
DIMENSION SPECTRUM FOR A NONCONVENTIONAL ERGODIC

AVERAGE

YUVAL PERES AND BORIS SOLOMYAK

Abstract. We compute the dimension spectrum of certain nonconventional averages,

namely, the Hausdorff dimension of the set of 0, 1 sequences, for which the frequency

of the pattern 11 in positions k, 2k equals a given number θ ∈ [0, 1].

1. Introduction.

For a dynamical system (X,T ) (say, a continuous self-map of a compact metric space),

the dimension spectrum of ordinary Birkhoff averages is defined as the function

θ 7→ dimH

{
x ∈ X : lim

n→∞

Snf(x)

n
= θ
}
.

where Snf(x) =
∑n

k=1 f(T kx) and f is a function on X. It has been widely investigated

in Multifractal Analysis, see e.g. [2]. The most basic example of such analysis goes back

to Besicovitch [4] and Eggleston [7] who proved that

dimH

{
(xk)

∞
1 ∈ {0, 1}

N : lim
n→∞

1

n

n∑
k=1

xk = θ
}

= H(θ), θ ∈ [0, 1], (1)

where H(θ) = −θ log2 θ−(1−θ) log2(1−θ) is the entropy function. Throughout the paper,

{0, 1}N = Σ2 is the symbolic space, with the usual metric %((xk), (yk)) = 2−min{n: xn 6=yn}.

For dimension purposes, this is equivalent to [0, 1] with the standard metric, since for

any set A ⊂ Σ2, its image under the binary representation map has the same dimension

as A, see [8, Section 2.4].

Furstenberg [10] was the first to consider multiple Birkhoff averages, and their study

has become a very active area of research, see e.g. Bourgain [6], Host and Kra [11], and
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others. For a system (X,T ) one considers

1

n
Sn(f1, . . . , f`)(x) :=

1

n

n∑
k=1

f1(T
kx)f2(T

2kx) · · · f`(T `kx)

for some bounded functions f1, . . . , f`. Very recently, Yu. Kifer [16] and A.-H. Fan, L.

Liao, J. Ma [9] initiated the study of the dimension spectrum for such averages (in [16]

more general “nonconventional averages” are considered as well). Multifractal analysis

of this kind appears to be very complicated, so it is natural to start with the simplest

situation, namely, the shift map T on the symbolic space and the functions f1, . . . , f`

depending only on the first digit x1, for ` ≥ 2. Specializing even further, to ` = 2 and

f1(x) ≡ f2(x) = x1 leads to the sets

Aθ :=
{

(xk)
∞
1 ∈ Σ2 : lim

n→∞

1

n

n∑
k=1

xkx2k = θ
}
, θ ∈ [0, 1]. (2)

The question about the dimension of Aθ was raised in [9]. Note that this directly gener-

alizes the Besicovitch-Eggleston set-up from ` = 1 to ` = 2.

Motivated by this problem, A.-H. Fan, L. Liao, J. Ma, and J. Schmeling [private

communication in August 2010] computed the Minkowski (box-counting) dimension of

another set

XG :=
{

(xk)
∞
1 ∈ Σ2 : xkx2k = 0 for all k

}
and asked what is its Hausdorff dimension. It is obvious that XG ⊂ A0, and in fact, it is

easy to see that dimH(XG) = dimH(A0).

In joint work with R. Kenyon, we computed the Hausdorff dimension of XG and a large

class of similarly defined sets, putting it into the context of subshifts invariant under the

semi-group of multiplicative integers [14, 15]. Here we adapt the techniques of [14, 15] to

compute the full dimension spectrum dimH(Aθ).

Theorem 1. Let Aθ be given by (2). For θ ∈ (0, 1) we have

dimH(Aθ) = f(θ) := − log2(1− p)−
θ

2
log2

[(1− q)(1− p)
qp

]
, (3)

where

p2q = (1− p)3, 0 < p < 1, 0 < q < 1, (4)

θ =
2p(1− q)
1 + p+ q

. (5)

We have dimH(A0) = limθ→0 f(θ) = − log2(1− p), with p2 = (1− p)3, and dimH(A1) =

limθ→1 f(θ) = 0.
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The meaning of p and q will be explained in the next section. Of course, it is easy to

eliminate q from (3) and (5). For a given θ, we get an algebraic equation of degree 4 for

p. Solving the equation numerically yields the graph in Figure 1.
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Figure 1. Dimension of Aθ

Remarks.

