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Abstract

Let ju1,...,u, be d-dimensional probability measures in R? with mean 0. At each step we
choose one of the measures based on the history of the process and take a step according to
that measure. We give conditions for transience of such processes and also construct examples
of recurrent processes of this type. In particular, in dimension 3 we give the complete picture:
every walk generated by two measures is transient and there exists a recurrent walk generated
by three measures.
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1 Introduction

Let g1 and jo be two zero mean measures in R* with finite supports that span the whole space.
On the first visit to a site the jump of the process has law pq and at further visits it has law po.
The following question was posed in [2]: Is the resulting walk transient?

More generally, one can consider any adapted rule (i.e., a rule depending on the history of the
process) for choosing between 1 and p9, and ask the same question. It turns out that the answer
to this question is positive, even in R3, as proved in Theorem [[.2 below. Moreover, in 3 dimensions
this result is sharp, in the sense that one can construct an example of a recurrent walk with three
measures, as shown in Theorem

This naturally fits into the wider context of random walks that are not Markovian, namely where
the next step the walk takes also depends on the past. Recently there has been a lot of interest in
random walks of this kind. A large class of such walks are the so-called vertex (or edge) reinforced
random walks, where the walker chooses the next vertex to jump to with weight proportional to
the number of visits to that vertex up to that time; see e.g. [, O [10, 11l 13]. Another class of such
walks is the so-called excited random walks, when the transition probabilities depend on whether
it is the first visit to a site or not, see e.g. [3| 4} [8 12} 14].

In this paper we study transience and recurrence for walks in dimensions 3 and above that are
generated by a finite collection of step distributions. We now give the precise definition of the
walks we will be considering.
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Definition 1.1. Let pu1,...,u; be k probability measures in R? and for each j = 1,...,k, let

1,8, ... be 1id. with law p1;. Define an adapted rule £ = (¢(i)); with respect to a filtration (F;) to
be a process such that £(i) € {1,...,k} and is F; measurable for all i. We will say that the walk X,
with Xy = 0, is generated by the measures pq, ..., ur and the rule ¢ if

Xiy1 = X; + 553

We say that a measure g in R? has mean 0 if fRd zp(dr) = 0. Also we write that a measure p

has $ moments, if E[HZ Hﬁ } < 00, where Z ~ ;1. We define the covariance matrix of p as follows:

Cov(p) = (E[Zizj])d

ij=1"
Note that if ; is a measure in R, then it has an invertible covariance matrix if and only if its
support contains d linearly independent vectors of R?. We will call such measures d-dimensional.

In this paper we are mainly interested in the following two questions:

e Let ju1,. .., pux be mean 0 probability measures in R%. What are the conditions on the measures
so that for every adapted rule ¢ the resulting walk is transient?

e For a given dimension d, how do we construct examples of recurrent walks generated by k
d-dimensional mean 0 measures? How small can this number k£ be made?

In Section [I.I] we state our results concerning the first question and in Section about the second
one. Observe that Theorems and give a complete picture in dimension 3: any two mean 0
measures with 2 + 8 moments, for some 8 > 0, always generate a transient walk, while there is an
example of a recurrent walk generated by three 3-dimensional measures of mean 0 with a suitable
adapted rule.

1.1 Conditions for transience

Theorem 1.2. Let pi, o be d-dimensional measures in R%, d > 3, with zero mean and 2 + 3
moments, for some > 0. If X is a random walk generated by these measures and an arbitrary
adapted rule £, then X is transient.

The following result will be used in the proof of Theorem but is also of independent interest,
since it gives a sufficient condition on the covariance matrices of the measures used in order to
generate a transient random walk X for an arbitrary adapted rule £.

For a matrix A we write A7 for its transpose, Apax(A) for its maximum eigenvalue and tr(A) for
its trace.

Theorem 1.3. Let pu1,...,u; be mean 0 measures in R%, d > 3, with 2+ B moments, for some
B > 0. Suppose that there exists a matriz A such that for all i we have
tr(AM; AT) > 2 max (AM; AT), (1.1)

where M; is the covariance matriz of the measure p;. If X is a random walk generated by these
measures and an arbitrary adapted rule ¢, then X is transient.
We will refer to (1) as the trace condition.

It turns out that the local central limit theorem implies the following lower bound on the number
of measures needed to generate a transient walk.



Proposition 1.4. Let pq, ..., ur be mean 0 measures in d > 2k + 1 with 2+ 3 moments, for some
B > 0. Then the random walk X generated by these measures and an arbitrary adapted rule £ is
transient.

We will prove Proposition [[.4] in the beginning of Section Bl and then Theorems [[.3] and [[.2] in
Sections 2.1] and respectively. Then in Proposition in Section we discuss the case when
the covariance matrices are jointly diagonalizable. We present a conjectured sufficient condition for
transience at the end of the paper.

