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Abstract

Let the nodes of a Poisson point process move independently in R? according to Brownian
motions. We study the isolation time for a target particle that is placed at the origin, namely
how long it takes until there is no node of the Poisson point process within distance r of it. In
the case when the target particle does not move, we obtain asymptotics for the tail probability
which are tight up to constants in the exponent in dimension d > 3 and tight up to logarithmic
factors in the exponent for dimensions d = 1,2. In the case when the target particle is allowed to
move independently of the Poisson point process, we show that the best strategy for the target
to avoid isolation is to stay put.
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1 Introduction

Let IIy = {X;} be a Poisson point process over R? with intensity A > 0. To avoid ambiguity, we
refer to the points of Il as nodes. For each s > 0, let II; be obtained by letting the nodes of Il
move according to independent Brownian motions. More formally, for each X; € Iy, let (;(¢)): be
a Brownian motion starting at the origin of R, independent over different i. We define

Il = U{Xi +&i(s)}

It follows by standard arguments (see e.g. [2]) that, for any fixed s > 0, the process Il is a
Poisson point process of intensity A\. Henceforth we consider A and r to be fixed constants and omit
dependencies on these quantities from the notation.

We add a target particle at the origin of R? at time 0 and consider the case where this particle
does not move. We define the isolation time T, as the first time ¢ at which all nodes of II; have
distance at least r from the target particle. More formally,

T = inf {t > 0: 0 ¢ | J BOX: + &(0).1) .

where B(z,r) denotes the ball of radius r centered at x.
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In this paper we derive bounds for P (Tis, > t) that are tight up to logarithmic factors in the
exponent. In order to simplify the statement of our theorems, we define the function Wy(t) as

Vi, ford=1
U,y(t) =< logt, ford=2 (1)
1, ford>3.

Then, Theorem [[.T] whose proof is given in Section 2] establishes an upper bound for the tail of
,Tisol'

Theorem 1.1. For all d > 1 and any A\, v > 0, there exist to > 0 and a positive constant ¢ such
that

t
P ﬂso t) < - ’
(Tt > 1) exp( C‘I’d(t)>

for all t > ty.

It is easy to see that there is a positive constant ¢ so that the following lower bound holds in all
dimensions d > 1:
P (ﬂsol > t) > exp (_Ct) : (2)

This is true since, with constant probability, there is a node within distance r/2 of the origin at
time 0 and the probability that, from time 0 to ¢, this node never leaves a ball of radius r /2 centered
at its initial position is e=©®) (see for instance [4]); this implies that this node is within distance
r of the origin throughout the time interval [0,¢] with probability e~©® . Here and in the rest of
the paper, O(t) denotes any function which is bounded above and below by constant multiples of ¢.
Comparing Theorem [T with (), we see that the exponent in Theorem [[Tlis tight up to constants
for d > 3 and tight up to logarithmic factors for d = 2. For d = 1, the lower bound in (2] is far
from the upper bound in Theorem [[LTT We obtain a better lower bound in the next theorem, which
we prove in Section Bl This lower bound matches the upper bound up to logarithmic factors in the
exponent.

Theorem 1.2. For d =1 and any \,r > 0, there exist ty > 0 and a positive constant ¢ such that
P (Tisol > 1) > exp <—C\/Elogtlog log t) ,
for all t > tg.

The isolation time, as defined above, can be generalized in two distinct ways: by replacing the balls

in the definition of T}y, with more general sets of the same volume, or by allowing the target particle

to move. The next theorem, which we prove in Section [l establishes that both these generalization

can only decrease the tail of the isolation time. In order to state the theorem, let (Ds)s>0 be a

collection of closed sets in RY. We say that the target is detected at time t if some node of the

Poisson point process is in the set D; at time t. We define the isolation time in this context as
TE, =inf{t > 0:Vi, X;+&(t) ¢ Dy}

isol —

Theorem 1.3. Let (D,)s be a collection of closed sets in R? that are uniformly bounded, i.e., there
exists Ly > 0 such that Us<;Ds C B(0, L;). Then, for all t > 0, we have

P(TL, >t) <P (15, >1),

isol sol

where (By)s are closed balls in R centered at the origin with vol (Bs) = vol (D) for all s.



