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Mixing times are hitting times of large sets
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Abstract

We consider irreducible reversible discrete time Markov chains on a finite state space. Mixing
times and hitting times are fundamental parameters of the chain. We relate them by showing
that the mixing time of the lazy chain is equivalent to the maximum over initial states x and
large sets A of the hitting time of A starting from xz. We also prove that the first time when
averaging over two consecutive time steps is close to stationarity is equivalent to the mixing
time of the lazy version of the chain.
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1 Introduction

Mixing times and hitting times are among the most fundamental notions associated with a finite
Markov chain. A variety of tools have been developed to estimate both these notions; in particular,
hitting times are closely related to potential theory and they can be determined by solving a system
of linear equations. In this paper we establish a new connection between mixing times and hitting
times for reversible Markov chains (Theorem [LT]).

Let (X¢)t>0 be an irreducible Markov chain on a finite state space with transition matrix P and
stationary distribution 7. For x,y in the state space we write

Pl(z,y) = Po(X, = ),

for the transition probability in ¢ steps.

Let d(t) = max || P'(z,-) — 7|, where ||u — v|| stands for the total variation distance between the
xT

two probability measures p and v. Let € > 0. The total variation mixing is defined as follows:
tmix(€) = min{t > 0: d(t) < e}.

We write P} for the transition probability in ¢ steps of the lazy version of the chain, i.e. the chain

with transition matrix £, If we now let dy(t) = max||Pf(z,) — 7|, then we can define the
x

mixing time of the lazy chain as follows:

tr(e) =min{t > 0:dp(t) < e}. (1.1)
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For notational convenience we will simply write ¢, and ¢,;x when e = 1/4.

Before stating our first theorem, we introduce the maximum hitting time of “big” sets. Let av < 1/2,
then we define
tn(a) = max  Eg|74],
H( ) z,Am(A) >« :c[ A]
where 74 stands for the first hitting time of the set A by the Markov chain with transition matrix P.

It is clear (and we prove it later) that if the Markov chain has not hit a big set, then it cannot have
mixed. Thus for every a > 0, there is a positive constant ¢, so that

tr, > tu(a).
In the following theorem, we show that the converse is also true when a chain is reversible.

Theorem 1.1. Let a@ < 1/2. Then there exist positive constants ¢, and ¢, so that for every
reversible chain

C;tH(Oé) <ty < catula).

Remark 1.2. Aldous in [2] showed that the mixing time, t.s, of a continuous time reversible chain

is equivalent to tproq = Am?j() m(A)E,[T4]. The inequality tproq < citets, for a positive constant
z,A:m(A)>0

c1, which was the hard part in Aldous’ proof, follows from Theorem [[LT]and the equivalence t1, < tcs
(see [0, Theorem 20.3]). For the other direction we give a new proof in Section

Remark 1.3. In Section [0 we present an application of Theorem [I.1] to robustness of the mixing
time. Namely, we show that for a finite binary tree, assigning bounded conductances to the edges
can only change the mixing time of the lazy random walk on the tree by a bounded factor. However,
we note that not all graphs are robust to conductance perturbations. A counterexample is given
by Ding and Peres in [4].

To avoid periodicity and near-periodicity issues, one often considers the lazy version of a discrete
time Markov chain. In the following theorem we show that averaging over two successive times
suffices, i.e. t1, < taye (%) where

< 5} .

Theorem 1.4. There exist universal positive constants ¢ and ¢ so that for every reversible Markov
chain

Pt($7 ) + Pt+1($7 )
2

tave(€) = min {t > 0 : max -7
xX

For notational convenience we will simply write ¢,y when ¢ = 1/4.

CtL < tave < C/tL-

The problem of relating ¢,y to the mixing time f.s of the continuous-time chain was raised in
Aldous-Fill [1], Chapter 4, Open Problem 17. Since t.s < t1, (see [0, Theorem 20.3]), Theorem [[4]
gives a partial answer to that problem.

2 Preliminaries and further equivalences

In this section we first introduce some more notions of mixing. We will then state some further
equivalences between them mostly in the reversible case and will prove them in later sections. These
equivalences will be useful for the proofs of the main results, but are also of independent interest.



The following notion of mixing was first introduced by Aldous in [2] in the continuous time case
and later studied in discrete time by Lovasz and Winkler in [7, 8]. It is defined as follows:

tstop = maxmin{E;[A;] : A, is a stopping time s.t. P,(Xp, € -) =7(-)}. (2.1)
xr

The definition does not make it clear why stopping times achieving the minimum always exist. We
will recall the construction of such a stopping time in Section

The mixing time of the lazy chain and the average mixing are related to tsp in the following way.

Lemma 2.1. There exists a uniform positive constant ¢ so that for every reversible Markov chain

tave < C1tstop-
Lemma 2.2. There exists a uniform positive constant co so that for every reversible Markov chain

tstop < cotL.

We will prove Lemma 2] in Section 8l Lemma 2.2 was proved by Aldous in [2], but we include the
proof in Section [ for completeness.

In Section ] we will show that for any chain we have the following:

Lemma 2.3. For every e < 1/4, there exists a positive constant c3 so that for every Markov chain
we have that
t1.(g) < cstave().

Definition 2.4. We say that two mixing parameters s and r are equivalent for a class of Markov
chains M and write s =< r, if there exist universal positive constants ¢ and ¢’ so that cs < r < s
for every chain in M. We also write s < r and s 2 r if there exist universal positive constants ¢;
and co such that s < ¢qr and s > cor respectively.

Proof of Theorem [1.7] Lemmas 2] and 23] give the desired equivalence between t,,, and
tL,. O
Combining the three lemmas above we get the following:

Corollary 2.5. For every reversible Markov chain t1, and tsop are equivalent.

Remark 2.6. Aldous in [2] was the first to show the equivalence between the mixing time of a
continuous time reversible chain and Zgp.

We will now define the notion of mixing in a geometric time. The idea of using this notion of
mixing to prove Theorem [Tl was suggested to us by Oded Schramm (private communication June
2008). This notion is also of independent interest, because of its properties that we will prove in
this section.

For each t, let Z; be a Geometric random variable taking values in {1,2,...} of mean ¢ and success
probability t~!. We first define

do(t) = max [Po(Xz, =) — .
The geometric mixing is then defined as follows
tc =tg(1/4) = min{t > 0 : dg(t) < 1/4}.

We start by establishing the monotonicity property of dg(t).



Lemma 2.7. The total variation distance dg(t) is decreasing as a function of t.

Before proving this lemma, we note the following standard fact.