1. As already mentioned, the formula for dimH(A0) easily follows from [14]. Note that

in [14, 15] notation was slightly different, so that p in those papers is 1− p here.

2. It is immediate that A1 is contained in the set of 0-1 sequences which have frequency

of 1’s equal to 1. Thus, dimH(A1) = 0 by (1), and we assume θ < 1 for the rest of the

paper.

3. By the Strong Law of Large Numbers for weakly correlated random vari-

ables (see [18]), for a.e. sequence (xk) with respect to the Bernoulli (12 ,
1
2)N mea-

sure, limn→∞
1
n

∑n
j=1 xjx2j = 1/4. This agrees with our result: for θ = 1/4 we get

dimH(Aθ) = 1 and p = q = 1/2.

4. In [9] it is proved that dimH(Bθ) = 1− 1
` + 1

`H
(
1+θ
2

)
for θ ∈ [−1, 1] and ` ≥ 2, where

Bθ :=
{

(xk)
∞
1 ∈ {−1, 1}N : limn→∞

1
n

∑n
k=1 xkx2k · · ·x`k = θ

}
, using the techniques

of Riesz products. It is further pointed out in [9] that the problem becomes drastically

different if one takes the digits 0,1 (which reduces to Aθ for ` = 2) instead of −1, 1.

5. Yu. Kifer [16] considered a slightly different question: he studied the Hausdorff

dimension of sets defined by the frequencies of all `-tuples of digits i1, . . . , i` in positions

k, 2k, . . . , `k. However, he was able to compute the dimensions only under the assumption

that such frequencies are of the form pi1,...,i` = pi1 · · · pi` .
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6. As pointed out in [15], there are some parallels between the multiplicative shifts

of finite type and self-affine carpets [3, 19]; we should also add here self-affine sponges

[13]. The present paper may similarly be compared to the work on multifractal self-affine

carpets and sponges, see e.g. [17, 20, 1, 12]; however, we do not see any way to directly

transfer the results.

2. Preliminaries and the scheme of the proof.

The dimension of Aθ is computed with the help of the following lemma which goes

back to Billingsley [5]. We write [u] for the cylinder set of sequences starting with a finite

word u and xn1 := x1 . . . xn.

Lemma 2 (see Prop.4.9 in [8]). Let E be a Borel set in Σ2 and let ν be a finite Borel

measure on Σ2.

(i) If ν(E) > 0 and lim infn→∞
− log2 ν[x

n
1 ]

n ≥ s for ν-a.e. x ∈ E, then dimH(E) ≥ s.
(ii) If lim infn→∞

− log2 ν[x
n
1 ]

n ≤ s for all x ∈ E, then dimH(E) ≤ s.

Following [14, 15], for a probability measure µ on Σ2, we define another measure Pµ
on Σ2 by

Pµ[u] :=
∏

i≤n, i odd

µ[u|J(i)], where J(i) = {2ri}∞r=0 (6)

and u|J(i) is the subsequence of u (viewed as a finite sequence) along the geometric

progression J(i). The new measure Pµ is invariant under the action of the multiplicative

semigroup of odd positive numbers:

(xk)
∞
k=1 7→ (xik)

∞
k=1 for odd i.

We consider Markov measures µp,P on Σ2, with the initial probability distribution

p = (1 − p, p) (so that p is the probability of initial 1), and the stochastic transition

matrix P =

(
1− p p

q 1− q

)
. Note that our Markov measures are not stationary;

instead, their initial distribution coincides with the first row of the transition matrix.

Next we indicate the scheme of the proof of Theorem 2. Recall that θ ∈ [0, 1). In

view of Lemma 2(i), the lower bound for dimH(Aθ) will be established once we prove the

following.

Lemma 3. Fix p ∈ (0, 1), q ∈ [0, 1), and let Pµ, with µ = µp,P , be defined by (6).

(i) If p, q satisfy (5), then Pµ(Σ2 \Aθ) = 0. For θ = 0 we take q = 1.
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(ii) For any p, q we have

lim
n→∞

− log2 Pµ[xn1 ]

n
= s(p, q) :=

(1 + q)H(p) + pH(q)

1 + p+ q
for Pµ-a.e. x.

