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THE MULTIPLICATIVE GOLDEN MEAN SHIFT HAS INFINITE

HAUSDORFF MEASURE

YUVAL PERES AND BORIS SOLOMYAK

Abstract. In an earlier work, joint with R. Kenyon, we computed the Hausdorff dimension

of the “multiplicative golden mean shift” defined as the set of all reals in [0, 1] whose binary

expansion (xk) satisfies xkx2k = 0 for all k ≥ 1. Here we show that this set has infinite Hausdorff

measure in its dimension. A more precise result in terms of gauges in which the Hausdorff measure

is infinite is also obtained.

1. Introduction

Consider the set

ΞG :=
{
x =

∞∑

k=1

xk2
−k : xk ∈ {0, 1}, xkx2k = 0 for all k

}

which we call the “multiplicative golden mean shift”. The reason for this term is that the set of

binary sequences corresponding to the points of ΞG is invariant under the action of the semigroup

of multiplicative positive integers N∗: Mr(xk) = (xrk) for r ∈ N. Fan, Liao, and Ma [3] showed

that dimM (ΞG) =
∑∞

k=1 2
−k−1 log2 Fk+1 = 0.82429 . . . , where Fk is the k-th Fibonacci number:

F1 = 1, F2 = 2, Fk+1 = Fk−1+Fk, and raised the question of computing the Hausdorff dimension

of ΞG.

Theorem 1.1 ([5, 6]). We have dimH(ΞG) < dimM (ΞG). In fact,

dimH(ΞG) = − log2 p = 0.81137 . . . , where p3 = (1− p)2, 0 < p < 1. (1.1)

Here we prove

Theorem 1.2. (i) The set ΞG has infinite (not σ-finite) Hausdorff measure in its dimension.

Moreover, let s = dimH(ΞG). Then Hφ(ΞG) = ∞ for

φ(t) = ts exp
[
−c | log t|

(log | log t|)2
]

(1.2)

provided that c > 0 is sufficiently small, and furthermore, ΞG is not σ-finite with respect to Hφ.

(ii) On the other hand, we have Hψθ (ΞG) = 0 for

ψθ(t) = ts exp
[
− | log t|
(log | log t|)θ

]
, (1.3)

provided that θ < 2.
1
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Remarks. 1. In [6] we have pointed out a remarkable analogy between dimension properties

of multiplicative shifts of finite type and self-affine carpets of Bedford and McMullen, see [1, 8],

although we are not aware of any direct connection. The stated theorem provides further evidence

of this: it exactly corresponds to Theorem 3 from the paper by the first-named author [9].

We should point out, however, that our proof requires many new elements; in particular, the

recurrence relation from Lemma 3.2 below has no parallels in [9].

2. For self-affine carpets with non-uniform horizontal fibres, there is an elegant “soft” argument

showing that the Hausdorff measure of the set in its dimension cannot be positive and finite [7],

and more generally, this holds for any gauge [9]. It would be interesting to find a similar argument

for the multiplicative golden mean shift as well.

3. We expect that similar results hold for other multiplicative shifts of finite type considered

in [6]. Since the proofs are quite technical, we decided to focus on the most basic example of ΞG.

2. Preliminaries and the scheme of the proof

It is more convenient to work in the symbolic space Σ2 = {0, 1}N, with the metric

̺((xk), (yk)) = 2−min{n: xn 6=yn}.

It is well-known that the dimensions of a compact subset of [0, 1] and the corresponding set of

binary digit sequences in Σ2 are equal (this is equivalent to replacing the covers by arbitrary

interval with those by dyadic intervals), and the Hausdorff measures in the gauges that we are

considering are comparable, up to a multiplicative constant. Thus, it suffices to work with the

set XG—the collection of all binary sequences (xk) such that xkx2k = 0 for all k. Observe that

XG =
{
ω = (xk)

∞
k=1 ∈ Σ2 : (xi2r )

∞
r=0 ∈ ΣG for all i odd

}
(2.1)

where ΣG is the usual (additive) golden mean shift:

ΣG := {(xk)∞k=1 ∈ Σ2, xkxk+1 = 0, for all k ≥ 1}.

We will use the Rogers-Taylor density theorem from [11]. We state it in the symbolic space Σ2

where [u] denotes the cylinder set of sequences starting with a finite “word” u and xn1 = x1 . . . xn.

Given a continuous increasing function φ on [0,∞), with φ(0) = 0, we consider the generalized

Hausdorff measure with the gauge φ, denoted by Hφ, see e.g. [2, p.33] or [10, p.50] for the

definition and basic properties.

Theorem 2.1 (Rogers and Taylor). Let P be a finite Borel measure on Σ2 and let Λ be a Borel

set in Σ2 such that P (Λ) > 0. Let φ be any gauge function. If for all x ∈ Λ,

β1 ≤ lim inf
n→∞

φ(2−n)

P [xn1 ]
≤ β2 (2.2)
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(where β1, β2 may be zero or infinity), then

c1β1P (Λ) ≤ Hφ(Λ) ≤ c2β2P (Λ),

where c1 and c2 are positive and finite.

Corollary 2.2. Let P be a finite Borel measure on Σ2 and let Λ be a Borel set in Σ2 such that

P (Λ) > 0. Let φ be any gauge function.

(i) If for P -a.e. x ∈ Λ

lim
n→∞

(log2 P [xn1 ]− log2 φ(2
−n)) = −∞,

then Hφ(Λ) = ∞.

(ii) If for all x ∈ Λ

lim
n→∞

(log2 P [xn1 ]− log2 φ(2
−n)) = +∞,

then Hφ(Λ) = 0.

For an odd i denote by J(i) = {2ri}∞r=0 the geometric progression with ratio 2 starting at i.

