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THE MULTIPLICATIVE GOLDEN MEAN SHIFT HAS INFINITE
HAUSDORFF MEASURE

YUVAL PERES AND BORIS SOLOMYAK

ABSTRACT. In an earlier work, joint with R. Kenyon, we computed the Hausdorff dimension
of the “multiplicative golden mean shift” defined as the set of all reals in [0,1] whose binary
expansion (zx) satisfies xrx2r = 0 for all £ > 1. Here we show that this set has infinite Hausdorff
measure in its dimension. A more precise result in terms of gauges in which the Hausdorff measure

is infinite is also obtained.

1. INTRODUCTION

Consider the set

o
Eg = {x = Zka_k oz € {0,1}, xpxep =0 for all k‘}
k=1

which we call the “multiplicative golden mean shift”. The reason for this term is that the set of
binary sequences corresponding to the points of = is invariant under the action of the semigroup
of multiplicative positive integers N*: M, (zy) = (z,;) for r € N. Fan, Liao, and Ma [3] showed
that dimp(E¢) = Y re, 27 logy Fj1 = 0.82429..., where Fj is the k-th Fibonacci number:
=1, Fb, =2, Fy 11 = F;_1+ F}, and raised the question of computing the Hausdorff dimension
of =q.

Theorem 1.1 ([5, 6]). We have dimy (Eq) < dimpy(Eq). In fact,
dimpy (Eq) = —logyp = 0.81137..., where p> = (1 —p)?, 0<p< 1. (1.1)
Here we prove

Theorem 1.2. (i) The set Zg has infinite (not o-finite) Hausdorff measure in its dimension.
Moreover, let s = dimg(Eg). Then H®(Eg) = oo for
logt
o(t) = t° exp [—cw}
provided that ¢ > 0 is sufficiently small, and furthermore, Z¢ is not o-finite with respect to H?.
(ii) On the other hand, we have HY(Eg) = 0 for
|log 2| ]
(log [log t[)? )’

(1.2)

p(t) = t° exp [— (1.3)

provided that 6 < 2.


http://arxiv.org/abs/1201.5842v2

2 YUVAL PERES AND BORIS SOLOMYAK

Remarks. 1. In [6] we have pointed out a remarkable analogy between dimension properties
of multiplicative shifts of finite type and self-affine carpets of Bedford and McMullen, see [I} [§],
although we are not aware of any direct connection. The stated theorem provides further evidence
of this: it exactly corresponds to Theorem 3 from the paper by the first-named author [9].
We should point out, however, that our proof requires many new elements; in particular, the
recurrence relation from Lemma [B.2] below has no parallels in [9].

2. For self-affine carpets with non-uniform horizontal fibres, there is an elegant “soft” argument
showing that the Hausdorff measure of the set in its dimension cannot be positive and finite [7],
and more generally, this holds for any gauge [9]. It would be interesting to find a similar argument
for the multiplicative golden mean shift as well.

3. We expect that similar results hold for other multiplicative shifts of finite type considered

in [6]. Since the proofs are quite technical, we decided to focus on the most basic example of Zg.

2. PRELIMINARIES AND THE SCHEME OF THE PROOF

It is more convenient to work in the symbolic space Yo = {0, 1}N , with the metric

o((xx), (yg)) = 27 min{m: enFun},

It is well-known that the dimensions of a compact subset of [0,1] and the corresponding set of
binary digit sequences in Y9 are equal (this is equivalent to replacing the covers by arbitrary
interval with those by dyadic intervals), and the Hausdorff measures in the gauges that we are
considering are comparable, up to a multiplicative constant. Thus, it suffices to work with the
set Xg—the collection of all binary sequences (xj) such that xzpzor = 0 for all k. Observe that

X = {w = (@k)peq € Bt (Tior)pey € X for all 4 odd} (2.1)
where Y is the usual (additive) golden mean shift:
Ya = {(zk)pey € X2, zprpe1 =0, forall k> 1}

We will use the Rogers-Taylor density theorem from [11]. We state it in the symbolic space 3
where [u] denotes the cylinder set of sequences starting with a finite “word” v and 27 = x; ... x,.
Given a continuous increasing function ¢ on [0,00), with ¢(0) = 0, we consider the generalized
Hausdorff measure with the gauge ¢, denoted by H?, see e.g. [2, p.33] or [I0, p.50] for the
definition and basic properties.