1.2 Recurrence

We now define a random walk in d dimensions, which is generated by d measures that are fully
supported in R? and we will prove that it is recurrent.
Let eq,...,eq_1 be the coordinate vectors in Z¢. We consider a random walk (Xn,n=0,1,2,...)
on Z% d > 3, defined in the following way. Fix a parameter v > 0, and for z = (g, ..., zq_1) € Z°
define o(x) = min{k : |zy| = maxj—o . q—1|z;|}. Then

Xn+1 = Xn + Sn-‘rl:

where £, 11 = Fe,(x,) with probabilities m and &,4+1 = *ey, for k # o(X,,) with probabilities
m. In words, we choose the maximal (in absolute value) coordinate of X,, with weight ~ and
all the other coordinates with weight 1, and then add 1 or —1 to the chosen coordinate with equal

probabilities.

Theorem 1.5. For each d > 3 there exists large enough 4 such that the random walk X is recurrent
for all v > ~4.

We will prove Theorem in Section Bl The proof of this result relies on the explicit construction
of a suitable Lyapunov function, but it is rather involved, so in Section [B] we also give simpler
examples of a finite number of d-dimensional measures and adapted rules that generate a recurrent
walk in d dimensions.

2 Proofs of transience

In this section we give the proofs of the results on transience. We first prove Proposition [[L4] since
its proof is short and elementary.

Proof of Proposition .4l In order to prove this proposition, let us first give an equivalent def-
inition of the random walk that we are considering.

For each j = 1,...,k, let Cf,(g, ... be ii.d. with law p;. For an adapted rule ¢ we define for all
jed{l,...,k}

i

r(j,i) =Y 1(¢(m) = j)

m=1

and then writing 7; = r(£(i),i) + 1 we let

Xiy1 = Xi+ C,fi(i)-



It is easy to see by induction that the process X has the same law as the process of Definition [L1]
Let R > 0 and for every n we define the event

ki
Ap=<3i1,...,ix>0:i1+...+ir =n and Z (JGBOR)

We now fix a choice of iy,...,4; such that i1 + ...+ i = n. Then by [0, Corollary/Theorem 6.2]
we get for a positive constant ¢

LA cR?
P> > deBOR)| <5
j=1/=1

since there must exist some i; which is at least n/k. It is easy to see that the total number of
k-tuples (i1,...,1;) with 4; > 0 for all j and Z ij = n is equal to (Z_l) Since ("ji;l) < enFl,

for a positive constant c1, we deduce that
k—1 C/Rd

al _
P(An) < R /2 pd/2—kt1’

which is summable if d > 2k + 1. Hence, from Borel-Cantelli we obtain that a.s. only finitely many
of the events A, happen.
Now notice that for every n we have

{Xn € B(O’R)} - Ana

and hence we deduce that a.s. for all sufficiently large n, the random walk at time n will stay
outside of the ball B(0, R). Since this is true for any R > 0, we get that if d > 2k + 1 the random
walk is transient. U

2.1 Trace condition and transience

In this section we give the proof of Theorem First we state and prove some preliminary results.

The following lemma is a standard result, but we state and prove it here for the sake of completeness.

Lemma 2.1. Let (S;) be a random walk generated by k zero mean measures and an arbitrary adapted
rule 0. Let F; = o(So, ..., St) be its natural filtration. Let av,rg > 0 and define p(x) = |jz||~* Arg©
If the process (¢(St)) is a super-martingale, then S is transient, in the sense that a.s.

|Sell = 00 as t — oo.

Proof. We first show that a.s.

lim sup ||.S¢|| = oo. (2.1)
t—00

Indeed, there exist u € S¥™!, & > 0 and h > 0 such that for all j € {1,...,k}
P((Zj,u) > €) = h,
where Z; ~ p;. This implies that for all m,n € N we have

P((Sptm — Sn,u) >em | F,) > h"™.



Hence this shows that a.s. limsup, |(S,u)| > em/2 for all m, and so (2] holds. Clearly, this
implies that a.s.

h{r_l)gfgo(St) =0. (2.2)

Since (¢(St)): is a positive super-martingale, the a.s. super-martingale convergence theorem gives
that lim_,~ ¢(S¢) exists a.s. and thus from ([22)) we deduce that a.s. limy_, ©(Sy) = 0, which
means that a.s. ||S|| = oo as t — co. O

The following lemma shows that if the covariance matrices of the measures used to generate the
walk X satisfy the trace condition (L), then there is a function ¢ such that ¢(X) is a super-
martingale.

Lemma 2.2. Let p(z) = ||z||™ A1, for x € R Let py,...,pux be zero mean measures in RY
with 2 + B moments, for some B > 0, and with covariance matrices My, ..., My, satisfying for all
i=1,...,k

tI‘(MZ‘) > 2)\max(Mi)-

There exists o > 0 small enough and a constant ro so that if ||x|| > ro, then for alli=1,...,k if
Zi ~ b

Elp(z + Zi) — ¢(x)] < 0. (2.3)

Proof. It suffices to prove (23] for a fixed i. Since the covariance matrix M; is positive definite,
there is an orthogonal matrix U such that UM;U” is diagonal with non-negative eigenvalues. The
matrix UM;UT is the covariance matrix of the random variable U Z;.

Since U is orthogonal, we get that for all x

Uz + Zi)) = ¢z + Z;) and o(Uz) = p(). (2.4)

In order to prove the lemma, we will apply Taylor expansion up to second order terms to the
function ¢ around Ux evaluated at UZ;. We will drop the dependence on i from UZ; and write
simply Z and x instead of UZ and Uz in view of (2.4]) to lighten the notation.

