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DIMENSION SPECTRUM FOR A NONCONVENTIONAL ERGODIC
AVERAGE

YUVAL PERES AND BORIS SOLOMYAK

ABSTRACT. We compute the dimension spectrum of certain nonconventional averages,
namely, the Hausdorff dimension of the set of 0,1 sequences, for which the frequency

of the pattern 11 in positions k, 2k equals a given number 6 € [0, 1].

1. INTRODUCTION.
For a dynamical system (X, T) (say, a continuous self-map of a compact metric space),
the dimension spectrum of ordinary Birkhoff averages is defined as the function

9r—>dimH{m€X: im0 () :9}.

n—00 n

where S, f(z) =Y 1, f (T*z) and f is a function on X. It has been widely investigated
in Multifractal Analysis, see e.g. [2]. The most basic example of such analysis goes back
to Besicovitch [4] and Eggleston [7] who proved that

—00 N

dimH{(xk)‘f’ € {0,1}": lim E kZ:lxk - 9} = H(6), 0¢€0,1], (1)

where H(0) = —6log, 0—(1—0) logy(1—0) is the entropy function. Throughout the paper,
{0,1}N = % is the symbolic space, with the usual metric o((x), (yx)) = 2~ ™r{n: @n#ynl,
For dimension purposes, this is equivalent to [0, 1] with the standard metric, since for
any set A C Yo, its image under the binary representation map has the same dimension
as A, see [8, Section 2.4].

Furstenberg [10] was the first to consider multiple Birkhoff averages, and their study

has become a very active area of research, see e.g. Bourgain [6], Host and Kra [I1], and
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others. For a system (X,T) one considers
1 1<
~Su(firee f(@) = = L (TF2) fo(T* ) - fu(T )
k=1

for some bounded functions f1,..., fo. Very recently, Yu. Kifer [16] and A.-H. Fan, L.
Liao, J. Ma [9] initiated the study of the dimension spectrum for such averages (in [16]
more general “nonconventional averages” are considered as well). Multifractal analysis
of this kind appears to be very complicated, so it is natural to start with the simplest
situation, namely, the shift map T on the symbolic space and the functions fi,..., fe
depending only on the first digit x1, for £ > 2. Specializing even further, to / = 2 and
fi(z) = fa(z) = x1 leads to the sets

Ap = {(xk)oo €¥y: lim likak = 9} 0 €[0,1]. (2)

6 1 n £ ; )

n—oo

The question about the dimension of Ay was raised in [9]. Note that this directly gener-
alizes the Besicovitch-Eggleston set-up from ¢ =1 to £ = 2.

Motivated by this problem, A.-H. Fan, L. Liao, J. Ma, and J. Schmeling [private
communication in August 2010] computed the Minkowski (box-counting) dimension of
another set

Xq = {(xk)i’o €Yy zpxer =0 for all k}
and asked what is its Hausdorff dimension. It is obvious that X C Ay, and in fact, it is
easy to see that dimpy(X¢g) = dimg(Ayp).

In joint work with R. Kenyon, we computed the Hausdorff dimension of X and a large
class of similarly defined sets, putting it into the context of subshifts invariant under the
semi-group of multiplicative integers [14} [15]. Here we adapt the techniques of [14] [15] to

compute the full dimension spectrum dimg (Ag).

Theorem 1. Let Ay be given by (3). For 6 € (0,1) we have

(1—@ﬂ—pq7

dnnH(Ae)zzf(H)ﬁ:-kﬁh(l“p)"glogz[ ap

where
Pa=01-p?3 0<p<l, 0<qg<1, (4)

~2p(1—gq)
9_1+p+q' 5)

We have dimp (Ag) = limg_,o f(0) = —logy(1 — p), with p? = (1 — p)3, and dimy(4;) =
limg 1 f(0) = 0.
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The meaning of p and ¢ will be explained in the next section. Of course, it is easy to
eliminate ¢ from and . For a given 6, we get an algebraic equation of degree 4 for
p. Solving the equation numerically yields the graph in Figure 1.
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FIGURE 1. Dimension of Ay

Remarks.

1. As already mentioned, the formula for dimg(Ag) easily follows from [I4]. Note that
in [14}, 15] notation was slightly different, so that p in those papers is 1 — p here.

2. It is immediate that A is contained in the set of 0-1 sequences which have frequency
of 1's equal to 1. Thus, dimy (A1) = 0 by (1), and we assume 6 < 1 for the rest of the
paper.

3. By the Strong Law of Large Numbers for weakly correlated random vari-

ables (see [I8]), for a.e. sequence (zj) with respect to the Bernoulli (3,3)N mea-
sure, hmn—ﬂ)o%Z?:l xjre; = 1/4. This agrees with our result: for § = 1/4 we get

dimpg(Ap) =1 and p=¢q =1/2.