Theorem 2.1 (Rogers and Taylor). Let P be a finite Borel measure on 3o and let A be a Borel
set in Yo such that P (A) > 0. Let ¢ be any gauge function. If for all x € A,

$(27")
P[]

B1 < liminf < B (2:2)
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(where B1, P2 may be zero or infinity), then
afiP (A) < HO(A) < eaBaP (M),
where ¢1 and co are positive and finite.

Corollary 2.2. Let P be a finite Borel measure on Yo and let A be a Borel set in Yo such that
P(A) > 0. Let ¢ be any gauge function.
(1) If forP-a.e. z € A
nli_)néo(log2 P[z]] —logy ¢(27")) = —o0,
then H?(A) = oo.
(ii) If for allz € A
(logy P[] —logy ¢(27")) = +o0,

lim
n—oo
then H®(A) = 0.

For an odd i denote by J(i) = {2"i}°2, the geometric progression with ratio 2 starting at i.
Equation (2I)) says that @ € X¢ if and only if the “restriction” of x to every J(i) belongs to Y.
We can define a measure on X by taking an infinite product of probability measures on each
“copy” of Yg.

In order to compute dimy(X¢), it was enough to take the same measure p on each copy, see
[5]. Given a probability measure p on X, we define a probability measure on X by

P,lu] == H wlul ril, (2.3)
i<n,i odd
where u| ;) denotes the “restriction” of the word u to the subsequence J(i). It was proved in
[0, [6] that there is a unique probability measure p on X such that dimg(P,) = dimg(Xg).
Denote by p(r) the Markov (non-stationary) measure on X, with initial probabilities (r,1 — r)
1—
and the matrix of transition probabilities P = (P(4,j))i j=01 = : 0 " ). Then w = p(p),

where p? = (1 — p)2. The measure u(r) on cylinder sets can be explicitly written as follows:
w(r)(uy .. oug]) = (1 — T)Nl(ul---“k)TNO(ul---“k)_Nl(ul---“k71)7 (2.4)

where u € {0,1}* is a word admissible in X, i.e. if u; = 1 then u;41 = 0 for j < k — 1, and
N;(u) denotes the number of symbols i in the word u. To verify (2.4]), note that the probability
of a 1 is always 1 — r (including the first position), and the probability of a 0 is r, except when
it follows a 1, in which case its probability equals one.

For the lower bound, i.e. part (i) of Theorem [[L2] we have to “fine-tune” the measure P, by
taking a product of measures j(py) on subsequences J(i) with odd i such that 2F <4 < 281 Tt
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is clear that we must have limy_,., pr = p; in fact, we will take p = p + %. More precisely, let

)
pe = p(pr), where pp=p+-, k=1 po=p, (2.5)

and § > 0 is sufficiently small, so that p; = p+ d§ < 1. Next, we define for u € {0,1}", with
271 < p < 28

¢
Psful :== ] 11 te—rkul @], (2.6)
k=1

2%<i§2,%17 i odd
where u J(i) = Ui .- Ugk-1; is a word of length k. It is easy to see that IPs is a probability measure
on Xg.
Without loss of generality we can (and will) use logarithms base 2 in (L2]) and (I.3]). Theo-
rem [[L2(i) immediately follows from Corollary 2.2(i) and the following proposition.

Proposition 2.3. There exist constants 6 > 0 and ¢ > 0 such that the measure Ps defined by

(2.8) satisfies
nh—>H;o (log2 Pé[ff] — log, ¢(2_n)) =~
for Ps-a.e. © € X¢, where ¢ is the gauge function from (I2). Equivalently,

: n cn
nh_)llolo <10g2 Ps[z]] + ns + m) = —00 (2.7)

for Ps-a.e. © € X¢, where s = —logy p = dimpy(Xg).

For the upper bound of the Hausdorff measure, i.e. part (ii) of Theorem [[.2] it is enough to
take the same measure p = u(p) as in [5) [6], however, the proof is rather delicate; it follows the
scheme of [9, Theorem 3(ii)], but with many modifications.