Equation (2.1) says that x ∈ XG if and only if the “restriction” of x to every J(i) belongs to ΣG.

We can define a measure on XG by taking an infinite product of probability measures on each

“copy” of ΣG.

In order to compute dimH(XG), it was enough to take the same measure µ on each copy, see

[5]. Given a probability measure µ on ΣG, we define a probability measure on XG by

Pµ[u] :=
∏

i≤n, i odd

µ[u|J(i)], (2.3)

where u|J(i) denotes the “restriction” of the word u to the subsequence J(i). It was proved in

[5, 6] that there is a unique probability measure µ on ΣG such that dimH(Pµ) = dimH(XG).

Denote by µ(r) the Markov (non-stationary) measure on ΣG, with initial probabilities (r, 1 − r)

and the matrix of transition probabilities P = (P (i, j))i,j=0,1 =

(
r 1− r

1 0

)
. Then µ = µ(p),

where p3 = (1− p)2. The measure µ(r) on cylinder sets can be explicitly written as follows:

µ(r)([u1 . . . uk]) = (1− r)N1(u1...uk)rN0(u1...uk)−N1(u1...uk−1), (2.4)

where u ∈ {0, 1}k is a word admissible in ΣG, i.e. if uj = 1 then uj+1 = 0 for j ≤ k − 1, and

Ni(u) denotes the number of symbols i in the word u. To verify (2.4), note that the probability

of a 1 is always 1 − r (including the first position), and the probability of a 0 is r, except when

it follows a 1, in which case its probability equals one.

For the lower bound, i.e. part (i) of Theorem 1.2, we have to “fine-tune” the measure Pµ by

taking a product of measures µ(pk) on subsequences J(i) with odd i such that 2k ≤ i < 2k+1. It
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is clear that we must have limk→∞ pk = p; in fact, we will take pk = p+ δ
k . More precisely, let

µk = µ(pk), where pk = p+
δ

k
, k ≥ 1, p0 = p, (2.5)

and δ > 0 is sufficiently small, so that p1 = p + δ < 1. Next, we define for u ∈ {0, 1}n, with
2ℓ−1 < n ≤ 2ℓ,

Pδ[u] :=

ℓ∏

k=1

∏

n

2k
<i≤ n

2k−1
, i odd

µℓ−k[u|J(i)], (2.6)

where u|J(i) = ui . . . u2k−1i is a word of length k. It is easy to see that Pδ is a probability measure

on XG.

Without loss of generality we can (and will) use logarithms base 2 in (1.2) and (1.3). Theo-

rem 1.2(i) immediately follows from Corollary 2.2(i) and the following proposition.

Proposition 2.3. There exist constants δ > 0 and c > 0 such that the measure Pδ defined by

(2.6) satisfies

lim
n→∞

(
log2 Pδ[x

n
1 ]− log2 φ(2

−n)
)
= −∞

for Pδ-a.e. x ∈ XG, where φ is the gauge function from (1.2). Equivalently,

lim
n→∞

(
log2 Pδ[x

n
1 ] + ns+

cn

(log2 n)
2

)
= −∞ (2.7)

for Pδ-a.e. x ∈ XG, where s = − log2 p = dimH(XG).

For the upper bound of the Hausdorff measure, i.e. part (ii) of Theorem 1.2, it is enough to

take the same measure µ = µ(p) as in [5, 6], however, the proof is rather delicate; it follows the

scheme of [9, Theorem 3(ii)], but with many modifications.

We will need a classical large deviation inequality, which we state in the generality needed for

us.

Lemma 2.4 (Hoeffding’s inequality [4]). Let {Xi}i≥1 be a sequence of independent random vari-

ables with expectation zero, such that |Xi| ≤ C, and let Sn =
∑n

i=1Xi. Then

P
(
Sn ≥ tn

)
≤ exp

(
− t2n

2C2

)
(2.8)

for all t > 0 and n ≥ 1.

3. Lower estimates of Hausdorff measure

Here we prove Proposition 2.3. We start with a reduction.

Lemma 3.1. If (2.7) holds for positive integers n satisfying

n = 2⌊ℓ/2⌋d, where 2ℓ−1 < n ≤ 2ℓ, d ∈ N, (3.1)

with a constant c > 0, then (2.7) holds for all n with c replaced by c/2.
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Proof. For a large integer n ∈ (2ℓ−1, 2ℓ], let

d := ⌊2−⌊ℓ/2⌋n⌋, m := 2⌊ℓ/2⌋d.

Then

n−
√
2n ≤ n− 2⌊ℓ/2⌋ < m ≤ n.

It is clear that m satisfies (3.1) (possibly with a different ℓ). Observe that

log2 Pδ[x
n
1 ] + ns+

(c/2)n

(log2 n)
2

≤ log2 Pδ[x
m
1 ] +ms+

cm

(log2m)2
+

+ s(n−m) + c
[ n/2

(log2 n)
2
− m

(log2m)2

]
.

Since

s(n−m) + c
[ n/2

(log2 n)
2
− m

(log2m)2

]
≤ s

√
2n+ c

[ n/2

(log2 n)
2
− n−

√
2n

(log2 n)
2

]
< 0

for large enough n, the claim follows. � �

For k ≥ 1 let αk be the partition of ΣG into cylinders of length k. For a measure µ on Σ2 and

a finite partition α, denote by Hµ(α) the µ-entropy of the partition, with base 2 logarithms:

Hµ(α) = −
∑

A∈α

µ(A) log2 µ(A).

