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DIMENSIONS OF SOME FRACTALS DEFINED VIA THE
SEMIGROUP GENERATED BY 2 AND 3

YUVAL PERES, JOERG SCHMELING, STEPHANE SEURET, AND BORIS SOLOMYAK

ABSTRACT. We compute the Hausdorff and Minkowski dimension of subsets of
the symbolic space 2., = {0, ..., m—l}N that are invariant under multiplication
by integers. The results apply to the sets {ac €Y  VE, TpTok - Tpg = 0}7
where n > 3. We prove that for such sets, the Hausdorff and Minkowski

dimensions typically differ.

1. INTRODUCTION

Let m > 2 be an integer. A widely studied issue in dynamics consists in com-
puting the (Hausdorff, Minkowski,...) dimensions of subsets X of the symbolic
space ¥, = {0,...,m — 1}N. When X is a closed subset of %,,, invariant under
the shift x — ma, by a well-known result of Furstenberg [5], both the Hausdorff
and Minkowski dimensions of X coincide with the topological entropy of the shift
on X divided by log m. This theorem covers a lot of interesting examples. Unfor-
tunately, as soon as the set is not invariant any more, many standard techniques

fail, the most basic example of which is
X2 = {‘T = (xk)k21 S 22 : Vk 2 17 xkak = 0}

In [§], the dimensions of X5 were computed. In particular, it is shown that the
Hausdorff dimension of X5 is strictly smaller than its Minkowski dimension, this
being a reflection of the “non-self-similarity” resulting from its definition.

In [8], the key property used to study X5 is that this set, though not invari-
ant under the shift, is nevertheless invariant under the action of multiplicative

integers. More precisely,
Tr = (wk)k21 S X2 = Vi€ N, (win)n21 S X2.

In [8] the Hausdorff dimension of X and of many more general sets invariant

under the action of multiplicative integers were computed.
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The techniques developed in [§], however, do not allow directly to determine

the dimensions of sets such as
Xos ={z = (Tp)n>1 € X2 : Yk > 1, zpzopxs, = 0},

which is also invariant under the multiplication by integers. Roughly speaking,
[8] relied on the fact that the condition (z;);>1 € X2 “splits” into independent
conditions along geometric progressions of ratio 2, namely, that the sequence
(29 ) >0 contains no two consecutive 1’s for any odd . In order to understand
the structure of X5 3, we will need to work with the semigroup generated by 2

and 3 instead of the cyclic semigroup {2¥}>0.

Finding the dimensions of sets like X5 3 is related to the general question of
multiple ergodic averages: let T : X — X be a dynamical system, and f : X¢ —
R a Holder continuous potential (¢ > 1 being an integer). Classical questions
concern the possible limits, for x € X, of the multiple ergodic averages defined
by

n—1

(1) Sp flx) = %Zf(Tkx,T%x, T,

k=0
when n goes to infinity. Furstenberg, see [6], introduced such non-conventional
ergodic sums in his proof of the existence of arithmetic progressions of arbitrary
length in sets of positive density (Szémeredi Theorem). A natural extension of
classical multifractal analysis consists in investigating the (dimensions of the) sets

E¢(a):={z: lim S, f(z)=a}.

n——+00

These questions have been investigated by many authors, see e.g. [ [7], and more
recently in [10) [3, 8, 1T, 4]. Our set X5 3 is contained in, and can be shown to
have the same dimension as, the set E¢(0) in the simple case where £ = 3 and
f(x,y,2) = x1y121. In fact, the paper [3], which raised the question of computing
the Hausdorff dimension of Xs, was the motivation for [§], where dimgy(Xs) was
determined. In turn, the authors of [4], building in part on [8], were able to
compute the multifractal spectrum of certain “double” ergodic averages, that is,
when ¢ = 2 in (I)). (Independently, some special cases were handled in [I1].) We
hope that the methods developed in the current paper will make it possible to

perform a similar analysis for an arbitrary ¢ € N.
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The goal of this paper is to understand the structure of the sets, such as

(2) X,(fl”)nr = {(2k)pey € X Thny Thny ** Thn, = 0, Vk € N}
where nq,...,n, are arbitrary distinct positive integers, in particular,

2
(3)  Xog.n=Xia o=@, €Ta: wptop -z =0, Yk € N}.

First, we represent the Minkowski dimension as the sum of a series. For the
Hausdorff dimension, we obtain, on the one hand, a variational formula; and
on the other hand, a formula based on a system of nonlinear equations on an
infinite tree. This tree has levels naturally indexed by a sub-semigroup of the
multiplicative positive integers (e.g. the semigroup generated by 2 and 3). The
formulas are complicated (more so than in [§]), but this seems unavoidable. In
any case, they allow reasonably accurate numerical estimates. Perhaps more
importantly, they yield a qualitative result: the Hausdorff dimension is strictly
less than the Minkowski dimension for all sets of the form (2I).