So, let Z have covariance matrix M which is in diagonal form and with diagonal elements Ay, ..., Ag.
Let Z = Z1(|Z|| < ||z||/2). Note that if a.s. || Z|| < B for a positive constant B, then Z = Z if
||z|| > 2B. The calculations below are a bit simpler in this case, since Z would have mean 0 and
the same covariance matrix as Z.

If ||z|| > 2, then Ha: + ZH >1and so p(z + Z) = H %, In what follows we abbreviate

op(x) ?p(x) ()
! — " = " =T+’
Pi (l‘) - Oz, v Pij (:E) al‘zal‘] ’ (’D”k(:p) 8:17@81%8!1% ‘

Applying Taylor expansion to ¢ up to second order terms gives for some 1 € (0,1)

oz + 2Z) = o(z) + (Vo(z Z o ©)Z: 7 + Z Oiin( (z +nZ)2:2; 7,
1,7=1 ,]k 1
= o(z) + (Vp(x Z 01 () Z: Z; + Z P (z +nZ)2:2; 7,
7.] 1 ,jk 1
_ Z ol () Zi2;1 <||Z|| > Hx”).
i,j=1



Claim 2.3. There exist positive constants C,C1 such that for all i, j

C Cy
E[Ve@). 2)]| < e and ELZZLIZ) 2 ol/2)] < o
Proof. By Holder’s inequality we have
2PHE]||Z|P+2] K
EIZ11(1Z]) > l|]/2)] < < .
ElG folPT
Since E[Z] = 0, we have E[Z] = E[Z - Z], and hence
K
[=[2]| = 1=tzxi2) = el /201 < =210 20 2 e/ < §o

For the first term of the Taylor expansion we have for a positive constant C'

d d ) _ a r
B[(ve). 2)]| - 2 ”3\’@2 (2] zz: Hx"‘?‘i"Q [=12]]| < H;ﬁﬁ’ﬁlg N Hx”o(j-ﬁ—l—T

For all 4, 5 we have by Holder’s inequality again

C
= )l

E[Z:Z;1(12 > |lz]/2)] < E|I12IP 1(12] > |12l /2)] <
thus proving the claim. O
We continue proving Lemma For the second order terms we write
E|2:2;] = E1Z:2;1(12)| < |lall/2)] = ElZ:2,) - EIZ:Z;1(1 2] = ||o]/2)],
and hence since for i # j we have E[Z;Z;] = 0, by Claim we get

Co

E|ZZ)| < W and Zw 1212 lell 2)| < ot
Since for all ¢ we have E[ZZQ] = )\;, we obtain
d d 2 d 2 d X
—aljz||* + a(a+ 2)x Aila+2) =375 1))
ARl = n PR = S e 9
i=1 i=1 i=1

The rest of the second order terms can be bounded as follows:

vt 51| ata il s 5 ala+2)lalle;] G _ Gy
Z(’Dij(fp)E[ZiZj} = Z [z][o+4 ‘E[ZZZJ'” = Z [z]|o+a [z]]? = [z]|etAve
i#£j i#] i#j

For the remainder in the Taylor expansion we have

Cy

max — <
lz +nZ||e+3 [zl

i,3,k

i@ +nZ)| <

6



since HZH < ||z||/2. We want to control E[p(z + Z) — ¢(x)]. We write

Elp(z+ 2) - ¢(@)] = E|p(a + Z) - p(z + 2)| +E|p(z + Z) - o(a)| (2.6)
and by Markov’s inequality since E [HZ |2+ } < 00
E|otw +2) - (e + D[] <B(IZI 2 121/2) < ; ‘j’gw

Since g > 0, if we take 0 < a < 3, then we obtain that there exists a constant rg > 1 so that for
[z]| > 7o

B[(vete, 2]+ 1|3 e 2.2, (12] 2 ”““"”)] LS [B[etnte + 0242, %]|
i,j=1 i,5,k=1
‘E[ (x+2Z)— :E+Z”<—Z<p . (2.7)
1,7=1

The assumption on the trace of the matrix M gives that for a small enough (smaller than f)
Z;l:l Aj > Ai(a+2) for all ¢, and hence using (23] we get for |z| > rg

d
> li(@)E[Z7] < 0.
i=1
This and the inequality (27) finishes the proof. O

We now have all the required ingredients to give the proof of Theorem [[.3]

Proof of Theorem Let 79 > 1 be the constant of Lemma 22l Let ¢(z) = ||z||~* A1y *, for
a > 0 as in Lemma 22 Notice that when ||z| > 79, then ¢(z) = ¢(x) = ||z||~*. We will first show
that if Y; = AX;, then

Elo(Yir1) | 7] < 0(V2). (2.8)
Since 79 > 1, we have ¢(z) < ¢(z) for all . So we get

Elp(Yitr) — o(V2) | Fi = E[(0(Verr) — 2(Y)L([Yell = ro) | Fi]
+E[(e(Yer1) — oY) L(IYel| < 7o) | T
< E[(e(Yirr) — (YD) L([Y2]l = 7o) | Fil

since @(Y;) = ry @ if ||Y3]| < ro and @(x) < ry® for all . Since the covariance matrices of the
measures used to generate the walk Y satisfy the trace condition (L], Lemma [22] gives that