The corollary below handles the case when the target moves independently of the nodes of Ily; it
establishes that the best strategy for the target to avoid isolation is to stay put. This is obtained
by letting g(s) be the location of the target at time s, and setting Ds = B(g(s),r) in Theorem [[.3]

Corollary 1.4. Let r > 0. Let the location of the target be given by a function g: Ry — RY that
s bounded on compact time intervals and is independent of the nodes of Ily. If we define

Ty = inf {t 2 0: g(t) ¢ |J BOX: + &(0).1) .

then, for any t > 0, the probability P (Tg

ol = t) 18 mazimized when g = 0.

The isolation time is closely related to other quantities involving Poisson Brownian motions that
have been studied in the context of mobile geometric graphs. We discuss these connections and
give some motivation in Section [l where we also discuss some open problems.

2 Proof of the upper bound

We start with a high-level description of the proof of Theorem [Tl We fix A and r, and let K be
a large positive constant. We take the nodes of IIy and split them into K independent Poisson
point processes @1, Ps, ..., Px of intensity % each. We consider the first Poisson point process @
and look at the amount of time during the time interval [0,¢] that the origin has been detected
by at least one node of ®;. We show that this quantity is at most ¢/2, with probability at least
1 —e~ct/%a(®)  for some positive constant ¢. This can be achieved by setting K sufficiently large.
Then, considering only the times at which the origin has not been detected by the nodes of ®q,
which we denote by I5, we show that the amount of time within /5 that the origin is detected by a
node of @, is at most t/4, with probability at least 1 — ect/Ya(t)  Then, we repeat this procedure
for each Poisson point process ®;, and, considering only the times at which the origin has not
been detected by the nodes of ®1,®g,...,®;_1, which we denote by I;, we show that the amount
of time within I; that the nodes of ®; detect the origin is at most 2% with probability at least
1 — e <t/%a®) Then, taking the union bound over j = 1,2,..., K, we have that, with probability
at least 1 — Ke~t/Ya(®)  the amount of time the origin has been detected by at least one node of
[Ty during [0,¢] is at most % + % + % + -t 2% < t. We remark that the sets Io, I3,..., will be
slightly different than the definition above, but we defer the details to the formal proof, which we
give below.

Proof of Theorem [I.1l Let K be a fixed and sufficiently large integer and define ®1, P, ..., g

to be independent Poisson point processes of intensity % each. Using the superposition property

of Poisson processes, we obtain that U]K:ﬂ)j is also a Poisson point process in R% of intensity \.
Thus, we can couple the nodes of 1ly with the nodes of &1, ®,, ..., Px so that [Iy = U]K:1<I>j.

Denote the points of ®; by {Xi(j)},-:172,,,, and let (§§j)(s))820 be the Brownian motion that Xi(j)
performs, independent over different ¢ and j. Thus the position of the node XZ-(] )
XZ-(]) + SZ-(])(S). We say that a node detects the origin at time s if the node is inside the ball B(0,r)

at time s.

Now, let I; = [0,¢] and

of ®; at time s is

Zy={sel:3XxY e o st. XV +eW(s) e B0,r)}.



In words, Z; is the set of times during the interval [0,¢] at which the origin is detected by at least
one node of ®;. Then, for j > 2, we define inductively J; = [0,¢] \ (Ué;i Zy), which is the set of
times at which no node of ®;U®;U---U®;_; detects the origin. Our goal is to analyze the amount
of time within J; that nodes of ®; detect the origin. However, when J; turns out to be large, it
will be convenient to consider only a subset of J; of given size. We will denote the set of times we
consider by I; and for any given subset A C R, we define |A| to be the Lebesgue measure of A.
Then, 1f |J;| < 2j 571, we set I; = J;; otherwise, we let I; be an arbitrary subset of J; such that
|L;| = 2J 5—7- With this, let Z; be the set of times within the set I; at which the origin is detected
by at least one node of ®;; more formally, we have

Zy={seL;: X7 € ®; st. X7 49 (s) € B(0,r)}.

The lemma below gives a bound for the probability that |Z;| is large.

Lemma 2.1. For all dimensions d > 1, there exists a constant ¢ such that, for any j € {1,2,... K},

we have . .
P(l|Z; — | < —c—— .
(121> 5) <o (-eq.05)

We will give the proof of Lemma [2.1]in a moment first, we show how to use Lemma [2.T] to complete
the proof of Theorem [T Clearly, if |Z;| < 55 L for all j, then the amount of time at which at least
one node of Ily detects the origin is at most Z < t, which yields Tiso < t. Therefore, using

this and the union bound, we have

P (T > t) < P 6{|Z|> } é(: <|Z|> >§Kexp<_cw;(t)>’

=1

3121

which completes the proof of Theorem [T.11 O

Before proving Lemma [2.1] we introduce some notation and prove a few preliminary results.