Claim 2.1. Let T and T' be two independent positive random variables, also independent of the
Markov chain. Then for all x

[Pz( X7y = -) = 7| < [|Pe(X7 = -) — 7.

Proof of Lemma [2.7]. We first describe a coupling between the two Geometric random variables,
Z; and Zyyq. Let (U;)i>1 be a sequence of i.i.d. random variables uniform on [0,1]. We now define

IN

1
Zt:min{izlei ;} and

1
t+1 mln{Z_ Z_t—|—1}

It is easy to see that
Zyy1 — Z; is independent of 7.

Indeed, P(Zy11 = Zy|Zy) = H-Ll and similarly for every k > 1 we have P(Zy11 = Zy + k|Z;) =

L \EL 2
41 1) -
We can thus write Z;1 = (Zy41 — Z¢) + Zy, where the two terms are independent.

Claim [ZT] and the independence of Z;; — Z; and Z; give the desired monotonicity of dg(t). O

Lemma 2.8. For all chains we have that

ta < 4tstop + 1.

The converse of Lemma [2.8]is true for reversible chains in a more general setting. Namely, let Ny
be a random variable independent of the Markov chain and of mean t. We define the total variation
distance dy(t) in this setting as follows:

dn(t) = max P (XN, =) — 7.
Defining ty = tn(1/4) = min{t > 0 : dy(t) < 1/4} we have the following:
Lemma 2.9. There exists a positive constant c4 such that for all reversible chains
tstop < C4tN-
In particular, tsiop < catq.

We will give the proofs of Lemmas 2.8 and 2.9 in Section (Bl
Combining Corollary 2.5l with Lemmas [2Z.8 and we deduce:

Theorem 2.10. For a reversible Markov chain tg and ty, are equivalent.

We end this section by stating and proving a result relating ¢,,;x and t,v for any Markov chain.
First by the triangle inequality it is clear that always t.ve < tmix. For the converse we have the
following:



Proposition 2.11. Let 0 < § < 1. There exists a positive constant cs so that if P is a transition
matriz satisfying P(x,z) > 6, for all x, then

1
v < — .
tmlx >~ Cs <tave \ 5(1 — 5)>

Proof. By the triangle inequality we have that for all x
| Pt(z, ) — 7| < H%Pt(a:, )+ %Ptﬂ(x, ) = 7TH + H%Pt(x, )= %Ptﬂ(x, )H )

Thus it suffices to show that for all starting points x and all times ¢ there exists a positive constant
cg such that

Ce
”Pt(x7) - Pt+1(‘r7 )” <

~/te(1—6)’

since tmix(€) < Crtmix (%E), for a positive constant ¢; and ¢ < %.

(2.2)

We will now construct a coupling (X, Y;11) of P(z,-) with P/*1(x,-) such that

C6
NZITED)

Since for all = we have that P(x,x) > 0, we can write

P(X; # Yiy1) <

P=6I+(1-0)Q,

for a stochastic matrix (). Let Z be a chain with transition matrix @) that starts from x. Let N; and
N/ be independent and both distributed according to Bin(¢,1 — §). We are now going to describe

the coupling for the two chains, X and Y. Let (Wy)s>1 and (W})s>1 be i.i.d. random variables
t

with P(W7 =0) =1—-P(W; =1) =¢6. We define Ny = Z W, and define a process (N/) by setting

s=1

Ny =0 and

t
N J 2 i N £ N
=

s=1

N, if Ny_1 = N/.

It is straightforward to check that N’ is a Markov chain with transition matrix
A(n,n)=6=1—A(n,n+1) for all n € N.

Hence, if for all t we set X; = Z N! and Y; = Zy;,, then it follows that both X and Y are Markov
chains with transition matrix P. We now let 7 = min{t > 0 : X; = Y1} If Wp = 0, ie.
Y, = Xy = x, then 7 = 0. Otherwise, on the event W7 = 1, we can bound 7 by

t+1
Tgmin{tzozNgzlJrZWs}.

s=2

We thus see that 7 is stochastically dominated by the first time that N/ — 22112 W, hits 1. But
N|— 2?;12 Wy is a symmetric random walk on the real line with transition probabilities p(k, k+1) =
p(k,k —1) =06(1 —9) for all k. By time ¢ this random walk has moved L number of times, where

L ~ Bin(t, 25(1 — 4)).



By the Chernoff bound for Binomial random variables we get that
P <L _ t5(12— 5)) < ~9I(1-8)/16. (2.3)

Therefore we have that

P(r>t) <P (L < M(l%) +P <7- >t L> M) < ¢ (1-0)/16 4 p <T1 > M) ,

where T denotes the first hitting time of 1 for a simple random walk on Z. By a classical result
for simple random walks on Z (see for instance [6, Theorem 2.17])

to(1 —5)) - 122
2 T /to(1—0)

and this concludes the proof. O

Py <T1 >

Remark 2.12. We note that the upper bound given in Proposition 2.11]is tight, in the sense that
both ¢, and % can be attained. Indeed, for lazy chains t,ix and t.ye are equivalent. This follows
from the observation above that taye < tmix and [0, Proposition 5.6]. For § < 1/2, consider the
0 1-96

1_6 5 > . It is easy to see that in this case the mixing time is

following transition matrix (

of order % .

3 Stopping times and a bound for 7,

In this section we will first give the construction of a stopping time T" that achieves stationarity,
i.e. for all 2,y we have that P, (X7 = y) = 7(y), and also for a fixed = attains the minimum in the
definition of tgop in (Z)), i.e.

E;[T] = min{E;[A;] : A is a stopping time s.t. Py(Xa, € -) = w(-)}. (3.1)

The stopping time that we will construct is called the filling rule and it was first discussed in [3].
This construction can also be found in [I, Chapter 9], but we include it here for completeness.

First for any stopping time .S and any starting distribution p one can define a sequence of vectors
0.(t) =P, ( Xy =2,8 >t), 0.(t) =Pu(Xy =2,5=1). (3.2)
These vectors clearly satisfy

0<a(t) <), (B(t) —a(t)P =0(t+1) Ve 6(0) = pu. (3.3)

We can also do the converse, namely given vectors (0(t),o(t);t > 0) satisfying (3.3) we can construct
a stopping time S satisfying ([3.2). We want to define S so that

P(S:t|5>t—1,Xt:$,Xt_1 ::Et_l,...,X(]::E(]): . (34)

Formally we define the random variable S as follows: Let (U;);>0 be a sequence of independent
random variables uniform on [0, 1]. We now define S via

. . UXt(t)
S—lnf{tzO.Utg 9Xt(t)}'




From this definition it is clear that (3.4)) is satisfied and that S is a stopping time with respect to an
enlarged filtration containing also the random variables (U;);>0, namely Fs = o(Xo, U, ..., X5, Us).
Also, equations (3.2)) are satisfied. Indeed, setting z; = = we have

t—1
Pu(Xi=2,8>t)= Z w(zo) H (1 — ka(k)) P(xg, xps1) = 0.(t),

TO, L1, Tt—1 k=0 65% (k)

since 6,,(0) = p(y) for all y and also 6(t +1) = (6(t) — o(t))P so cancelations happen. Similarly we
get the other equality of (B.2]).

