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DIMENSIONS OF SOME FRACTALS DEFINED VIA THE

SEMIGROUP GENERATED BY 2 AND 3

YUVAL PERES, JOERG SCHMELING, STÉPHANE SEURET, AND BORIS SOLOMYAK

Abstract. We compute the Hausdorff and Minkowski dimension of subsets of

the symbolic space Σm = {0, ..., m−1}N that are invariant under multiplication

by integers. The results apply to the sets {x ∈ Σm : ∀ k, xkx2k · · ·xnk = 0},

where n ≥ 3. We prove that for such sets, the Hausdorff and Minkowski

dimensions typically differ.

1. Introduction

Let m ≥ 2 be an integer. A widely studied issue in dynamics consists in com-

puting the (Hausdorff, Minkowski,. . . ) dimensions of subsets X of the symbolic

space Σm = {0, . . . ,m− 1}N. When X is a closed subset of Σm, invariant under

the shift x 7→ mx, by a well-known result of Furstenberg [5], both the Hausdorff

and Minkowski dimensions of X coincide with the topological entropy of the shift

on X divided by logm. This theorem covers a lot of interesting examples. Unfor-

tunately, as soon as the set is not invariant any more, many standard techniques

fail, the most basic example of which is

X2 = {x = (xk)k≥1 ∈ Σ2 : ∀k ≥ 1, xkx2k = 0}.

In [8], the dimensions of X2 were computed. In particular, it is shown that the

Hausdorff dimension of X2 is strictly smaller than its Minkowski dimension, this

being a reflection of the “non-self-similarity” resulting from its definition.

In [8], the key property used to study X2 is that this set, though not invari-

ant under the shift, is nevertheless invariant under the action of multiplicative

integers. More precisely,

x = (xk)k≥1 ∈ X2 =⇒ ∀ i ∈ N, (xin)n≥1 ∈ X2.

In [8] the Hausdorff dimension of X2 and of many more general sets invariant

under the action of multiplicative integers were computed.
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The techniques developed in [8], however, do not allow directly to determine

the dimensions of sets such as

X2,3 = {x = (xn)n≥1 ∈ Σ2 : ∀k ≥ 1, xkx2kx3k = 0},

which is also invariant under the multiplication by integers. Roughly speaking,

[8] relied on the fact that the condition (xj)j≥1 ∈ X2 “splits” into independent

conditions along geometric progressions of ratio 2, namely, that the sequence

(xi2k)k≥0 contains no two consecutive 1’s for any odd i. In order to understand

the structure of X2,3, we will need to work with the semigroup generated by 2

and 3 instead of the cyclic semigroup {2k}k≥0.

Finding the dimensions of sets like X2,3 is related to the general question of

multiple ergodic averages: let T : X → X be a dynamical system, and f : Xℓ →

R a Hölder continuous potential (ℓ ≥ 1 being an integer). Classical questions

concern the possible limits, for x ∈ X, of the multiple ergodic averages defined

by

(1) Sn f(x) =
1

n

n−1∑

k=0

f(T kx, T 2kx, ..., T ℓkx),

when n goes to infinity. Furstenberg, see [6], introduced such non-conventional

ergodic sums in his proof of the existence of arithmetic progressions of arbitrary

length in sets of positive density (Szémeredi Theorem). A natural extension of

classical multifractal analysis consists in investigating the (dimensions of the) sets

Ef (α) := {x : lim
n→+∞

Sn f(x) = α}.

These questions have been investigated by many authors, see e.g. [1, 7], and more

recently in [10, 3, 8, 11, 4]. Our set X2,3 is contained in, and can be shown to

have the same dimension as, the set Ef (0) in the simple case where ℓ = 3 and

f(x, y, z) = x1y1z1. In fact, the paper [3], which raised the question of computing

the Hausdorff dimension of X2, was the motivation for [8], where dimH(X2) was

determined. In turn, the authors of [4], building in part on [8], were able to

compute the multifractal spectrum of certain “double” ergodic averages, that is,

when ℓ = 2 in (1). (Independently, some special cases were handled in [11].) We

hope that the methods developed in the current paper will make it possible to

perform a similar analysis for an arbitrary ℓ ∈ N.
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The goal of this paper is to understand the structure of the sets, such as

(2) X(m)
n1,...,nr

:= {(xk)
∞
k=1 ∈ Σm : xkn1xkn2 · · · xknr = 0, ∀ k ∈ N} ,

where n1, . . . , nr are arbitrary distinct positive integers, in particular,

(3) X2,3,...,n = X
(2)
2,3,...,n = {(xk)

∞
k=1 ∈ Σ2 : xkx2k · · · xnk = 0, ∀ k ∈ N} .

First, we represent the Minkowski dimension as the sum of a series. For the

Hausdorff dimension, we obtain, on the one hand, a variational formula; and

on the other hand, a formula based on a system of nonlinear equations on an

infinite tree. This tree has levels naturally indexed by a sub-semigroup of the

multiplicative positive integers (e.g. the semigroup generated by 2 and 3). The

formulas are complicated (more so than in [8]), but this seems unavoidable. In

any case, they allow reasonably accurate numerical estimates. Perhaps more

importantly, they yield a qualitative result: the Hausdorff dimension is strictly

less than the Minkowski dimension for all sets of the form (2).

The paper is organized as follows. In Section 2 we present precise statements of

the results (Theorems 2.1 and 2.2). Section 3 contains some preliminary results,

Sections 4, 5 and 6 give the proofs: the Minkowski dimension in Section 4, and

the lower and upper bound for the Hausdorff dimension in Sections 5 and 6

respectively. Finally, Section 7 contains some numerical estimations and further

examples.

2. Statement of results

Let J ≥ 2 be an integer. Consider the semigroup S = 〈p1, . . . , pJ〉 generated

by distinct primes p1, . . . , pJ . Denote by ℓk the k-th element of S, so that

S = {ℓk}
∞
k=1, 1 = ℓ1 < ℓ2 < . . .