(iii) The maximum of s(p, q), subject to (5), is achieved when p2q = (1 − p)3, and it

equals

f(θ) = − log2(1− p)−
θ

2
log2

[(1− q)(1− p)
qp

]
(7)

The upper bound in Theorem 1 will follow from Lemma 2(ii), once we prove the

following

Lemma 4. Let µ = µp,P be the Markov measure with initial probability vector p =

(1 − p, p) and transition matrix P =

(
1− p p

q 1− q

)
, where p2q = (1 − p)3 and (5)

holds, and let Pµ be the corresponding multiplicative invariant measure. Then

lim inf
n→∞

− log2 Pµ[xn1 ]

n
≤ f(θ) for all x ∈ Aθ. (8)

3. Proofs

The following elementary lemma will be useful. We provide the proof for completeness.

Lemma 5. Suppose that {zn} is a bounded real sequence and there exists c > 0 such that

|zn − zn+m| ≤
cm

n
for all m,n ∈ N. (9)

If z2kn → γ as k →∞ for all n ∈ N, then zn → γ.

Proof. For ε > 0 let i0 ∈ N be such that 2−i0 < ε. By the assumption, we can find k0 ∈ N
such that for all ` ≤ 2i0 and all k ≥ k0 − i0 we have |z`·2k − γ| < ε. For n > 2k0+i0 , with

2k−1 ≤ n < 2k, let ` = dn · 2i0−ke ≤ 2i0 . Then 0 ≤ ` · 2k−i0 − n < 2k−i0 , hence

|zn − γ| ≤ |zn − z`·2k−i0 |+ |z`·2k−i0 − γ| ≤
c2k−i0

n
+ ε < ε(1 + 2c),

completing the proof. �

For positive integers m < n, i, j ∈ {0, 1}, and x ∈ Σ2 let

Ni(x
n
m) = # {k ∈ [m,n] ∩ N : xk = i} ,

Nij(x
n
m) = # {k ∈ [m,n] ∩ N : xk = i, x2k = j} .
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Further, for x ∈ Σ2 and even n denote

αn(x) =
N1(x

n
n/2+1)

n/2
. (10)

Observe that αn(x) ∈ [0, 1], and it is easy to see that

|αn − αn+m| ≤
2m

n
for n,m even. (11)

Lemma 6. Let µ be a Markov measure on Σ2, with initial probability (row) vector p =

(1 − p, p) and transition matrix P =

(
1− p p

q 1− q

)
. Let Pµ be the measure on Σ2

defined by (6). Then for Pµ-a.e. x ∈ Σ2 we have

lim
n→∞

αn(x) =
2p

1 + p+ q
=: ξ,

where αn(x) is defined in (10).

Proof. We assume n to be even. Consider nα2n(x), the number of 1’s in xi’s for i ∈
(n, 2n]. There are n/2 odd numbers i in (n, 2n]. By the definition of the measure Pµ,

the corresponding xi are chosen to be 1 independently with probability p. Thus, by

the Law of Large Numbers, the number of 1’s among them is np/2 + o(n). Among

the even numbers 2i in (n/2, n], there is nαn(x)/2 numbers for which xi = 1, and

there will be approximately nαn(x)(1 − q)/2 1’s there, again using the Law of Large

Numbers, since 1− q is the probability of the transition 1→ 1 according to the Markov

measure µ. Similarly, there is n(1−αn(x))/2 numbers 2i ∈ (n, 2n] for which xi = 0, and

approximately n(1− αn(x))p/2 1’s among those. Hence we have

α2n(x) =
p

2
+
αn(x)(1− q)

2
+
αn(x)(1− αn(x))p

2
+ εn(x)

= p+
αn(x)(1− q − p)

2
+ εn(x),

where εn(x) → 0 for Pµ-a.e. x. Since |(1 − q − p)/2| < 1, it follows that α2kn(x) → ξ

for Pµ-a.e. x, where ξ = p + ξ(1 − q − p)/2, i.e. ξ = 2p
1+p+q . Then for Pµ-a.e. x we have

α2kn(x)→ ξ for all n ∈ N. It remains to recall (11) and apply Lemma 5. �

Proof of Lemma 3(i). We claim that

lim
n→∞

N11(x
n
1 )

n
= ξ(1− q) =

2p(1− q)
1 + p+ q

= θ

for a Pµ-typical point x ∈ Σ2. Indeed, the initial part of the sequence does not impact

the limit, and for n big enough we see 1’s with frequency ξ and thus 11’s (in positions
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i, 2i) with frequency ξ(1− q), by the definition of Pµ. This means that Pµ-a.e. x is in Aθ,

as desired. �

Fix an even integer n. Denote

N1,odd = N1,odd(xn1 ) := #{k ≤ n : k odd, xk = 1}.