Let n be such that (3.1) holds. In view of (2.6),

log2 Pδ[x
n
1 ] ≤

⌊ℓ/2⌋∑

k=1

∑

n

2k
<i≤ n

2k−1
, i odd

log2 µℓ−k[x
n
1 |J(i)]. (3.2)

Note that xn1 |J(i) is a word of length k for i ∈ (n/2k, n/2k−1], with i odd, which is a beginning

of a sequence in ΣG. Thus, [xn1 |J(i)] is an element of the partition αk. The random variables

x 7→ log2 µℓ−k[x
n
1 |J(i)] are i.i.d for i ∈ (n/2k, n/2k−1], with i odd, and their expectation equals

−Hµℓ−k(αk), by the definition of entropy. Note that there are n/2k+1 odds in (n/2k, n/2k−1]. It

is easy to see from (2.4) and (2.5) that

∣∣log2 µℓ−k[xn1 |J(i)]
∣∣ ≤ Ck, (3.3)

for i ∈ (n/2k, n/2k−1], with some C > 0, independent of n and k. Let

Sn/2k+1 :=
∑

n

2k
<i≤ n

2k−1
, i odd

log2 µℓ−k[x
n
1 |J(i)]

and S∗
n/2k+1 := Sn/2k+1 + n

2k+1H
µℓ−k(αk), be the corresponding sum of centered (zero expectation)

random variables. Then we have, for k = 1, . . . ⌊ℓ/2⌋, and any ε ∈ (0, 12 ), using (3.3) in Hoeffding’s
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inequality (2.8):

Pδ

(
x : Sn/2k+1 >

−n
2k+1

Hµℓ−k(αk) +
( n

2k+1

)1−ε)

= Pδ

(
x : S∗

n/2k+1 >
( n

2k+1

)1−ε)

≤ exp
[
−(n/2k+1)1−2ε

2C2k2

]
.

Denote bε =
∑∞

k=1 2
−(k+1)ε. Now it follows from (3.2) that

Pδ


x : log2 Pδ[x

n
1 ] > −n

⌊ℓ/2⌋∑

k=1

Hµℓ−k(αk)

2k+1
+ bεn

1−ε


 (3.4)

≤ Pδ


x :

⌊ℓ/2⌋∑

k=1

S∗
n/2k+1 >

⌊ℓ/2⌋∑

k=1

( n

2k+1

)1−ε



≤
⌊ℓ/2⌋∑

k=1

Pδ

(
x : S∗

n/2k+1 >
( n

2k+1

)1−ε)

≤
⌊ℓ/2⌋∑

k=1

exp
[
− n1−2ε

2C22(k+1)(1−2ε)k2

]

≤ ℓ exp
[
−C

′

ℓ2

( n

2⌊ℓ/2⌋+1

)1−2ε]

≤ log2(2n) exp
[
− C ′

log22(2n)

(n
8

) 1

2
−ε]

, (3.5)

where we used that
√
8n > 21+⌊ℓ/2⌋ and ℓ ≤ log2(2n) by (3.1) in the last step. Since the last

expression is summable in n, it follows from Borel-Cantelli that for Pδ-a.e. x ∈ XG, the event in

parentheses in Equation (3.4) holds only for finitely many n. This is the set of full Pδ measure

for which we will prove (2.7), for n satisfying (3.1).

Below we let H(r) = −r log2 r − (1− r) log2(1− r).

Lemma 3.2. We have, for any r ∈ (0, 1) and the measure µ(r) defined by (2.4),

Hµ(r)(αk) = H(r)Fk−1(r), k ≥ 1, (3.6)

where F0(x) = 1, F1(x) = 1 + x, and

Fk(x) = 1 + xFk−1(x) + (1− x)Fk−2(x), k ≥ 2. (3.7)
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Moreover, the polynomials Fk(x) can be expressed as follows:

Fk(x) =
(x− 1)k+2 − (k + 2)x+ (2k + 3)

(x− 2)2
, k ≥ 0. (3.8)

Proof. For k = 1 the formula (3.6) is trivially true. For k ≥ 2 we have

Hµ(r)(αk) = Hµ(r)(α1) +Hµ(r)(αk|α1) = H(r) +Hµ(r)(αk|α1).

By the definition of conditional entropy and the properties of ΣG, we have

Hµ(r)(αk|α1) = rHµ(r)(αk−1) + (1− r)Hµ(r)(αk−2).

(We set Hµ(r)(α0) = 0 here.) Indeed, 0 in ΣG can be followed by an arbitrary element of ΣG,

and 1 is followed by 0 and then by an arbitrary element of ΣG. Now (3.6) and (3.7) are easily

checked by induction. The explicit formula for Fk(x) was found using that

Fk(x)− Fk−1(x) = 1− (1− x)(Fk−1(x)− Fk−2(x)),

and can also be checked by induction. � �

Since µℓ−k = µ(pℓ−k), we have by (3.6):

⌊ℓ/2⌋∑

k=1

Hµℓ−k(αk)

2k+1
=

⌊ℓ/2⌋∑

k=1

H(pℓ−k)Fk−1(pℓ−k)

2k+1
. (3.9)

Recall that pℓ−k = p + δ
ℓ−k . Next we write the Taylor estimate at p, such that p3 = (1 − p)2.