In what follows we fix j € {1,2,..., K}. Let
o = (XD e d;:3s€[0,4] s.t. X7 +9(s) € B(0,7)};

that is, <I>;- is the set of nodes of ®; that detect the origin at some time in [0, ¢]. Then (I>; is a thinned
Poisson point process with intensity given by A(z) = £ P (z € Uy, B(£(s),7)), where (£(s))s is a
standard Brownian motion.

Let N; be a Poisson random variable of mean
d A
E[Nj] = ARY) = 5= Efvol (Wo(2))], (3)
where

Wo(t) = Us<t B(£(5),7) (4)

is the Wiener sausage with radius 7 up to time ¢. It is known (see for instance [II, [I8]) that, as
t — o0, the expected volume of the Wiener sausage satisfies

E [vol (Wo(£))] = S8 (1 4 o(1)), (5)



for an explicit positive constant c(d,r).

A(z)
ART)
and (&(s))s be a Brownian motion conditioned on Xy + & hitting the ball B(0,r) before time ¢,

independent over different ¢. Finally we define

For all £ = 1,2,..., we let X; be i.i.d. random variables in R distributed according to

&z/l@ﬁ@@GB@ﬂM&

I
i.e. the time in I; that X, + & spends in the ball B(0,r).

Lemma 2.2. We have that
¢ il t
P<|Zj|>§> <P ;SZ>§

Proof. Let M; = |<I>;(Rd)| be the total number of nodes of ®’. Then M; is a Poisson random
variable of mean

B = [ P (ee B | do= 7 Blvol (W), (0

where Wy(t) is the Wiener sausage as defined above. Hence, M; has the same law as N;.
Let @ = {X],...,X ]’V[J} Then the positions of the nodes X! are independent and distributed
A@)  For each £ € {1,2,...,M;} we define T} to be the time within I; that node X

ARD
spends in B(0,7), i.e.

according to

D:/l@ﬂ&@emwﬂw,
1

where &, has the distribution of a Brownian motion conditioned on X, 4 &) hitting the ball B(0,r)
before time t.

We have that |Z;| is no larger than the sum 77 + ... + T)y;, which gives that

t t
P(;ij>§> <P ZTE>§ : (7)
" N; M;
By the definition of N; and S, for all £, we deduce that »,”7, Sy has the same law as ), T and
this together with (7)) concludes the proof. O

Remark 2.3. By standard properties of Poisson processes, the process {Xi(j ) +§Z-(j )(s)}i is a Poisson
point process of intensity A, for every s (see e.g. [2]). Using that fact and Fubini’s theorem we have

M;
E|> T, :/E
=1 1

J

. , w7 T
Zl@?+§%m3u@]w=ﬁﬂbi ®)
- K
where wy stands for the volume of the unit ball in R Also, by the equality in law mentioned in
the proof of Lemma and independence we get

M; N
E|Y T, =E|> S| =E[NJE[S]. (9)
/=1 /=1



We now introduce a sequence of i.i.d. random variables given by

S —E[S/]
ST

We emphasize that the random variables (Sy) and (Y;) depend on t.

, forall ¢ =1,2,...

Lemma 2.4. There exists a positive constant v such that

sup E [e“*yl] < C,
t>0

where C' is a positive finite constant.

Proof. Let ( be a Brownian motion started according to &gd)) and conditioned on hitting B(0, )

before time ¢. Then the construction of (Sy) gives that S; has the same law as the time that
¢ spends in B(0,7) before time t. Note that after hitting 0B(0,r), the process ( evolves as an
unconditioned Brownian motion. For any z, if £ is a standard Brownian motion, then the time L,
in [0,t] that x 4+ £ spends in the ball B(0,r) satisfies

t t 1
E[L,]=E [/0 1(z+&(s) € B(0,r)) ds] <1 +/1 /B(Om) Wdyds < 1 Pq(t), (10)

for some positive constant ¢;. By rotational invariance of Brownian motion we have that
S is stochastically dominated by L, for any x on the boundary of B(0,7). (11)
Using this, we will show that there exists a positive constant c¢o such that for all n > 1
P (S1 > neiWy(t)) < e ™. (12)

Before showing ([I2]), we explain how we use it to prove the lemma. From the definition of Y; we
get that for all n
P (Y1 > cin) <e ™.