We will need a classical large deviation inequality, which we state in the generality needed for
us.

Lemma 2.4 (Hoeffding’s inequality [4]). Let {X;}i>1 be a sequence of independent random vari-
ables with expectation zero, such that |X;| < C, and let S, = > | X;. Then

2
P (S, >tn) < exp(—%) (2.8)

forallt >0 andn > 1.

3. LOWER ESTIMATES OF HAUSDORFF MEASURE
Here we prove Proposition 2.3l We start with a reduction.
Lemma 3.1. If (2.7) holds for positive integers n satisfying
n=2Y2q where 271 <n <2’ deN, (3.1)
with a constant ¢ > 0, then (2.7) holds for all n with c replaced by c/2.
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Proof. For a large integer n € (2071, 2¢), let
d:= L2_W2Jnj, m = 20/2q,
Then
n—\/%gn—ﬂz/% <m<n.
It is clear that m satisfies (B.1) (possibly with a different ¢). Observe that

(¢/2)n cm

logy Ps[x]] + ns + < logy Psla'] + ms + 5 +

(logyn)?  — (logy m)
n/2 m
+ sln=m)+ e[~ g )
Since
n/2 m n/2 n—+2n
- - < sV2 - <0
=)+l gy = Y2 Loy (g )
for large enough n, the claim follows. O O

For k > 1 let a, be the partition of ¢ into cylinders of length k. For a measure p on s and
a finite partition «, denote by H*(«) the p-entropy of the partition, with base 2 logarithms:

H'(a) = — 3 u(A) log, u(A).

Aca
Let n be such that ([BI]) holds. In view of (24,
1£/2]
log, Psl2f] < ) > logy te—k[*7]50:)]- (3.2)
k=1 2%<i§2k711, i odd

Note that x7|;(;) is a word of length k for i € (n/2F n/2¥1], with i odd, which is a beginning
of a sequence in Xg. Thus, [z7];;)] is an element of the partition ag. The random variables
x> logy pu—i[x7] ;)] are iid for i € (n/2¥,n/2871], with i odd, and their expectation equals
— H*¥(oy,), by the definition of entropy. Note that there are n/2"+1 odds in (n/2F,n/2F"1]. Tt
is easy to see from (2.4) and (2.5]) that

[logy pe—rlx71)]| < Ck, (3.3)

for i € (n/2F,n/2¥1], with some C' > 0, independent of n and k. Let

o— n
Sn/2k+1 = Z log, ,ué—k[$l |J(z)]
2%<i§ 2,;11, i odd

and S:L/zkﬂ 1= S ok+1 + s HH* (), be the corresponding sum of centered (zero expectation)

random variables. Then we have, for k = 1,...|¢/2], and any ¢ € (0, %), using (3.3)) in Hoeffding’s
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inequality (2.8]):

-n n l—¢
Ps <:17 Sy ki1 > WHM”“(O&]Q) + <W) )

= Ps <xi S;i/zk+1 = <§£%T>l_a>

(n/2k+1)1—2e
202k2 ]
Denote b, = > 3o, 212, Now it follows from (B:2]) that

< exp [—

L£/2]

Ps |  : logy Ps[z]] > —n Z Hll;kii(lak) + bon'F (3.4)
k=1
SN P ST S
k=1 k=1
< S ool gomptcan]
< too -G () |
< logy(2n) exp [_loggﬁ (g) %_T , (3.5)

where we used that v/8n > 21+1%/2] and ¢ < log,(2n) by BI) in the last step. Since the last
expression is summable in n, it follows from Borel-Cantelli that for Ps-a.e. z € X, the event in
parentheses in Equation (3.4]) holds only for finitely many n. This is the set of full Ps measure
for which we will prove ([27]), for n satisfying (31]).

Below we let H(r) = —rlogyr — (1 — r)logy(l — 7).