E[(e(Yer1) = o(Y)L([ Y2l = 7o) | Fi] <0

and this completes the proof of (2.8]). Therefore by Lemma 2.l we get that a.s. ||AXy|| = || YVi|| = o0
as t — oo. Since for all ¢ we have ||AX;|| < ||A]l ||S¢]| and ||A] > 0, we deduce that a.s.

| X¢|| = o0 as t — oo,

which concludes the proof of the theorem. O



2.2 Two measures in 3 dimensions

In this section we give the proof of Theorem

Proposition 2.4. Let My, Ms be 3 x 3 invertible positive definite matrices. Then there exists a
3 X 3 matriz A such that

tr(AM; AT) > 2Amax (AM; AT Vi = 1,2,

Proof. We prove Proposition 2.4] by constructing the matrix A of Theorem [[3] directly.

Let w1, o have covariance matrices My and My respectively and & ~ p; for i = 1,2. Since M is
positive definite, there exists an orthogonal matrix U such that UM,U” is diagonal, i.e.

UMUT =

o O R

0
b
0

o O O

where a,b,c > 0 are the eigenvalues of M;. If we now multiply the vector U&; by the matrix D

given by
1

%?0
92075(1),
00%

then Cov(DU¢;) = I, where I stands for the 3 x 3 identity matrix.

So far we have applied the matrix DU to the vector {; and we have to apply the same transformation
to the vector &. The vector DU&; will have covariance matrix Ms. Since it is positive definite, it
can be diagonalised, so there exists an orthogonal matrix V' such that

M O 0
VMV =1 0 X 0 |,
0 0 N3

where A1 > Ay > A3 > 0 are the eigenvalues in decreasing order. Applying the same transformation
to DU&; is not going to change its identity covariance matrix, since V' is orthogonal.
The condition we want to satisfy is

A+ Ao+ Az > 2),,

for all # = 1,2,3. Since the eigenvalues are in decreasing order, it is clear that this inequality is
always satisfied for i = 2,3. Suppose that Ao + A3 < ;. Multiplying DU&, by the matrix
Vs

VAL
B = 01

0
10
0 01

will give us a random vector with covariance matrix

A 0 0
0 X2 O ,
0 0 A3



which clearly satisfies the trace condition (LLI)). Multiplying V DU¢; by the same matrix will give
us a vector with covariance matrix "
)\—1 0
0 1
0 O
<

which satisfies the trace condition (LI]), since Ao . O

Proof of Theorem By projection to the first three coordinates, it is clear that it suffices to
prove the theorem in 3 dimensions.
In d = 3, the statement of the theorem follows from Theorem and Proposition 241 O

Remark 2.5. It can be seen from the proof of Proposition 24] that if the measures p1 and uo are
supported on any 3 dimensional subspaces of R%, then a walk X generated by these measures and
an arbitrary adapted rule is transient.

2.3 The diagonal case

In this section we consider a particular case when for some basis of R? the covariance matrices are
in diagonal form and invertible. In this setting we prove that a random walk generated by d — 1
measures and an arbitrary rule £ is transient.

Proposition 2.6. Let d > 4 and pi, ..., tg—1 be mean 0 probability measures in R® with 2 + B
moments, for some 3> 0. Let My, ..., Mg_q be their covariance matrices and suppose that M; M; =
M;M; for alli,j. Then there exists a d x d matriz A such that

tr(AM; AT) > 2 max (AMATY YV i < d — 1.

Therefore, a random walk X generated by the measures (,u,-)?:_ll and an arbitrary adapted rule £ is
transient.

Before giving the proof of Proposition we prove the following:

Claim 2.7. Let My,..., My be d x d invertible diagonal matrices with positive entries on the
diagonal. For A # 0 we define

AM; AT
V(4) = max t!(Az\}jATH)‘ (29)

Then the minimum of W(A) exists among all diagonal matrices A and the minimizing matrix Ais
1nvertible.

Proof. Since M; is an invertible positive definite matrix, we can write M; = BijT = sz, where
B; = B;TF is an invertible matrix.
Since scaling A does not change the ratio in ([Z9), we may assume that ||A|| = 1 and restrict

attention to such matrices. It is easy to see that the set S = {A diagonal : ||A|| = 1} is compact
and the function f;(A) = ||AM;AT|| is continuous on S.

Let g;j(A) = tr(AM;AT) = tr(ABijTAT) = ||AB;|||?, where ||C|> = Zgjzl cﬁj and we used
tr(CCT) = [|IC]*.



Since B; is invertible, we have AB; # 0 for A # 0, so g; does not vanish on S. Thus as g; is
continuous on S, we conclude that

is continuous on S and hence has a minimum.

Let A be the minimizing matrix with diagonal elements Ay,..., Ay > 0. We will show that A is
invertible. Suppose the contrary and assume without loss of generahty that Ay = 0.

We prove that if we replace Ay = 0 by a small ¢ > 0, then we get a matrix A, with U(A,) < ¥(A).
Let the diagonal elements of M; be (a ) "1, which are all strictly positive. Then for the matrix M;

we will have for s such that || M;|| = a,

/\max(AVMZ’AV) o )\sa’;
tI‘(ZMZAV) Zj )\ja; .