The paper is organized as follows. In Section 2 we present precise statements of
the results (Theorems 2.1] and 2.2)). Section 3 contains some preliminary results,
Sections 4, 5 and 6 give the proofs: the Minkowski dimension in Section 4, and
the lower and upper bound for the Hausdorff dimension in Sections 5 and 6
respectively. Finally, Section 7 contains some numerical estimations and further

examples.

2. STATEMENT OF RESULTS

Let J > 2 be an integer. Consider the semigroup S = (p1,...,ps) generated
by distinct primes p1,...,ps. Denote by £ the k-th element of .S, so that

S:{Ek}z"zl, 1=t <ty < ...

Notation. We write (7, S) = 1 if and only if p; {4 for all j < J (in other words,

i is mutually prime with all elements of S). Observe that
(4) N=| |[{iS: (,8) =1}
is a disjoint union.

To each element © = (z3);-, € ¥, one can associate the subsequence z|;g,

viewed as an element of Y,,, defined as

zlis = (Tig, ) pey -
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Given a closed subset Q2 C X, let
(5) Xg(ls) = {x = (Tk)pey €EXm: zlis € Q foralld, (i,5) = 1}.

In this article, we obtain formulas for the Minkowski and Hausdorff dimensions
of XS()S). Note that the case when J = 1 (the semigroup S is cyclic) was considered

in [§]. Our main example is the set from the Introduction
Xog = {(24)0, € D9 wpwopwsy =0, Yk € N} = X5,
for which S is the semigroup generated by 2 and 3, and
Q={(wr)jeq €2 Vi>1, wwjwg =01if 20, = £}, 30; = {1} .

More generally, the sets X3, defined by (@), correspond to the case where S

is the semigroup generated by all primes less than or equal to n and
Q= {(wr)pe; €2 wywiy---w;, =0if jb; =4;;, j=1,...,n}.
Even more generally, our set-up includes the sets defined in (2):
XS sy = {(@R)72) € Sin i Ty T+ Thn, = 0, Y € N}

for arbitrary nq,...,n, € N. In fact, X,(fln)nr = Xézs), where S is the semigroup

generated by all prime factors of the numbers ny,...,n, and
Q= {(wp)je € St wiwiy - w;, = 0if njly, = bi,y §= L...,r}.
Throughout the paper, we fix the standard metric on X,;:
Q((xk)kzly (yk)kzl) —m min{n: Z‘n?éyn}.

All the dimensions are computed with respect to this metric. It is well-known
that if we map 3, onto [0, 1] via the base-m expansion, the dimensions of a subset
of (X, 0) and its image on the real line (with respect to the Euclidean metric)

are the same.

Next we continue with the general set-up and consider the tree of prefixes of

the set . It is a directed graph I" = I'(2) whose set of vertices is
V(') = Pref() = ] Pref;(9),
k=0

where Pref((£2) has only one element, the empty word &, and

Pref},(Q) = {ue {0,...,m— 1}, Q] ;A(z)}.



FRACTALS DEFINED VIA THE SEMIGROUP GENERATED BY 2 AND 3 5

Here and below we denote by [u] the cylinder set of all sequences starting with
u. There is a directed edge from a prefix v to a prefix v if v = wi for some
i €{0,...,m — 1}. In addition, there is an edge from @& to every i € Pref;(f2).

Clearly, I'(Q) is a tree, and there is at least one edge going out of every vertex.

Denote
(6) A = [Pref (Q)].
Let
1
(7) 1S) =S —.
=

Observe that
T 1 13!
(®) W =TI 5 =T1(-+) -

Theorem 2.1. The Minkowski dimension of the set X((ZS), defined by (4), equals

dimM(Xg()S)) — 1210gm (Ag) <—k - E)
- log,, (Ak+1/Ak)
- (1 + Z ka: )

The first formula for the Hausdorff dimension is obtained via a version of the
variational principle. Let u be a Borel probability measure on ). Denote by ay
the partition of € into cylinders of length k, so that Ay = |ay|. We consider the
Shannon entropy of a finite partition, using logarithms based m:

H*(a) i= — 3 u(B)1og,, u(B)
Bea

and the conditional entropy H*(a|f) for two finite partitions. Define

1
s(Qp) = 1ZH” Yk (5_E>
©) = () (" +Z = (Z:‘ak )

Theorem 2.2. (i) We have

dimH(X((zS)) = sup s(2, ),
I
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where the supremum is over Borel probability measures on 2.
(i) We have dimH(Xf(ZS)) = dimM(X((zs)) if and only if the tree of prefizes of
Q is spherically symmetric, i.e. for every k € N, all prefizes of length k have the

same (equal) number of continuations in Prefy1(Q).

