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Suppose that G and H are finite, connected graphs, G regular, X
is a lazy random walk on GG and Z is a reversible ergodic Markov chain
on H. The generalized lamplighter chain X° associated with X and
Z is the random walk on the wreath product H! G, the graph whose
vertices consist of pairs (f,z) where f = (fv),cy (g is a labeling of
the vertices of G by elements of H and x is a vertex in G. In each
step, X° moves from a configuration (f,z) by updating = to y using
the transition rule of X and then independently updating both fs
and f, according to the transition probabilities on H; f. for z # =,y
remains unchanged. We estimate the mixing time of X° in terms of
the parameters of H and G. Further, we show that the relaxation
time of X° is the same order as the maximal expected hitting time
of G plus |G| times the relaxation time of the chain on H.

1. Introduction. Suppose that G and H are finite connected graphs
with vertices V(G), V(H) and edges E(G), E(H), respectively. We refer to G
as the base and H as the lamp graph, respectively. Let X(G) = {f: V(G) —
H?} be the set of markings of V(G) by elements of H. The wreath product
H G is the graph whose vertices are pairs (f,z) where f = (fu),cy(q) €
X(G) and = € V(G). There is an edge between (f,z) and (g,y) if and only
if (z,y) € E(G), (fz:92),(fy,9y) € E(H) and f., = g, for all z ¢ {z,y}.
Suppose that P and @ are transition matrices for Markov chains on G and
on H, respectively. The generalized lamplighter walk X° (with respect to
the transition matrices P and Q) is the Markov chain on H!G which moves
from a configuration (f,z) by

1. picking y adjacent to x in G according to P, then
2. updating each of the values of f, and f, independently according to
Q on H.
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The state of lamps f, at all other vertices z € G remain fixed. It is easy to
see that if P and @ are irreducible, aperiodic and reversible with stationary
distribution g and 7y, respectively, then the unique stationary distribution
of X is the product measure

m((f,2)) = 7a(2) - H T (fo),

veV(G)

and X° is itself reversible. In this article, we will be concerned with the
special case that P is the transition matrix for the lazy random walk on G.
In particular, P is given by

Life=y
(1.1) Plzy) =<2, ..
2d%$) lf {xvy} € E(G))

for z,y € V(G) and where d(x) is the degree of . We further assume that
the transition matrix @ on H is irreducible and aperiodic. This and the
assumption (1.1) guarantees that we avoid issues of periodicity.

F1c 1. A typical state of the generalized lamplighter walk. Here H = Zy4 and G = Z3, the
red bullets on each copy of H represents the state of the lamps over each vertex v € G and
the walker is drawn as a red W bullet.

1.1. Main Results. In order to state our general result, we first need to
review some basic terminology from the theory of Markov chains. Let P be
the transition kernel for a lazy random walk on a finite, connected graph G
with stationary distribution .
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The e-mizing time of P on G in total variation distance is given by

1
(1.2) tmix(G, €) := min {t >0: xg‘%)é) 3 Zy: ‘Pt(x,y) - W(y)‘ < 5} )
Throughout, we set tyix(G) := tmix(G, %)
The relazation time of a reversible Markov Chain with transition matrix
P is
1
DY

(1.3) trel(G) :

where \g is the second largest eigenvalue of P.
The maximal hitting time of P is

(14) thit(G) = gg,;rel\%')((G) Em [Ty],

where 7, denotes the first time ¢ that X(¢) = y and E, stands for the
expectation under the law in which X (0) = . The random cover time 7oy
is the first time when all vertices have been visited by the walker X, and
the cover time teoy (G) is

1.5 teov(G) = E.|7cov].
(1.5) (G) e [Teov]

The next needed concept is that of strong stationary times.

DEFINITION 1.1. A randomized stopping time 7 is called a strong sta-
tionary time for the Markov chain X: on G if

P, [X’T =Y T= t] = ﬂ-(y)Px[T = t]7

that is, the position of the walk when it stops at T is independent of the value

of T.

The adjective randomized means that the stopping time can depend on some
extra randomness, not just purely the trajectories of the Markov chain, for
a precise definition see [13, Section 6.2.2].