Notation. We write (i, S) = 1 if and only if pj ∤ i for all j ≤ J (in other words,

i is mutually prime with all elements of S). Observe that

(4) N =
⊔

{iS : (i, S) = 1}

is a disjoint union.

To each element x = (xk)
∞
k=1 ∈ Σm, one can associate the subsequence x|iS ,

viewed as an element of Σm, defined as

x|iS := (xiℓk)
∞
k=1.
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Given a closed subset Ω ⊂ Σm let

(5) X
(S)
Ω :=

{
x = (xk)

∞
k=1 ∈ Σm : x|iS ∈ Ω for all i, (i, S) = 1

}
.

In this article, we obtain formulas for the Minkowski and Hausdorff dimensions

ofX
(S)
Ω . Note that the case when J = 1 (the semigroup S is cyclic) was considered

in [8]. Our main example is the set from the Introduction

X2,3 := {(xk)
∞
k=1 ∈ Σ2 : xkx2kx3k = 0, ∀ k ∈ N} = X

(S)
Ω ,

for which S is the semigroup generated by 2 and 3, and

Ω = {(ωk)
∞
k=1 ∈ Σ2 : ∀ i ≥ 1, ωiωjωk = 0 if 2ℓi = ℓj , 3ℓi = ℓk} .

More generally, the sets X2,3,...,n defined by (3), correspond to the case where S

is the semigroup generated by all primes less than or equal to n and

Ω =
{
(ωk)

∞
k=1 ∈ Σ2 : ωi1ωi2 · · ·ωin = 0 if jℓi1 = ℓij , j = 1, . . . , n

}
.

Even more generally, our set-up includes the sets defined in (2):

X(m)
n1,...,nr

= {(xk)
∞
k=1 ∈ Σm : xkn1xkn2 · · · xknr = 0, ∀ k ∈ N}

for arbitrary n1, . . . , nr ∈ N. In fact, X
(m)
n1,...,nr = X

(S)
Ω , where S is the semigroup

generated by all prime factors of the numbers n1, . . . , nr and

Ω =
{
(ωk)

∞
k=1 ∈ Σm : ωi1ωi2 · · ·ωir = 0 if njℓi1 = ℓij , j = 1, . . . , r

}
.

Throughout the paper, we fix the standard metric on Σm:

̺((xk)k≥1, (yk)k≥1) = m−min{n: xn 6=yn}.

All the dimensions are computed with respect to this metric. It is well-known

that if we map Σm onto [0, 1] via the base-m expansion, the dimensions of a subset

of (Σm, ̺) and its image on the real line (with respect to the Euclidean metric)

are the same.

Next we continue with the general set-up and consider the tree of prefixes of

the set Ω. It is a directed graph Γ = Γ(Ω) whose set of vertices is

V (Γ) = Pref(Ω) =
∞⋃

k=0

Prefk(Ω),

where Pref0(Ω) has only one element, the empty word ∅, and

Prefk(Ω) =
{
u ∈ {0, . . . ,m− 1}k, Ω ∩ [u] 6= ∅

}
.
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Here and below we denote by [u] the cylinder set of all sequences starting with

u. There is a directed edge from a prefix u to a prefix v if v = ui for some

i ∈ {0, . . . ,m − 1}. In addition, there is an edge from ∅ to every i ∈ Pref1(Ω).

Clearly, Γ(Ω) is a tree, and there is at least one edge going out of every vertex.

Denote

(6) Ak = |Prefk(Ω)|.

Let

(7) γ(S) :=

∞∑

k=1

1

ℓk
.

Observe that

(8) γ(S) =

J∏

j=1

∞∑

k=0

1

pkj
=

J∏

j=1

(
1−

1

pj

)−1

.

Theorem 2.1. The Minkowski dimension of the set X
(S)
Ω , defined by (5), equals

dimM (X
(S)
Ω ) = γ(S)−1

∞∑

k=1

logm(Ak)
( 1

ℓk
−

1

ℓk+1

)

= γ(S)−1
(
1 +

∞∑

k=1

logm(Ak+1/Ak)

ℓk+1

)
.

The first formula for the Hausdorff dimension is obtained via a version of the

variational principle. Let µ be a Borel probability measure on Ω. Denote by αk

the partition of Ω into cylinders of length k, so that Ak = |αk|. We consider the

Shannon entropy of a finite partition, using logarithms based m:

Hµ(α) := −
∑

B∈α

µ(B) logm µ(B)

and the conditional entropy Hµ(α|β) for two finite partitions. Define

s(Ω, µ) := γ(S)−1
∞∑

k=1

Hµ(αk)
( 1

ℓk
−

1

ℓk+1

)

= γ(S)−1
(
Hµ(α1) +

∞∑

k=1

Hµ(αk+1|αk)

ℓk+1

)
.(9)

Theorem 2.2. (i) We have

dimH(X
(S)
Ω ) = sup

µ
s(Ω, µ),
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where the supremum is over Borel probability measures on Ω.

(ii) We have dimH(X
(S)
Ω ) = dimM (X

(S)
Ω ) if and only if the tree of prefixes of

Ω is spherically symmetric, i.e. for every k ∈ N, all prefixes of length k have the

same (equal) number of continuations in Prefk+1(Ω).

Corollary 2.3. For every set of distinct n1, . . . , nr ∈ N, with r ≥ 2, we have

dimH(X
(m)
n1,...,nr) < dimM (X

(m)
n1,...,nr) where the set X

(m)
n1,...,nr is defined by (2).