This shows that this exponential tail bound is independent of ¢, and hence there exists a v > 0
such that sup,~, E [e™] < C < .

In order to show (I2)), note that, by ([I0), (II]) and Markov’s inequality, we have

P (S > 2¢1Wy(t)) <

N —

We now condition on {S7 > 2¢1U,4(t)}. After X7 + & has spent 2¢1Uy4(t) time inside B(0,7), let
x be its position at that time. Then on the event {S1 > 2¢;¥4(¢)}, we have that Sy — 2¢;¥4(t)
is stochastically dominated by L,. Using the fact that (I0]) holds for all x and applying Markov’s
inequality once more, we obtain that the probability that X + & spends an additional amount of
2¢1U4(t) time inside B(0,7) is again at most 1/2; that is,

P (Sl > 461\I’d(t) | S1 > 261\Ifd(7f)) <

DN =

Thus, by iterating n/2 times, we establish (I2]). O



Lemma 2.5. For all sufficiently large K, there exists a positive constant ¢ so that

4BN;]

P Z Y, > < exp <_\Iszt)> . (13)

Proof. Let 0 > 0. Since the random variables Y, are independent, by Chernoff’s inequality, we
obtain

el 1[N ot
P Z Ye> 2J+1 < (B["]) JeXp<_\1fd(t)2j+1>

- 0t % ot 402At oY
= exp <_W +4E[Nj]logE [e 1]) < exp <_\Ifd(t)21+1 + 0 log E [e 1] .

We set ¢(0) = ¢(0) = logE [e?M], for § < ~. By the existence of the exponential moment of Y;
(cf. Lemma 24) and the dominated convergence theorem, we get that ¢ is differentiable and its
derivative is given by

e@Yl
vy = 2o

Also, ¢/(0) = E[Y1] = 0, and again using the existence of the exponential moment of Y7 and the
dominated convergence theorem, we have that ¢’ is differentiable with derivative given by

E[V2e™]E [™] - B [Y169Y1]2

¢//(9) = E [69Y1]2

We will now show that there exists a positive constant co such that uniformly over all ¢

¢"(0) < co, forall § < /2. (14)

Note that by the definition of Y7 and (I0) and (III), we get Y7 > —\I,[S&)] > —cp. Using this when

Y7 < 0 and the fact that the function y2e 7%/ for y > 0 is maximized at y = 8 /7, we have
2 0Y; 2, 64 T (jat0)y
E[Yle 1}§cl+—2E[eV 1].
v
By Jensen’s inequality and the fact that E[Y;] = 0 we obtain
E [er} > exp(§E[V1]) =

Thus, Lemma 24] and the above two inequalities prove (I4]).

Since ¢/(0) = 0 and ¢” is continuous (which follows again by the dominated convergence theorem)
we get
|¢'(0)] < c26, for all 0 < /2.

Also, since ¢(0) = 0, we obtain
[6(0)] < c26%/2,

and hence, we get that there exists 6 small enough such that uniformly for all ¢

|6(6)] < 277714,



Thus, putting everything together we have

g St deght .4
P Z Y > 23+1 < exp <_\I’d(t)2j+1 + K\IJd(t)Z ! 5)
ot 4eg N
- <—r<t>w (-5))
Taking now K large enough establishes (I3]). O

Proof of Lemma [2.7] It only remains to show that there exists a positive constant ¢; such that

Nj
t
> 8> o7 | < exp(=art/Wa(t)), (15)
=1
which together with Lemma 2.2] concludes the proof of Lemma 2.1l We can write
N; ; N; ;
P> 5> 5| <P > 8> 57 Ni <AE[Nj] | + P (N; > 4E[N;))
=1 =1
4E[N;] '
<P| > (S—E[S)) > o7 —AEINJE[S)] | + P (N; > 4E[Nj))
=1
4E[N;] .
< —(1- d — ;
<P ; V> s (1 8\war /K) +exp (—2E[N;)),
where the first term on the right-hand side above follows from () and (@) and the fact that
|Z;] < 57=1- The last term follows by applying the Chernoff bound to the Poisson random variable
N;.