We have p ≈ 0.56984 > 1
2 , so it suffices to consider x ∈ (12 , 1). Below Ci denote positive absolute

constants. It follows from (3.8) that

|Fk(x)| ≤ C1k, |F ′(x)| ≤ C2k, |F ′′(x)| ≤ C3k, x ∈ (1/2, 1), k ≥ 1. (3.10)

Therefore,
∣∣∣∣∣∣

⌊ℓ/2⌋∑

k=1

H(pℓ−k)Fk−1(pℓ−k)

2k+1
−

⌊ℓ/2⌋∑

k=1

H(p)Fk−1(p)

2k+1
−

⌊ℓ/2⌋∑

k=1

(HFk−1)
′(p)

2k+1
· δ

ℓ− k

∣∣∣∣∣∣

≤ C4

⌊ℓ/2⌋∑

k=1

k

2k+1
·
( δ

ℓ− k

)2
≤ C5

δ2

ℓ2
. (3.11)

Lemma 3.3. We have
∞∑

k=1

H(p)Fk−1(p)

2k+1
= s = − log2 p (3.12)

and
∞∑

k=1

(HFk−1)
′(p)

2k+1
= 0. (3.13)
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Proof. One can verify directly that A(r) := H(r)
∑∞

k=1
Fk−1(r)
2k+1 = 2H(r)

3−r , and this function achieves

its maximum at p. Alternatively, this follows from [5], since A(r) equals what was denoted s(µ)

in [5], for µ = µ(r). � �

In view of (3.10), we have |∑∞
k=⌊ℓ/2⌋+1

H(p)Fk−1(p)
2k+1 | ≤ C6ℓ · 2−ℓ/2, hence (3.12) implies

∣∣∣∣∣∣

⌊ℓ/2⌋∑

k=1

H(p)Fk−1(p)

2k+1
− s

∣∣∣∣∣∣
≤ C6ℓ · 2−ℓ/2. (3.14)

Next, writing 1
ℓ−k = 1

ℓ +
k
ℓ2

+ k2

ℓ2(ℓ−k)
, we obtain

⌊ℓ/2⌋∑

k=1

(HFk−1)
′(p)

2k+1
· δ

ℓ− k

=
δ

ℓ

⌊ℓ/2⌋∑

k=1

(HFk−1)
′(p)

2k+1
+
δ

ℓ2

⌊ℓ/2⌋∑

k=1

k(HFk−1)
′(p)

2k+1
+
δ

ℓ2

⌊ℓ/2⌋∑

k=1

k2(HFk−1)
′(p)

2k+1(ℓ− k)

=: S1 + S2 + S3.

Using (3.10), by (3.13) we have

|S1| ≤
δ

ℓ

∣∣∣∣∣∣

∞∑

k=⌊ℓ/2⌋+1

(HFk−1)
′(p)

2k+1

∣∣∣∣∣∣
≤ C7

δ

ℓ
· ℓ

2ℓ/2
=
C7δ

2ℓ/2
, (3.15)

and

|S3| ≤ C8
δ

ℓ3
. (3.16)

Finally,
∣∣∣∣∣S2 −

δ

ℓ2

∞∑

k=1

k(HFk−1)
′(p)

2k+1

∣∣∣∣∣ ≤ C9
δ

ℓ2
· ℓ2

2ℓ/2
=
C9δ

2ℓ/2
. (3.17)

Lemma 3.4. We have

τ :=

∞∑

k=1

k(HFk−1)
′(p)

2k+1
> 0.

The proof uses a (rigorous) numerical calculation, and we postpone it to the end of the section.

Combining (3.9), (3.11), (3.14), (3.15), (3.16), and (3.17), we obtain
∣∣∣∣∣∣

⌊ℓ/2⌋∑

k=1

Hµℓ−k(αk)

2k+1
− s− τδ

ℓ2

∣∣∣∣∣∣
≤ C5δ

2

ℓ2
+
C6ℓ

2ℓ/2
+

(C7 +C9)δ

2ℓ/2
+
C8δ

ℓ3
. (3.18)
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Now we can conclude the proof of the proposition. Let x ∈ XG be such that for all n sufficiently

large, satisfying (3.1), we have

log2 Pδ[x
n
1 ] ≤ −n

⌊ℓ/2⌋∑

k=1

Hµℓ−k(αk)

2k+1
+ bεn

1−ε.

Recall that this holds for Pδ-a.e. x by (3.5) and Borel-Cantelli Lemma. Then from (3.18) we

obtain, keeping in mind that n ∈ (2ℓ−1, 2ℓ]:

Sn(x) := log2 Pδ[x
n
1 ] + ns+

cn

(log2 n)
2

≤ cn

(log2 n)
2
− τδ

n

(log2 n)
2
+ bεn

1−ε +
C5δ

2n

(log2 n)
2

+ C6

√
n log2 n+ (C7 + C9)δ

√
n+

C8δn

(log2 n)
3
.

Now we choose a positive δ < τ
3C5

, which is possible by Lemma 3.4, so that C5
δ2n

(log2 n)
2 <

1
3

τδn
(log2 n)

2 ,

and then choose c ∈ (0, τδ/3), whence

cn

(log2 n)
2
<

1

3
· τδ n

(log2 n)
2
.

Then

Sn(x) ≤ −1

3

τδn

(log2 n)
2
+ bεn

1−ε + C6

√
n log2 n+ (C7 + C9)δ

√
n+

C8δn

(log2 n)
3
→ −∞,

as n→ ∞, and (2.7) follows. �

Proof of Theorem 1.2(i). As already mentioned, Hφ(ΞG) = Hφ(XG) = ∞ follows from the

Rogers-Taylor density theorem (more precisely, from Corollary 2.2(i)). If Hφ|ΞG
was σ-finite for

some c > 0, we would have Hφ(ΞG) = 0 for all larger values of c, which is a contradiction. �

Remark. It is clear, without any calculation, that there exists γ > 0, arbitrarily small, such that

τγ :=

∞∑

k=1

k1+γ(HFk−1)
′(p)

2k+1
6= 0.

This implies, by a minor modification of the argument, that Hφγ(XG) = ∞ for the gauge function

φγ(t) = ts exp
[
−c | log t|

(log | log t|)2+γ
]
.

To this end, we need to take pk = p± δ
k1+γ in (2.5), where the sign is that of τγ . The details are

left to the reader.
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Proof of Lemma 3.4. A numerical calculation (we used Mathematica) showed that

12∑

k=1

k(HFk−1)
′(p)

2k+1
≈ 0.187469.