If EE has the same elements as A except for the (d,d) element which is replaced by € > 0 such that
,d—1andall j=1,...,d—1, then

tr(A.M; AL) = tr(AM; A) + eal,

while Amax (A M; AL) = Amax(AM;A).

Replacing each 0 element of A by a sufficiently small number gives a matrix with smaller value
of W, which contradicts the choice of A. Hence this shows that A is invertible. O

Proof of Proposition Since M;M; = M;M; for all 4, j, it follows (see for instance [7, Theo-
rem 2.5.5]) that there is one orthogonal matrix that diagonalizes all the matrices M;. So from now
on we suppose that the M;’s are diagonal.

Recall the definition of ¥ from (29]). Let A be the d x d invertible matrix that minimizes ¥ among
all diagonal matrices (recall Claim 2.7)).

Write ]\AjZ = EMZET and
J = {J<d—1 | ﬂ” _qf(ﬁ)}.

Since A and M; are diagonal invertible matrices, it follows that ]\Z is also a diagonal invertible
matrix. For each j < d — 1 we can find v; € R? such that |lv;|| = 1 and M;v; = ||M;|jv;. Note that
since ]\Ajj is diagonal, it follows that v; can be chosen to be one of the standard basis vectors of RY.
Let w € R? have |w| =1 and w L {v1,...,v4_1}. Then w will also be one of the standard basis
vectors of RY.

Next, we separate two cases. . .
Case 1: For some j € J there is u; L vj with |lu;|| =1 and Mju; = ||M;||u;. In this case,

tr(M;) > (Mjv;,v5) + (Mjug, uj;) = 2| Ml (2.10)

where the strict inequality follows from the fact that ]\AJ/] is invertible. Hence in the case where

H]\%H has multiplicity at least 2, we are done.

10



Case 2: For each j € J the leading eigenvalue H]\AJ/JH of ]\Ajj has multiplicity one. We will show
that this case leads to a contradiction; that is we can find another matrix with smaller value of W
contradicting the choice of A as the minimizer.

Let A. be the d x d matrix such that Acw = (14 ¢)w and A.z = z for all z L w. Note that A, will
also be diagonal, since w is one of the standard basis vectors of R.

Let us denote by 7; the second largest eigenvalue of ]\Ajj Then the assumption of case 2 implies
that for each j € J we have v; < || M;|| and || M;y|| < ~;lly|l for all y L v;.

Choose € > 0 such that (1 + &)2||M;|| < tr(M;)¥(A) for all i ¢ J and (1 + )%y < H]\AJJH for all
J e J.

Note that since A. is diagonal, AT = A, and AA, is diagonal satisfying

U(A.A) = ma M
1<i<d—1 tr(A.M;A.)

By completing {w,v;} to an orthonormal basis {bm}%:l of R we see that for all i < d — 1
tr(A.M;AL) > tr(M;), (2.11)

since tr(M) = S2% _ (Mby,, by,) for any matrix M and any orthonormal basis. The strict inequality
follows again from the fact that the matrix A.M;A, is invertible. Also

[AM A || < AN Msl| = (1 + €)M
and for j € J we have for all y L v;
1AM Asyll < (14 )| M (Aey)]| < (1 + )yl Ayl < (L + )y,
since Acy L vj.

We conclude that W(A.A) < ¥(A) by considering separately in the max defining ¥ the indices i ¢ J
and i € J, and applying (2I1)). This contradicts the choice of A as a minimizer and establishes
that case 2 is impossible. O

3 More measures may yield a recurrent walk

In this section we prove that the random walk described in Section is recurrent. First we give
the simpler example that was mentioned in the Introduction.

Let S%! be the d-dimensional unit sphere, i.e. S9! = {z € R?: ||z| = 1}. Let C1,...,Cy be caps
that cover the surface of the sphere with the property that the angle between any two vectors from
the origin to points on the same cap is strictly smaller than 7 /2. For every cap Cj, fori = 1,...,k,
we write m(C;) for the vector joining 0 to the center of the cap C;. Then we choose v;1,...,v;4-1
to be d — 1 orthogonal vectors on the hyperplane orthogonal to m(C}).

For every o € R?, we write C(z) for the first cap in the above ordering such that the vector joining
0 and z intersects that cap.

Theorem 3.1. Let X be a walk in R? that moves as follows. When at x it moves along the direction
of m(C(x)) either +1 or —1 each with probability 1/2 and along each of the other d — 1 directions,
i.e. along the vectors viy) 1,...,Viz),d—1 i moves independently as follows: &1 with probabilities
€/2 and stays in place with the remaining probability. Then X is a recurrent walk, i.e. there is a
compact set that is visited by X infinitely many times a.s.

11



Remark 3.2. It can be shown that the ratio of the area of the unit sphere to the area of a cap
as defined above with angle 7/2 is equal to 2/I; /2 (%, %), where [ is the regularized incomplete
beta function. It is then elementary to obtain that the last quantity can be bounded below by
24/2+1 ~ (g0 that in the above theorem at least 24/2T! measures are needed.

