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Hausdorff dimension of the multiplicative golden mean shift
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We compute the Hausdorff dimension of the “multiplicative golden mean shift” defined
as the set of all reals in [0, 1] whose binary expansion (xk) satisfies xkx2k = 0 for all

k ≥ 1, and show that it is smaller than the Minkowski dimension.

Résumé

Dimension de Hausdorff du shift de Fibonacci multiplicatif. Nous calculons la
dimension de Hausdorff du “shift de Fibonacci multiplicatif”, c’est-à-dire l’ensemble des
nombres réels dans [0, 1] dont le développement en binaire (xk) satisfait xkx2k = 0 pour

tout k ≥ 1. Nous montrons que la dimension de Hausdorff est plus petite que la
dimension de Minkowski.

1. Introduction

A classical result of Furstenberg [5] says that if X is a closed subset of [0, 1], invariant under the map
Tm : x 7→ mx (mod 1), then its Hausdorff dimension equals the Minkowski (box-counting) dimension,
which equals the topological entropy of Tm|X divided by logm. A simple example is the set ΨG :={
x =

∑∞
k=1 xk2

−k : xk ∈ {0, 1}, xkxk+1 = 0 for all k
}

for which we have dimH(ΨG) = dimM (ΨG) =

log2

(
1+

√
5

2

)
(the subscript G here stands for the “Golden Ratio”). Instead, we consider the set

ΞG :=
{
x =

∞∑

k=1

xk2
−k : xk ∈ {0, 1}, xkx2k = 0 for all k

}
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which we call the “multiplicative golden mean shift.” The reason for this term is that the set of binary
sequences corresponding to the points of ΞG is invariant under the action of the semigroup of multiplicative
positive integers N

∗: Mr(xk) = (xrk) for r ∈ N. Fan, Liao, and Ma [4] showed that dimM (ΞG) =∑∞
k=1 2

−k−1 log2 Fk+1 = 0.82429 . . . , where Fk is the k-th Fibonacci number: F1 = 1, F2 = 2, Fk+1 =
Fk−1 + Fk, and raised the question of computing the Hausdorff dimension of ΞG.

Theorem 1.1 We have dimH(ΞG) < dimM (ΞG). In fact,

dimH(ΞG) = − log2 p = 0.81137 . . . , where p3 = (1− p)2, 0 < p < 1. (1)

Our manuscript [6] contains substantial generalizations of this result, extending it to a large class of
“multiplicative subshifts.” We state one of them at the end of the paper.
Although the set ΞG is on the real line, it appears to have a strong resemblance with a class of self-affine

sets on the plane, namely, the Bedford-McMullen “carpets” [1,7], for which also the Hausdorff dimension
is typically smaller than the Minkowski dimension. However, this seems to be more of an analogy than a
direct link.
An additional motivation to study the multiplicative subshifts comes from questions on multifractal

analysis of multiple ergodic averages raised in [4]. Perhaps, the simplest non-trivial case of such multifrac-

tal analysis is the study of the sets Aθ :=
{
x =

∑∞
k=1 xk2

−k : xk ∈ {0, 1}, limn→∞
1
n

∑n
k=1 xkx2k = θ

}
.

It is not hard to show that dimH(A0) = dimH(ΞG), which we compute in Theorem 1.1. With more work,
our method can be used to compute the Hausdorff dimension of Aθ, but the details are beyond the scope
of this note.
In this paper, we focus on ΞG to explain our ideas and methods in the simplest possible setting. To

conclude the introduction, we should mention that the dimensions of some analogous sets, e.g., Ξ̃ =
{
x =

∑∞
k=1 xk2

−k : xk ∈ {0, 1}, xkx2kx3k = 0 for all k
}
are so far out of reach.