Lemma 3.2. We have, for any r € (0,1) and the measure u(r) defined by (2-7),
HM) (og) = H(r)Fe_a(r), k> 1, (3.6)
where Fo(z) =1, Fi(z) =1+ =z, and

Fk(l‘) =14 l‘Fk_l(l‘) + (1 — l‘)Fk_Q(l‘), k> 2. (37)
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Moreover, the polynomials Fy(x) can be expressed as follows:

(x — )2 — (k +2)z + (2k + 3)
(x —2)? ’

Proof. For k =1 the formula ([B.6]) is trivially true. For k > 2 we have

Fy(z) = k> 0. (3.8)

H“(T’)(ak) — H“(’")(al) + H“(’“)(ak|a1) = H(r)+ H“(’")(ak|a1).
By the definition of conditional entropy and the properties of ¥, we have
H") (ogla) = rH* (1) + (1= r) H* (o).

(We set H*")(ag) = 0 here.) Indeed, 0 in Xg can be followed by an arbitrary element of Xg,
and 1 is followed by 0 and then by an arbitrary element of ¥¢. Now (B.6) and (B3.7)) are easily
checked by induction. The explicit formula for Fi(x) was found using that

Fi(z) = Fp—1(z) =1 — (1 — 2)(F—1(z) — F—2(2)),

and can also be checked by induction. O O

Since pe— = p(pe-r), we have by (B.6):

/2 ¢/2]
2 Fues (o) H (pe—1)Fr1(pe—+) 3.9
Z ookl Z ok+1 ’ ( 9)
k=1 k=1

Recall that py_p = p + ﬁ. Next we write the Taylor estimate at p, such that p? = (1 — p)2.
We have p ~ 0.56984 > %, so it suffices to consider z € (%, 1). Below C; denote positive absolute
constants. It follows from (B.8)) that

|Fp(z)| < Cik, |F'(2)| < Cok, |F"(z)| < Csk, x € (1/2,1), k> 1. (3.10)
Therefore,
02 /2 02
HE:J H(pe—k)Fie—1(Pe—rk) Z p)Fi-1(p) HE:J (HFy—1)'(p) ¢
ok+1 2k+1 ok+1 Ik
k=1 =1 k=1
/2] 2
k J \2 )
< Y gz (775) <63 (3.11)
k=1

Lemma 3.3. We have

Z 7}[(1))252;1(1)) =s=—logyp (3.12)
k=1
and
R0 1)
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Proof. One can verify directly that A(r) :== H(r) Y po, F’;;—i(lr) = 25 (") " and this function achieves
its maximum at p. Alternatively, this follows from [5], since A(r) equals what was denoted s(u)
n [5], for p = p(r). O O

In view of (BI0]), we have |ZZO:W2J+1 W| < Cgl - 272 hence ([BI2) implies

14/2)

H(p)Fy.—1(p) —t/2
ZT—sgoﬁﬁa /2, (3.14)
k=1

Next, writing ﬁ % + Zﬁz + %, we obtain

/2
S R )b
ok+l
k=1
o & wRL) O 2 (HF, 1) ) 2 (HE, ) ()
oy Z 9kl 52 ok+1 52 Z 2k+1g k)
k=1
= 5 —|— 52 + S3.
Using (3.10)), by (B13]) we have
) > (HFk_l)/(p) 1) 14 C75
Si<g| 2 w6 gm =g (3.15)
k=[£/2)+1
and
0
3] < Cs 75- (3.16)
Finally,
k(HFy_1) (p) § 2 Cy
$:- @ Z gt | < O 3 = i (3.17)

Lemma 3.4. We have

o i k(HF,—1) (p)

2k+1 > 0.

k=1

The proof uses a (rigorous) numerical calculation, and we postpone it to the end of the section.

Combining (3.9), B.11), B.14), B.15), B.16), and (8.17), we obtain

L) e (ay) 8| _ Cs0*  Col | (Cr+Co)i | Cid
Z oktl ST | = g2 + 20/2 20/2 2N (3.18)
k=1
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Now we can conclude the proof of the proposition. Let x € X be such that for all n sufficiently
large, satisfying (3.1]), we have

L£/2]