4. In [9] it is proved that dimy (Bg) = 1— 4+ $H (1£9) for 6 € [~1,1] and £ > 2, where
By = {(z)7° € {1, 1N ¢ limp oo = D) T2k -+ Tk = 0}, using the techniques
of Riesz products. It is further pointed out in [9] that the problem becomes drastically
different if one takes the digits 0,1 (which reduces to Ay for ¢ = 2) instead of —1, 1.

5. Yu. Kifer [16] considered a slightly different question: he studied the Hausdorff
dimension of sets defined by the frequencies of all ¢-tuples of digits i1, ...,4, in positions
k,2k,...,lk. However, he was able to compute the dimensions only under the assumption

that such frequencies are of the form p;, ., = pi; - pi,.



4 YUVAL PERES AND BORIS SOLOMYAK

6. As pointed out in [15], there are some parallels between the multiplicative shifts
of finite type and self-affine carpets [3, [19]; we should also add here self-affine sponges
[13]. The present paper may similarly be compared to the work on multifractal self-affine
carpets and sponges, see e.g. [17), 20, [I, 12]; however, we do not see any way to directly

transfer the results.

2. PRELIMINARIES AND THE SCHEME OF THE PROOF.

The dimension of Ay is computed with the help of the following lemma which goes
back to Billingsley [5]. We write [u] for the cylinder set of sequences starting with a finite

word u and 27 :=21... 2y

Lemma 2 (see Prop.4.9 in [§]). Let E be a Borel set in Yo and let v be a finite Borel
measure on Xo.
(i) If v(E) > 0 and liminf,,_,~ M > s forv-a.e. x € E, then dimy(FE) > s.
(ii) If liminf, o _logQTV[xl] <s forallz € E, then dimg(F) < s.

Following [14], [15], for a probability measure ;1 on X9, we define another measure P,

on Y9 by

Pulul = [ slulsg). where J() = {23} (®

i<n,i odd
and ul ;¢ is the subsequence of u (viewed as a finite sequence) along the geometric
progression J(7). The new measure PP, is invariant under the action of the multiplicative

semigroup of odd positive numbers:
(xk)i=1 — (wir)jey for odd i.

We consider Markov measures pip p on Yo, with the initial probability distribution
p = (1 — p,p) (so that p is the probability of initial 1), and the stochastic transition
l—p p

g 1l-—gq
instead, their initial distribution coincides with the first row of the transition matrix.

Next we indicate the scheme of the proof of Theorem [2| Recall that 6 € [0,1). In

view of Lemma [2[i), the lower bound for dim (Ap) will be established once we prove the

matrix P = Note that our Markov measures are not stationary;

following.

Lemma 3. Fizp € (0,1),q € [0,1), and let P, with p = pp p, be defined by (@)
(i) If p,q satisfy (@), then P,(X2 \ Ag) = 0. For 6 =0 we take g = 1.
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(ii) For any p,q we have

_ —logy Py[af] (1+q)H(p) +pH(q)
nh_{fio # = s(p,q) == T fpiq for Py-a.e. x.
(iii) The mazimum of s(p,q), subject to (@, is achieved when p?q = (1 — p)3, and it
equals
_ 4 (1-¢)(1-p)
£(8) = ~loga(1 — p) — 5 logy [~ | (7)

The upper bound in Theorem [1] will follow from Lemma [(ii), once we prove the

following

Lemma 4. Let p = pp p be the Markov measure with initial probability vector p =

1—
(1 — p,p) and transition matriz P = ( b ) b >, where p?q = (1 — p)® and (H)
q —q
holds, and let P, be the corresponding multiplicative invariant measure. Then

_ n
lim inf 7105:{2 By 1]
n—oo n

< f(0) for all x € Ayp. (8)

3. PrROOFS
The following elementary lemma will be useful. We provide the proof for completeness.
Lemma 5. Suppose that {z,} is a bounded real sequence and there exists ¢ > 0 such that
|2n — Zntm| < % for all m,n € N. (9)

If 2ok, = v as k — oo for alln € N, then z, — 7.