Proof (assuming Theorem 2.2). As explained above, X
(m)
n1,...,nr = X

(S)
Ω ⊂ Σm,

where S is the semigroup generated by all prime factors of n1, . . . , nr. Suppose

that n1 < · · · < nr, and let j ≥ 2 be such that ℓj = nr. Then every word with

symbols 0, . . . ,m − 1 of length (j − 1) is an allowed prefix of Ω. Observe that

some words of length (j−1) have only one continuation (by 0) to a word of length

j, namely, those which have nonzeros in the positions corresponding to ni ∈ S,

for i = 1, . . . , r − 1. However, all other words of length (j − 1) (and there will

always be some) have m continuations to a word of length j. This shows that the

tree Pref(Ω) is not spherically symmetric and hence the Hausdorff dimension is

strictly less than the Minkowski dimension by Theorem 2.2. �

Another way to express the Hausdorff dimension of X
(S)
Ω is via a nonlinear

system of equations.

Lemma 2.4. Let Ω be a closed subset of Σm. Then there exists a vector

t = (t(u))u∈Pref(Ω) ∈ [1,+∞)Pref(Ω),

such that

(10) t(∅) ∈ [1,m], t(u) ∈ [1,mℓk(ℓ
−1
k+1+ℓ−1

k+2+··· )], |u| = k, k ≥ 1,

(11) t(∅)γ(S) =
∑

j∈Pref1(Ω)

t(j),

and

(12) t(u)ℓk+1/ℓk =
∑

j: uj∈Prefk+1(Ω)

t(uj), ∀ u ∈ Prefk(Ω), k ≥ 1,

Using t, it is easy to express the Hausdorff dimension.

Theorem 2.5. We have

dimH(X
(S)
Ω ) = logm t(∅),



FRACTALS DEFINED VIA THE SEMIGROUP GENERATED BY 2 AND 3 7

where t(∅) is from Lemma 2.4.

3. Preliminaries

Let us start with more notations. Denote

(13) βn := |{i ≤ n : (i, S) = 1}|.

We need the following standard fact.

Lemma 3.1. If p1, . . . , pJ divide n, then

βn = γ(S)−1n = n

J∏

j=1

(
1−

1

pj

)
.

Proof. If n =
∏J

j=1 pj, then (i, S) = 1 if and only if (i, n) = 1, hence βn = φ(n),

Euler’s φ-function, for which the formula is well-known. In the general case, it

remains to note that (i, S) = 1 if and only if (i+
∏J

j=1 pj, S) = 1. �

Recall that S = {ℓk}
∞
k=1, with 1 = ℓ1 < ℓ2 < . . . We will denote

(14) B
(n)
k := {i ∈ (n/ℓk+1, n/ℓk] ∩ N : (i, S) = 1},

where n/ℓk+1 and n/ℓk are not necessarily integers. For every n, let K(n) be the

unique integer such that

(15) ℓK(n) ≤ n < ℓK(n)+1.

Obviously, one has

(16) βn =

K(n)∑

k=1

|B
(n)
k | and n =

K(n)∑

k=1

k|B
(n)
k |.

For a finite word u, we write

u|iS := uiℓ1 . . . uiℓr , where iℓr ≤ |u| < iℓr+1,

and for x = (xk)k≥1 ∈ Σm we denote

xn1 := x1 . . . xn.

We now prove Lemma 2.4.
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Proof of Lemma 2.4. Consider the following compact set:

Ξ := [1,m] ×
∞∏

k=1

[1,mℓk(ℓ
−1
k+1+ℓ−1

k+2+··· )]Prefk(Ω).

Define a function Φ : Ξ → [1,∞)Pref(Ω) by

Φ(t)(u) =
( ∑

uj∈Prefk+1(Ω)

t(uj)
)ℓk/ℓk+1

, u ∈ Prefk(Ω), k ≥ 1,

Φ(t)(∅) =
(m−1∑

j=0

t(j)
)1/γ(S)

.

We claim that Φ(Ξ) ⊂ Ξ. Indeed, if t(u) ≥ 1 for all u, then clearly Φ(t)(u) ≥ 1.

For the other inequality, we have, assuming that t ∈ Ξ and u ∈ Prefk(Ω), k ≥ 1:

Φ(t)(u) ≤ m(1+ℓk+1(ℓ
−1
k+2+ℓ−1

k+3+··· ))ℓk/ℓk+1 = mℓk(ℓ
−1
k+1+ℓ−1

k+2+··· ),

as desired. Finally,

Φ(t)(∅) ≤ m(1+ℓ1(ℓ
−1
2 +ℓ−1

3 +··· ))γ(S)−1
= mℓ1 = m,

by the definition of γ(S) in (7), and the claim is verified.

Since Φ is continuous, it has a fixed point by the Tychonov fixed point theorem,

which is the desired solution. (Alternatively, we can start with the vector of all

1’s and iterate Φ. The operator Φ is monotone in each coordinate, hence there is

a coordinate-wise limit, which will be a fixed point for Φ.) �

Hausdorff dimension will be computed with the help of the following lemma,

essentially due to Billingsley, which we state in the symbolic space.

Lemma 3.2 (see Proposition 2.2 in [2]). Let E be a Borel set in Σm and let ν be

a finite Borel measure on Σm.

(i) If lim infn→∞(− 1
n) log2 ν[x

n
1 ] ≥ s for ν-a.e. x ∈ E, then dimH(E) ≥ s.

(ii) If lim infn→∞(− 1
n) log2 ν[x

n
1 ] ≤ s for all x ∈ E, then dimH(E) ≤ s.

4. Minkowski dimension of X
(S)
Ω

Proof of Theorem 2.1. We now compute the Minkowski dimension of X
(S)
Ω . Re-

call that

dimM X
(S)
Ω = lim

n→+∞

logmNn(X
(S)
Ω )

n
,
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where Nn(X
(S)
Ω ) is the number of words of length n that are prefixes of some

x ∈ X
(S)
Ω . This holds if the limit exists, one also defines the upper (resp. lower)

dimension dimM and dimM by taking the liminf (resp. limsup) instead of the

limit.