DEFINITION 1.2. A state h(z) € V(G) is called a halting state for a
stopping time T and initial state x if {X; = h(x)} implies {T < t}.

Our main results are summarized in the following theorems:
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THEOREM 1.3. Let us assume that G and H are connected graphs with G
reqular and the Markov chain on H is ergodic and reversible. Then there exist
universal constants c1,C1 such that the relaxation time of the generalized
lamplighter walk on H ! G satisfies

trel(H ! G) < 01

(1.6) A= 5n(G) + [Clta(H) =

THEOREM 1.4. Assume that the conditions of Theorem 1.3 hold and
further assume that the chain with transition matric Q@ on H is lazy, i.e.
Qxz,z) > % Vo € H. Then there exist universal constants ca, Co such that
the mixing time of the generalized lamplighter walk on H ! G satisfies

2 (teov (G) + trel (H)|G|log |G| + |Gltmix(H)) < tmix(H 1 G),

1
tmix(H { G) § 02 (tcov(G) + |G|tmix(H7 C;,)) .

(1.7)

If further the Markov chain is such that

(A) There is a strong stationary time Ty for the Markov chain on H which
possesses a halting state h(zx) for every initial starting point x € H,

then the upper bound of 1.7 is sharp.

REMARK 1.5. The laziness assumption on the transition matriz Q@ on H
is only used to get the term ca|G|tmix(H) in (1.7). All the other bounds hold
without the laziness assumption.

REMARK 1.6. If the Markov Chain on H is such that
tmix(H, &) < tmix(H,1/4) + tye1(H) loge,

then the upper bound matches the lower bound. This holds for many natural
chains such as lazy random walk on hypercube Zg, tori Zfl, some walks on
the permutation group Sy (the random transpositions or random adjacent

transpositions shuffle, and the top-to-random shuffle, for instance).

REMARK 1.7.  Many examples where Assumption (A ) holds are given in
the thesis of Pak [17], including the cycle Zy,, the hypercube Zg and more
generally tori Z¢,n,d € N and dihedral groups Zo % Z,,n € N are also
obtained by the construction of strong stationary times with halting states
on direct and semidirect product of groups. Further, Pak constructs strong
stationary times possessing halting states for the random walk on k-sets of
n-sets, i.e. on the group Sp/(Sk X Sn—), and on subsets of n X n matrices

over the full linear group, i.e. on GL(n,F,)/(GL(k,F,) x GL(n — k,F)).
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1.2. Previous Work. The mixing time of Zy ! G was first studied by
Héggstrom and Jonasson in [11] in the case of G being the complete graph
K, and the one-dimensional cycle Z,,. Generalizing their results, Peres and
Revelle [18, Theorem 1.2, 1.3] proved that there exists constants ¢;, C; de-
pending on ¢ such that for any transitive graph G,

ci1tnit(G) < tre(Z2 1 G) < Crtnit(G),
Cthov(G) < tmix(ZQ l G7 5) < Cthov(G)-

The vertex transitivity condition was dropped in [13, Theorem 19.1, 19.2].
These bounds match with Theorems 1.3 and 1.4 since H,, = Zs implies that
the terms not containing H,, in the denominator of (1.6) and in the bounds
n (1.7) dominate.

In [16], it is shown that tmix(Z2 ! Gp) ~ 3teov(Gy) whenever (Gy) is a
sequence of graphs satisfying some uniform local transience assumptions,
including G,, = Z¢ with d > 3 fixed.

Moving towards larger lamp spaces, if the base is the complete graph
K, and |H,| = o(n) one can determine the order of mixing time from
[13, Theorem 20.7], since in this case the lamplighter chain is a product
chain on [ | Hy. Levi [11] investigated random walks on wreath products
when H # Zs. In particular, he determined the order of the mixing time of
K, UK,, 0 <X <1, and he also had upper and lower bounds for the case
HyZ,,i.e. H is the d-dimensional hypercube and the base is a cycle of length
n, however, the bounds failed to match for general d and n. Further, Fill and
Schoolfield [10] investigated the total variation and l mixing time of K0S,
where the base graph is the Cayley graph of the symmetric group S,, with
transpositions chosen as the generator set, and the stationary distribution
on K, is not necessarily uniform.