2. Proof of Theorem 1.1

It is more convenient to work in the symbolic space Σ2 = {0, 1}N, with the metric ̺((xk), (yk)) =
2−min{n: xn 6=yn}. It is well-known that the dimensions of a compact subset of [0, 1] and the corresponding
set of binary digit sequences in Σ2 are equal (this is equivalent to replacing the covers by arbitrary interval
with those by dyadic intervals). Thus, it suffices to determine the dimensions of the set XG—the collection
of all binary sequences (xk) such that xkx2k = 0 for all k. Observe that

XG =
{
ω = (xk)

∞
k=1 ∈ Σ2 : (xi2r )

∞
r=0 ∈ ΣG for all i odd

}
(2)

where ΣG is usual (additive) golden mean shift: ΣG := {(xk)
∞
k=1 ∈ Σ2, xkxk+1 = 0, ∀ k ≥ 1}.

We will use the following well-known result; it essentially goes back to Billingsley [2]. We state it in
the symbolic space Σ2 where [u] denotes the cylinder set of sequences starting with a finite “word” u and
xn
1 = x1 . . . xn.

Proposition 1 (see [3]) Let E be a Borel set in Σ2 and let ν be a finite Borel measure on Σ2.
(i) If lim infn→∞(− 1

n ) log2 ν[x
n
1 ] ≥ s for ν-a.e. x ∈ E, then dimH(E) ≥ s.

(ii) If lim infn→∞(− 1
n ) log2 ν[x

n
1 ] ≤ s for all x ∈ E, then dimH(E) ≤ s.

Given a probability measure µ on ΣG, we can define a probability measure on XG by
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Pµ[u] :=
∏

i≤n, i odd

µ[u|J(i)], where J(i) = {2ri}∞r=0 (3)

and u|J(i) denotes the “restriction” of the word u to the subsequence J(i). It turns out that this class of
measures is sufficiently rich to compute dimH(XG).
For k ≥ 1 let αk be the partition of ΣG into cylinders of length k. For a measure µ on Σ2 and a

finite partition α, denote by Hµ(α) the µ-entropy of the partition, with base 2 logarithms: Hµ(α) =
−
∑

C∈α µ(C) log2 µ(C). Define

s(µ) :=

∞∑

k=1

Hµ(αk)

2k+1
. (4)

Proposition 2 Let µ be a probability measure on ΣG. Then dimH(XG) ≥ s(µ).

Proof. We are going to demonstrate that for every ℓ ∈ N,

lim inf
n→∞

− log2 Pµ[x
n
1 ]

n
≥

ℓ∑

k=1

Hµ(αk)

2k+1
for Pµ-a.e. x. (5)

Then, letting ℓ → ∞ and using Proposition 1(i) will yield the desired inequality. Fix ℓ ∈ N. By a routine
argument, to verify (5) we can restrict ourselves to n = 2ℓr, r ∈ N. In view of (3), we have

Pµ[x
n
1 ] ≤

ℓ∏

k=1

∏

n

2k
<i≤ n

2k−1
, i odd

µ[xn
1 |J(i)]. (6)

Note that xn
1 |J(i) is a word of length k for i ∈ (n/2k, n/2k−1], with i odd, which is a beginning of a sequence

in ΣG. Thus, [x
n
1 |J(i)] is an element of the partition αk. The random variables x 7→ − log2 µ[x

n
1 |J(i)] are

i.i.d for i ∈ (n/2k, n/2k−1], with i odd, and their expectation equals Hµ(αk), by the definition of entropy.
Note that there are n/2k+1 odds in (n/2k, n/2k−1]. Fixing k, ℓ with k ≤ ℓ and taking n = 2ℓr, r → ∞, we
get an infinite sequence of i.i.d. random variables. Therefore, by a version of the Law of Large Numbers,

∀ k ≤ ℓ,
∑

n

2k
<i≤ n

2k−1
, i odd

− log2 µ[x
n
1 |J(i)]

(n/2k+1)
→ Hµ(αk) as n = 2ℓr → ∞, for Pµ-a.e. x. (7)

By (6) and (7), for Pµ-a.e. x,

− log2 Pµ[x
n
1 ]

n
≥

ℓ∑

k=1

1

2k+1

∑

n

2k
<i≤ n

2k−1
, i odd

− log2 µ[x
n
1 |J(i)]

n/2k+1
→

ℓ∑

k=1

Hµ(αk)

2k+1
.