Corollary 2.3. For every set of distinct ny,...,n, € N, with r > 2, we have
dimH(Xr(LT?__,m,) < dimM(X,(LT?,mT) where the set X,(;ln,) n,. 18 defined by (2).

ceey

Proof (assuming Theorem [2.2). As explained above, XT(LT)W = Xf(zs) C Ym,
where S is the semigroup generated by all prime factors of ny,...,n,. Suppose
that ny < --- < n,, and let j > 2 be such that ¢{; = n,. Then every word with
symbols 0,...,m — 1 of length (j — 1) is an allowed prefix of . Observe that
some words of length (7 — 1) have only one continuation (by 0) to a word of length
j, namely, those which have nonzeros in the positions corresponding to n; € S,
fori = 1,...,7 — 1. However, all other words of length (7 — 1) (and there will
always be some) have m continuations to a word of length j. This shows that the
tree Pref(£2) is not spherically symmetric and hence the Hausdorff dimension is

strictly less than the Minkowski dimension by Theorem O
)

Another way to express the Hausdorff dimension of X{(ZS is via a nonlinear

system of equations.

Lemma 2.4. Let Q2 be a closed subset of X,,. Then there exists a vector

t= (t(u))ueProf(Q) € [17 +OO)PrOf(Q)

such that
(10) Ho) € [Lm], t(w) € [Lm et Jul =k, k> 1,

(11) @)=Y t0),

j€Pref1(Q)

and

(12) t(u)ber1/t = > t(uj), VY u € Prefy(Q), k>1,
J: ujePrefy1(Q)

Using t, it is easy to express the Hausdorff dimension.
Theorem 2.5. We have

dimy (X$) = log,, t(2),
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where t(@) is from Lemma [27)

3. PRELIMINARIES

Let us start with more notations. Denote
(13) Bn=H{i<n: (i,5) =1}
We need the following standard fact.

Lemma 3.1. If p1,...,p; divide n, then

B =~(S)"tn = nﬁ(l — p%) .
j=1

Proof. If n = szl pj, then (4,S) = 1 if and only if (i,n) = 1, hence 3, = ¢(n),
Fuler’s ¢-function, for which the formula is well-known. In the general case, it
remains to note that (z,5) = 1 if and only if (i + szl pj,S) =1 O

Recall that S = {{;}7°,, with 1 = /{1 < {5 < ... We will denote
(14) B = {i € (n/lpy1,n/t) NN : (i, 8) =1},

where n/l1 and n/fl are not necessarily integers. For every n, let K(n) be the

unique integer such that

(15) Crcn) <1 <Lim)t1-

Obviously, one has

K(n) K (n)
(16) Bu=">1B"| and n=> kB
k=1 k=1

For a finite word u, we write
ulis = Ugp, - - . wip,, where ily < |u| < ilyiq,
and for z = (z1)>1 € X, we denote
=y .oy,

We now prove Lemma [2.4]
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Proof of Lemma 2.4 Consider the following compact set:

o
Z:=[1,m] x H[l,mfk(gi;ll‘"g;:iz—i-'”)]Prefk(Q)‘

k=1

Define a function ® : = — [1, 00)P"ef(D) by

O(F)(u) = (ujepr%: (Q)t(uj))ék/ B € Prefy(Q), k> 1,
m—1 1/~(5)
o(B)(2) = (D 1))
§=0

We claim that ®(Z) C =. Indeed, if t(u) > 1 for all u, then clearly ®(¢)(u) > 1.
For the other inequality, we have, assuming that ¢t € Z and u € Prefi(Q), k > 1:

— -1 -1 —1 —1
B (7)(u) < mUHr1Chpathopst Db/ bt — ey Hhppot)

as desired. Finally,
O(@)(2) < mOTal "+ bl — gy

by the definition of (S) in (), and the claim is verified.

Since @ is continuous, it has a fixed point by the Tychonov fixed point theorem,
which is the desired solution. (Alternatively, we can start with the vector of all
1’s and iterate ®. The operator ® is monotone in each coordinate, hence there is

a coordinate-wise limit, which will be a fixed point for ®.) O

Hausdorff dimension will be computed with the help of the following lemma,

essentially due to Billingsley, which we state in the symbolic space.

Lemma 3.2 (see Proposition 2.2 in [2]). Let E be a Borel set in ¥, and let v be
a finite Borel measure on X.,.
(i) If iminf, oo (—2) logy v[a}] > s for v-a.e. x € E, then dimy(E) > s.
(ii) If liminf, oo(—1)logy v[2}] < s for all x € E, then dimp(E) < s.