If we now choose K large enough we can make (1 — 8 wyr? /K ) larger than 1/2, and hence using
Lemma [2:5] we get the desired tail probability bound, since E [N;] = O(t/¥,4(t)) by @) and (). O

3 Lower bound in d =1

Proof of Theorem We want to show that
P (Tiso1 > t) > exp (—C\/Zlogtlog log t) ,

for some positive constant c. Instead of looking at the interval [0,t], we consider the interval [t, 2¢]
and analyze the event that the origin is detected throughout [t,2t]. Clearly, due to stationarity,
this is equivalent to the event {Tis, > t}.

Now, consider the interval of length v/t centered at the origin. Let M be the set of nodes of I
that fall in this interval at time 0. Then, the number of nodes in M, which we denote by |M|, is
given by a Poisson random variable with mean A\v/t. Let C' > 0 be a sufficiently large constant that
we will set later. We have that

exp(=AEH(AVE)C Vot
(Cy/tlogt)!

- exp(—)\\/Z)()\)C‘/zlogt

" (Clogt)CVtlost

v

p (]M\ > C\/Zlogt>

> exp (—clx/flogtlog log t) ,



for some positive constant cy.

We now divide the time interval [¢,2¢] into ¢ subintervals of length 1. We fix one such subinterval
[s,s + 1]. The probability that the origin is detected by a given node of M throughout [s, s + 1] is

at least % for some positive constant co. To see this, note that the probability that this particular

node (which started in the interval [—v/#/2,/t/2] at time 0) detects the origin at time s is @(%)

since s € [t, 2t] and, once this node is inside the ball B(0,r) at time s, there is a positive probability
that it will stay in B(0,) for one unit of time.

Then, for any given subinterval [s, s + 1], we have

P (no node of M detects the origin throughout [s,s + 1] | |M| > Cv/tlog t)
CVtlogt
< (1 - C—2> < t=eC,
Vit
If for each s there is a node of M detecting the origin throughout [s, s + 1], then Tis, > t. Thus,
by taking the union bound over all subintervals, we have
P (Tisol >t ‘ |M| > C\/Zlogt) > 1 — 20+
Finally,
P (Tisol > t) >P <Tisol >t ‘ |M| > C’\/l_flogt> P <|M| > C’\/Elogt)

>(1- t_c2c+1) exp (—cl\/flogtlog log t) .

The proof of Theorem is then completed by setting C' sufficiently large so that C' > 1/¢y. O

4 Best strategy to avoid isolation

In this section we prove Theorem The measurability of the event {2 > t} is explained at
the end of the section.

In order to prove Theorem [[3 we first prove a preliminary lemma in the case where time is discrete
and there is a finite number k£ of Brownian motions started from uniform points in a big ball.
Moreover, it will be convenient to generalize the problem so that, instead of having one single
collection of sets (D), for all nodes, we will have one collection of sets for each node.

Lemma 4.1. Let (x;)i<, be i.i.d. uniformly in the ball B(0, R) for some R > 0 and let (§(s))i<k be
independent standard Brownian motions. Let {Ufn :m < n,i <k} be a collection of closed bounded
sets in R%. Then

P(Vm=0,...,n, Ji=1,....k:2+&(m) € UL)

<P(Vm=0,....n, Ji=1,... k:z;+&(m) € B),),

where (BL,)m. are balls centered at the origin with vol (Bfn) = vol (Ufn) for all m and i.

Proof. We now focus on the first node x1 + £ and define a sequence of stopping times as follows.
Let Th = 0 and '
T1 :inf{sz:W:Z...,k xz+§z(m) ¢ Urln}



Define inductively
Tjp1r=inf{m>T;+1:Vi=2,....kz; +&(m) ¢ UL}

Let k =sup{f > 0:T; <n}. Then we have

P(Vm=0,....n, Ji=1,...k:z; +&(m )GUZ = Hlaz1+§1( )EUT)
7=1

By the independence of the motions of the nodes 1,..., k and the Markov property, the right-hand
side above can be written as

K

Z() € B O R 1
/Rd /Rd )) H l(zj € UTj)ij—Tjﬂ(zj—l’Zj) dzo...dzg |,

vol (B

where p;(x,y) stands for the transition kernel of Brownian motion. Applying the rearrangement
inequality as in [3, Theorem 1.2] to the integral appearing inside the expectation (the transition
kernel p(x,y) of the Brownian motion is symmetric decreasing as a function of the distance |z —y|),
we get that this last expression is smaller than

Z() S B 0 R
/Rd /Rd Hl j 6BT )pT —Tj_ (zjo1,25)dzo . dze |

vol (B

which is equal to ‘
P(Vm=0,....,n, Ji=1,....k:a;+&(m) €V),),

where V!, = Ul for i =2,...,k and V,} = B} for all m.