By the definition of µ = µp,P and Pµ we have, for any x and even n:

Pµ[xn1 ] = pN1,odd(1− p)n/2−N1,odd(1− p)N00pN01qN10(1− q)N11 (12)

where Nij = Nij(x
n/2
1 ).

For the rest of the proof we write log for log2 to simplify notation.

Proof of Lemma 3(ii). For Pµ-a.e. x ∈ Σ2, we see 1’s with frequency p in odd places,

and similarly to the proof of Lemma 3(i), the frequency of 00’s, 01’s, 10’s, and 11’s is

(1 − ξ)(1 − p), (1 − ξ)p, ξq, and ξ(1 − q) respectively. Therefore, for Pµ-a.e. x ∈ Σ2 the

formula (12) yields

lim
n→∞

− logPµ[xn1 ]

n
= −(1/2)

[
(2− ξ)p log p+ (2− ξ)(1− p) log(1− p)

+ξq log q + ξ(1− q) log(1− q)
]

=
(1 + q)H(p) + pH(q)

1 + p+ q
,

as desired. �

In view of Lemma 3(i),(ii) and Lemma 2(i), we have that

dimH(Aθ) ≥ s(p, q) =
(1 + q)H(p) + pH(q)

1 + p+ q
, where θ =

2p(1− q)
1 + p+ q

. (13)

Thus, we should find the constrained maximum of s(p, q) on [0, 1]2. This is a straightfor-

ward exercise, but we include it for the record and in order to explain where the formula

(4) comes from. It is actually not needed for the proof of the main result, since we could

just produce the answer for the optimization problem and refer to Lemma 4. We also

include the verification of (7).

Proof of Lemma 3(iii). We use the method of Lagrange multipliers. Differentiating s(p, q)

yields

(1 + p+ q)2
∂s(p, q)

∂p
= (1 + q)[(1 + p+ q) log(1−pp )−H(p) +H(q)]

= (1 + q)[(2 + q) log(1− p)− (1 + q) log p+H(q)],
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(1 + p+ q)2
∂s(p, q)

∂q
= p[(1 + p+ q) log(1−qq ) +H(p)−H(q)]

= p[(2 + p) log(1− q)− (1 + p) log q +H(p)].

Differentiating the constraint g(p, q) = θ(1 + p+ q)− 2p(1− q) = 0 yields

∇g(p, q) = (θ − 2(1− q), θ + 2p) =
(−2(1− q)(1 + q)

1 + p+ q
,
2p(2 + p)

1 + p+ q

)
.

At the point of constrained maximum we have ∇s(p, q) = λ∇g(p, q), which reduces to

(2 + p)[(2 + q) log(1− p)− (1 + q) log p+H(q)]

= −(1− q)[(2 + p) log(1− q)− (1 + p) log q +H(p)].

The latter becomes, after collecting the terms:

3(1 + p+ q) log(1− p) = 2(1 + p+ q) log p+ (1 + p+ q) log q,

so p2q = (1− p)3, as claimed.

It remains to verify the formula (7). We have

f(θ) = − log(1− p)− θ

2
log
[(1− q)(1− p)

qp

]
= − log(1− p)− p(1− q)

1 + p+ q
log
[(1− q)(1− p)

qp

]
.

Comparing the latter with

s(p, q) =
(p log 1−p

p − log(1− p))(1 + q) + p(q log 1−q
q − log(1− q))

1 + p+ q

results in (1+p+ q)(f(θ)−s(p, q)) = −p[2 log 1−p
p +log 1−q

q +log(1−p)− log(1− q)] = 0,

whenever p2q = (1− p)3, as desired. �

Proof of Lemma 4. Fix any x and an even n ∈ N. We continue to use the notation

Nij = Nij(x
n/2
1 ). Since N00 +N01 +N10 +N11 = n/2, we have from (12):

Pµ[xn1 ] = pN1,odd+N01(1− p)n−N1,odd−N01−N10−N11qN10(1− q)N11

= (1− p)n
( p

1− p

)N1,odd+N01
( q

1− q

)N10
(1− q

1− p

)N10+N11

.