4. MINKOWSKI DIMENSION OF X{(}S)

Proof of Theorem [2l. We now compute the Minkowski dimension of XS()S). Re-
call that
log,, Ny (X3,”)

)
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where Nn(X((ZS)) is the number of words of length n that are prefixes of some
T € Xg(ls). This holds if the limit exists, one also defines the upper (resp. lower)
dimension dimy; and dim,, by taking the liminf (resp. limsup) instead of the
limit.

We need to estimate N, (X, (S)) Fix an integer » > 1. Considering integers n
of the form n = al(HTJrl (T, pi), for some d € N, is enough for the purpose
of Minkowski dimension estimates.

By the definition (Bl), we have x € XS()S) if and only if x|;5 € Q for all 4, (i,5) =

1. It follows that =7 is a beginning (prefix) of some x € Xf(ls)

if and only if
#}lis € Prefy(Q), Vie BM™, k=1,...,K(n),

where B,(gn) is defined in (I4)). Thus, using the definition (@) of Ay, we obtain

(9) K |B(n)|
Nn(XQ ) = | | Ak k
k=1

By the choice of n, n/¢) and n/¢j; are integers for every k < r. By Lemmal[3.1]

one sees that

(17) BYY| = B =Bz = () 'n <é - ﬁ) for k <,
hence,
%logm Nn(Xg(lS)) > 2 ’B;% )‘ log,, Ax = v(S5) 1 ;bgm(Ak)(é — ﬁ)
We obtain that
(18) dlmM(X( Ezlogm (Ag) <— - K)
+1

On the other hand, for r +1 < k < K(n), Ay, is bounded from above by m*. This
yields

r " K(n) r "
(19)  Nu(xX) < JLAZ T mbB0 = T AP i kB
k=1 k:r—l—l k=1

where (I6) has been used. We have

S B =583 (3~ ) =09 (5 e )
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Thus,

n= ST HB =28 (e S 7).
—1 r i

It follows from (I9)), again using (7)), that

it (XG) < 7(5) (ilogmmk)(i—i) DS %))
k=1 i=r+1 "

Crt1 bt

and letting r — oo here and in (I8]) yields the desired formula. O

5. LOWER BOUND FOR dimpg Xg(zs) IN THEOREM [2.2[(1)

Given a probability measure p on €2, we set

(20) Buli= [ wlulisl

i<lul, (4,5)=1
It follows from (B]) that IP, extends to a Borel probability measure supported on
x5
Q-
Fix a probability measure p on €. Recall that oy is the partition of €2 into

cylinders of length k. We are going to demonstrate that for every r € N,

— log,, B[z} 1 1

(21)  liminf ] >~(S)7! ZH”(aM(a - —) for Py-a.e. x.
k=1

n— 00 n €k+1

Then, letting r — oo will yield dimH(X((zs)) > s(Q, u) by Billingsley’s Lemma[3.2((ii).

Let us fix an integer > 1. Again, to verify (2II), we can restrict ourselves to

the integers of the form

(22) n:d-(sz)-(lj[pi), deN.

In view of (20), we have
)
(23) Pufei] = [T I wlatlis),

hence, when n is large enough,

(24) Puet] < ] I wletlis):
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Note that z7|;s is a word of length k for i € Blin), which is a beginning of a
sequence in €. Thus, [27];s] is an element of the partition «y.

The random variables x — —log,,, pu[z}|is] are i.i.d. for i € B,(C") (hence, there
are |B,(€")| of them), and their expectation equals H"(«ay), by the definition of
entropy. Fixing k with k£ < r and taking n of the form (22]), since |B,(€n)| tends to
infinity as d tends to infinity, we get an infinite sequence of i.i.d. random variables.

Therefore, by a version of the Law of Large Numbers,

1
(25) for Py-a.e. z, ¥k <, M Z —log,, plztlis] — H"(ag)
ieB™

as n (and thus d) tends to infinity. Using (24]), we deduce that

~LognBulet) > 1§~ $™ —logy, plolsl

k‘ 1 ZEB(n)

In view of (7)), we obtain

—log,, Pu[z7] e 1 —log,, p[z}is]
—omTpll (9 H— - — Z —em 1
n 1 (@k €k+1) ieB’g") ‘Bl(g )‘

Taking the liminf as n tends to infinity and using (25), we confirm (2I]) for P,-a.e.

x, completing the proof.

6. UPPER BOUND FOR dimp Xés), AND THEOREM

To find the upper bound, we will construct an explicit measure on XS()S) which
has the right dimension. Since we will be able to compute the Hausdorff dimension

of this measure p (it will be log,,, tp), this will allow us to conclude.