We are now ready to give the construction of the filling rule 7. Before defining it formally, we
give the intuition behind it. Every state x has a quota which is equal to 7(x). Starting from an
initial distribution p we want to calculate inductively the probability that we have stopped so far
at each state. When we reach a new state, we decide to stop there if doing so does not increase
the probability of stopping at that state above the quota. Otherwise we stop there with the right
probability to exactly fill the quota and we continue with the complementary probability.

We will now give the rigorous construction by defining the sequence of vectors (6(t),o(t);t > 0)
for any starting distribution u. If we start from z, then simply p = §,. First we set 0(0) = u. We
now introduce another sequence of vectors (X(t);t > —1). Let ¥,(—1) = 0 for all z. We define
inductively

() = 0.(t), if ¥p(t—1) +6,(t) < w(x);
e = m(x) — Xz (t —1), otherwise.

Then we let 3,(t) = > .., 04(s) and define 6(¢ + 1) via (F3). Then o will satisfy (3.2) and
Y2(t) = Pu(X7r =2, T <t). Also note from the description above it follows that ¥,(t) < 7(x), for
all z and all £. Thus we get that

Pu(Xr = 2) = Jim 3,(t) < n(x)

and since both P, (X7 = -) and n(-) are probability distributions, we get that they must be equal.
Hence the above construction yielded a stationary stopping time. It only remains to prove the
mean-optimality (BI]). Before doing so we give a definition.

Definition 3.1. Let S be a stopping time. A state z is called a halting state for the stopping
time if S < T, a.s. where T, is the first hitting time of state z.

We will now show that the filling rule has a halting state and then the following theorem gives the
mean-optimality.

Theorem 3.2 (Lovéasz and Winkler). Let u and p be two distributions. Let S be a stopping time
such that P, (Xs = x) = p(x) for all x. Then S is mean optimal in the sense that

E,[S] = min{E,[U] : U is a stopping time s.t. P,(Xy € -) = p(-)}

if and only if it has a halting state.

Now we will prove that there exists z such that T" < T, a.s. For each x we define

ty = min{t : X,(t) = w(x)} < oc.



Take z such that ¢, = maxt, < oco. We will show that T' < T, a.s. If there exists a ¢ such that
xr

P,(T >t,T. =t) >0, then ¥,(t) = 7(x), for all z, since the state z is the last one to be filled. So
if the above probability is positive, then we get that

(T < 1) ZE

which is a contradiction. Hence, we obtain that P,(T > t,T, = t) = 0 and thus by summing over
all t we deduce that P,(T < T.) = 1.

Proof of Theorem [3.2. We define the exit frequencies for S via v, = E,

S—1
Z 1(Xy, = x)] , for
k=0

all z.
Since P, (Xs =) = p(-), we can write
S S—1
u[Zle—fﬂ =B, | Y 1(Xg =2)| +p(x) = va + p(2)
0 k=0

We also have that
[Zl Xk—x] = p(z +EM

Since S is a stopping time, it is easy to see that

S
E, Zl(Xk = x)] = ZVyP(y,a;
k=1 Y

Hence we get that

ve + p(x ) + Z vy Py, x (3.5)

Let T be another stopping time with P, (X7 = ) = p() and let v/, be its exit frequencies. Then
they would satisfy (B3], i.e.

vh + p(z ZuPy,

Thus if we set d = 1/ — v, then d as a vector satisfies

d=dP,
and hence d must be a multiple of the stationary distribution, i.e. for a constant a we have that
d= arm.

Suppose first that S has a halting state, i.e. there exists a state z such that v, = 0. Therefore we
get that v, = am(z), and hence a > 0. Thus v/}, > v, for all z and

BT =3 v/(@)2 Y v = B8
x x

and hence proving mean-optimality.

We will now show the converse, namely that if S is mean-optimal then it should have a halting

state. The filling rule was proved to have a halting state and thus is mean-optimal. Hence using
the same argument as above we get that S is mean optimal if and only if min v, = 0, which is the
x

definition of a halting state. O



Before giving the proof of Lemma [2.1] we state and prove a preliminary result.

Lemma 3.3. Let X be a reversible Markov chain on the state space I' and let L,U be positive
constants. Let T' be a stopping time that achieves stationarity starting from x, i.e. Pp(Xp = y) =
m(y), for all'y. For all y and all times u we define fy(u) = 3P,(X, = y, T < L) + 3P, (Xyy1 =
y, T < L). Then there exists u < L + U such that

fy(u
Zy <1+ﬁ

Proof. In this proof we will write P, ,(t) = P’(z,y) for notational convenience. We define a
measure v on I' x [0, L] by

V(W ) = ]P ( L (XTaT) S (7))
We define g,(u) = $P,(Xr4u = y, T < L) + 3Po(Xpyus1 = y, T < L) for 0 < u < U — 1. By

conditioning on (XT, T) we get
1
gy(u) = 5 Z(Pz,y(L +u—s)+ P, (L+u+1—s)v(zs),
(2,9)

where the sum is over (z,s) in ' x [0, L]. Thus

42 =N+ 1+ I3+ 14, (3.6)

where

I = Z Z ﬂ_l(y)le,y(L +u—51)Psy (L +u— s2)v(z1,51)v(22, 52),

I, = Z Z ﬂ_l(y)le,y(L +u—51)Ps (L +u+1—s2)v(21,51)1(22,52),

Is = Z Z ﬂ_l(y)le,y(L +u+1—51)P,, (L +u— s2)v(21,51)v(22,52) and
Iy = Z Zﬂ_l(y)le,y(L +u+1—51)P,, (L +u+1—s9)v(21,51)v(22,52).