Continuing in the same way, i.e. fixing node 2 and looking at the times that the other particles,
1,3,4,...,k do not detect the target before time n, we get that this last probability is increased
when the sets V,2 are replaced by the balls B2, for all m. Then we apply the same procedure for
nodes 3,4,...,k and this concludes the proof. O

Before proving Theorem [[.3] we give some definitions that will be used in the proofs repeatedly.

For n € N and ¢ > 0, define the dyadic rationals of level n as

v
Dn,t:{g—nzjzo,...,Z"}.

Let (Us)s<t be closed sets in R?. For each s and n, we define the set
Usn = {z € R? 1 d(2,U;) < (¢/2")'°}, (16)

which is clearly closed. (The metric d(x, A) stands for the Euclidean distance between the point z
and the set A.)

For every ¢ € D), (we drop the dependence on ¢ from D,,; to simplify notation), we will define a
set Uy, as follows. For each such ¢ take s = s(¢) € [¢,£ +t/2") such that

1
vol (Usy,) < inf  vol (Uyp) + —
wEll 4t /2m) n

10



We now define ﬁgm = Uy(p),n and finally for every n and ¢ we let
h1/3
Qni=qVh<t/2": sup  [|&(s) = &)l < —— ¢ (17)
s,u|s—ul<h 2

Lemma 4.2. Let (Us)s<; be closed sets in R? that are uniformly bounded; i.e., there exists Ly > 0
such that Us<;Us C B(0, L;). Then, with the definitions given above, we have that, almost surely,

(Vs <t, Ji: X;+&(s) €Uy S () AV € Doy i Xy +&(0) € Upn}-

no n>ng
Proof. We first notice that, almost surely,
{Vs <t, Ji: X;+&(s) €eUst =Ur{Vs<t, Ji=1,...Np: X;+&(s) € Ug}, (18)

where Np is the number of nodes of the Poisson process that started in the ball B(0, R), so Ng is
a Poisson random variable of parameter Avol (B(0, R)). Indeed, if F,, denotes the event that some
node that started outside the ball B(0,n) detects the target before time ¢, then we will show that

P(F,) — 0 asn — oo.
Let ®,, be the point process defined as follows
O, ={X;€llp: X; ¢ B(0,n) and Is < t: X; + &(s) € Us}.
Then, by the thinning property of Poisson processes, ®,, is a Poisson process of total intensity

E |©,(RY)| = AE[vol (Us<: (£(s) + Us) N B(0,n)9)],

where (£(s))s is a Brownian motion starting from the origin. Clearly, by Markov’s inequality, we
have
P(F,) =P ((I)n(Rd) > 1) <E [@n(Rd)} .

Since for all s <t the sets U, are contained in B(0, L;), we have

Us<t (§(s) + Us) € Us<t (€(s) + B(0, Ly)) -
As n — 00, by dominated convergence, we have that

E [vol (Us<¢ (£(s) + Us) N B(0,n)°)] — 0,

since vol (Us<¢ (&(s) + Us) N B(0,n)¢) < vol (Us<¢ (&(s) + B(0, Ly))) and the latter has finite expec-
tation given by ([H) for r = L.
We will now show that, on the event N; Uy, €2, ;, the following holds for all :

(Vs<t, Ji<hk:X;+&(s) €U C|J (VA EDn, Ji<k: X +&(0) €Upp}.  (19)

no n>ng

Take ng large enough so that €, ; holds for all n > ng and all i« = 1,...,k (since the sets Q,;
are increasing in n). We want to show that, for all £ € D, there exists i = 1,...,k for which
X; +&i(¢) € Upy. Take i such that X; + &;(s(f)) € Uy(y). Then we have

(8/2)1 < (¢/2)'7,

N =

d(X; + &i(0), Usey) < d(&i(£),&i(s(€))) + d(Xi + &i(s(£)), Us(e)) <

11



since Uy y) 1s a closed set.