In view of Lemma 2.4, we can define the probability measure p on € such that

(26) wli] = t(;()% for all j € Pref; (),
t(uj)

27) Yk=1,  plujlu] = #(w) e Tl

for all u € Prefy(Q2), uj € Prefy1(Q).

Thus, for every u = uy ... ux € Prefy(Q2),

%k

(28) ] = H2) ) et w ) T (),

We are going to use Billingsley’s Lemma B.2](i), for which we need to estimate

—log,,, Pu[z} S)
— .

the liminf,,_, 2 from above, for every x € Xg(2
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We will assume throughout the proof that pi,...,p; divide n.
Recalling (23)), we need to estimate HieB(”) plztlis]. By (28]), we have
k

H plrt]is] = H N[wielwwg---wwk]

ieB™ ieB"™
_ 1-£2 -4 1— ok
- H t(2) W(S)t(l‘i&) t(@ie, ie,) 2 @iy Tiey - - $i5k71) 1
ieB,(c”)

Xt(:l?,'gll‘igz e l‘igk)

k—1 £yr
_1p(m 1 k41
t(@) IBk |'Y(S) H t(xiglxng e xigk) H t(xiglxig2 . xigk,) Cpr
k'=1

ieB™
Using ([I6), the product can be rewritten as

K(n

) k
Puaf] = t(@) O [ T] I 11t .- 2,

k=1 iEB]in) k'=1

K(n) k—1 -~
X H H H t(xigl Tipy - - xwk,) Cpr

k=1 g k=1

Observe that if k is given in {1,..., K(n)} and (¢, 5) = 1 with ¢ < n/lj, then the

term ¢(xi¢, Tie, - . - T, ) appears exactly once in the first product above. Similarly,

if k is given in {1,...,K(n) — 1} and (¢,5) = 1 with ¢ < n/f1, then the term
Y

1 .
t(Xie, Tiey - - - Tie,)”  “*» appears once in the second product above. We deduce

that

B[z} = (@) P I t@ie i, 2i)
k=1 i<n/¢
3,9)=1
K(n)—1
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Therefore, taking Lemma B.1] into account, we have

K(n

_10g Pﬂ[x?] k IOgm Ligy Lity - - xZZk)
—=m 22 = o
R
= 1 n/lk+1
(4,9)=
W - Hog x Zir,)
m Tipy Tify - - - Tig
3 Sy el o)
k=1 i<n/l k
(3,9)=1
Denote
E_llog t(ZE'g Tify -+ - Tip )
A = k m 14141l Wy
(31) Vk(xas) Z: s )
(4,8)=1

where s > 0 is not necessarily in N. Then (B0) becomes

K(n K(n)

(32) _IOngP“[] log,, t( Z Avk<x —) Z Avk< >

Next, observe that by Lemma[Z4] and the fact that ¢(u) € [1, m* (Gea )]
if |u| = k, we have

A N AR =
(33) Avg(z,s) < Z (it ';+2 ) < Z ¢t for all s > 0,

i<s i=k+1
(1,5)=1

hence for r < K(n) we have

S e ) < Y > e

k=r+1 k=r+1i=k+1
o0
(34) < Z il = &0 — 0, asr — .
1=r+2

The convergence y o2, il; ! < o0 is clear, since ¢; grows faster than any polyno-
mial. The same holds for 252(2_1 Avy, (:17 L >

Pl

We will estimate from above the averages

nt;
2 : lOgm [$1 ]

Lemma 6.1. For all x € XS()S), liminfps_yo0 A(x,n, M) < log,, t(2).
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Proof. Fix € > 0 and choose r € N such that £.12 < €. Choose n € N of the form

(22). By (B2) and (34)),

<

Py v (e, 29 2

(35) A(xz,n, M) < log,, t( (Avk
C

M= fk+1

We are going to argue that the majority of the terms in each of the interior
sums above cancel out. In fact, when ¢ ; divides ¢;, there exists a unique j' < j

0 , _ _
such that - = Z—], hence the term Avy (x, n—gj) cancels out with the term
2 Ut Lt

0 . . ..
Avy, (m, nZ—Z) For this to happen, all we need is that /;; divide /;.

We will show that this occurs for most of the terms in the sum above.
Lemma 6.2. For anyr € N, let Fyy ={j < M : l|lj, Vek=1,...,r}. Then
(36) lim M~ Fy|=1.

M—o0
Proof. We have
S={p™-...-p7: my,...,m; e NU{O}}.