We need to estimate Nn(X
(S)
Ω ). Fix an integer r ≥ 1. Considering integers n

of the form n = d(
∏r+1

j=1 ℓj)(
∏J

i=1 pi), for some d ∈ N, is enough for the purpose

of Minkowski dimension estimates.

By the definition (5), we have x ∈ X
(S)
Ω if and only if x|iS ∈ Ω for all i, (i, S) =

1. It follows that xn1 is a beginning (prefix) of some x ∈ X
(S)
Ω if and only if

xn1 |iS ∈ Prefk(Ω), ∀ i ∈ B
(n)
k , k = 1, . . . ,K(n),

where B
(n)
k is defined in (14). Thus, using the definition (6) of Ak, we obtain

Nn(X
(S)
Ω ) =

K(n)∏

k=1

A
|B

(n)
k |

k .

By the choice of n, n/ℓk and n/ℓk+1 are integers for every k ≤ r. By Lemma 3.1,

one sees that

(17) |B
(n)
k | = β n

lℓk
− β n

ℓk+1
= γ(S)−1n

( 1

ℓk
−

1

ℓk+1

)
for k ≤ r,

hence,

1

n
logmNn(X

(S)
Ω ) ≥

r∑

k=1

|B
(n)
k |

n
logmAk = γ(S)−1

r∑

k=1

logm(Ak)
( 1

ℓk
−

1

ℓk+1

)
.

We obtain that

(18) dimM (X
(S)
Ω ) ≥ γ(S)−1

r∑

k=1

logm(Ak)
( 1

ℓk
−

1

ℓk+1

)
.

On the other hand, for r+1 ≤ k ≤ K(n), Ak is bounded from above by mk. This

yields

(19) Nn(X
(S)
Ω ) ≤

r∏

k=1

A
|B

(n)
k |

k ·

K(n)∏

k=r+1

mk|B
(n)
k | =

r∏

k=1

A
|B

(n)
k |

k ·mn−
∑r

k=1 k|B
(n)
k | ,

where (16) has been used. We have

r∑

k=1

k|B
(n)
k | = γ(S)−1n

r∑

k=1

( k

ℓk
−

k

ℓk+1

)
= γ(S)−1n

(
−

r

ℓr+1
+

r∑

k=1

1

ℓk

)
.



10 YUVAL PERES, JOERG SCHMELING, STÉPHANE SEURET, AND BORIS SOLOMYAK

Thus,

n−
r∑

k=1

k|B
(n)
k | = γ(S)−1n

( r

ℓr+1
+

∞∑

i=r+1

1

ℓi

)
.

It follows from (19), again using (17), that

dimM (X
(S)
Ω ) ≤ γ(S)−1

(
r∑

k=1

logm(Ak)
( 1

ℓk
−

1

ℓk+1

)
+
( r

ℓr+1
+

∞∑

i=r+1

1

ℓi

))
,

and letting r → ∞ here and in (18) yields the desired formula. �

5. Lower bound for dimH X
(S)
Ω in Theorem 2.2(i)

Given a probability measure µ on Ω, we set

(20) Pµ[u] :=
∏

i≤|u|, (i,S)=1

µ[u|iS ].

It follows from (5) that Pµ extends to a Borel probability measure supported on

X
(S)
Ω .

Fix a probability measure µ on Ω. Recall that αk is the partition of Ω into

cylinders of length k. We are going to demonstrate that for every r ∈ N,

(21) lim inf
n→∞

− logm Pµ[x
n
1 ]

n
≥ γ(S)−1

r∑

k=1

Hµ(αk)
( 1

ℓk
−

1

ℓk+1

)
for Pµ-a.e. x.

Then, letting r → ∞ will yield dimH(X
(S)
Ω ) ≥ s(Ω, µ) by Billingsley’s Lemma 3.2(ii).

Let us fix an integer r ≥ 1. Again, to verify (21), we can restrict ourselves to

the integers of the form

(22) n = d ·
( r+1∏

j=1

ℓj

)
·
( J∏

i=1

pi

)
, d ∈ N.

In view of (20), we have

(23) Pµ[x
n
1 ] =

K(n)∏

k=1

∏

i∈B
(k)
n

µ[xn1 |iS ],

hence, when n is large enough,

(24) Pµ[x
n
1 ] ≤

r∏

k=1

∏

i∈B
(n)
k

µ[xn1 |iS ].
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Note that xn1 |iS is a word of length k for i ∈ B
(n)
k , which is a beginning of a

sequence in Ω. Thus, [xn1 |iS ] is an element of the partition αk.

The random variables x 7→ − logm µ[xn1 |iS ] are i.i.d. for i ∈ B
(n)
k (hence, there

are |B
(n)
k | of them), and their expectation equals Hµ(αk), by the definition of

entropy. Fixing k with k ≤ r and taking n of the form (22), since |B
(n)
k | tends to

infinity as d tends to infinity, we get an infinite sequence of i.i.d. random variables.

Therefore, by a version of the Law of Large Numbers,

(25) for Pµ-a.e. x, ∀ k ≤ r,
1

|B
(n)
k |

∑

i∈B
(n)
k

− logm µ[xn1 |iS ] −→ Hµ(αk)

as n (and thus d) tends to infinity. Using (24), we deduce that

− logm Pµ[x
n
1 ]

n
≥

1

n

r∑

k=1

∑

i∈B
(n)
k

− logm µ[xn1 |iS ].

In view of (17), we obtain

− logm Pµ[x
n
1 ]

n
≥

r∑

k=1

γ(S)−1
( 1

ℓk
−

1

ℓk+1

) ∑

i∈B
(n)
k

− logm µ[xn1 |iS ]

|B
(n)
k |

.