Proof of Theorem Bl We define p(z) = log||z|, for z € RY. Then by Taylor expansion to
second order terms we obtain for some n € (0, 1)

d
o(x +nZ)
oz + Z) = p(x) + (Vo Z . a Z 8% 8% o AL

For each i and positive constants C, Cy, since Z is bounded, we have

8_(,0 _ O = Zj# :E? ks and max Pola +12) “ < ¢
Oz |lz]*” 027 [Edls ijk | Oxi0x;0xy |~ |z +nZl]P [zl
Let uy,...,ug be the vectors (basis of R%) as defined in the theorem. We now write both  and Z

in this basis, i.e. we have that x = Z?:l riu; and Z = Z?:l Ziu;. Then for i # j, by independence,
we get that E[Z; Z;] = 0, while E[le] =1 and for all ¢ > 1 we have that E[Zf] = ¢. Hence, putting
all things together we obtain that

20(x . TP )2
§:§;§£M&Zﬂ=(l+dd lel? +2e — et )
i,

)

For the first coordinate 1 of x, when decomposed in the basis described above, we have that
I = ”.Z'H Cos 07

where 6 is strictly smaller than 7/4, so there exists § > 0 so that cos# > (1 + §)v/2/2. Hence, we
can now bound (BJ]) from above by

il

1
2e—1)+ ————-50+c(d—-3 >,
I (2e =+ gl ta-9)
which can be made negative by choosing ¢ small enough. Notice that in absolute value the last
expression is at least ¢ ||:E||_2 for a positive constant ¢, and hence since Z has mean 0, it follows
that for ||z|| large enough we have

d
1 PBo(x+nZ) 1 82p(x)
al E| =—F—5—ZiZ;Z|| < = E[Z: 7| .
3! Z [ O0x;0x;0xy, J k] = 2| £~ Ou;0x; 1223
Z,]Ji‘:l 17]:1
Therefore we deduce that for ||z|| > 7o
Blp(s + 2) — p(a)) <0. 3.

We now show that this implies recurrence. By the same argument used to show (2.I]) we get that
a.s.
limsup || X¢|| = o0
t—o0

Let T,, = inf{t > 0 : X; € B(0,r0)}. By (8.2) we obtain that p(Xiaz,,) is a positive super-
martingale. Hence the a.s. martingale convergence theorem gives that lim;_, . cp(Xt/\TT,O) =Y
exists a.s. and is finite. If 7,,, = oo with positive probability, then since p(z) — oo as x — oo, then
lim gp(Xt/\TTO) = oo with positive probability, which is a contradiction. Therefore, T, < oo a.s. O

12



We will now give the proof of Theorem

Proof of Theorem By [0, Theorem 2.2.1] or analogously to the last part of the proof of
Theorem [B.] to prove recurrence it is enough to find a nonnegative function f such that f(z) — oo
as x — oo, and

Elf(Xnt1) — f(Xn) | Xn=2] <0 for all large enough x. (3.3)

Before presenting the explicit construction of such a function, let us informally explain the intuition
behind this construction. First of all, a straightforward computation shows that, if Y is a simple
random walk in Z%, then

d—1 1 _
Elll¥nsall = [I¥all | Yo = 2] = —7= 17 + O(l|]] %),
]
1 _
E[(|Yasall = [IYal)? | Yo = 2] = 7 T Ozl h.
One can observe that the ratio of the drift to the second moment behaves as 5”;1”; combined with

the well-known fact that the SRW is recurrent for d = 2 and transient for d > 3, this suggests
that, to obtain recurrence, the constant in this ratio should not be too large (in fact, at most %)
Then, the second moment depends essentially on the dimension, and thus it is crucial to look at
the drift. So, consider a (smooth in R?\ {0}) function g(x) = O(||z||); we shall try to figure out
how the level sets of g should be so that the “drift outside” with respect to g “behaves well” (i.e.,
the drift multiplied by ||z|| is uniformly bounded above by a not-so-large constant). For that, let us
look at Figure[I} level sets of ¢ are indicated by solid lines, vectors’ sizes correspond to transition
probabilities. Then, it is intuitively clear that the case of “moderate” drift corresponds to the
following:

e the “preferred” direction is radial, the curvature of level lines is large, or

e the “preferred” direction is transversal and the curvature of level lines is small;

also, it is clear that “very flat” level lines always generate small drift. However, one cannot hope
to make the level lines very flat everywhere, as they should go around the origin. So, the idea is to
find in which places one can afford “more curved” level lines.

Observe that, for the random walk we are considering now, the preferred direction near the axes is
the radial one, while in the “diagonal” regions it is in some intermediate position between transversal
and radial. This indicates that the level sets of the Lyapunov function should look as depicted on
Figure 2k more curved near the axes, and more flat off the axes.

We are going to use the Lyapunov function

x [e%
£(e) = (o ) el
where « is a positive constant and ¢ : S~ — R is a positive continuous function, symmetric in
the sense that for any (ug,...,uq_1) € S¥' we have p(ug,...,uq_1) = O(T0UG(0)5 - - > Td—1Uo(d—1))
for any permutation o and any 7 € {—1,1}¢. By the previous discussion, to have the level sets as
on Figure 2l we are aiming at constructing ¢ with values close to 1 near the “diagonals” and less
than 1 near the axes.