By reversibility we have that

I = Z 77(22)_1PZ17Z2(2L + 2u — s1 — so)v(z1, $1)v(22, 52),

(21,51)
(22,52)

I = Z 7T(Z2)_1P21722(2L +2u+1— 81 — s9)v(z1,51)v(22,82),

(21,51)
(22,52)

I3 = Z 7T(Z2)_1P21722(2L +2u+1— 81 — s9)v(z1,81)v(22,82) and

(21,51)
(22,52)

= Z 77(22)_1PZ17Z2(2L +2u+2 — 51 — s9)v(z1, 51)v(29, 52).

(21,51)
(22,52)



By considering two cases depending on whether s; + s5 is odd or even it is elementary to check
that

U—- 1 2L+2U~1
Z 20 (2L 4+ 2u — 51— s2) + Py (2L 4+2u+1— 51— s52)) < T Z P, ., (u),
u=0
since $1, s € [0, L]. Similarly
1 U-1 2L+2U 1
—Z (2L +2u+2 =51 —s2) + Py, (2L +2u+1— 51 — 59)) Z P, . (u
u=0

In this last average we have no dependence on si, so. Hence using (3.0, the fact that v(z,[0,L]) <
m(z) for all z and stationarity of m, we get that

1 2L+2U~-1 2L+2U~-1
U Z Zﬂ' U 2 S E Z 77_1(22 ( Z Pz17z2 Z PZ1722 ) ( ) (22)

u=0 vy 21,22
=1+ LJU.

This is an upper bound for the average, hence there exists some u < U — 1 such that

}:w P <1+L/U.

O

Remark 3.4. We note that the above lemma uses the same approach as in Aldous [2, Lemma 38].
Aldous’ proof is carried out in continuous time. The proof of Lemma B3] cannot be done in discrete
time for the non lazy version of the chain, since in this case defining f,(u) = P,(X, =y, T < L),

2
we would get that g fy((u;
m(y

We now have all the ingredients needed to give the proof of Lemma 211

<2+ i This is where the averaging plays a crucial role.

Proof of Lemma [2.1. We fix x. Let T be the filling rule as defined at the beginning of this
section, which was shown to achieve the minimum appearing in the definition of sop. Thus, since
in the definition of ¢4, there is a maximum over the starting points, we have that

E,[T] < tstop- (3.7)

Let fy(u) = %Pm(Xu =y T <L)+ %]P’x(XuH = y,T < L) as appears in Lemma B3] where L
and U are two positive constants whose precise value will be determined later in the proof and
u < L + U is such that

(3.8)

SIS

Z fy(w) <

m(y)
We then have

1 U 1 u+1
H2P (m,)+2P (x,-)—m

- '%Pw,y) # 5P o)~ ()

Z | fy (u |>

Pu :E y 4= Pu+1(l‘ y

(S}
<PxT>L +Z!fy <>r>,

l\’)l}—t

10



since f,(u) < 1PU(x,y) + 1P (@, y) and 5, £, (u) = P (T < L).
By the Cauchy—Schwarz inequality we deduce that

2
<Z|fy(u)—7r(y)l) - (Z )2 %D <3y —n(y)?

Y Y

:Zﬂ'( () —Qny +1_Z (y) "' fy(w)? = 2P (T < L) +
y

Y

Using (3.8]) we get that this last expression is bounded from above by

L
2P.(T > L)+ —.
(T>1)+7

Since ||$P!(z,-) + 3P (x,-) — 7| is decreasing in ¢, we conclude that

1/2
< % <]P’I(T>L)+ <2]P’I(T>L)+5> ) .

If we now take L = 20tgop and U = 10L, then by Markov’s inequality and (3.7) we get that the
total variation distance

1 1
H§PL+U(1,7 ) + §PL+U+1(Z', ) o

1 1 1
§PL+U($,-)+§PL+U+1(x,-)—7'(' < Z
Thus we get that tave < L + U = 220t;p and this concludes the proof of the lemma. O

4 Proofs of equivalences

In Section [ we defined the notion of tstop In order to prove Lemma we will first show a

preliminary result that compares tgop to tstop, where the latter is defined as

tSLtOp —maxmm{E [U,] : U, is a stopping time s.t. P, (X{, € ) = w(-)},

where X1 stands for the lazy version of the chain X.

Lemma 4.1. For every chain we have that

1 L
tstop = 2tst0p

Proof. Let X* denote the lazy version of the chain X. Then X’ can be realized by viewing X
at a Bin(t, 1/2) time, namely let f(t) ~ Bin(t,1/2), then X} = Xy as. We can express f(t)

as f(t) Zf ), where (£(j));j>0 are i.i.d. fair coin tosses. Let T be a stopping time for the

lazy chain X L. We enlarge the filtration by adding all the coin tosses. In particular for each k we
consider the following filtration:

Fr=0(Xo, ..., Xi, (&) >0)-

11



It is obvious that X has the Markov property with respect to the filtration F too. Also f(T) is a
stopping time for that filtration. Indeed,

T [
{f(T)=1t}= ij:t :U T:&Zgj:t
Jj=0 =0

>t
and for each ¢ > t we have that

14

T=10Y &=ty co(Xo,...,Xs,(§)520),
j=0

since on the event f(¢) =t we have that X} = Xy@ = Xi. Hence f(T') is a stopping time for X
and it achieves stationarity, since for all x and y

Py (Xpr) =y) = PolXE =y) =7(y),

since T' achieves stationarity for the lazy chain. By Wald’s identity for stopping times we get that
for all x

T
E[f(T)] = B, | YO60) | = BalTIEIE) = SE.I7)

Hence using a stopping time of the lazy chain X’ achieving stationarity we defined a stopping time
for the base chain X achieving stationarity and with expectation equal to half of the original one.
Thus for all  we obtain that

{E,[T] : T stopping time s.t. P, (X7 =) = 7}
C {2E,[T'] : T stopping time s.t. P, (X7v =) = 7}.

Therefore taking the minimum concludes the proof. O

Before giving the proof of Lemma we introduce some notation and a preliminary result that
will also be used in the proof of Lemma For any t we let

Pt(:v’y)]

@) and d(t) = max ||P"(z,-) — P*(y,-)|

:Biy

s(t) = max [1 -
m7y

We will call s the total separation distance from stationarity.

We finally define the separation mixing as follows
tsep = min{t > 0: s(t) < 3/4}.
Lemma 4.2. For a reversible Markov chain we have that

d(t) < d(t) < 2d(t) and s(2t) <1—(1—d(t))%

Proof. A proof of this result can be found in [I, Chapter 4, Lemma 7| or [0, Lemma 4.11 and
Lemma 19.3]. O

Remark 4.3. Lemma above gives that tsp < 2tmix.
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Lemma 4.4. There exists a positive constant ¢ so that for all chains we have

tstop < Ctsep
Proof. Fix t = tsp. Then we have that for all x,y

P'(e,) 2 (1= 3/4)m(y) = 1(y).