Thus, we only need to estimate the remainder.

We have (HFk−1)
′(p) = H(p)F ′

k−1(p) +H ′(p)Fk−1(p). Recall that p ≈ 0.56984, and a calcula-

tion gives

H(p) ≈ 0.68336 < 0.7, H ′(p) ≈ −0.281198, hence |H ′(p)| < 0.3.

Recall (3.8) that Fn(x) = (x− 2)−2[(x− 1)n+2 − (n+ 2)x+ (2n+ 3)], whence

0 < Fn(p) < 2−(n+2) − (n + 2)/2 + (2n + 3) < 3 + 3n/2.

Further,

F ′
n(p) =

2((p − 1)n+2 − (n+ 2)p + (2n+ 3))

(p− 2)3
+

(n + 2)(p − 1)n+1 − (n+ 2)

(p− 2)2
.

Note that in the expression for F ′
n(p) the 1st term is positive and the 2nd term is negative. The

first term, in absolute value, is less than 2(3 + 3n/2) = 3n+ 6, and the second term, in absolute

value, is less than n+ 3 for n ≥ 1. Thus,

|F ′
n(p)| < 3n+ 6.

It follows (using a crude estimate) that

∣∣∣
∞∑

k=13

k(HFk−1)
′(p)

2k+1

∣∣∣ <
∞∑

k=13

(0.7(3k + 3) + 0.3(3k + 3)/2)k

2k+1
<

∞∑

k=13

3k(k + 1)

2k+1
.

Finally,

∞∑

k=13

3k(k + 1)

2k+1
= (3/4)[(1 − x)−1x15]′′|x=1/2

= (3/4)[2−11 + 30 · 2−12 + 15 · 14 · 2−12] < 0.1 < 0.187469,

completing the proof of the claim that
∑∞

k=1
k(HFk−1)

′(p)
2k+1 > 0. � �

4. Upper bound for Hausdorff measure

First we give a short proof of a weaker result: Hψ(XG) = 0 where

ψ(t) = ts exp
[
− | log2 t|
g(log2 | log2 t|)

]
(4.1)

where g is increasing and
∫∞ dt

g(t) = ∞; in particular, this includes ψ = ψθ from (1.3) with θ = 1.
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Proof. We use the measure Pµ from (2.3), where µ = µ(p), p3 = (1− p)2, as in [5]. Consider any

point x ∈ XG. Then we obtain from (2.6), as in [5], for n even:

Pµ[x
n
1 ] = (1− p)N1(xn1 )pN0(xn1 )−N1(x

n/2
1

)

= pnpN0(x
n/2
1

)−N0(xn1 )/2, (4.2)

in view of 1 − p = p3/2, N1(x
n
1 ) = n −N0(x

n
1 ). Note that log2 ψ(2

−n) = −ns − n
(ln 2)g(log2 n)

. In

view of s = − log2 p, we have

log2 Pµ[x
n
1 ]− log2 ψ(2

−n)

n
=
s

2

(N0(x
n/2
1 )

n/2
− N0(x

n
1 )

n

)
+

1

(ln 2)g(log2 n)
. (4.3)

Denote

bj :=
log2 Pµ[x

2j
1 ]− log2 ψ(2

−2j )

2j
=
s

2

(N0(x
2j−1

1 )

2j−1
− N0(x

2j
1 )

2j

)
+

1

(ln 2)g(j)
.

Then

b1 + · · ·+ bℓ =
s

2

(
N0(x

1
1)−

N0(x
2ℓ
1 )

2ℓ

)
+

ℓ∑

j=1

1

(ln 2)g(j)
→ +∞, ℓ→ ∞,

by the assumption on the function g. It follows that lim sup 2jbj = +∞, hence

lim sup
n→∞

(log2 Pµ[x
n
1 ]− log2 ψ(2

−n)) = +∞,

and we obtain Hψ(XG) = 0 by Corollary 2.2(ii). � �

Obtaining the same result for ψθ from (1.3) with 1 < θ < 2 is more delicate. Our proof follows

the scheme of the proof of [9, Theorem 3(ii)], but we have to make a number of modifications.

The following lemma is a version of [9, Lemma 5] in the form convenient for us.

Lemma 4.1. (i) Let 1 < η < 2. Suppose that {γ(n)}∞n=1 is a real sequence such that

C1 := sup
n

|γ(n)− γ(n− 1)| <∞ (4.4)

and for all n ≥ n0,

γ(n) ≥ γ(2n)

2
+

n

(log2(2n))
η
. (4.5)

Then either there exists c > 0 such that for all n ≥ n0

γ(2n) ≥ c
2n

(log2(2n))
η−1

, (4.6)

or there exists ε > 0 such that for infinitely many n,

γ(2n) ≤ −εn and γ(n)− γ(2n)

2
≤ n

log2(2n)
. (4.7)
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(ii) For any real sequence {γ(n)}∞n=1 satisfying (4.4),

γ(n)− γ(2n)

2
<

n

log2(2n)
(4.8)

for infinitely many n.

Proof. (i) Iterating (4.5) we obtain for n ≥ n0 and m ≥ 1:

γ(n) ≥ γ(2mn)

2m
+ n ·

m∑

j=1

1

(j + log2 n)
η
. (4.9)

Case 1: γ(n) ≥ 0 for all n ≥ n0. Then (4.9) implies for n ≥ n0:

γ(n) ≥ n

∞∑

j=1

1

(j + log2 n)
η
≥ c

n

(log2 n)
η−1

,

whence (4.6) holds.