Let C = C(r) € N be such that o, ..., ¢4 all divide H;-Izl p?. Let us define

J
Es = < (mi,...,my)€Z]: ijlogpjglog(s)
j=1
_ J
E, = {(ml,...,mJ)EZi: minm; > C, ijlogpjglog(s)}.
J
m=1

For s = ¢y, we have |Ey,,| = M and
EZM C {(ml,...,mJ) S Z_{_ L Z:pgnl ---pTJnJ < /{lp; and 62,...,&»4_1 ’ 6} C EEM,

from which we deduce that \EgM] <|Fy| <M = |Ey,,|. Then (B6]) follows from

which is clear. O

From Lemma [6.2] we choose M > 0 so large that M(1 —¢) < |Fy| < M.

As said above, when j € Fjs, the term Avy (x, %) cancels out with some term

L . . . .. .
Avy(z, Z—Z)) in (35). The cardinality of the remaining terms is thus less than
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2Me, and each remaining term is upper bounded above by ~v(S), see ([33]), hence

B3] yields
liminf A(z,n, M) <log,, t(&) + 2ev(S) + 2¢.

M—oo

for all x € Xg(zs). Letting € go to zero yields the result. O

From Lemma 6.1 we conclude that liminf;_, M < log,, t(@) for all
T € ngs). It is key that this inequality holds true for all = € ngs), not only
for almost all z € Xézs). Now we conclude by Billingsley’s Lemma [B3.2(i) that
dimpg X{(ZS) < log,, t(2), and the upper bound in Theorem is proved.

Proof of the lower bound in Theorem [2.30 ~ We deduce the lower bound
dimH(X((zS)) > log,, t(&@) from the lower bound in Theorem 2.2(i) and the fol-
lowing lemma, which asserts that the measure constructed in (26) and (27) is

“optimal”.
Lemma 6.3. The measure y on § defined by (20) and [27) satisfies
(37) 5(Q, p) = log,, t(9).

Proof. We have by (26]),

-1

i =
= 4(8)log,, (@) — :)1 - (;()‘73(3) log,,, t(7)
— (S)log,n t(2) m_: ulj g, 4(5):
Further, i
el = 3 wil= 2 T e i)
— M%k ulu] (%1 log,, (1) — ) [uﬂ%w plujlu] 1og,,, ()

&2—:1 Z wlu]log,, t(u) — Z p[v]log,, t(v).

[u]€ay [vl€akt1
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Thus,

H'u(ak_i_l‘()ék) 1 1

—:_E u]log,, t(u) — —— g v]log,, t(v).
Oont 0 p[u]log,,, t(u) I p[v]log,, t(v)

[u]eay, [Vl€akt1

Now it is clear that the sum in (@) “telescopes”. Note also that

1 [e.e]
A Z wlu]log,, t(u) < Z 710, ask — o0
* luleay, i=k+1

by Lemma 241 Tt follows that s(Q2, u) = log,,, tz, as desired. This completes the
proof of the lemma, and of Theorem d

All that remains to prove is the part (ii) of Theorem

Proof of Theorem [2.2.(ii) Every term in the expression for dimM(Xg(ZS)) in Theo-
rem [2.J] dominates the corresponding term in (@), with equality if and only if u
assigns the same measure to each cylinder of length k, for every k. This is true
for the “natural” uniform measure, when Pref(2) is spherically symmetric, and

cannot hold otherwise. O

7. NUMERICS AND FURTHER EXAMPLES

In this section we introduce a “geometric” argument used to determine the
Minkowski dimension of several examples, and which allowed us to write an al-
gorithm to produce the values of A, for large values of k. The main idea is that
we use a triangular arrangement of the sets iS5, for (i,.5) = 1.

Let p < g €N; (p,q) =1 and S = (p,q) be the semigroup generated by p, q.
Let F': 39 X 39 X X9 — R be a function depending only on the first coordinates,
ie. F(x,y,z) = F(x1,y1,21). We are interested in the sets

(38) X = {JZEEQ : F(ajg,xpg,xqg) =0 V@GN}

In N? we consider the infinite triangular matrix
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For instance, when p = 2 and ¢ = 3, the matrix A (and S itself) can be represented
as
2187
729 1458 3916
243 686 1378 2756
81 162 324 648 1296
27 54 108 216 432 864
9 18 36 72 144 288 576
3 6 12 24 48 96 192 384
1 2 4 8 16 32 64 128 256

To determine the Minkowski dimension we need to consider the truncated sectors
Al = {p" g™ e A 2 ip" g™ < N}, N eN.