HHe— k Oék _
10g2 ]P6 331 Z 2k+1 +b5n1 €

Recall that this holds for Ps-a.e. by (B.5) and Borel-Cantelli Lemma. Then from (B.I8]) we
obtain, keeping in mind that n € (2¢=1,24:

n cn
Sn(a;) = 10g2 ]P’(;[l'l] +ns+ m
cn n _ C56%n
< -7 b 1—e oY e
= (omm? logen? " (logyn)?
Con
+ Cm/ﬁlog2 n+ (C7 + Cg)(gx/ﬁ + 03
(logyn)
Now we choose a positive § < 30 , which is possible by Lemma [34] so that Cs (log n)2 <3 (log%
and then choose ¢ € (0,70/3), whence
_ <1 75771
(logyn)? =3 (logyn)?
Then
1 7én _ Cson
() < ————— 4 bontE 1 0 —_— — —
Sn(z) < 3 Tlogy n)? +ben' "¢ 4+ Cev/nlogyn + (C7 + Cy)dy/n + Togs 1)? — —00,
as n — oo, and (2.7)) follows. O

Proof of Theorem [L2(i). As already mentioned, H?(Zg) = H?(Xg) = oo follows from the
Rogers-Taylor density theorem (more precisely, from Corollary 2.2(i)). If H?|z, was o-finite for
some ¢ > 0, we would have H?(Z¢) = 0 for all larger values of ¢, which is a contradiction. ]

Remark. It is clear, without any calculation, that there exists v > 0, arbitrarily small, such that

kT (HF_1) (p)
Ty = T # 0.
k=1

This implies, by a minor modification of the argument, that H%'(Xg) = oo for the gauge function

|log t|

t) =t exp|—c——2 |,
(1) = " exp e

To this end, we need to take pp, = p + kf% in (23]), where the sign is that of 7,. The details are
left to the reader.
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Proof of Lemma[3.4 A numerical calculation (we used Mathematica) showed that

12

k(HF—1)' (p)
> Shir - ~ 0187469,
k=1

Thus, we only need to estimate the remainder.
We have (HFy,_1) (p) = H(p)F]_,(p) + H' (p)Fr—1(p). Recall that p ~ 0.56984, and a calcula-

tion gives
H(p) ~0.68336 < 0.7, H'(p) ~ —0.281198, hence |H'(p)| < 0.3.

Recall B.8) that F,(z) = (z — 2)2[(x — 1)"*? — (n + 2)z + (2n + 3)], whence
0< Fo(p) <272 — (n+2)/2+ (2n+ 3) < 3+ 3n/2.

Further,

20(p—1D)""? —(n+2p+2n+3))  (n+2)(p-1)"" - (n+2)
(p—2)3 (p—2)? '

Note that in the expression for F)(p) the 1st term is positive and the 2nd term is negative. The

F(p) =

first term, in absolute value, is less than 2(3 + 3n/2) = 3n + 6, and the second term, in absolute

value, is less than n 4 3 for n > 1. Thus,
|F(p)| < 3n +6.

It follows (using a crude estimate) that

‘Z k(HFj,_1) ‘ _ i (0.7(3k 4 3) + 0.3(3k + 3)/2)k _ i Bk(k+1)

2k+1 9k+1 9k+1
k=13 k=13
Finally,
o
3k(k + 1) _
Z Rl = B/DI(1 —2) &™) a1y
k=13
= (3/9)[27"+30-27124+15-14-271%] < 0.1 < 0.187469,

completing the proof of the claim that ) .-, Mgﬁiw > 0. O O

4. UPPER BOUND FOR HAUSDORFF MEASURE

First we give a short proof of a weaker result: H¥(X¢g) = 0 where

__ 4S8 | 10g27§|
O = | g g ) (1

where g is increasing and [~ % = o0; in particular, this includes 1 = ¥y from (L3]) with 6 = 1.
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Proof. We use the measure P, from (Z3]), where u = u(p), p> = (1 — p)?, as in [5]. Consider any
point € X. Then we obtain from (2.0]), as in [5], for n even:

n/2

Pulz7] = (1—p)N1(x’f)pN0(x’f)—N1(x1 )

_ pnpN()(SCT/2)—NO(x71L)/2, (42)

in view of 1 —p = p*2, Ny(z}) = n — No(z}). Note that logy1)(2™") = —ns —
view of s = —log, p, we have