13



case 1:
case 2:

case 3: : z;
case 4:

Figure 1: Looking at the level sets: how large is the drift? We have very small drift in case 1, very
large drift in case 2, and moderate drifts in cases 3 and 4.

\/

Figure 2: How the level sets of f should look like?
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By symmetry, it is enough to define the function ¢ for u € S ! such that uy > u,..d—1 = 0
(clearly, it then holds that ug > 0), and, again by symmetry, it is enough to prove (B3] for all

large enough = € Z¢ of the same kind. For such u € S%~! abbreviate sj=ujfug, j=1,...,d—1;
observe that, if u = x/[|z|, then s; = z;/x9. We are going to look for the function (for u as
above) p(u) =1 —aw(sy,...,84-1), where 9 is a function with continuous third partial derivatives

on [0,1]97! (in fact, it will become clear that the function v extended by means of symmetry on
[—1,1]¢ has continuous third derivatives on [—~1,1]%; this will imply that o-s in the computations
below are uniform).

Next, we proceed in the following way: we do calculations in order to figure out, which conditions
the function 1 should satisfy in order to guarantee that (B3] holds, and then try to construct a
concrete example of 1 that satisfies these conditions.

First of all, a straightforward calculation shows that for any e € Z? with || = 1 we have
(x,e) « 1 (w,e)? 1 9
o+ el = el (14 a1 + 5o = Sa2 = a) i - s o(lal D), (3.4)
lzl*  2e)* 2 R
as T — 00.

In the computations below, we will use the abbreviations

61[)(81 e Sd—l)
/ U 9 .
.= 5 :17...,d_1,
(7 Ds; J

¢,, L 821/1(81,...,8[1_1) —1 d—l

g T 8Si8$j ) L) =1

Let us now consider z € Z%. From now on we will refer to the situation when zy > z1,..d-1 =0
as the “non-boundary case” and xg = 1 = -+ = Ty, > Typa1 > ... > Tq_1 > 0 for some m > 1
as the “boundary case”. Observe for the boundary case the corresponding s will be of the form
s=(1,...,(1)m, Sm—+1s---,84—1); here and in the sequel we indicate the position of the symbol in a
row by placing parentheses and putting a subscript. Also, in the situation when only one coordinate
of the vector s changes, we use the notation of the form ¢((5);) for ¥ (s1,...,5j-1,3,8j41,- -, 8d-1),

possibly omitting the parentheses and the subscript when the position is clear.

First we deal with the non-boundary case.

Let us consider 2 € Z¢ such that z¢ > x1,..d-1 > 0. Again using ([B.4) and observing that (recall

8$j = xj/xg %:sj Ty Ty o(||x||~ x:+1:3j —xq Ty o(||lx||™°)), we
[20) 72 (1+ag" +ap? +o(|l]| 7)) ; (1 —ag" + 252 + of[lz[| 7))

write

Elf(Xnt1) — f(Xn) | X = 2]

« 2 T Td—1 _ «
—(1 = azp(s))|l[|* + M td_1) [(1 DA G SERER mo—1)> lz = eoll

+ (1 — aw(m;ﬂ}rl,...,%))\\x + egl|®

2 |1

S o — el + (1 - o () ) o + ¢

J:1
v s s o 322 iS4
_ ot . o °J 2T\ J -2
= o] {ﬁm — [(1 (s =0 3 (2 - 5 3 el o)
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« 1 x2 1
502 - ) - o o2l 7))
( o+ 3 2 EENEE

d—1 d—1

+ (1 s —aX (- ) =g 2 ol ™)
j=1 ij=1
2

T o 1 T 9
X <1+a + —=a2—a)—= ~—+0(Haz|] )>
=2~ 2fz)> 2 )2 Jl]?

—2(1 - aw(S))]

d—

T TdoD [—2(1—aw(s))+<1—a¢( ) + axg ' — x%%)

—_

(1o a2 oL o(=]7))
el 2ff> 2 (> fl]?
_ o
+ (1 —a(s) — axg 1w; — ﬁ%)
0

Q 1 xs

CoTaTDY — - — —L olllx —2
< (U o + g ~ 202 e g+l ))]

—a(s —a)(l —ay(s x? s as;
:a”xua{wv [1 Vi) ool —avle) o S (s sy,

2
J

—

d—1] 2|z 2 |? lz* = Nag lz]?

-5 Z S% +o||zl|~ 2)]

3,j=1

41 (d-1A-ap(s))  2-a)d-ap(s) af (2—a)(l—ai(s))
v+d—1 2||(? 2||(? B4R 2|2
d—1 as d 1
-2 Y- 5> zw + o[lll~ 2)”
J=1 J= 17
= —az|* 2@ (z, v) + allz[|*7* (v @1 (2, ¥, 7, @) + a®a(z, ¥, 7, ), (3.5)

where ®; and ®5 are uniformly bounded for large enough x, and

N H:c||2 <
w0e0) = e B (S 4 3 vt =

1,j=1

The idea is then to prove that, with a suitable choice for v, the quantity ®(x,1) will be uniformly
positive for all large enough z, and then the second term in the right-hand side of (3.5]) can be
controlled by choosing large v and small «. This will make (B3] negative for all large x.