The mixing time of H, = Zs is closely related to the cover time of the
base graph, and thus it helps understanding the geometric structure of the
last visited points by random walk [1—0, 16]. Further, larger lamp graphs
give more information on the local time structure of the base graph G. This
relates our work to the literature on blanket time (when all the local times
of vertices are within a constant factor of each other) [3, 8, 20].

1.3. Outline. The remainder of this article is structured as follows. In
Section 3 we state a few necessary theorems and lemmas about the Dirich-
let form, strong stationary times, different notions of distances and their
relations. In Lemmas 3.3 and 3.5 we construct a crucial stopping time 7°
and a strong stationary time 75 on H ! G which we will use several times
throughout the proofs later. Then we prove the main theorem about the
relaxation time in Section 4, and the mixing time bounds in Section 5.
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2. Notations. Throughout the paper, objects related to the base or the
lamp graph will be indexed by G and H, respectively, and ¢ always refers
to an object related to the whole H ! G. Unless misleading, G and H refers
also to the vertex set of the graphs, i.e. v € G means v € V(G). P, E,
denotes probability and expectation under the conditional law where the
initial distribution of the Markov chain under investigation is . Similarly,
P, is the law under which the chain starts at x.

3. Preliminaries. In this section we collect the preliminary lemmas to
be able to carry through the proofs quickly afterwards. The reader familiar
with notions of strong stationary times, separation distance, and Dirichlet
forms might want jump forward to Lemmas 3.3 and 3.5 immediately, and
check the other lemmas here only when needed.

The first lemma is a common useful tool to prove lower bounds for relax-
ation times, by giving the variational characterization of the spectral gap.
First we start with a definition.

Let P be a reversible transition matrix with stationary distribution «
on the state space (2 and let Ex[¢] := > .o ¢(y)m(y). The Dirichlet form
associated to the pair (P, 7) is defined for functions ¢ and 7 on Q by

E(@m) = (I = P)p.n)x =Y _(I = P)o(y)n(y)n(y).

yeN

It is not hard to see [13, Lemma 13.11] that

(3.1) £(6) = £(6,6) = 3B [(6(X2) — 6(X0))?

The next lemma relates the spectral gap of the chain to the Dirichlet form
(for a short proof see [2] or [13, Lemma 13.12)):

LEMMA 3.1 (Variational characterization of the spectral gap). The spec-
tral gap v =1 — Ao of a reversible Markov Chain satisfies

)

= min ,
¢:Varp#0 VaI'ﬂ-gZ)

(3.2) o

where Var,¢ = Ez[¢?] — (Ex[¢])?.

A very useful object to prove the upper bound on t. and both bounds
for tmix is the concept of strong stationary times. Recall the definition from
(1.1). It is not hard to see ([13, Lemma 6.9]) that this is equivalent to

(3.3) P, [X; = y.7 < t] = n(y)Pulr < 1.
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To be able to relate the tail of the strong stationary times to the mixing time
of the graphs, we need another distance from stationary measure, called the
separation distance:

Pt
(3.4) sz(t) := max [1 - (:l?,y)] .
veQ m(y)
The relation between the separation distance and any strong stationary time
7 is the following inequality from [2] or [7] or [13, Lemma 6.11]:

(3.5) Ve € Q:s,(t) < Py(r > 1t).

Throughout the paper, we will need a slightly stronger result than (3.5).
Namely, by [7, Remark 3.39] or from the proof of (3.5) in [13, Lemma 6.11]
it follows that in (3.5) equality holds if 7 has a halting state h(x) for x.
Unfortunately, we just point out that the [I3, Remark 6.12] is not true
and the statement can not be reversed: the state h(z,t) maximizing the
separation distance at time ¢ can also depend on t and thus the existence of
a halting state is not necessarily needed to get equality in (3.5).

On the other hand, one can always construct 7 such that (3.5) holds with
equality for every x € ). This is a key ingredient to our proofs, so we cite it
as a Theorem (with adjusted notation to the present paper).