By the same reasoning that led to (I8]) we get that, almost surely,
URUngMnsno{¥€ € D, Fi=1,..., Np : X;+&(€) € Upn} = UngNnsng IV € Dy, Ji: Xi+&i(0) € Uy}

This together with the fact that P (N; Uy, Q,, ;) = 1, which follows from Lévy’s modulus of continuity
theorem (see for instance [13, Theorem 1.14]), concludes the proof of the lemma. O

Proof of Theorem By Lemma 2] we have that

ny
P(Vs<t, Ji:X;+&(s)€Ds) < lim lim P < ﬂ {MeD,, Ji: X;+&{) e Dg’n}) )
ng—ro00 N1 —00
n=ngo

Since the sets (Dy) are uniformly bounded, by the same reasoning that led to (I8]) we get

ni ni
() {Ve €Dy, Ji: Xi+&(0) € Doy} = [ {VL EDn, 3X; €Ty N B(O, R) : X +&(() € Dy}
n=ngo R n=ng

Let Ng be the number of nodes of the Poisson process Iy that are in B(0,R). Then Np is
a Poisson random variable of parameter o = Avol (B(0,R)). If we condition on Ng, then by
standard properties of Poisson processes, we get that the positions of the nodes X; are independent
and uniformly distributed in B(0, R). So we obtain

n1
P < ﬂ {V€ eD,, 31X, ellyN B(O,R) . ¢ +€Z(€) € Dg’n}>

n=ng

= —aak -~ . ~
:Ze ﬁP(ﬂ{VfG’Dn, E|Z21,...,k’2l‘i+£i(f)GD&n}),

=0 n=ngo

where the z;’s are i.i.d. uniformly in the ball B(0, R).
Using Lemma 1] we deduce that, for all k,

P ( (N {VEeDy, Ji<k:m+&(0) € EM}> <P ( ({VED,, Ji<k:m+&() € B(o,@@}) ,

n=ng n=ng

where 7, satisfies vol (B(0,7,,)) = vol (ﬁgm).
Thus if 7,y is such that vol (B(0,75,)) = vol (Ds ), then for every s € [¢,£+t/2")

)

T <7r 1+ —F——7— Y (20)
n > Tsn )
Ty, ) 7‘2{ ]c(d)n

where ¢(d) is a constant that depends only on the dimension.

Hence we get

P ( ﬁ (V0 eD,, Fi: X;+ &) € f)g,n}) <P < ﬁ (Ve eD,, Ji:X;+&) < B(O,@,J})

n=no n=no

12



and thus

P(Vs<t, Ji: X;+&(s) € D) <P (| J [ {VLEDy, Ji: Xi+&(0) € B(0,7n)}

no n>ng
Now it only remains to show that a.s.
{VS <t, di:X;+ fZ(S) S Bs} = U ﬂ {V@ eD,, Ji:X;+ 61(6) S B(O,?g’n)}. (21)
no n>ng

In the notation introduced before Lemma .2l we have B(0,7y,,) = Egm. Then applying Lemma [£.2]
we get that the left-hand side of (2II) is contained in the right-hand side of (2I)).

To show the other inclusion, notice first that since all the balls are uniformly bounded, by the same
reasoning that led to ([I8]), it suffices to look at a finite number of nodes of the Poisson process and
show that a.s.

U O {#eDn, 3i<k:Xi+&(0) € BO,7n)} S{Vs<t, Ji<k:X;+&(s) € B} (22)

no n>ng

In order to establish (22]), notice first that the events €, ; are increasing in n and thus, almost
surely, there exists ng large enough so that 2, ; holds for all n > ng and all 7 = 1,... k. If £ is such
that £ < s < £+ t/2", then there exists ¢ = 1,...,k such that X; + &(¢) € B(0,7¢,), and hence

using 20) we get
1 1/d
, , _ . . —r )t < — -
A(X; +&(0), B) = (1Xi + &(Dll2 o) < 7o <1+7’§l,n6(d)n>

Therefore, for all n > ng, by the triangle inequality again we have

min d(X; +&(s), By) < min (d(&(s), &(0) + (X + &(6), By)

1=1,... 1= 7"'7k

1 s 1 1/d
< _ n
- 2<t/2 ) Tsn <1 rglmc(d)n) ra =0

as n — 0o, since 1, — 75 as n — o0o. Hence, this gives that there exists i € {1,...,k} such that
X; +&i(s) € Bs, since By is a closed set and this finishes the proof of ([22)) and concludes the proof
of the theorem. O

We now explain the measurability issue raised at the beginning of the section.