WmDglogym)” 12

log, P, [of] — logp ¥(27™) _ s (No<x’f/2> ~ Nowf)) . 1 (43)
n 2\ n/2 n (In2)g(logyn) - )
Denote
b, o 0z Pulet] —logy p(27%) _ §<No<w%“> ) No<x%”>) Lo
T 2 2\ 2771 2 (In2)g(j) -
Then
s 1 No(mfz) ‘ 1
b1+ +bp=—=(N — —_— L
L b 2< o(@1) 2! )Jr; m2ygG) T
by the assumption on the function g. It follows that lim sup 27 bj = +o0, hence
lim sup(logy Py[27] —logy ¥(27")) = +o0,
n—oo
and we obtain H¥(Xg) = 0 by Corollary Z2(ii). O O

Obtaining the same result for ¢y from (L3) with 1 < 6 < 2 is more delicate. Our proof follows
the scheme of the proof of [9, Theorem 3(ii)], but we have to make a number of modifications.

The following lemma is a version of [9, Lemma 5] in the form convenient for us.

Lemma 4.1. (i) Let 1 < n < 2. Suppose that {y(n)}>2 is a real sequence such that

n=1

C1 1= suply(n) —y(n —1)] < oo (4.4)

and for all n > ny,
7(2n) n
=T g @y )

Then either there exists ¢ > 0 such that for all n > nyg
2n

2n) > ¢c———— 4.6
T 2 gy T 0
or there exists € > 0 such that for infinitely many n,
2
(2n) < —en and () — 2ZD <" (4.7)

2 " logy(2n)
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(ii) For any real sequence {y(n)}>2, satisfying ({-4)),

7(2n) n
() - —5—< oz, (1) (4.8)

for infinitely many n.

Proof. (i) Iterating (£35]) we obtain for n > ng and m > 1:

v(n) = 12 Z (4.9)

Jj+ log2 n)"

Case 1: y(n) > 0 for all n > ng. Then ([A9) 1mphes for n > ny:

n
Z J+10g2n (log2 n)n=t’

whence (£.6) holds.
Case 2: there exists n1 > ng such that v(ny) < —e < 0. Then (&3] implies v(2n1) < 2y(n1) <
—2e¢, and inductively, v(2™ny) < —2™¢ for all m > 1. Moreover, for infinitely many m we have

v(2™nq) < 2m=1p,

2m—1n o ,
T =T S @)
since otherwise,
72" ) (2™ ) n
- > 9 > 17
2m—1 2m m + log ny m = mo +

and then taking the sum over m from mg + 1 to ¢ yields
7(2m0ny) (270 )
9mo omo+¢

which is a contradiction, since |y(i)] < Cyi by (@4l). Thus, (471) holds for infinitely many
n = 2Mnq, as desired.

(ii) If the claim is not true, then (&35]) holds for n > ng with n = 1, for some nyg € N. Then

we obtain (£9) with n = 1. But y(2™n) > —C12™n by (@4]), and we get a contradiction letting

m — 00. O U

— 00, £ — o0,

We still use the measure P, from (Z3)), as in [5], so by (£.2]), keeping in mind that s = —log, p,
we have
log, P, [23"] + s(2n) = [No(z3")/2 — No(z})]s. (4.10)

Observe that
/+1

=> Z No(z%|s,), 2071 <n <2t (4.11)

k= 1—k<7,< The 1, © odd

By the definition of the measure P, the random variables No(z7|,,) are i.i.d. for odd i € (g, 5r=1]-
Note that |z}'|s,| = k for such 4, and the distribution of these random variables is the distribution
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of No(u), |u| = k, where {u;} is the Markov chain corresponding to p. By the definition of
= p(p),

k—1
E[Nolul] = S (pP)o, [ul = k.
§=0
_ _(p 1=p : : _ (1 1-p
where p = (p,1 —p) and P = Lo . Since P has left eigenvectors w = (ﬂ, ﬂ) and
7 = (1, —1) corresponding to the eigenvalues 1 and p — 1, respectively, we have
. 1 . ,
(P = 5= [1= (p—1)*3], j 2 0,
-p
hence
k—1
k 1 : ko A-(p-D)"r-1
E[N, - —1)t2 = =: Lj. 4.12
[Nolul] = 57— = 5= Sl 17" = T e (@12)
Lemma 4.2. We have
E[No (22"
[ Oé ) E[No(z})]| < C(logyn)?, n €N,

for some C' > 0, where x has the law of IP,.