This confirms (5), so the proof is complete. ✷

Proof of the lower bound for the Hausdorff dimension in Theorem 1.1. Let s := sup{s(µ) : µ
is a probability measure on ΣG}. By Proposition 2, we have dimH(XG) ≥ s, and we will prove that this is
actually an equality. To this end, we specify a measure which will turn out to be “optimal.” This measure
is Markov, but non-stationary. It could be “guessed” or derived by solving the optimization problem
(which also yields that the optimal measure is unique). However, for the proof of dimension formula it
suffices to produce the answer. Let µ be a Markov measure on ΣG, with initial probabilities (p, 1−p), and

the matrix of transition probabilities P = (P (i, j))i,j=0,1 =



 p 1− p

1 0



. Using elementary properties of
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entropy, it is not hard to see that s(µ) = H(p)
2 + ps(µ)

2 + (1−p)s(µ)
4 , whence s(µ) = 2H(p)

3−p . Maximizing over

p yields s(µ) = 2 log2
p

1−p , and comparing this to s(µ) = 2H(p)
3−p we get

p3 = (1− p)2, s(µ) = − log2 p. (8)

Combined with Proposition 2, this proves the lower bound for the Hausdorff dimension in (1). ✷

Proof of the upper bound for the Hausdorff dimension in Theorem 1.1. Denote by Ni(u) the
number of symbols i in a word u. By the definition of the measure µ, we obtain for any u = u1 . . . uk ∈
{0, 1}n,

µ[u] = pu1
P (u1, u2) · . . . · P (uk−1, uk) = (1 − p)N1(u1...uk)pN0(u1...uk)−N1(u1...uk−1). (9)

Indeed, the probability of a 1 is always 1−p, whereas the probability of a 0 is p, except in those cases when
it follows a 1, which it must by the definition of ΣG. In view of (9), by the definition of the measure Pµ on

XG, we have Pµ[x
n
1 ] = (1− p)N1(x

n
1
)pN0(x

n
1
)−N1(x

n/2
1

) for any x ∈ XG and n even. Using that (1− p)2 = p3

and N0(x
n
1 ) = n−N1(x

n
1 ), we obtain that

Pµ[x
n
1 ] = pnpN1(x

n
1
)/2−N1(x

n/2
1

).

Let aℓ = − 1
n log2 Pµ[x

n
1 ] for n = 2ℓ. Then aℓ = − log2 p

(
1 + 1

2

[
N1(x

n
1
)

n −
N1(x

n/2
1

)

n/2

])
. Now we see that

the average of aℓ’s “telescopes”:

a1 + · · ·+ aℓ
ℓ

= − log2 p

(
1 +

1

2ℓ

[N1(x
2ℓ

1 )

2ℓ
−N1(x1)

])
→ − log2 p, as ℓ → ∞.

It follows that
lim inf
ℓ→∞

aℓ = lim inf
ℓ→∞

2−ℓ(− log2 Pµ[x
2ℓ

1 ]) ≤ − log2 p = s,

for every x ∈ XG, so dimH(XG) ≤ s by Proposition 1(ii). ✷

3. Generalization

Here we state a generalization of Theorem 1.1 to the case of arbitrary multiplicative subshifts of finite
type; the proof can be found in [6].

Theorem 3.1 (i) Let A be a 0-1 primitive m×m matrix (i.e. some power of A has only positive entries).

Consider ΞA =
{
x =

∑∞
k=1 xkm

−k : xk ∈ {0, . . . ,m− 1}, A(xk, x2k) = 1 for all k
}
. Then dimH(ΞA) =

1
2 logm

∑m−1
i=0 ti, where (ti)

m−1
i=0 is the unique vector satisfying t2i =

∑m−1
j=0 A(i, j)tj , ti > 1, i = 0, . . . ,m−

1.
(ii) The Minkowski dimension of ΞA exists and equals dimM (ΞA) =

∑∞
k=1 2

−k−1 logm(Ak−11, 1) where
1 = (1, . . . , 1)T ∈ R

m. We have dimH(ΞA) = dimM (ΞA) if and only if all row sums of A are equal.
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