Case 2: there exists n1 ≥ n0 such that γ(n1) < −ε < 0. Then (4.5) implies γ(2n1) ≤ 2γ(n1) <

−2ε, and inductively, γ(2mn1) ≤ −2mε for all m ≥ 1. Moreover, for infinitely many m we have

γ(2m−1n1)−
γ(2mn1)

2
≤ 2m−1n1

log2(2
mn1)

,

since otherwise,
γ(2m−1n1)

2m−1
− γ(2mn1)

2m
>

n1
m+ log n1

, m ≥ m0 + 1,

and then taking the sum over m from m0 + 1 to ℓ yields

γ(2m0n1)

2m0
− γ(2m0+ℓn1)

2m0+ℓ
→ ∞, ℓ→ ∞,

which is a contradiction, since |γ(i)| ≤ C1i by (4.4). Thus, (4.7) holds for infinitely many

n = 2mn1, as desired.

(ii) If the claim is not true, then (4.5) holds for n ≥ n0 with η = 1, for some n0 ∈ N. Then

we obtain (4.9) with η = 1. But γ(2mn) ≥ −C12
mn by (4.4), and we get a contradiction letting

m→ ∞. � �

We still use the measure Pµ from (2.3), as in [5], so by (4.2), keeping in mind that s = − log2 p,

we have

log2 Pµ[x
2n
1 ] + s(2n) =

[
N0(x

2n
1 )/2 −N0(x

n
1 )
]
s. (4.10)

Observe that

N0(x
n
1 ) =

ℓ+1∑

k=1

∑

n

2k
<i≤ n

2k−1
, i odd

N0(x
n
1 |Ji), 2ℓ−1 < n ≤ 2ℓ. (4.11)

By the definition of the measure Pµ, the random variables N0(x
n
1 |Ji) are i.i.d. for odd i ∈ ( n

2k
, n
2k−1 ].

Note that |xn1 |Ji | = k for such i, and the distribution of these random variables is the distribution
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of N0(u), |u| = k, where {ui} is the Markov chain corresponding to µ. By the definition of

µ = µ(p),

E
[
N0[u]

]
=

k−1∑

j=0

(pP j)0, |u| = k,

where p = (p, 1 − p) and P =

(
p 1− p

1 0

)
. Since P has left eigenvectors π = ( 1

2−p ,
1−p
2−p) and

τ = (1,−1) corresponding to the eigenvalues 1 and p− 1, respectively, we have

(pP j)0 =
1

2− p
[1− (p − 1)j+2], j ≥ 0,

hence

E
[
N0[u]

]
=

k

2− p
− 1

2− p

k−1∑

j=0

(p− 1)j+2 =
k

2− p
− (1− (p − 1)k)(p − 1)2

(2− p)2
=: Lk. (4.12)

Lemma 4.2. We have
∣∣∣∣∣
E
[
N0(x

2n
1 )
]

2
− E

[
N0(x

n
1 )
]
∣∣∣∣∣ ≤ C(log2 n)

2, n ∈ N,

for some C > 0, where x has the law of Pµ.

Proof. Denote by Zodd(a, b] the set of odd integers in the interval (a, b], where a < b are reals.

We have from (4.11) and (4.12):

E
[
N0(x

n
1 )
]
=

ℓ+1∑

k=1

#Zodd(
n
2k
, n
2k−1 ] · Lk.

Note that Zodd(
n

2ℓ+1 ,
n
2ℓ
] = {1} if n = 2ℓ, and it is empty otherwise. It follows that

E
[
N0(x

2n
1 )
]

2
− E

[
N0(x

n
1 )
]
=

ℓ+1∑

k=1

(#Zodd(
n

2k−1 ,
n

2k−2 ]

2
−#Zodd(

n
2k
, n
2k−1 ]

)
· Lk + d · Lℓ+2, (4.13)

where d ∈ {0, 1/2}. It is easy to see that
∣∣∣∣#Zodd(a, b] −

(b− a

2

)∣∣∣∣ ≤ 1, for 0 < a < b, (4.14)

hence, taking (4.12) into account,
∣∣∣∣∣
E
[
N0(x

2n
1 )
]

2
− E

[
N0(x

n
1 )
]
∣∣∣∣∣ ≤ 2

ℓ+2∑

k=1

Lk ≤ C ′
ℓ+2∑

k=1

k ≤ C ′′ℓ2 ≤ C(log2 n)
2.

� �
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Proof of Theorem 1.2(ii). In order to show that Hψθ (XG) = 0, we cover XG by three subsets: B,

L, and Λ, defined as follows. Let

B :=

{
x ∈ XG : ∃ η > θ,

N0(x
2n
1 )

2
−N0(x

n
1 ) >

−2n

(log2(2n))
η
for infinitely many n

}
. (4.15)

Denote

N∗
0 (x

n
1 ) := N0(x

n
1 )− E

[
N0(x

n
1 )
]

and let

L :=
{
x ∈ XG : ∃ ε > 0,

N0(x
2n
1 )

2
−N0(x

n
1 ) ≥

−2n

log2(2n)
and

N∗
0 (x

2n
1 ) ≤ −εn for infinitely many n

}
. (4.16)

Finally, let Λ = XG \ (L ∪ B). It suffices to verify that each of the three sets B,L,Λ has zero

Hψθ -measure (indeed, L and Λ even have zero Hs-measure).

Step 1: Hψθ(B) = 0. Let Bη be the set of x ∈ XG such that the condition in (4.15) holds for a

fixed η. Thus, B =
⋃
η>θ Bη =

⋃
η∈Q, η>θ Bη, and it is enough to show that Hψθ(Bη) = 0. We

have from (4.10) and the definition of ψθ for all x ∈ Bη:

log2 Pµ[x
2n
1 ]− log2 ψθ(2

−2n) = s
(N0(x

2n
1 )

2
−N0(x

n
1 )
)
+

2n

(ln 2)(log2(2n))
θ

>
−2ns

(log2(2n))
η
+

2n

(ln 2)(log2(2n))
θ

for infinitely many n. Since η > θ, it follows that

lim sup
n→∞

(
log2 Pµ[x

2n
1 ]− log2 ψθ(2

−2n)
)
= +∞,

hence Hψθ(Bη) = 0 by Theorem 2.1.