Proof. Denote by Zgqq(a,b] the set of odd integers in the interval (a,b], where a < b are reals.

We have from (£I1)) and (ZI2):
/41
E[No(z7)] Z#Zodd (k> geet] - L

Note that Zoqa (5757, 57 = {1} if n = 2, and it is empty otherwise. It follows that

om /41 7, _n__n_
k=1

where d € {0,1/2}. It is easy to see that

h—
H#Zoqa(a,b] — ( 5 a) <1, for 0<a<b, (4.14)
hence, taking (£.12]) into account,
E [N (227 £+2 £+2
M — E[No(z})]| < 2ZLk <C'Y k< C'P < Clogyn)®.
k=1

U (]
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Proof of Theorem [LA(ii). In order to show that H%(X¢) = 0, we cover X¢ by three subsets: B,
L, and A, defined as follows. Let

No(x3" —2
B = {x € Xg:3dn>90, % — No(z) > m for infinitely many n} . (4.15)
Denote
NG (#7) = No(a) — E[No(a7)]
and let
No(z3m) —2n
L:= Xg: 3 0 — No(2}) > ——— d
{x € Xg: Je>0, o(ah) > Togy (21) an
N§(x3) < —en  for infinitely many n} (4.16)

Finally, let A = X¢ \ (L U B). It suffices to verify that each of the three sets B, L, A has zero
H¥?-measure (indeed, L and A even have zero H*-measure).

Step 1: H¥¢(B) = 0. Let B, be the set of z € X¢ such that the condition in (I5) holds for a
fixed . Thus, B = |, 9 By = U,cq, 4>9 Bn:» and it is enough to show that HYo(B,) = 0. We
have from (4.I0) and the definition of ¥y for all x € By:
S<N0(:n%") 2n

2 (In 2)(log,(2n))?

logy P[] — logy (2 72") = — No(a?)) +

—2ns + 2n
(logy(2n))" — (In2)(logy(2n))?
for infinitely many n. Since n > 6, it follows that

lim Sup(10g2 P“[x%"] — logy ¢6(2_2n)) = +00,

n—o0

hence H¥?(B,) = 0 by Theorem .11

Step 2: H¥¢(L) = 0. Denote by L(g) the set of points © € X which satisfy the condition in
#10) for a given € > 0. For ¢ > 0 and n € N let £,,(¢) be the set of words u of length 2n
for which the condition in (£I6]) holds. (Note that this condition depends only on the first 2n
symbols of x; thus, (£.16]) holds for all = € [u].) If u € £, () then by (£10) and (£.10]),

—2sn
1 P 22ns > =2
ng( M[u] ) = 10g2(2n) )
hence (n2)
2sn(In2
2728 < — | P, [ul. 4.1
<o (T ) B o
By the definition of £,,(¢) we have
> PBufu] <Pu(z: Ng(2i") < —en). (4.18)

ueﬁn(a)
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The following lemma is a consequence of large deviation estimates; it will be used in the last
step of the proof as well.

Lemma 4.3. There exist co,c3 > 0 such that for allt >0 and n € N,
P, (v : |NG(x")| > tn) < coexp(—cst®n).

Proof. We have by (4.11]),

{41
Ny (") =) Sh,, where A = #Zoaa(%, 5],
k=1
Sa, = > No (@1]1,),
27—}6<i§2k%1, i odd
and
Ng(z7]5,) = No(27]s,) — E[No(u)] for [u| =k and i€ Zoqa(gr, si=r]-

Now,

Zﬁ)a

{+1 l+1
Pﬂ(‘zszk > tn) < 3B
k=1 k=1
1

since Y po FRED) = 1. Note that Szk is a sum of Aj independent random variables, which are
bounded by & in modulus, hence by Hoeffding’s inequality (2.8]),

Fuls:

_k(k:tj—l)> = Pﬂ(’szk’zA’“'m)
t2n? ]