The right-hand-side boundary of this sector is approximately determined by a

grid approximation of a line with slope

lo

- logp lejogq <0

This “broken” line is determined by the Sturmian sequence associated to ~, as
follows. Given an irrational slope v we consider the line yz. It will intersect
the integer grid consecutively (starting at the origin) in horizontal and vertical
segments. It is classical that if |y| > 1, then for some integer n., depending on 7
only, a sequence of n, or n, + 1 vertical intersections will be followed by a single
horizontal intersection. If |y| < 1 then a sequence of n, or n, + 1 horizontal
directions will be followed by a single vertical intersection. The set of boundary
“squares” 9 (N) of the configuration in the truncated triangle are the integer grid
squares that have an intersection with the line vz + N. These squares are given
by

Op(N) ={(n,m) : ip" g™ < N <ip" g™}

Denote by n(i, N) the maximum of those integers n for which one can find a pair
(n,m) € 0:(N). The numbers m(i, N) are defined similarly.

If p2 > ¢, i.e. || > 1 (for instance when p = 2 and ¢ = 3), then they have the
structure

(n1,m1), (n1,my +1)--- , (ng,my + k1), (n2,m1 + k1), -, (n2,ma),-- -,
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where ny =n(i, N) +1, m;y =0, and for j > 2, nj =nj_1 — 1, mj =mj_1+ kj—1
(with kj_1 = n, or n, + 1), until m; = n; = m(i, N) + 1. The case where p* < ¢
(i.e. |y] < 1) is symmetric.

So we have exactly (n(i, N) +1) — (m(i, N) + 1) = n(i, N) — m(i, N) “steps”
to the left and m(i, N) + 1 steps up. All together we have n(i, N) + 1 boundary
“squares”. The “squares” (nj —1,m;+k;) € 0L(N) are called pivotal if (nj, m; +
k;) € 9L(N). There are exactly n(i, N) — m(i, N) such squares.

For instance, when p = 2, ¢ = 3, each truncated section is a “triangle” of right
slope —log2/(log 3 —log2). When N = 27 and N = 243, the truncated triangles

are

243
81 162
27 27 54 108 216
9 18 9 18 36 72 144
3 6 12 24 3 6 12 24 48 96 192
1 2 4 8 16 1 2 4 8 16 32 64 128

Truncated triangles Aé\/ for i =1, N =27 and N = 243. In bold characters,
the three integers (24,2 x 24,3 x 24) located in a “corner”.

Using this representation, one observes that the conditions on the three digits
(@0, Tpe, Tqe) in the sets Xp from (B8)) are then expressed in terms of three con-
secutive terms located in a “corner”, since the integers (n,m) corresponding to
(¢,pl,ql) always have the same relative locations inside the truncated sections
AY; (see the example above).

Let us return to our main example: S = (2,3), v(S) = 3 with

X273 = {(xk)zozl €Yo xpxopx3 =0VEkE N} .

Q = {(wk)zozl € 3o WiWjWg = 0if 2¢; = gj, 30; = gk} .

The table below lists the first elements of S, denoted £, and the corresponding
Ay, = |Prefi ()|, needed to compute the Minkowski dimension, see Theorem 2.1]



FRACTALS DEFINED VIA THE SEMIGROUP GENERATED BY 2 AND 3 19
k|1]2 8 9 10 | 11 12 13 14 15
U |1 12 | 16 | 18 | 24 27 32 36 48
A |2 14 14 1 25|50 | 90 | 160 | 320 | 584 | 1039 | 1861 | 3722 | 6772 | 12050

k 16 17 18 19 20 21 22 23 24
Uy o4 64 72 81 96 108 128 144 162
Aj | 21909 | 43818 | 79784 | 143028 | 254433 | 461161 | 922322 | 1679220 | 3055130
k 25 26 27 28 29 30 31
Ly, 192 216 243 256 288 324 384
Ay | 5434757 | 9855663 | 17665509 | 35331018 | 64326200 | 116676724 | 207555865

The algorithm to determine Prefy(€) is based on the “triangle” representation.

Consider an integer k and £, and then the corresponding truncated triangle A}k

(for instance for k& = 12 (equivalently, for N = 27) as in the figure above). A

word in Prefy(€2) can be represented as an array of zeros and ones, whose entries

are located at the grid vertices in the truncated triangle. Moreover, the condition

rrrorr3r = 0 means that there are no three consecutive ones in a “corner”.

27

9 18
3 6 12 24
1 2 4 8 16

1

— = O
O = =

0
0

1
1

= o= O
S O = =

0
10

1
1

Truncated triangle with & = 12, one bad and one good configuration.

In the algorithm, we first generate all possible first two lines of 0-1 bits (which

yields 22 configurations when k = 12) and then keep only those which are admis-

sible (the key point is the simplicity of the selection procedure, i.e. no three ones

in a corner). Then we generate the third line, and keep only the suitable config-

urations. And so on. This argument yields the values of Aj in a very reasonable

time, up to k = 31.