Hence, we can write
1 3
Pl(w,y) = 77(y) + Jva(v),
where for a fixed x we have that v, is a probability measure. We can now construct a stopping
time S € {t,2t,...} so that for all =

Py(Xs €S —1) = iw(-)

and by induction on m such that

P,(Xg €8 =mt) = (g)m_l L.

Therefore it is clear that Xg is distributed according to = and E,[S] = 4¢. Hence we get that
7fstop S 4tsop- ]

Proof of Lemma [2.2. Let tSLOp stand for the separation mixing of the lazy chain. Then Lemma 4]
gives that

L L
tstop S Ctsep‘
Finally, Lemma 1] and Remark conclude the proof. O

Proof of Lemma[2.3. Fix t. Let T be a random variable taking values ¢t and ¢ 4+ 1 each with
probability 1/2, i.e.
t .p.
7Y w.p
t+1, w.p.

Thus T can be written as T' = Y] + ¢, where Y] is Bernoulli with probability % Then we have that
for all z and y

DOl D=

1
2
Let Z ~ Bin(3t, %) Then we can write Z as Z = Y] + Z1, where Z; is distributed according to
Bin(3t—1, %) and is independent of Y;. Therefore Z can be expressed as the sum of two independent
random variables, Z = T + (Z1 — t). (With high probability Z; —t ~ (Z1 —t);.) We fix x. By the
triangle inequality for the total variation distance, we obtain

1
Po( X7 =y) = sP.(Xy = y) + §Pw(Xt+1 =1).

IPe(Xz =) = 7| < Pe(Xrp(zi—t), =) = 7l + IPe(Xrp(zi—6) = *) — Pa(X1p(2,-1). = )I-

Since T and (Z; —t)4 are independent and (Z; —t)4+ > 0, by the monotonicity of the total variation
distance Claim 2.1l we deduce that

IPe( X1y (z1-0), =) = 7l < [[Pe(X7 =) — . (4.1)

13



It is easy to see that
IPe (X1 (21—t = ) = Pe(Xrp(zi—t), = ) <Pa(Z1 < t) <™, (4.2)

for a positive constant ¢, since Z; follows the Binomial distribution. Hence by (I and (£2]) we
get that

IPo(Xz =) — 7|l < [|Po(Xp =) — 7| + e (4.3)

The mixing time for the lazy chain was defined in (II]). Equivalently it is given by
t1,(€) = min {t L max IPi( Xz =) — 7| < E} ,

where Z' is distributed according to Bin(¢,1/2). Thus
t1,(¢) < 3min {t F max IPi( Xz =) —7| < E} .

Finally, from (43]) we get that there exists a constant ca > 0 such that

tL (%E) < Cotaye().

But t, (%5) > caty,(e), since € < % and this concludes the proof. O

5 Mixing at a geometric time

Before giving the proof of Lemma we state two easy facts about total variation distance.

Claim 5.1. Let Y be a discrete random variable with values in N and satisfying
P(Y =j) <e, forall j >0 and P(Y = j) is decreasing in j,
where ¢ is a positive constant. Let Z be an independent random variable with values in N. Then

[PV + 2 =) —=P(Y = )| <cE[Z]. (5.1)

Proof. Using the definition of total variation distance and the assumption on Y we have for all
keN

[PY +k=")-PY =) = > PY =j)-PY +k=j)) <ke
FP(Y=§)2P(Y +k=])

Finally, since Z is independent of Y, we obtain (B.1]). O

The coupling definition of total variation distance gives the following:

Claim 5.2. Let X be a Markov chain and W and V' be two random wvariables with values in N.
Then

[P(Xw =) =P(Xy = )| < [P(W =) —=P(V =)|.
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Proof of Lemma [2.8. We fix z. Let 7 be a stationary time, i.e. P,(X; =) = . Then 7 + s is
also a stationary time for all s > 1. Hence, if Z; is a Geometric random variable independent of T,
then Z; + 7 is also a stationary time, i.e. P,(Xyz, 4+, =) = 7. Since Z; and 7 are independent, and
7y satisfies the assumptions of Claim BT we get

IPo(Ze +7 =) =Po(Ze =)l < = (5.2)
From Claim B.2] we obtain
Be(Xzar =)~ BalXz, =l < [BalZ 47 =)~ Ba(Ze = )] < 20
and since P, (X, 4, = -) = 7, taking ¢ > 4E,[7] concludes the proof. O

Recall from Section [2] the definition of N; as a random variable independent of the Markov chain
and of mean t. We also defined

dn (t) = max [P (Xy, =) — |-
Let Nt(l), Nt(z) be i.i.d. random variables distributed as /V; and set V; = Nt(l) —I—Nt(2). We now define

P.(Xy, = -

sy(t) = max |1 — P:(vi =) 4q dy(t) = max |[Po(Xy, = ) — Py(Xn, = ).
2y m(y) Ty

When N is a geometric random variable we will write dg(t) and dg(t) respectively.

Lemma 5.1. For all t we have that

dn(t) < dn(t) < 2dn(t) and sy(t) <1—(1—dn(t))>

Proof. Fix t and consider the chain Y with transition matrix Q(z,y) = P,(Xn, = y). Then
Q?*(x,y) = P.(Xy, = y), where V; is as defined above. Thus, if we let

sy(u) = max [1 — M] and dy(u) = ngzx |IPp(Yy =) = Py(Yu =),

.y m(y)

then we get that sy (t) = sy (2) and dy(t) = dy (1). Hence, the lemma follows from Lemma@2 O

We now define
ts N = min{t >0:sny(t) < %}

Lemma 5.2. There exists a positive constant ¢ so that for every chain
tstop < Cts,N-
Proof. Fix t = ts n. Consider the chain Y with transition kernel Q(z,y) = P,(Xy, = y), where V;

is as defined above.
By the definition of sy (t) we have that for all x and y

Qr,y) > (1 —sn(t)m(y) > ~7(y).
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Thus, in the same way as in the proof of Lemma 4.4l we can construct a stopping time S such that
Ys is distributed according to m and E,[S] = 4 for all z.

Let Vt(l), ‘/;(2), ... bei.i.d. random variables distributed as V;. Then we can write Y,, = XV(1)+ IR7COF
t t

If welet T = V;(l) +...+ Vt(s), then T is a stopping time for X such that £(X7) = 7 and by Wald’s
identity for stopping times we get that for all

E,[T] = E.[S]E[V}] = 8t.