Proof. For € > 0 let iy € N be such that 27% < ¢. By the assumption, we can find kg € N
such that for all £ < 2% and all k > kg — ip we have |zp.ox — 7| < . For n > 2kt ith
2k=1 <n < 2% let £ = [n-207F] <20, Then 0 < ¢-2F"0 —n < 28~ hence

k—ig

[2n = V] < l2n = Zpgr-io| + [200-10 =7 < +e <e(l+20),
completing the proof. O
For positive integers m < n, i,j € {0,1}, and x € 3 let
Ni(zp) =#{k € [m,n]NN: z, =i},

Nij(y) = #{k € [m,n]ON: ), =i, xo = j}.
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Further, for z € ¥4 and even n denote

Ni(zy/541)
— _njeret 1
oula) = =25 (10)
Observe that a,(x) € [0, 1], and it is easy to see that
2
|an, — apm| < M for n,m even. (11)
n

Lemma 6. Let p be a Markov measure on 3o, with initial probability (row) vector p =

1—
(1 — p,p) and transition matriz P = ( b . b ) Let P, be the measure on Yo
q -9
defined by (@) Then for P,-a.e. x € ¥o we have
. 2p
D = T T

where an(z) is defined in (10).

Proof. We assume n to be even. Consider nag,(x), the number of 1’s in z;’s for i €
(n,2n]. There are n/2 odd numbers i in (n,2n]. By the definition of the measure P,
the corresponding z; are chosen to be 1 independently with probability p. Thus, by
the Law of Large Numbers, the number of 1’s among them is np/2 + o(n). Among
the even numbers 2¢ in (n/2,n], there is noy,(x)/2 numbers for which z; = 1, and
there will be approximately na,(x)(1 — ¢)/2 1’s there, again using the Law of Large
Numbers, since 1 — ¢ is the probability of the transition 1 — 1 according to the Markov
measure . Similarly, there is n(1 — o, (x))/2 numbers 2i € (n, 2n] for which z; = 0, and

approximately n(1 — a,(z))p/2 1’s among those. Hence we have

i) = 24 000 a0 =onle
_ e m@Uzamn)

where e,,(xz) — 0 for P,-a.e. z. Since |(1 — ¢ — p)/2| < 1, it follows that gk, () — &
for Py-a.e. x, where { = p+&(1 —q—p)/2,ie = 20 Then for P,-a.e. x we have

I+p+q”
ok () — € for all n € N. It remains to recall and apply Lemma O
Proof of Lemma[3i). We claim that
N b 2p(1 —
n—00 n 14+p+gq

for a P,-typical point x € ¥g. Indeed, the initial part of the sequence does not impact

the limit, and for n big enough we see 1’s with frequency & and thus 11’s (in positions
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i,2i) with frequency £(1 — ¢), by the definition of P,. This means that P,-a.e. x is in Ay,
as desired. 0

Fix an even integer n. Denote
Nioda = Nioaa(z]) :=#{k <n: kodd, x =1}.
By the definition of u = pup p and P, we have, for any = and even n:
Bulay] = pMNread(1 — p)/2Nredd (1 — p)NoopNorghio (1 — g) N (12)
where N;; = Nij(x?ﬂ).
For the rest of the proof we write log for logy to simplify notation.

Proof of Lemma @(u) For P,-a.e. x € ¥g, we see 1’s with frequency p in odd places,
and similarly to the proof of Lemma [3(i), the frequency of 00’s, 01’s, 10’s, and 11’s is
(1-&(1—p), (1 =Ep, &q, and £(1 — q) respectively. Therefore, for P,-a.e. z € X9 the
formula ([12)) yields

—log P, [27]

Jim ——F=2 = —(1/2)[(2 = Oplogp + (2 = )(1 = p) log(1 - p)
+€qlogq +&(1 — q)log(1 — q)]
(1+q)H(p) + pH(q)
N l+p+gq ’
as desired. 0

In view of Lemma [3(i),(ii) and Lemma [2{i), we have that

dimg(Ag) > s(p,q) = 1+ Hp) +pH(q)’ where 6 =

1+p+gq

2p(1 —q)
l+p+q’

(13)

Thus, we should find the constrained maximum of s(p, ¢) on [0, 1]2. This is a straightfor-
ward exercise, but we include it for the record and in order to explain where the formula
comes from. It is actually not needed for the proof of the main result, since we could
just produce the answer for the optimization problem and refer to Lemma [4 We also
include the verification of @

Proof of Lemma @(iii). We use the method of Lagrange multipliers. Differentiating s(p, q)
yields

A+p+aPZPD (14 (14 p+ ) log(2) - H(p) + H(g)

dp
= (1+¢)[2+q)log(1—p)—(1+q)logp+ H(q)],
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(I+p+ Q)288(p’ 9 _ pl(1+p+ ) log(*5%) + H(p) — H(q)]

dq
= pl(2+p)log(l—q) — (1+p)logq+ H(p)].

Differentiating the constraint g(p,q) = 0(1 4+ p+ q) — 2p(1 — q) = 0 yields

—2(1-¢)(1+q) 2p(2 +p)).