Lemma 4.3. Let (D,)s be a collection of closed sets in R? that are uniformly bounded; i.e., there
exists Ly > 0 such that Us<;Ds C B(0, Ly). Then, for all t > 0, the event {Tig)1 > t} is measurable.

Proof. By the assumption on the sets being uniformly bounded, as in ({I8) we can write
{Vs <t, Ji: X;+&(s) € Ds} =Up{Vs <t, 3X; € IyNB(0,R) : X; +&(s) € Ds}.
In order to show the measurability, it suffices to show that, for all k, the event

{VSSt, E|i=1,...,k:Xi+&(S)€Ds}

13



is measurable. But the event above can be alternatively written as
{VS < t) (Xl + 61(8)7 cee 7Xk: + ék‘(s)) € D;@k},

where D&% = {z = (21,...,2;) € R¥* . Jist. z; € Dy} is clearly a closed set. So the initial
question of measurability reduces to the question of measurability of the event

{Vs <t, &(s) € Us},

where £ is a Brownian motion in dk dimensions and (Us) is a collection of closed sets. In order to
show this, we use the same notation as in (I6) and define 2,, as in ({I7) but only for one Brownian
motion and Zy = (\y<s<qis/2n Ds,n, which is again closed as an intersection of closed sets. Then
using similar ideas as in the proof of ([I9]) and ([22]) we get that on U,

{Vs <t.&(s) € D} = () {¥ € D, E(0) € Z4}.

no n>ng

Hence the measurability follows, since by Lévy’s modulus of continuity theorem (see for instance
[13, Theorem 1.14]) we have that P (U;,$,,) = 1. O

5 Concluding remarks and questions

A related quantity that has been studied for Poisson Brownian motions is the detection time, Tyet.
Consider a target particle © and define Tye; as the first time at which a node of the Poisson point
process is within distance r of u. Kesidis, Konstantopoulos and Phoha [7], [I0] used a result from
stochastic geometry [20] to show that, when u stays fixed at the origin,

P (Thet > t) = exp (—AE [vol (Wy(t))]) = exp <—cd#(t)(l + 0(1))) , (23)

where Wy (t) is the Wiener sausage as defined in ({]) and ¢y is an explicit constant.

Even though the isolation time seems to be similar to the detection time, we are not aware of any
reduction that allows us to use ideas from stochastic geometry to characterize Tig).

Question. Does the tail of Tis, behave similarly to the tail of Ty ? Namely, is it true that for all
dimensions d > 1, there exists a constant ¢; such that

P (Tigo1 > t) = exp (—Ed#(t)(l + 0(1))> ? (24)

Peres et al. [14] and Peres and Sousi [15] studied the detection time for the case when u also moves.
Among other things, they established that, when the target is allowed to move independently of the
nodes of Iy, then the best strategy for u to avoid detection is to stay fixed and not to move. Similar
results were obtained for random walks in the lattice Z¢ by Moreau et al. [I2] and Drewitz et al. [6].
Tt is interesting that staying fixed is also the best strategy to avoid isolation, cf. Corollary .4l

We now discuss some additional motivation and conclude with another open problem. For each
s > 0, let G5 denote the graph with vertex set II; and an edge between any two nodes of Il
that are within distance r of each other. As in [I4], we call this stationary sequence of graphs
the mobile geometric graph. This and other variants have been considered as models for mobile
wireless networks, which motivated the study of some properties of this types of graphs, such as
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broadcast [5, 16, 14 01], spread of infection [8, @], detection of targets [7, 10, 14l 15, 9] and
percolation [I7, [I4]. We refer the reader to the discussion in [I7] for additional motivation and

related work in the engineering literature.

Regarding percolation properties of Gy, it is known [2] that, for d > 2, there exists a constant
Ac = Ac(d) such that, if A\ > A, then G contains an infinite connected component at all times.
Peres et al. [I4] considered the regime A > A\ and derived lower and upper bounds for the so-called
percolation time, which is the first time T},e;c at which a non-mobile target u belongs to the infinite
connected component. A quantity related to the isolation time is the non-percolation time Tyonperc,
which is the first time at which u does not belong to the infinite connected component. Clearly
Tronpere < Tisol. We conclude with the question below.

Question. Do the tail probabilities of Tpere and Thonpere satisfy (24])7
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