Therefore we proved that
tstop < 8ts,N-

O
Proof of Lemma [2.9. From Lemma 5.1l we get that
ts,N < 2tpn.
Finally Lemma completes the proof. O
Remark 5.3. Let N; be a uniform random variable in {1,...,t¢} independent of the Markov chain.

The mixing time associated to IV; is called Cesaro mixing and it has been analyzed by Lovasz and
Winkler in [§]. From [0, Theorem 6.15] and the lemmas above we get the equivalence between the
Cesaro mixing and the mixing of the lazy chain in the reversible case. In Section [1 we show that
the Cesaro mixing time is equivalent to tg for all chains.

Remark 5.4. From the remark above we see that the mixing at a geometric time and the Cesaro
mixing are equivalent for a reversible chain. The mixing at a geometric time though has the
advantage that its total variation distance, namely d¢(t), has the monotonicity property Lemma[2.7],
which is not true for the corresponding total variation distance for the Cesaro mixing.

Recall that d(t) = max||P,(X; = ) — Py(X; = -)|| is submultiplicative as a function of ¢ (see for
x7y

instance [6, Lemma 4.12]). In the following lemma and corollary, which will be used in the proof
of Theorem [[.T] we show that dg satisfies some sort of submultiplicativity.

Lemma 5.5. Let 3 < 1 and let t be such that dg(t) < B. Then for all k € N we have that
_ 1 ko
de(2¥4) < (%@ d(t).

Proof. As in the proof of Lemma 2.7 we can write Zoy = (Zoy — Zt) + Zt, where Zoy — Z; and Z;
are independent. Hence it is easy to show (similar to the case for deterministic times) that

de(20) < de(t) max [Po(Xzp -z, = ) = Py(Xzp—2. = )l (5:3)

By the coupling of Zo; and Z; it is easy to see that Zs; — Z; can be expressed as follows:

Zow — Zy = (1 = &) + &Gy,
where ¢ is a Bernoulli(%) random variable and Gg; is a Geometric random variable of mean 2t
independent of £. By the triangle inequality we get that

1 1

1 1-
HP-'E(XZ2t—Zt = ) - ]Py(XZQt—Zt = )H < 5 + §HP$(XG2t = ) - ]P)y(XGQt = )H = 5 + §dG(2t)7
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and hence (5.3) becomes

da(2t) < dg(t) (% - %JG(%)) < %Jg(t) (1+da()),

where for the second inequality we used the monotonicity property of dg (same proof as for dg(t)).
Thus, since t satisfies dg(t) < /3, we get that

_ 1 _
o) < (52 doto)
and hence iterating we deduce the desired inequality. O

Combining Lemma with Lemma [5.1] we get the following:
Corollary 5.6. Let 5 < 1. If t is such that dg(t) < /2, then for all k we have that

d(;(th) <2 <#>kdg(t).

Also if dg(t) < o < 1/2, then there exists a constant ¢ = c(«) depending only on «, such that
d(;(ct) < 1/4.

6 Hitting large sets

In this section we are going to give the proof of Theorem [T We first prove an equivalence that
does not require reversibility.

Theorem 6.1. Let a < 1/2. For every chain tg < ty(a). (The implied constants depend on a.)

Proof. We will first show that tq > ctp(a). By Corollary there exists k = k(a) so that
d(;(thg) <35 Lett= 2%tq. Then for any starting point  we have that

Py(Xz, € A) >m(A) —a/2 > /2.

Thus by performing independent experiments, we deduce that 74 is stochastically dominated by
sz\i 1 Gi, where N is a Geometric random variable of success probability a/2 and the G;’s are
independent Geometric random variables of success probability % Therefore for any starting point
r we get that

E, [TA] <

Qo

t,

and hence this gives that

2
max  E,[ra] < =2Ftq.
z,Am(A) >« «Q

In order to show the other direction, let ¢’ < tg. Then dg(t') > 1/4. For a given o < 1/2, we fix
v € (a,1/2). From Corollary we have that there exists a positive constant ¢ = ¢(+y) such that

da(ct') > .
Set t = ct’. Then there exists a set A and a starting point z such that

T(A) = Py(Xz, € A) > 7,
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and hence 7(A) > v, or equivalently
P.(Xz € A) <7(A) — 7.
We now define a set B as follows:
B={y:P)(Xz € A) =2 n(4) —a},
where c¢ is a constant smaller than «. Since 7 is a stationary distribution, we have that

m(A) =Y Py(Xz € A)n(y) + > _Py(Xz € Ar(y) < n(B) +7(A) —a,
yeB y¢B

and hence rearranging, we get that
m(B) > a.

We will now show that for a constant € to be determined later we have that

m?XEZ[TB] > 0Ot. (6.1)
We will show that for a 6 to be specified later, assuming

IIlZaXEZ[TB] <0t (6.2)

will yield a contradiction.
By Markov’s inequality, (6.2]) implies that

1
P, (15 > 20t) < 5 (6.3)
For any positive integer M we have that
P.(t5 > 2M0Ot) = Py (15 > 2MOt|Tp > 2(M — 1)0t)P. (15 > 2(M — 1)6t),
and hence iterating we get that
1

By the memoryless property of the Geometric distribution and the strong Markov property applied
at the stopping time 75, we get that

P:c(XZt € A) > ]P’x(TB < 29Mt,Zt > TBaXZt S A)
> ]P’x(TB < 29Mt, Zt > TB)]P’J;(XZt S A‘TB < 29Mt, Zt > TB)

> P.(tp < 20Mt)P,(Z; > [20Mt]) <in% Pw(Xz, € A)> ,
we

where in the last inequality we used the independence between Z and 75. But since Z; is a
Geometric random variable, we obtain that

1 20Mt
P,(Z, > |20M¢t]) > (1 — Z) :

which for 20Mt > 1 gives that

P, (Z; > |20M¢t]) > 1 — 20M. (6.5)
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(([€2) implies that 6t > 1, so certainly 20Mt > 1.)

We now set 0 = W Using ([6.3) and (6.5]) we deduce that

2

P.(Xz € A) > (1 -27M)" (n(A) — a).

Since v > «, we can take M large enough so that (1 — 2_M)2 (m(A) — ) > 7(A) — v, and we get
a contradiction to (G.2]).