Step 2: Hψθ(L) = 0. Denote by L(ε) the set of points x ∈ XG which satisfy the condition in

(4.16) for a given ε > 0. For ε > 0 and n ∈ N let Ln(ε) be the set of words u of length 2n

for which the condition in (4.16) holds. (Note that this condition depends only on the first 2n

symbols of x; thus, (4.16) holds for all x ∈ [u].) If u ∈ Ln(ε) then by (4.10) and (4.16),

log2(Pµ[u] 2
2ns) ≥ −2sn

log2(2n)
,

hence

2−2ns ≤ exp

(
2sn(ln 2)

log2(2n)

)
Pµ[u]. (4.17)

By the definition of Ln(ε) we have
∑

u∈Ln(ε)

Pµ[u] ≤ Pµ
(
x : N∗

0 (x
2n
1 ) ≤ −εn

)
. (4.18)
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The following lemma is a consequence of large deviation estimates; it will be used in the last

step of the proof as well.

Lemma 4.3. There exist c2, c3 > 0 such that for all t > 0 and n ∈ N,

Pµ
(
x : |N∗

0 (x
2n
1 )| ≥ tn

)
≤ c2 exp(−c3t2n).

Proof. We have by (4.11),

N∗
0 (x

2n
1 ) =

ℓ+1∑

k=1

S∗
Ak
, where Ak = #Zodd(

n
2k
, n
2k−1 ],

S∗
Ak

:=
∑

n

2k
<i≤ n

2k−1
, i odd

N∗
0 (x

n
1 |Ji),

and

N∗
0 (x

n
1 |Ji) = N0(x

n
1 |Ji)− E[N0(u)] for |u| = k and i ∈ Zodd(

n
2k
, n
2k−1 ].

Now,

Pµ

(∣∣∣
ℓ+1∑

k=1

S∗
Ak

∣∣∣ ≥ tn
)
≤

ℓ+1∑

k=1

Pµ

(∣∣∣S∗
Ak

∣∣∣ ≥ tn

k(k + 1)

)
,

since
∑∞

k=1
1

k(k+1) = 1. Note that S∗
Ak

is a sum of Ak independent random variables, which are

bounded by k in modulus, hence by Hoeffding’s inequality (2.8),

Pµ

(∣∣∣S∗
Ak

∣∣∣ ≥ tn

k(k + 1)

)
= Pµ

(
|S∗
Ak

| ≥ Ak ·
tn

k(k + 1)Ak

)

≤ 2 exp
[
− t2n2

2k4(k + 1)2Ak

]
.

Observe that Ak ≤ n
2k+1 + 1 ≤ n

2k
by (4.14), hence

Pµ

(∣∣∣S∗
Ak

∣∣∣ ≥ tn

k(k + 1)

)
≤ 2 exp

[
− t2n · 2k

2k4(k + 1)2

]
,

and, therefore,

Pµ
(
x : |N∗

0 (x
2n
1 )| ≥ tn

)
≤ 2

∞∑

k=1

exp
[
− t2n · 2k

2k4(k + 1)2

]
≤ c2 exp(−c3t2n),

for some positive c2, c3, as desired. � �

Combining (4.17), (4.18) and Lemma 4.3, with t = ε, yields

∑

u∈Ln(ε)

(2−2n)s ≤ c2 exp
[2sn(ln 2)
log2(2n)

− c3ε
2n
]
.
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The right-hand side of this inequality is summable in n, so by choosing large n0 we can make the

sum ∑

n≥n0

∑

u∈Ln(ε)

(2−2n)s =
∑

n≥n0

∑

u∈Ln(ε)

(diam[u])s

arbitrarily small. But for any n0, the union
⋃∞
n=n0

⋃
u∈Ln(ε)

[u] forms a cover of L(ε), proving that

Hs(L(ε)) = 0. Finally, L =
⋃
ε∈Q L(ε), so we obtain that Hs(L) = 0 and certainly Hψθ(L) = 0.

Step 3. For η ∈ (1, 2), ε ∈ (0, η), and c > 0, let Λ(η, ε, c) be the set of x ∈ XG such that for n

sufficiently large we have
N0(x

2n
1 )

2
−N0(x

n
1 ) ≤

−2n

(log2(2n))
η

(4.19)

and

N∗
0 (x

2n
1 ) ≥ c

2n

(log2(2n))
η−1

, (4.20)

but for infinitely many n,
N0(x

2n
1 )

2
−N0(x

n
1 ) >

−2n

(log2(2n))
η−ε

. (4.21)

By Lemma 4.1(ii), applied to {N0(x
n
1 )}n≥1, (4.21) certainly holds for ε = η − 1.

We claim that

XG \ (B ∪ L) ⊂
⋃

η∈(1,2)

⋃

c>0

⋃

ε∈(0,2−η)

Λ(η, ε, c). (4.22)

Indeed, for x ∈ XG \ B let η∗ be the infimum of η for which (4.19) holds for n sufficiently large

(note that x 6∈ B means such η exists). Then η∗ ∈ [1, 2) by Lemma 4.1(ii), and (4.19) holds with

η = η∗+ 2−η∗

3 for n sufficiently large, whereas (4.21) holds for ε ∈ (η−η∗, 2−η) = (2−η
∗

3 , 2(2−η
∗)

3 ).