VQ(P,Q):(9*2(1*Q)79+QP):< T ipta 1tpig

At the point of constrained maximum we have Vs(p,q) = AVg(p, q), which reduces to

(2+p)[(2+¢)log(l —p) — (1 +q)logp + H(q)]
= —(1-9)(2+p)log(l —q) — (1 +p)logqg+ H(p).

The latter becomes, after collecting the terms:
31+p+qlog(l—p)=2(1+p+q)logp+ (1+p+q)logg,

so p?q = (1 — p)3, as claimed.
It remains to verify the formula @ We have

f) = —log(l—p)—glog[(l_q;]()l_m}
p(l-q)  [A-q)1d-p)
- _log(l_p)_1+p+qlog[ qp ]

Comparing the latter with

(plog 152 —log(1 — p))(1 + q) + p(qlog 7% — log(1 — ¢))
1+p+g

s(p,q) =

results in (1+p+q)(f(0) —s(p,q) = —p[2log =2 +log ¢ +log(1 —p) —log(1 —¢)] = 0,
whenever p?q = (1 — p)?3, as desired.

Proof of Lemmal[{ Fix any x and an even n € N. We continue to use the notation
N;j = Nij(x?/z). Since Nog + No1 + N1p + N11 = n/2, we have from :

Pu[l'?] = le,odd'i‘NOl(l _ p)n—N1,odd_N01—N1o—N11qu(1 . q)Nn
i (1 )n( P >N1,odd+N01( q )Nlo(l _ Q)N10+N11
- P\, - —

Observe that

Nig+ Nip = Ni(27?)  and  Nyoaq = Ni(2?) — Nop — Niy.



DIMENSION SPECTRUM FOR A NONCONVENTIONAL AVERAGE 9

. . — — —p\2 .. . .
The equation p?q = (1 — p)3 can be rewritten as L—g = % (17) . Combining this with
the last several equalities yields

Pulzy] = (1 —p)n<1fp>Nl(x?)Nu2Nl(w?/2)(1;q>]vn
e e e I (L A
Thus,
“logBulet] g - Mu@”) (L 01P))
" qp
+<N1§lx7f) _Nléjg/z))log(li))
— g0+ (o ) og(L=20=2))

+<Nl§f7f) B N1T(;;L2/2)>1 g(lf ) (14)

n/2
where f(6) is from . Observe that lim, % = 6/2 for all x € Ay. Now replace
n by 2¢ for £ = 1,..., L, and take the average over £. The expression in the last line of

“telescopes,” so we obtain
L
logIP’ 1
fZ( Uoso) - 13

+ —log<

- Nu@c%‘)) log (L= 001 =2))

2 2¢ qp

p )(Nlész?L) B Nl(zw%))’

which tends to zero, as L — oco. It follows that

log P
hminfM < £(0) for all z € Ay,
{—00 2¢
and the proof of is complete. O

4. CONCLUDING REMARKS

1. It is not hard to verify that, under the conditions and 1) we have w <1

if and only if # < 1/4. Therefore, by the argument in the last section, it immediately
follows that

dimp (A;) = f(0) for 6 € (0,1/4), dimp(A,) = f(0) for 6 € (1/4,1),
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where

1 n
AZ = {(xk)‘fo €Yy limsupﬁ Zl'kx% < 9}7

Ay = {(:ck.)fo €Yy liminflzn:xkxgk > 9}.
k=1

n—oo N
2. We extended the result of Theorem [I]to the case of arbitrary functions fi, fo on the
shift o depending on the first digit z1. The method is the same, but the calculations

are more involved, so we only state the result.

Theorem 7. For 5,v € R, let

n

Ae(ﬁﬁ) = {($k)(1)o S 22 : nh_)ng()%z:(xk +ﬁ)(332k +’Y) _ 9}
k=1
We have
dlmH(AG(Bvly)) = _% IOgQ[po(l — p)] — glog2 |:(1_q;}()1_p):|’
where

1_p_< q >1+2ﬁ+’y< P )24-25-‘1-"{ 1—p0_( q )B( P )1+5
l—-qg \l—gq L—p ’ Po l—q/ \1-p ’

and

o= gy LT+ =0 +p—po) +Bpop+9) — )
L+p+gq

The appropriate measure is P, with p Markov, having the initial distribution (po,1— po)

- [ 1=-p p
and the transition matrix .
qg 1l—gq
3. After this work was essentially completed, we were informed that A.-H. Fan, J.
Schmeling, and M. Wu have computed the dimension of Ay (in a different, but equivalent

form) and other sets of this type, independently, but also building on [I5].

Acknowledgment. We are grateful to the referee for helpful comments and suggestions.
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