Thus (G.I)) holds; since 7(B) > «, this completes the proof. O

Proof of Theorem [1.1l. Combining Theorem [ZI0 with Theorem gives the result in the re-
versible case. 0

7 Equivalence between Cesaro mixing and tg

In this section we will show that the notion of mixing at a geometric time defined in Section 2 and
the Cesaro mixing used by Lovasz and Winkler [§] are equivalent for all chains. First, let us recall
the definition of Cesaro mixing. Let U; be a random variable independent of the chain uniform on
{1,...,t}. We define

1
tewe = min {12 0 ma B2 (X, =)~ < 1}

Proposition 7.1. For all chains tg =< tQes-

Proof. For each s, let Us be a uniform random variable in {1,...,s} and Zs; an independent
geometric random variable of mean s.

We will first show that there exists a positive constant ¢; such that
toes < CcitG. (71)

Let t = t(1/8), then for all x

IP2(Xz, =) =l <

ool —

From Claims [£.1] and we get that

P2 (Xvs, = ) = Po(Xvger 2, = )| < IPa(Ust = ) = Po(Ust + 2 = -)|| <

| =

By the triangle inequality for total variation we deduce
IPe(Xug, =) = 7l < [[Pe(Xug, = ) = Po(Xvgerze = )| + P2 (Xvgit2z, =) — 7|

From (Z2]) and Claim 2.11it follows that

IP2(Xvgi+2, = ) = 7l < [[Pa(Xz, =) =7 <

| =

Hence, we conclude

1
Po(Xu =) =7l < 7.
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which gives that tces < 8. From Corollary we get that there exists a constant ¢ such that
ta(1/8) < ctg and this concludes the proof of (7.1)).

We will now show that there exists a positive constant co such that
ta < coles.

Let t = toes, i.e. for all x

IP2(Xv, =) — 7| <

|

From Claims 1] and 52 we get that
IPe(Xzg = ) = Po(Xvtzg = )| < IP2(Zst = ) — PulZse + Up = )| <
So, in the same way as in the proof of (Z.Il) we obtain

P2 (Xz5 =) — 7l <

OOIOJ

Hence, we deduce that ¢g(3/8) < 8t and from Corollary again there exists a positive constant
¢ such that tq < tg(3/8) and this finishes the proof. O

8 A new proof of ¢,.,q < {1, for reversible chains

Recall the definition tpr0q = max m(A)E;[T4] from Remark As noted there, Aldous [2] showed

the equivalence between the mixing time ¢ of a continuous time reversible chain and t,,04. Using
the equivalence t1, < tos (see [6 Theorem 20.3]) it follows that for a reversible chain t,oq < tr..
In this section we give a direct proof. Recall that t,,,q > ct1, for a reversible chain, where c is a
positive constant, follows from Theorem [I1]

We will first state and prove a preliminary lemma, which is a variant of Kac’s lemma (see for
instance [0, Lemma 21.13]). To that end we define for all k£ and all sets A

i =min{t >1: X, € A} and T/(f) =min{t > k: X, € A}.
Lemma 8.1. We have that

S r@)E ] < ke

z€A

Proof. Let P be the transition matrix of the reversed chain, i.e.

: m(y)P(y, v)
p == 27
(2, y) @)
Then for all £ > k and xg, ..., x; in the state space S, we have
t t
ﬂ(xo)HP(xi_l,x, = m(xy) H (x4, @i-1).

i=1
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Summing over allxoza:EA,xlGS,...,xk_lGS,azkgéA,...,xt_lgﬁA,xt:yESweobtain
Z m(2)Py () > 1) <Z (t — k. t]), (8.1)
€A

where 77 stands for the first positive entrance time to A for the reversed chain. Summing (&)
over all ¢ we get that

S @B fr) =3 w@B(rP > ) < SN wly) S By =
TEA t xzeA t Yy s=t—k+1
s+k—1

:Z Z Z y(Fh =) Zﬂ(y)ZkﬁDy(?X:s):k.
Yy Y s
]

Proof of tyroq < ct1,. To simplify notation, let the chain X be lazy and reversible. From Lemmal81]
and Markov’s inequality it follows that for all k£ and all sets A

k) 2k 1
PW‘A (TA _F(A)>_2’ (82)

where 7|4 stands for the restriction of the stationary measure m on A.

Take now k = 2t,. Then using submultiplicativity we get that dy, (k) < JL(tL) % Let Xo ~ m|a

and z € S. Then

1P (X0, ) = PL(z,) <

]

We can couple the two chains, Xy, Xj11,... with Xg ~ 7|4 and Yj, Yiiq,... with Yy = z, so that
they disagree with probability ||PF(Xo,-) — P¥(z,-)]|.

Thus we obtain

e (1) e (002 2 )

< PP(coupling fails) <

NH

and hence using (82]) we get that

Therefore for all z we have that

P, (TA > %) <P, (TXC) > %) < z
By performing independent experiments we see that 74 is stochastically dominated by 2—iGeo (%),
where Geo stands for a Geometric random variable, and hence for all z we get that )
Eelra] < 3:(2) - 3;6(%
and this finishes the proof. O
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9 Application to robustness of mixing

Theorem 9.1. Let T be a finite tree on n wvertices with unit conductances on the edges. Let T
be a tree on the same set of vertices and edges as T but with conductances on the edges satisfying
c <c(z,y) <, for all edges e = (z,y), where ¢ and c are two positive constants. Then the mizing

time of the lazy random walk on T and on T are equivalent, i.e. in our notation, t,(T) =< t1(T).

Before proving the theorem, we state and prove two lemmas which will be used in the proof but
are also of independent interest.

Lemma 9.2. Let T be a finite tree with edge conductances. For each subset A of vertices and any
verter v we have

max Ey[7a] <t <1 + ﬁ) ,

where T4 stands for the first hitting time of A by a simple random walk on T and t, = max, E,[1,].

Proof. If v € A, then the result is clear, so we assume that v ¢ A.

For all x we have
Ew[TA] < Em [Tv] + Ev [TA] < ty + EU [TA]-

Thus it suffices to show that

Ev [TA] <

. 1
~(A) (9.1)
In order to show that, we are going to look at excursions of the random walk from v. Defining Z4

+
to be the time that the walk spends in A in an excursion from v, i.e., Z4 = [*, 1(X; € A), we
can write

EU[ZA]
P, =il
(ta <T1)) EoZa|Z4 50
Clearly
A
EU[ZA] = ﬂ.( ) and EU[ZA|ZA > 0] < t,.
m(v)
Hence

Therefore we get

E, [TA] <E,

N
Z EZ] )
=1
m(A)

where N is a geometric random variable of success probability (o) % and ¢; is the length of the
i-th excursion from v. By Wald’s identity we have

m(v)t, 1 7
Ey[7a] < E[N]E,[r,]] < m(A) n(v)  7w(A)

and this completes the proof. O
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We call a node v in T' central if each component of T'— {v} has stationary probability at most 1/2.
It is easy to see that central nodes exist. Indeed, for any node u of the tree denote by C(u) the
component of T'— {u} with the largest stationary probability. Now consider the vertex u* that
achieves muin |7(C(w))|. This is clearly a central node, since if 7(C(u*)) > 1/2, then the neighbour

w € C(u*) of u* would satisfy 7(C(w)) < 7(C(u*)), contradicting the choice of u*.