Taking the liminf as n tends to infinity and using (25), we confirm (21) for Pµ-a.e.

x, completing the proof.

6. Upper bound for dimH X
(S)
Ω , and Theorem 2.5

To find the upper bound, we will construct an explicit measure on X
(S)
Ω which

has the right dimension. Since we will be able to compute the Hausdorff dimension

of this measure µ (it will be logm t∅), this will allow us to conclude.

In view of Lemma 2.4, we can define the probability measure µ on Ω such that

µ[j] :=
t(j)

t(∅)γ(S)
for all j ∈ Pref1(Ω),(26)

∀ k ≥ 1, µ[uj|u] :=
t(uj)

t(u)ℓk+1/ℓk
for all u ∈ Prefk(Ω), uj ∈ Prefk+1(Ω).(27)

Thus, for every u = u1 . . . uk ∈ Prefk(Ω),

(28) µ[u] = t(∅)−γ(S)t(u1)
1−

ℓ2
ℓ1 · · · t(u1 . . . uk−1)

1−
ℓk

ℓk−1 t(u).

We are going to use Billingsley’s Lemma 3.2(i), for which we need to estimate

the lim infn→∞
− logm Pµ[xn

1 ]
n from above, for every x ∈ X

(S)
Ω .
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We will assume throughout the proof that p1, . . . , pJ divide n.

Recalling (23), we need to estimate
∏

i∈B
(n)
k

µ[xn1 |iS ]. By (28), we have

∏

i∈B
(n)
k

µ[xn1 |iS ] =
∏

i∈B
(n)
k

µ[xiℓ1xiℓ2 . . . xiℓk ]

=
∏

i∈B
(n)
k

t(∅)−γ(S)t(xiℓ1)
1−

ℓ2
ℓ1 t(xiℓ1xiℓ2)

1−
ℓ3
ℓ2 · · · t(xiℓ1xiℓ2 . . . xiℓk−1

)
1−

ℓk
ℓk−1

×t(xiℓ1xiℓ2 . . . xiℓk)

= t(∅)−|B
(n)
k |γ(S)

∏

i∈B
(n)
k

t(xiℓ1xiℓ2 . . . xiℓk)

k−1∏

k′=1

t(xiℓ1xiℓ2 . . . xiℓk′ )
1−

ℓ
k′+1
ℓ
k′ .

Using (16), the product can be rewritten as

Pµ[x
n
1 ] = t(∅)−βnγ(S) ×




K(n)∏

k=1

∏

i∈B
(n)
k

k∏

k′=1

t(xiℓ1xiℓ2 . . . xiℓk′ )




×




K(n)∏

k=1

∏

i∈B
(n)
k

k−1∏

k′=1

t(xiℓ1xiℓ2 . . . xiℓk′ )
1−

ℓ
k′+1
ℓ
k′


 .

Observe that if k is given in {1, . . . ,K(n)} and (i, S) = 1 with i ≤ n/ℓk, then the

term t(xiℓ1xiℓ2 . . . xiℓk) appears exactly once in the first product above. Similarly,

if k is given in {1, . . . ,K(n) − 1} and (i, S) = 1 with i ≤ n/ℓk+1, then the term

t(xiℓ1xiℓ2 . . . xiℓk)
1−

ℓk+1
ℓk appears once in the second product above. We deduce

that

Pµ[x
n
1 ] = t(∅)−βnγ(S)

K(n)∏

k=1

∏

i≤n/ℓk
(i,S)=1

t(xiℓ1xiℓ2 . . . xiℓk)

×

K(n)−1∏

k=1

∏

i≤n/ℓk+1

(i,S)=1

t(xiℓ1xiℓ2 . . . xiℓk)
−ℓk+1/ℓk .(29)
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Therefore, taking Lemma 3.1 into account, we have

− logm Pµ[x
n
1 ]

n
= logm t(∅) +

K(n)−1∑

k=1

∑

i≤n/ℓk+1

(i,S)=1

ℓ−1
k logm t(xiℓ1xiℓ2 . . . xiℓk)

n/ℓk+1

−

K(n)∑

k=1

∑

i≤n/ℓk
(i,S)=1

ℓ−1
k logm t(xiℓ1xiℓ2 . . . xiℓk)

n/ℓk
.(30)

Denote

(31) Avk(x, s) :=
∑

i≤s

(i,S)=1

ℓ−1
k logm t(xiℓ1xiℓ2 . . . xiℓk)

s
,

where s > 0 is not necessarily in N. Then (30) becomes

(32)
− logm Pµ[x

n
1 ]

n
= logm t(∅) +

K(n)−1∑

k=1

Avk

(
x,

n

ℓk+1

)
−

K(n)∑

k=1

Avk

(
x,

n

ℓk

)
.

Next, observe that by Lemma 2.4 and the fact that t(u) ∈ [1,mℓk(ℓ
−1
k+1+ℓ−1

k+2+··· )]

if |u| = k, we have

(33) Avk(x, s) ≤
∑

i≤s

(i,S)=1

(ℓ−1
k+1 + ℓ−1

k+2 + · · · )

s
≤

∞∑

i=k+1

ℓ−1
i for all s > 0,

hence for r < K(n) we have

K(n)∑

k=r+1

Avk

(
x,

n

ℓk

)
<

∞∑

k=r+1

∞∑

i=k+1

ℓ−1
i

<

∞∑

i=r+2

iℓ−1
i =: Er+2 → 0, as r → ∞.(34)

The convergence
∑∞

i=1 iℓ
−1
i < ∞ is clear, since ℓi grows faster than any polyno-

mial. The same holds for
∑K(n)

k=r+1Avk

(
x, n

ℓk+1

)
.

We will estimate from above the averages

A(x, n,M) :=
1

M

M∑

j=1

− logm Pµ[x
nℓj
1 ]

nℓj
.