Now, in order to obtain a simplified form for ([B.0]), we pass to the (hyper)spherical coordinates:

s$1 =1 cosbq,

So = 7 sin 61 cos o,

Sg—o = rsinfy ...sinfy_3cosy_o,

Sg—1 =rsinfy...sinf;_3sin b _o.
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=

! %0 280 \/ B

Figure 3: On the construction of h

Since ”;!2 =1+7r2% and (abbreviating v/ = —T and ¢!, w )

0

1 d—1
/
=7 2 st - Z sis
i=1

i,j=1
we have
1 1 2 ’ r? 7
‘Mﬁ@—m §+(1+T)(T¢r+§¢w>
1472/, 1—12 Y
- <ﬂ+w%2+(r¢g). (3.7)
Now, we define the function 1 (it will depend on r only, not on 6q,...,0,4_5) in the following way.

First, clearly, we need to define 9 (r) for r € [0,+/d — 1]. Then, observe that

dr = > 0, (3.8)

/vd—l 1—r? d—1
0 (1 +T2)2 d

so, for a suitable (small enough) €y we can construct a smooth function A with the following
properties (on the Cartesian plane with coordinates (r,y), think of going from the origin along
2 I . 2
y = 4= until it intersects with y = (1 (P and then modify a little bit the curve around the
0
intersection point to make it smooth, see Figure [)):
(i) 0<h(r) <

for all r < 2¢¢ and h(r) for r > 2eq;

—(1+ ) _(1+ )

(ii) h(0) =0 and A(r) ~ % asr — 0;
0
(ii) % — h(r) > § for r < eg;
(iv) b:= [V h(r)dr > 0 (by @) it holds in fact that b € (0,1));
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v) [y h(u)du > (d 1)3/2 for all r € (0,v/d — 1].

Denote H(r) = [; h(u)du, so that we have H(v/d —1) = b. Then, define for r € [0,v/d — 1]

P(r) = /T\/ﬁ (H(v) w

T 1)3/2> dv. (3.9)

For the function 1 defined in this way, we have r2¢/(r) = ﬁ — H(r), so h(r) + (r®¢/(r)) =
b(d — 1)~3/2r2. By construction, it then holds that

inf (i F (0 )) 2 bd - )P A (3.10)
refo,va=T) \ (1 +72)2 2’

and this (recall (3.6) and ([B.7)) shows that, if v is large enough and « is small enough then the
right-hand side of (B.3)) is negative for all large enough z € Z¢.

To complete the proof of the theorem, it remains to deal with the boundary case.

Let zp = 21 = -+ = Ty > Typy1 = ... > xq—1 > 0 for some m > 1. Using B4) (up to the
term of order ||z||~! in the parentheses), using the fact that ¢ is invariant under permutations and
observing that zy and ||z|| are of the same order, we have

Elf(Xnt1) — f(Xn) | X = 7]

a Y +m zo— «a
= —(1 —azp(s)) |zl +m[<1—a¢(( 2-d),, ))Hl’—eoH

+(1- 0 (585, GBI, 225 25 ) [z + o

L e dZ [(1 — () )z — 51+ (1= o () )l + 51

j=m+1
- ||xua{% [(1 —a((s) - ”’—’; +olal™)) (1= apgp +olllel™)
+ (1= a(v(s i—k— dZ 0 ol ) (1+ ar 2 +oflel ™)
2(1 — ap(s ]
= wé’ —1 —1
+ 55— ,Hd_l > [(1—a( $) =32 +ollal ™)) (1= ety + ozl ™)

(1-a(v) + f—é +o(2lI™)) (1+ aH E +ofll+ 7)) =201 - cw(s))] }

m—1 d—1
allz H“'”iml (Y vi+20l+ 3 skw,;)+o<ux||-1>] (3.11)

( k=1 k=m+1
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(observe that in the above calculation all the terms of order ||z||*~! that correspond to the choice
of coordinates m + 1,...,d — 1 of z, cancel).

Now simply note that by the property (v), we have ¢/(r) < 0 for all r» € (0,+/d — 1]. Observe also
that for some positive constant dp it holds that ¢'(r) < —dp for all » € [1,4/d — 1]. Then (recall
that in the boundary case sy =1 and s; > 0 for all j =2,...,d — 1) we have

; 1)
¢; = i?ﬁ; <Oforallj=1,...,d—1 and ¢|(s)<— do o
r _

This implies that the right-hand side of (FII)) is negative for all large enough 2 € Z¢ and thus
concludes the proof of Theorem O
A conjecture

We end this paper with an open question:

Conjecture 3.3. Let ji1, ..., jug—1 be d-dimensional measures in R, d > 4, with 0 mean and 2+

moments, for some 8 > 0, and ¢ an arbitrary adapted rule. Then the walk X generated by these
measures and the rule ¢ is transient.

To answer this question, by Theorem [[.3] it suffices to prove the existence of a matrix A satisfying
the trace condition (L.IJ). So far, we were able to prove it in the case when the d — 1 covariance
matrices are jointly diagonalizable.
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