Lemma 9.3. Let T be a tree on n vertices with conductances on the edges. Then for any central
node v of T

tL = tv,

where t, = max, E;[1,].

Proof. First of all from Lemma [0:2] and Theorem [[.T] we obtain that for any central node v
L, < cty, (9.2)

for an absolute constant c.

To finish the proof of the lemma we have to show that for any central node v
t, > cty, (9.3)

for a positive absolute constant c.
It is easy to see that E,[r,| = E,[r5], for © # v, where B is the union of {v} and the components
of T — {v} that do not contain z.The definition of a central node gives that m(B) > 1/2. Hence,

ty < tu(1/2). (9.4)

Inequality ([@.3]) now follows from Theorem [T O

We now recall a formula from [I, Lemma 1, Chapter 5] for the expected hitting time on trees.

Lemma 9.4. Let T be a finite tree with edge conductances c(u,v), for all edges (u,v). Let x
and y be two vertices of T and let {vg = z,v1,...,v, = y} be the unique path joining them.
Let T,(z) be the union of {z} and the connected component of T — {z} containing x. Writing
Ci = X 2eTy (i) (W, 2), we then have

R = (1),

Vi, Uy
i—0 iy Vi+1

Proof of Theorem [9.1l From Lemma and the boundedness of the conductances we get that
for any two vertices = and v
E.[10] < Ez[70],

where 7 denotes hitting times for the random walk on T.

Lemma then finishes the proof. O

We end this section with another application of our results on the robustness of mixing when the
probability of staying in place changes in a bounded way. The following corollary answers a question
suggested to us by K. Burdzy (private communication).
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Corollary 9.5. Let P be an irreducible transition matriz on the state space E and suppose that
(a(z,x))zer satisfy e < a(x,x) < co for all v € E, where c1,c9 € (0,1). Let Q be the transition
matriz of the Markov chain with transitions: when at x it stays at x with probability a(z,x).
Otherwise, with probability 1 — a(x,x) it jumps to a state y € E with probability P(x,y). We then
have

tmix(Q) =1y,

where tmix(Q) is the mizing time of the transition matriz Q.

Proof. Since the loop probabilities a(z,x) are bounded from below and above, it follows that if 7
is the stationary probability of the matrix @, then © < 7. As we noted in the Introduction, the
lower bound of Theorem [[LT] is always true and thus we have

ExN <tmix . .
oa i, Balal S tmix(Q) (9-5)

For every y € E let (fi(y)),-eN be i.i.d. geometric random variables of mean 1/a(y,y). Then we can
write

L
F= S e, (9.6)
yeE i=1

where L, is the local time at y up to the first hitting time of A by the chain with transition
matrix P. Wald’s identity gives

- E.|L
Bulfal = 2 oy

If 7'y is the hitting of A by the lazy version of the chain, i.e. taking a(y,y) = 1/2 for all y, then
using the assumption on the boundedness of the probabilities (a(y,y)) we get

Eo[74) < Eq[74] -
From (@.6) applying Wald’s identity again we deduce
E. [7'1'4] =2E,[r4],

where 74 is the first hitting time of the set A by the Markov chain with transition matrix P. Hence
using Theorem [[[T] and ([@.3]) we deduce that

tmix(Q) 2 tL-

It remains to show

Using Proposition 21Tl we get that
tmix(A) ,S tavo-

This together with Theorem [[4] finishes the proof of (Q.7)). O
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10 Examples and Questions

We start this section with examples that show that the reversibility assumption in Theorem [T
and Corollary is essential.

Example 10.1. Biased random walk on the cycle.

Let Z,, = {1,2,...,n} denote the n-cycle and let P(i,i+1) = 2 for all 1 <i < n and P(n,1) = 2.
Also P(i,i—1) = £, for all 1 <i <n, and P(1,n) = 5. Then it is easy to see that the mixing time
of the lazy random walk is of order n?, while the maximum hitting time of large sets is of order
n. Also, in this case tgop, = O(n), since for any starting point, the stopping time that chooses a
random target according to the stationary distribution and waits until it hits it, is stationary and
has mean of order n. This example demonstrates that for non-reversible chains, tg and fsop can
be much smaller than #r,.

Example 10.2. The greasy ladder.
Let S ={1,...,n} and P(i,i+1)=1=1—P(i,1) fori =1,...,n — 1 and P(n,1) = 1. Then it
is easy to check that '

2—Z

™) =175
is the stationary distribution and that ¢1, and ¢y are both of order 1.
This example was presented in Aldous [2], who wrote that tgp, is of order n. We give an easy proof
here. Essentially the same example is discussed by Lovész and Winkler [8] under the name “the
winning streak”.
Let 7, be the first hitting time of a stationary target, i.e. a target chosen according to the stationary
distribution. Then starting from 1, this stopping time achieves the minimum in the definition of
tstopy ie.
E;[7z] = min{E;[A] : A is a stopping time s.t. P1(Xy € -) = 7w(-)}.

Indeed, starting from 1 the stopping time 7, has a halting state, which is n, and hence from
Theorem we get the mean optimality. By the random target lemma [I] and [6] we get that
E;[7z] = Eq[7,], for all i < n. Since for all i we have that

E;[7x] > min{E;[A] : A is a stopping time s.t. P;(Xy € -) = 7(-)},

it follows that tsop < Eq[7x]. But also Ei[7,;] < tsop, and hence tgop = Eq[7:]. By straightforward
calculations, we get that E1[T}] = 2¢(1 — 27"), for all > 2, and hence

tstop = Enfre] = > 2/(1—27")
=2

This example shows that for a non-reversible chain %, can be much bigger than ¢, or ty.

Question 10.3. The equivalence ty(cv) < t1, in Theorem [Tl is not valid for a > 3, since for two
n-vertex complete graphs with a single edge connecting them, t1, is of order n? and ty(«) is at most
n for any o > 1/2. Does the equivalence ¢y (1/2) =< t1, hold for all reversible chains?

(After this question was posed in the first version of this paper, it was answered positively by
Griffiths et al [5].)
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