Lemma 6.1. For all x ∈ X
(S)
Ω , lim infM→∞A(x, n,M) ≤ logm t(∅).
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Proof. Fix ε > 0 and choose r ∈ N such that Er+2 < ε. Choose n ∈ N of the form

(22). By (32) and (34),

(35) A(x, n,M) ≤ logm t(∅) +
1

M

r∑

k=1

M∑

j=1

(
Avk

(
x,

nℓj
ℓk+1

)
−Avk

(
x,

nℓj
ℓk

))
+ 2ε.

We are going to argue that the majority of the terms in each of the interior

sums above cancel out. In fact, when ℓk+1 divides ℓj, there exists a unique j′ < j

such that
ℓj′
ℓk

=
ℓj

ℓk+1
, hence the term Avk

(
x,

nℓj
ℓk+1

)
cancels out with the term

Avk
(
x,

nℓj′
ℓk

)
. For this to happen, all we need is that ℓk+1 divide ℓj.

We will show that this occurs for most of the terms in the sum above.

Lemma 6.2. For any r ∈ N, let FM = {j ≤ M : ℓk+1|ℓj , ∀ k = 1, . . . , r}. Then

(36) lim
M→∞

M−1|FM | = 1.

Proof. We have

S =
{
pm1
1 · . . . · pmJ

J : m1, . . . ,mJ ∈ N ∪ {0}
}
.

Let C = C(r) ∈ N be such that ℓ2, . . . , ℓr+1 all divide
∏J

j=1 p
C
j . Let us define

Es =



(m1, . . . ,mJ) ∈ ZJ

+ :

J∑

j=1

mj log pj ≤ log(s)





Ẽs =

{
(m1, . . . ,mJ) ∈ ZJ

+ : min
j

mj ≥ C,
J∑

m=1

mj log pj ≤ log(s)

}
.

For s = ℓM , we have |EℓM | = M and

ẼℓM ⊂
{
(m1, . . . ,mJ) ∈ ZJ

+ : ℓ := pm1
1 · · · pmJ

J ≤ ℓM and ℓ2, ..., ℓr+1 | ℓ
}
⊂ EℓM ,

from which we deduce that |ẼℓM | ≤ |FM | ≤ M = |EℓM |. Then (36) follows from

lim
s→+∞

|Es|

|Ẽs|
= 1,

which is clear. �

From Lemma 6.2, we choose M > 0 so large that M(1 − ε) ≤ |FM | ≤ M.

As said above, when j ∈ FM , the term Avk
(
x,

nℓj
ℓk+1

)
cancels out with some term

Avk
(
x,

nℓj′
ℓk

))
in (35). The cardinality of the remaining terms is thus less than
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2Mε, and each remaining term is upper bounded above by γ(S), see (33), hence

(35) yields

lim inf
M→∞

A(x, n,M) ≤ logm t(∅) + 2εγ(S) + 2ε.

for all x ∈ X
(S)
Ω . Letting ε go to zero yields the result. �

From Lemma 6.1, we conclude that lim infj→∞
− logm Pµ[x

j
1]

j ≤ logm t(∅) for all

x ∈ X
(S)
Ω . It is key that this inequality holds true for all x ∈ X

(S)
Ω , not only

for almost all x ∈ X
(S)
Ω . Now we conclude by Billingsley’s Lemma 3.2(i) that

dimH X
(S)
Ω ≤ logm t(∅), and the upper bound in Theorem 2.5 is proved.

Proof of the lower bound in Theorem 2.5. We deduce the lower bound

dimH(X
(S)
Ω ) ≥ logm t(∅) from the lower bound in Theorem 2.2(i) and the fol-

lowing lemma, which asserts that the measure constructed in (26) and (27) is

“optimal”.

Lemma 6.3. The measure µ on Ω defined by (26) and (27) satisfies

(37) s(Ω, µ) = logm t(∅).

Proof. We have by (26),

Hµ(α1) = −
m−1∑

j=0

t(j)

t(∅)γ(S)
logm

( t(j)

t(∅)γ(S)

)

= γ(S) logm t(∅)−
m−1∑

j=0

t(j)

t(∅)γ(S)
logm t(j)

= γ(S) logm t(∅)−
m−1∑

j=0

µ[j] logm t(j).

Further,

Hµ(αk+1|αk) =
∑

[u]∈αk

µ[u]
(
−

∑

j: [uj]∈αk+1

t(uj)

t(u)ℓk+1/ℓk
logm

t(uj)

t(u)ℓk+1/ℓk

)

=
∑

[u]∈αk

µ[u]
(ℓk+1

ℓk
logm t(u)−

∑

j: [uj]∈αk+1

µ[uj|u] logm t(uj)
)

=
ℓk+1

ℓk

∑

[u]∈αk

µ[u] logm t(u)−
∑

[v]∈αk+1

µ[v] logm t(v).
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Thus,

Hµ(αk+1|αk)

ℓk+1
=

1

ℓk

∑

[u]∈αk

µ[u] logm t(u)−
1

ℓk+1

∑

[v]∈αk+1

µ[v] logm t(v).

Now it is clear that the sum in (9) “telescopes”. Note also that

1

ℓk

∑

[u]∈αk

µ[u] logm t(u) ≤
∞∑

i=k+1

ℓ−1
i → 0, as k → ∞

by Lemma 2.4. It follows that s(Ω, µ) = logm t∅, as desired. This completes the

proof of the lemma, and of Theorem 2.5. �

All that remains to prove is the part (ii) of Theorem 2.2.

Proof of Theorem 2.2.(ii) Every term in the expression for dimM (X
(S)
Ω ) in Theo-

rem 2.1 dominates the corresponding term in (9), with equality if and only if µ

assigns the same measure to each cylinder of length k, for every k. This is true

for the “natural” uniform measure, when Pref(Ω) is spherically symmetric, and

cannot hold otherwise. �

7. Numerics and further examples

In this section we introduce a “geometric” argument used to determine the

Minkowski dimension of several examples, and which allowed us to write an al-

gorithm to produce the values of Ak for large values of k. The main idea is that

we use a triangular arrangement of the sets iS, for (i, S) = 1.