Observe that

N10 +N11 = N1(x
n/2
1 ) and N1,odd = N1(x

n
1 )−N01 −N11.
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The equation p2q = (1− p)3 can be rewritten as 1−q
1−p = 1−q

q

(1−p
p

)2
. Combining this with

the last several equalities yields

Pµ[xn1 ] = (1− p)n
( p

1− p

)N1(xn1 )−N11−2N1(x
n/2
1 )(1− q

q

)N11

= (1− p)n
((1− q)(1− p)

qp

)N11( p

1− p

)N1(xn1 )−2N1(x
n/2
1 )

.

Thus,

− logPµ[xn1 ]

n
= − log(1− p)− N11(x

n/2
1 )

n
log
((1− q)(1− p)

qp

)
+
(N1(x

n
1 )

n
− N1(x

n/2
1 )

n/2

)
log
( p

1− p

)
= f(θ) +

(
θ − N11(x

n/2
1 )

n

)
log
((1− q)(1− p)

qp

)
+
(N1(x

n
1 )

n
− N1(x

n/2
1 )

n/2

)
log
( p

1− p

)
, (14)

where f(θ) is from (7). Observe that limn→∞
N11(x

n/2
1 )

n = θ/2 for all x ∈ Aθ. Now replace

n by 2` for ` = 1, . . . , L, and take the average over `. The expression in the last line of

(14) “telescopes,” so we obtain

1

L

L∑
`=1

(− logPµ[x2
`

1 ]

2`
− f(θ)

)
=

1

L

L∑
`=1

(θ
2
− N11(x

2`
1 )

2`

)
log
((1− q)(1− p)

qp

)
+

1

L
log
( p

1− p

)(N1(x
2L
1 )

2L
− N1(x

2
1)

2

)
,

which tends to zero, as L→∞. It follows that

lim inf
`→∞

− logPµ[x2
`

1 ]

2`
≤ f(θ) for all x ∈ Aθ,

and the proof of (8) is complete. �

4. Concluding remarks

1. It is not hard to verify that, under the conditions (4) and (5) we have (1−q)(1−p)
qp < 1

if and only if θ < 1/4. Therefore, by the argument in the last section, it immediately

follows that

dimH(A+
θ ) = f(θ) for θ ∈ (0, 1/4), dimH(A−θ ) = f(θ) for θ ∈ (1/4, 1),
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where

A+
θ :=

{
(xk)

∞
1 ∈ Σ2 : lim sup

n→∞

1

n

n∑
k=1

xkx2k ≤ θ
}
,

A−θ :=
{

(xk)
∞
1 ∈ Σ2 : lim inf

n→∞

1

n

n∑
k=1

xkx2k ≥ θ
}
.

2. We extended the result of Theorem 1 to the case of arbitrary functions f1, f2 on the

shift Σ2 depending on the first digit x1. The method is the same, but the calculations

are more involved, so we only state the result.

Theorem 7. For β, γ ∈ R, let

Aθ(β, γ) :=
{

(xk)
∞
1 ∈ Σ2 : lim

n→∞

1

n

n∑
k=1

(xk + β)(x2k + γ) = θ
}

We have

dimH(Aθ(β, γ)) = −1

2
log2[p0(1− p)]−

θ

2
log2

[(1− q)(1− p)
qp

]
,

where

1− p
1− q

=
( q

1− q

)1+2β+γ( p

1− p

)2+2β+γ
,

1− p0
p0

=
( q

1− q

)β( p

1− p

)1+β
,

and

θ = βγ +
(1 + β + γ − q)(1 + p− p0) + β(p0(p+ q)− q)

1 + p+ q
.

The appropriate measure is Pµ, with µ Markov, having the initial distribution (p0, 1−p0)

and the transition matrix

(
1− p p

q 1− q

)
.

3. After this work was essentially completed, we were informed that A.-H. Fan, J.

Schmeling, and M. Wu have computed the dimension of Aθ (in a different, but equivalent

form) and other sets of this type, independently, but also building on [15].

Acknowledgment. We are grateful to the referee for helpful comments and suggestions.
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