Let

γ(n) := N∗
0 (x

n
1 ), n ≥ 1.

It is clear tthat

|γ(n+ 1)− γ(n)| ≤ 2, n ≥ 1.

It follows from (4.19) and Lemma 4.2 that

γ(n)− γ(2n)

2
≥ 2n

(log2(2n))
η
−C(log2 n)

2 ≥ n

(log2(2n))
η

for n sufficiently large. Thus, the sequence {γ(n)}n≥1 satisfies the assumptions of Lemma 4.1(i).

By Lemma 4.1(i), either there exists c > 0 such that for all n sufficiently large

N∗
0 (x

2n
1 ) ≥ c

2n

(log2(2n))
η−1

,

which together with the above yields that x ∈ Λ(η, ε, c), or else there exists ε > 0 such that for

infinitely many n,

N∗
0 (x

2n
1 ) ≤ −εn and N∗

0 (x
n
1 )−

N∗
0 (x

2n
1 )

2
≤ n

log2(2n)
,
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hence by Lemma 4.2,

N0(x
n
1 )−

N0(x
2n
1 )

2
≤ n

log2(2n)
+ c(log2 n)

2 ≤ 2n

log2(2n)

for infinitely many n, so that x ∈ L, proving the claim. Since the union in (4.22) can be taken

over rational η, c, ε, it suffices to show that Hs(Λ(η, ε, c)) = 0 for ε ∈ (0, 2 − η).

Let Γn(η, ε, c) be the collection of words u of length 2n for which (4.19), (4.20), and (4.21) hold

(as before, this is well defined). If u ∈ Γn(η, ε, c), then by (4.10) and (4.21)

log2(Pµ[u] 2
2ns) ≥ −2ns

(log2(2n))
η−ε

,

hence

2−2ns ≤ exp
( 2ns(ln 2)

log2(2n)
η−ε

)
Pµ[u]. (4.23)

By the definition of Γn(η, ε, c) and Lemma 4.3, with t = 2c
(log2(2n))

η−1 ,

∑

u∈Γn(η,ε,c)

Pµ[u] ≤ Pµ

(
x : N∗

1 (x
2n
1 ) ≥ c

2n

(log2(2n))
η−1

)

≤ c2 exp
(
− c̃n

(log2(2n))
2η−2

)
,

with c̃ = 4c3c
2. Combining this with (4.23) yields

∑

u∈Γn(η,ε,c)

2−2ns ≤ exp c2

[ 2ns(ln 2)

log2(2n)
η−ε

− c̃n

(log2(2n))
2η−2

]
.

Recall that ε < 2− η, and therefore η − ε > 2η − 2 and the right-hand side of the last inequality

is summable in n. It follows that, by taking n1 sufficiently large, the sum
∑

n≥n1

∑

u∈Γn(η,ε,c)

2−2ns

can be made arbitrarily small. Since for any n1, the union
⋃

n≥n1

⋃

u∈Γn(η,ε,c)

[u]

covers Λ(η, ε, c), this implies Hs(Λ(η, ε, c)) = 0 (and hence Hψθ(Λ(η, ε, c)) = 0), completing the

proof. � �

Acknowledgement. The research of B. S. was supported in part by the NSF grant DMS-

0968879. He is grateful to the Microsoft Research Theory Group for hospitality during 2010-2011.

He would also like to thank the organizers of the conference “Fractals and Related Fields II” for

the excellent meeting and stimulating atmosphere. The authors are grateful to the referee for

careful reading of the manuscript and many helpful comments.



18 YUVAL PERES AND BORIS SOLOMYAK

References

[1] Bedford, T.: Crinkly curves, Markov partitions and box dimension in self-similar sets. Ph.D. Thesis, University

of Warwick, 1984.

[2] Falconer, K.: Fractal Geometry. Mathematical Foundations and Applications. (Wiley, Chichester, 1990).

[3] Fan, A., Liao, L., Ma, J.: Level sets of multiple ergodic averages. Preprint (2011) arXiv:1105.3032. To appear

in Monatsh. Math. (published online 05 November 2011).

[4] Hoeffding, W.: Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc. 58,

no. 302, 13–30 (1963).

[5] Kenyon, R., Peres, Y., Solomyak, B.: Hausdorff dimension of the multiplicative golden mean shift. C. R.

Math. Acad. Sci. Paris 349, 625–628 (2011)

[6] Kenyon, R., Peres, Y., Solomyak, B.: Hausdorff dimension for fractals invariant under the multiplicative

integers. Preprint (2011) arXiv 1102.5136. To appear in Ergodic Th. Dynam. Sys.

[7] Lalley S., Gatzouras, D.: Hausdorff and box dimensions of certain self-affine fractals. Indiana Univ. Math. J.

41, no. 2, 533–568 (1992).

[8] McMullen, C.: The Hausdorff dimension of general Sierpinski carpets. Nagoya Math. J. 96, 1–9 (1984).

[9] Peres, Y.: The self-affine carpets of McMullen and Bedford have infinite Hausdorff measure. Math. Proc.

Camb. Phil. Soc. 116, 513–526 (1994).

[10] Rogers, C.A.: Hausdorff measures. (Cambridge University Press, Cambridge, 1970).

[11] Rogers, C.A., Taylor, S.J.: Functions continuous and singular with respect to a Hausdorff measure. Mathe-

matika 8, 1–31 (1961).

Yuval Peres, Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA

E-mail address: peres@microsoft.com

Boris Solomyak, University of Washington, Box 354350, Dept. of Math., Seattle, WA 98195, USA

E-mail address: solomyak@math.washington.edu


	1. Introduction
	2. Preliminaries and the scheme of the proof
	3. Lower estimates of Hausdorff measure
	4. Upper bound for Hausdorff measure
	References