Let p < q ∈ N; (p, q) = 1 and S = 〈p, q〉 be the semigroup generated by p, q.

Let F : Σ2 ×Σ2 ×Σ2 → R be a function depending only on the first coordinates,

i.e. F (x, y, z) = F (x1, y1, z1). We are interested in the sets

(38) XF := {x ∈ Σ2 : F (xℓ, xpℓ, xqℓ) = 0 ∀ ℓ ∈ N} .

In N2 we consider the infinite triangular matrix

∆ :=
{
pn−mqm : n ≥ m ≥ 0

}
.



FRACTALS DEFINED VIA THE SEMIGROUP GENERATED BY 2 AND 3 17

For instance, when p = 2 and q = 3, the matrix ∆ (and S itself) can be represented

as

2187 ...

729 1458 3916 ...

243 686 1378 2756 ...

81 162 324 648 1296 ...

27 54 108 216 432 864 ...

9 18 36 72 144 288 576 ...

3 6 12 24 48 96 192 384 ...

1 2 4 8 16 32 64 128 256 ...

To determine the Minkowski dimension we need to consider the truncated sectors

∆i
N := {pn−mqm ∈ ∆ : ipn−mqm ≤ N}, N ∈ N.

The right-hand-side boundary of this sector is approximately determined by a

grid approximation of a line with slope

γ =
log p

log p− log q
< 0.

This “broken” line is determined by the Sturmian sequence associated to γ, as

follows. Given an irrational slope γ we consider the line γx. It will intersect

the integer grid consecutively (starting at the origin) in horizontal and vertical

segments. It is classical that if |γ| > 1, then for some integer nγ depending on γ

only, a sequence of nγ or nγ +1 vertical intersections will be followed by a single

horizontal intersection. If |γ| < 1 then a sequence of nγ or nγ + 1 horizontal

directions will be followed by a single vertical intersection. The set of boundary

“squares” ∂i
r(N) of the configuration in the truncated triangle are the integer grid

squares that have an intersection with the line γx+N . These squares are given

by

∂i
r(N) = {(n,m) : ipn−mqm ≤ N < ipn−m+1qm}.

Denote by n(i,N) the maximum of those integers n for which one can find a pair

(n,m) ∈ ∂i
r(N). The numbers m(i,N) are defined similarly.

If p2 > q, i.e. |γ| > 1 (for instance when p = 2 and q = 3), then they have the

structure

(n1,m1), (n1,m1 + 1) · · · , (n1,m1 + k1), (n2,m1 + k1), · · · , (n2,m2), · · · ,
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where n1 = n(i,N) + 1, m1 = 0, and for j ≥ 2, nj = nj−1 − 1, mj = mj−1 + kj−1

(with kj−1 = nγ or nγ + 1), until mj = nj = m(i,N) + 1. The case where p2 < q

(i.e. |γ| < 1) is symmetric.

So we have exactly (n(i,N) + 1) − (m(i,N) + 1) = n(i,N) −m(i,N) “steps”

to the left and m(i,N) + 1 steps up. All together we have n(i,N) + 1 boundary

“squares”. The “squares” (nj −1,mj +kj) ∈ ∂i
r(N) are called pivotal if (nj,mj +

kj) ∈ ∂i
r(N). There are exactly n(i,N)−m(i,N) such squares.

For instance, when p = 2, q = 3, each truncated section is a “triangle” of right

slope − log 2/(log 3− log 2). When N = 27 and N = 243, the truncated triangles

are

243

81 162

27 27 54 108 216

9 18 9 18 36 72 144

3 6 12 24 3 6 12 24 48 96 192

1 2 4 8 16 1 2 4 8 16 32 64 128

Truncated triangles ∆i
N for i = 1, N = 27 and N = 243. In bold characters,

the three integers (24, 2 × 24, 3 × 24) located in a “corner”.

Using this representation, one observes that the conditions on the three digits

(xℓ, xpℓ, xqℓ) in the sets XF from (38) are then expressed in terms of three con-

secutive terms located in a “corner”, since the integers (n,m) corresponding to

(ℓ, pℓ, qℓ) always have the same relative locations inside the truncated sections

∆i
N (see the example above).

Let us return to our main example: S = 〈2, 3〉, γ(S) = 3 with

X2,3 = {(xk)
∞
k=1 ∈ Σ2 : xkx2kx3k = 0 ∀ k ∈ N} .

Ω = {(ωk)
∞
k=1 ∈ Σ2 : ωiωjωk = 0 if 2ℓi = ℓj, 3ℓi = ℓk} .

The table below lists the first elements of S, denoted ℓk, and the corresponding

Ak = |Prefk(Ω)|, needed to compute the Minkowski dimension, see Theorem 2.1.
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k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ℓk 1 2 3 4 6 8 9 12 16 18 24 27 32 36 48

Ak 2 4 7 14 25 50 90 160 320 584 1039 1861 3722 6772 12050

k 16 17 18 19 20 21 22 23 24

ℓk 54 64 72 81 96 108 128 144 162

Ak 21909 43818 79784 143028 254433 461161 922322 1679220 3055130

k 25 26 27 28 29 30 31

ℓk 192 216 243 256 288 324 384

Ak 5434757 9855663 17665509 35331018 64326200 116676724 207555865

The algorithm to determine Prefk(Ω) is based on the “triangle” representation.

Consider an integer k and ℓk, and then the corresponding truncated triangle ∆1
ℓk

(for instance for k = 12 (equivalently, for N = 27) as in the figure above). A

word in Prefk(Ω) can be represented as an array of zeros and ones, whose entries

are located at the grid vertices in the truncated triangle. Moreover, the condition

xkx2kx3k = 0 means that there are no three consecutive ones in a “corner”.

