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Pufu] == [ nluls), where J(i) = {27i}72, 3)

i<n,i odd

and u| y(;) denotes the “restriction” of the word u to the subsequence J(i). It turns out that this class of

measures is sufficiently rich to compute dimpy(X¢).
For k£ > 1 let a) be the partition of X into cylinders of length k. For a measure pu on %5 and a
finite partition «, denote by H*(a) the p-entropy of the partition, with base 2 logarithms: H*(a) =

= cea (C)logy pu(C). Define

s =y L), (1)

k=1

Proposition 2 Let p be a probability measure on L. Then dimpy(Xg) > s(u).

Proof. We are going to demonstrate that for every ¢ € N|

¢
.. . —logy, P,[x7] H* (o)
hnrglgf 2n plil 5 E ST for P,-a.e. x. (5)

k=1

Then, letting ¢ — oo and using Proposition 1(i) will yield the desired inequality. Fix ¢ € N. By a routine
argument, to verify (5) we can restrict ourselves to n = 2°r, r € N. In view of (3), we have

4
Pulet] < [ II et ) (6)
k=1

ok <i<gptT, 4 odd

Note that 27| ;(; is a word of length k for i € (n/2¥,n/2¥~1], with i odd, which is a beginning of a sequence
in ¥¢g. Thus, [27];(;] is an element of the partition ax. The random variables x +— —log, p[zT| (] are
iid fori € (n/2% n/2%1], with i odd, and their expectation equals H*(ay), by the definition of entropy.
Note that there are n/2¥+! odds in (n/2%,n/2F"1]. Fixing k, £ with k < ¢ and taking n = 2°r, r — oo, we
get an infinite sequence of i.i.d. random variables. Therefore, by a version of the Law of Large Numbers,

—1lo ! 3
Vk<U{, o Z | W — H"(ay) asn =2 — oo, for B,-ae. . (7)
2—k<z§ ShoTo odd
By (6) and (7), for P,-a.e. x,
¢ ¢
—logy P, [27] 1 — logy plx? 53] H" (o)
luhidl, oLy el e
k=1 S <i<y, i odd k=1

This confirms (5), so the proof is complete. O

Proof of the lower bound for the Hausdorff dimension in Theorem 1.1. Let s := sup{s(p) : u
is a probability measure on ¥ }. By Proposition 2, we have dimpg (X¢g) > s, and we will prove that this is
actually an equality. To this end, we specify a measure which will turn out to be “optimal.” This measure
is Markov, but non-stationary. It could be “guessed” or derived by solving the optimization problem
(which also yields that the optimal measure is unique). However, for the proof of dimension formula it
suffices to produce the answer. Let u be a Markov measure on ¥, with initial probabilities (p, 1 —p), and

1—
the matrix of transition probabilities P = (P(3, j))i j=01 = b P, Using elementary properties of
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entropy, it is not hard to see that s(u) = @ + % + w, whence s(p) = %HT(?. Maximizing over
p yields s(p) = 2log, ﬁ, and comparing this to s(u) = 25_(5) we get
p’=(1-p)* s(u)=—log,p. (8)

Combined with Proposition 2, this proves the lower bound for the Hausdorff dimension in (1). O

Proof of the upper bound for the Hausdorff dimension in Theorem 1.1. Denote by N;(u) the
number of symbols ¢ in a word u. By the definition of the measure u, we obtain for any v = uy ... ux €

{0, 13,

N[U] _ pmp(ul7u2) . P(Uk—la Uk) =(1- p)Nl(u1~~.Uk)pN0(u1n.Uk)—N1(UI~~.’Uzk—1)l (9)
Indeed, the probability of a 1 is always 1 —p, whereas the probability of a 0 is p, except in those cases when
it follows a 1, which it must by the definition of X¢. In view of (9), by the definition of the measure P, on
X¢, we have B, [27] = (1 — p)M @D pNo@)=N1(#1"®) for any 2 € X and n even. Using that (1 —p)? = p
and No(z7) =n — Ny(z}), we obtain that

P,[2]] = PR /2= N

Ni@@})  Ni(p’?)
n n/2

Let ay = —2 log, By [z7] for n = 2°. Then a; = —log, p <1 + %[ }) . Now we see that
the average of ay’s “telescopes”:

a]l_l’_..._i_al
l

1[Ny (2
_—log2p<1+ﬂ[ 1;él>—]\]1(x1)}>—>—1og2p, as £ — o0.

It follows that ,
liminfa, = liminf2_€(— log, PH[,T% D) < —log,p=s,
£— 00 £— 00

for every = € X¢, so dimyg(X¢) < s by Proposition 1(ii). O

3. Generalization

Here we state a generalization of Theorem 1.1 to the case of arbitrary multiplicative subshifts of finite
type; the proof can be found in [6].

Theorem 3.1 (i) Let A be a 0-1 primitive m x m matriz (i.e. some power of A has only positive entries).
Consider 24 = {:v =Y opm~F 2, €{0,...,m— 1}, A(xr,x9x) = 1 for all k} Then dimpy (E4) =
%logm E?;Bl t;, where (ti)ﬁ_ol is the unique vector satisfying t? = Z;'?:ol A, i)ty, ti>1,i=0,...,m—
1.

(ii) The Minkowski dimension of 24 exists and equals dimp (Z4) = Y oo, 27  Llog,, (AF~11,T) where

T=(1,...,1)T e R™. We have dimy(Z4) = dimp(Z4) if and only if all row sums of A are equal.
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