< 2 -
= eXp[ 24 (k + 1)24y,

Observe that Ay < 575 +1 < g5 by (A.14), hence

*

IP’H( S

S tn )<2x [_ t2n - 2k }
k) =P LT g 2)

and, therefore,

o 2 k
P“(x : |N0 ($%n)| 2 tn) S 2 E exp |:— m} S (&) eXp(—03t2n),
k=1

for some positive ¢, c3, as desired. O O
Combining (£I7), (AI8) and Lemma (3] with t = ¢, yields

2sn(In 2
Z (272" < ¢y exp % — c3e?n].
UEL (€) 0g,(2n)
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The right-hand side of this inequality is summable in n, so by choosing large ng we can make the

o> er=3Y Y (diam[u))

n>no u€Ln(e) n>no u€Ln(€)

suin

arbitrarily small. But for any ng, the union J;”,, Uer, (e)[u] forms a cover of L(e), proving that
H*(L(¢)) = 0. Finally, L = J.cq L(¢), so we obtain that #*(L) = 0 and certainly H¥¢(L) = 0.

Step 3. For n € (1,2), € € (0,n), and ¢ > 0, let A(n,e,c) be the set of x € X such that for n
sufficiently large we have

No(z3m) —2n
— = Ny} € — 4.1
2 NS o, @uyy 19
d
h N (23" > 2n 4.20
0(z1") > CWa (4.20)
but for infinitely many n,
No(z3m) —2n
——= — Ny(z} _ . 4.21
N e I 20
By Lemma A.1J(ii), applied to {No(z})}n>1, (£2I) certainly holds for ¢ = n — 1.
We claim that
xe\Bunc J U U Ameo. (4.22)

n€(1,2) c>0e€(0,2—n)

Indeed, for z € X \ B let n* be the infimum of 7 for which (4.I9) holds for n sufficiently large
(note that x Q B means such 7 exists). Then n* € [1,2) by Lemma [£.1)ii), and (£.I9) holds with
n = n*+2=L for n sufficiently large, whereas [@21]) holds for ¢ € (n—n*,2—n) = (2 - @)
Let

2(n) = N(al), n> 1,
It is clear tthat

lv(n+1) —~(n)| <2, n>1.
It follows from ({I9) and Lemma [£2] that
v(2n 2n n
=252 Togyamy OO0 2 oy

for n sufficiently large. Thus, the sequence {7y(n)},>1 satisfies the assumptions of Lemma [.TJ(i).

By Lemma [.1[(i), either there exists ¢ > 0 such that for all n sufficiently large
2n
(logy(2n))7=1
which together with the above yields that x € A(n,e,¢), or else there exists ¢ > 0 such that for

Ni(ai") > ¢

infinitely many n,
N* 2n
o (21") <

NG (22") < —en and  NZ(2}) — 2 = logy(2n)
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hence by Lemma [.2],

No(z?m) n 2n

No(z™) — 1 Ei
o(@1) 2 ~ logsy(2n) t+ellogyn)” < log,(2n)

for infinitely many n, so that « € L, proving the claim. Since the union in ([4.22) can be taken
over rational 7, ¢, e, it suffices to show that H*(A(n,e,c)) =0 for € € (0,2 — 7).
Let I',,(n, €, ¢) be the collection of words u of length 2n for which (4.19)), (420]), and (£21)) hold
(as before, this is well defined). If u € T';,(n, €, ¢), then by (£I0) and (Z.21)
loga (B [1]227) > i
hence

y-2ns < exp(%)mw (4.23)

By the definition of T, (1, &, ¢) and Lemma [4.3] with ¢ = W,

2n
> Buu] < Pz Nj@") > et
eTatmed) ( (logy(2n))" )

< (- i)
= 2P\ (log,(2n))22 )

with ¢ = 4e3c?. Combining this with (23] yields

B 2ns(In2) cn
2 2ns < - .
2 < e oyt~ ogg@a) o

u€ln(n,e,c)

Recall that € < 2 —n, and therefore n — & > 21 — 2 and the right-hand side of the last inequality
is summable in n. It follows that, by taking n; sufficiently large, the sum

Sy e
n2n1 u€ly (n,¢,c)
can be made arbitrarily small. Since for any n;, the union

U U

n>ni u€ly (n,e,c)

covers A(n),¢,c), this implies H*(A(n,¢,¢)) = 0 (and hence H¥?(A(n,e,c)) = 0), completing the
proof. O O
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