27 1 1

9 18 −→ 0 1 0 1

3 6 12 24 0 1 1 1 0 1 0 1

1 2 4 8 16 1 0 1 0 1 1 0 1 0 1

Truncated triangle with k = 12, one bad and one good configuration.

In the algorithm, we first generate all possible first two lines of 0-1 bits (which

yields 29 configurations when k = 12) and then keep only those which are admis-

sible (the key point is the simplicity of the selection procedure, i.e. no three ones

in a corner). Then we generate the third line, and keep only the suitable config-

urations. And so on. This argument yields the values of Ak in a very reasonable

time, up to k = 31.

Actually it is a very interesting combinatorial problem in itself to determine

the number of admissible configurations Ak, even in a simpler geometrical context

(for instance in a N×N -square, with the forbidden “corner”). There is numerical

evidence that Ak has a power law of k, but to confirm this would certainly require

further investigations.
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It is not hard to show that 7/4 ≤ Ak+1/Ak ≤ 2. Using this and the data in the

table, we obtain for the Minkowski dimension (Theorem 2.1)

0.9573399 ≤ dimM (X2,3) ≤ 0.9623350.

To estimate the Hausdorff dimension we can use Theorem 2.5. We get explicit

rigorous estimates by going to a fixed level n, and either assuming that there are

no restrictions further on, whence t(u) = 2ℓn(ℓ
−1
n+1+··· ), |u| = n, to get an upper

bound, or to assume that all the digits that follow are 0’s, whence t(u) = 1, to

get a lower bound. Then all the values of t(u), with |u| ≤ n − 1, are obtained

recursively using (12) and (11). We did the calculation with n = 25 and obtained

0.9246585 < dimH(X2,3) < 0.9405728

(the convergence is slow, but we think that the upper bound is closer to the

truth).

7.1. Further examples. The difficulty with the set X2,3 and the function

F (x, y, z) = x1y1z1 comes essentially from the fact that, fixing the bits at the

frontier of the truncated triangles is not enough to deduce the values of all digits

inside the triangle (there is some long-range dependence between the bits). For

some suitable functions F and the corresponding sets XF , this is not the case,

and the situation is easier.

Definition. We call a function F deterministic if for all i, j ∈ {0, 1} there is a

unique solution k ∈ {0, 1} for one of the following implicit equations

i) F (i, j, k) = 0, ii) F (i, k, j) = 0, iii) F (k, i, j) = 0.

The existence of the solution simply means that the constraint on the config-

urations is well posed and the uniqueness is simply the solvability of the implicit

function equation. Now we can formulate the following “rigidity” theorem.

Theorem 7.1. Let p < q ∈ N, (p, q) = 1, and let F : Σ2 × Σ2 × Σ2 → R be

a “deterministic” function F (x, y, z) depending only on the first coordinates of

x, y, z ∈ Σ2. Then recalling the definition (38) of XF , one has

(39) dimH(XF ) = dimM (XF ) =
q − 1

q
.
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Proof. A moment’s thought makes it clear that for a function fulfilling i) any

configuration in ∆i
N is uniquely determined by choosing the n(i,N) + 1 bound-

ary values (n,m) = (0, 0), (1, 0), · · · , (n(i,N), 0) freely. For a function fulfilling

ii), any configuration in ∆i
N is uniquely determined by the free choice of the up-

per boundary values (n,m) = (0, 0), (1, 1), (2, 2), · · · , (m(i,N),m(i,N)) and the

pivotal “squares”. For a function fulfilling iii), any configuration is uniquely de-

termined by the free choice of the values in ∂i
r(N). In all cases, there are exactly

2n(i,N)+1 configurations in ∆i
N .

The common dimension can easily be computed, we explain it for a function

F fulfilling i). Given an admissible sequence x ∈ XF , observe that we can choose

all the values xi arbitrarily as long as i is not divisible by q. The values at

positions qj, j ≥ 1, are then completely determined. Hence, exactly q−1
q of the

positions can be arbitrary and the rest is determined. This immediately implies,

by standard argument, that

dimM (XF ) =
q − 1

q
.

The Minkowski and the Hausdorff dimension coincide as can be derived from part

(ii) of Theorem 2.2. �

Example 7.2. The function F (x, y, z) = (2x1 − 1)(2y1 − 1)(2z1 − 1) − 1 is

“deterministic”, hence (39) holds. This case is reminiscent of the well-studied

Ledrappier shift, i.e. each of the triples (xℓ, xpℓ, xqℓ) has an even number of 0’s,

or equivalently

xℓ + xpℓ + xqℓ = 1 (mod 2).

Example 7.3. For F (x, y, z) = (y−xz)2 (which fulfills ii) but not i) or iii)) and

F (x, y, z) = (x− yz)2 (which fulfills iii) but not i) or ii)), (39) is satisfied.

Example 7.4. Consider F (x, y, z) = (x − y)2 + (x − z)2. This function is not

“deterministic”. In this case, each triangle ∆i
N has exactly 2 configurations: all

0’s or all 1’s. Hence the total number of cylinders of length N equals the number

of non-empty triangles ∆i
N . Since (i, S) = 1 this number equals the number of i’s

that are neither divisible by p nor by q. We have exactly p+ q− 1 residue classes

modulo pq that are divisible by p or q. Therefore the numbers i with (i, S) = 1

can be divided into pq − p− q + 1 arithmetic sequences of step length pq. Hence

dimM (XF ) = 1−
p+ q − 1

pq
.
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In this case, the Hausdorff dimension of XF coincides with its Minkowski dimen-

sion, using the argument (ii) of Theorem 2.2: each prefix (with our interpretation,

each finite triangle) has only one possible continuation.
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