Actually it is a very interesting combinatorial problem in itself to determine

the number of admissible configurations Ay, even in a simpler geometrical context

(for instance in a N x N-square, with the forbidden “corner”). There is numerical

evidence that Ay has a power law of k, but to confirm this would certainly require

further investigations.
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It is not hard to show that 7/4 < Aj.1/A; < 2. Using this and the data in the
table, we obtain for the Minkowski dimension (Theorem 2.T])

0.9573399 < dim;(X23) < 0.9623350.

To estimate the Hausdorff dimension we can use Theorem We get explicit
rigorous estimates by going to a fixed level n, and either assuming that there are
no restrictions further on, whence t(u) = QZ"(Z;LJF“'), |u| = n, to get an upper
bound, or to assume that all the digits that follow are 0’s, whence ¢(u) = 1, to
get a lower bound. Then all the values of t(u), with |u| < n — 1, are obtained
recursively using (I2) and (II]). We did the calculation with n = 25 and obtained

0.9246585 < dimp(X2g3) < 0.9405728

(the convergence is slow, but we think that the upper bound is closer to the
truth).

7.1. Further examples. The difficulty with the set X»3 and the function
F(x,y,z) = x1y121 comes essentially from the fact that, fixing the bits at the
frontier of the truncated triangles is not enough to deduce the values of all digits
inside the triangle (there is some long-range dependence between the bits). For
some suitable functions F' and the corresponding sets X g, this is not the case,

and the situation is easier.

Definition. We call a function F deterministic if for all i,7 € {0,1} there is a

unique solution k € {0,1} for one of the following implicit equations

i) F(i,j, k) =0, i) F(i,k,j) =0, i) F(k,q,7) =0.

The existence of the solution simply means that the constraint on the config-
urations is well posed and the uniqueness is simply the solvability of the implicit

function equation. Now we can formulate the following “rigidity” theorem.

Theorem 7.1. Let p < q € N, (p,q) = 1, and let F: ¥y X Yo x Xy — R be
a “deterministic” function F(x,y,z) depending only on the first coordinates of
x,y,z € Xg. Then recalling the definition B8) of X, one has

(39) dimy (Xp) = dimp (Xp) = L2
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Proof. A moment’s thought makes it clear that for a function fulfilling i) any
configuration in A% is uniquely determined by choosing the n(i, N) + 1 bound-
ary values (n,m) = (0,0),(1,0),--- ,(n(i,N),0) freely. For a function fulfilling
ii), any configuration in A%, is uniquely determined by the free choice of the up-
per boundary values (n,m) = (0,0), (1,1),(2,2),--- , (m(i, N),m(i, N)) and the
pivotal “squares”. For a function fulfilling iii), any configuration is uniquely de-
termined by the free choice of the values in 9%(IV). In all cases, there are exactly
2n(LN)+1 configurations in Al

The common dimension can easily be computed, we explain it for a function
F fulfilling i). Given an admissible sequence x € X, observe that we can choose
all the values z; arbitrarily as long as ¢ is not divisible by ¢. The values at
positions ¢gj, 7 > 1, are then completely determined. Hence, exactly % of the
positions can be arbitrary and the rest is determined. This immediately implies,
by standard argument, that

dimy (X p) = %

The Minkowski and the Hausdorff dimension coincide as can be derived from part
(ii) of Theorem O

Example 7.2. The function F(z,y,z) = (2z1 — 1)(2y1 — 1)(221 — 1) — 1 is
“deterministic”, hence [B9) holds. This case is reminiscent of the well-studied
Ledrappier shift, i.e. each of the triples (x¢, Tpe, xqe) has an even number of 0’s,
or equivalently

Ty + Tp + g0 =1 (mod 2).

Example 7.3. For F(x,y,z) = (y—x2)? (which fulfills ii) but not i) or iii)) and
F(z,y,2) = (v —y2)? (which fulfills iii) but not i) or ii)), B9) is satisfied.

Example 7.4. Consider F(x,y,2) = (v — y)? + (x — 2)2. This function is not
“deterministic”. In this case, each triangle A’]'V has exactly 2 configurations: all
0’s or all 1’s. Hence the total number of cylinders of length N equals the number
of non-empty triangles A'. Since (i,S) = 1 this number equals the number of i’s
that are neither divisible by p nor by q. We have exactly p+ q — 1 residue classes
modulo pq that are divisible by p or q. Therefore the numbers i with (i,S) = 1
can be divided into pq — p — q + 1 arithmetic sequences of step length pq. Hence
ptqg-1

dimM(XF) =1-
pq
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In this case, the Hausdorff dimension of X coincides with its Minkowski dimen-
sion, using the argument (i) of Theorem[2.2: each prefix (with our interpretation,

each finite triangle) has only one possible continuation.
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