THEOREM 3.2.  [Aldous, Diaconis/[!, Proposition 3.2] Let (X;,t > 0) be
an irreducible aperiodic Markov chain on a finite state space 0 with initial

state x and stationary distribution 7, and let s, (t) be the separation distance
defined as in (3.4). Then

1. if T is a strong stationary time for X, then sy(t) < Py(r > t) for all
t>0.

2. Conversely, there exists a strong stationary time T such that s,(t) =
P (7 > t) holds with equality.

Combining these, we will call a strong stationary time 7 separation opti-
mal if it achieves equality in (3.5). Mind that every stopping time possessing
halting states is separation optimal, but the reversed statement is not neces-
sarily true. The next two lemmas, which we will use several times, construct
two stopping times for the graph H ! G. The first one will be used to lower
bound the separation distance and the second one upper bounds it.

We start with introducing the notation

t
(3.6) Ly(t) =2) " 1(X; = v) = dxp0 — x,0
=0
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for the number of moves on the lamp graph H,,v € G by the walker up
to time t. Slightly abusing terminology, we call it the local time at vertex
v € G.

Let us further denote the random walk with transition matrix @ on H by
Z. Since the moves on the different lamp graphs H,,v € G are taken inde-
pendently given L,(t),v € G, we can define for each v € G an independent
copy of the chain Z, denoted by Z,, running on H,. Thus, the position of
the lamplighter chain at time ¢ can be described as

(Ey, X1) = (Zo(Lo(1)) e » Xt)

Below we will use copies of a strong stationary time 7z for each v € G,
meaning that 7z (v) is defined in terms of Z,, and given the local times
L, (t), Tir(v)-s are independent of each other.

LEMMA 3.3. Let 77 be any strong stationary time for the Markov chain
on H. Take the conditionally independent copies of (T (v)),cq given the
local times Ly (t), realized on the lampgraphs H,-s and define the stopping
time 7° for X° by

(3.7) ¢ :=inf{t : Vo € G: mg(v) < L,(t)}.

Then, for any starting state (L),xo) we have

(38) Py no) [X7 = (f12),7° = t] = [[ru(fo) - Pis g [Xe = 2,7° = 1].
veG

If further Ty has halting states then the vectors (h(f,(0)),y) are halting state

vectors for 7¢ and initial state (f, o) for everyy € G.

We postpone the proof and continue with a corollary of the lemma:

COROLLARY 3.4. Let Ty be a strong stationary time for the Markov
chain on H which has a halting state h(z) for any z € H. Then define 7°
as in Lemma 3.3. Then for the separation distance on the lamplighter chain
H 1 G the following lower bound holds:

S(foyl“o)(t) > P(L)’IO) [7-0 > 1.

PROOF. Observe that reaching the halting state vector (h(f,(0)),z) im-
plies the event 7¢ < t so we have
(3.9)
Pl (57 = (UO0).0)] | Py (57 = (((0).2). 7" <1
na(@) [ 7u (M(f:(0))) mc(z) [T 7u (h(f(0)))

veG vEG
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Now pick a vertex x, + € G which minimizes P [X; = x4, 4|7° < t] /7¢(Tz0.t)-
This quotient is less than 1 since both the numerator and the denominator
are probability distributions on G. Then, using this and Lemma 3.3, the
right hand side of (3.9) equals

P (1, e0) [Xi = 2| S OP( o[ < 1]

1- > 1P 4y [ <H].

WG(xxo,t)

Clearly the separation distance is larger than the left hand side of (3.9), and
the proof of the claim follows. Note that the proof only works if 77 has a
halting state and thus it is separation-optimal. O

PROOF OF LEMMA 3.3. First we show that (3.8) holds using the con-
ditional independence of 7z (v)-s given the number of moves L, (t) on the
lamp graphs H(v),v € G. Clearly, conditioning on the trajectory of the
walker {X1,...,X;—1,X; = 2} := X|[1,t] contains the knowledge of L,(t)-s
as well. We will omit to note the dependence of P on initial state (f,zo)
for notational convenience. The left hand side of condition (3.3) equals

P [Xto = (i, .%'),’7'<> S t] ZZP [X;) = (i,l’),’]’Q S t’X“’t}] P [X[l,t]] .
X,

Recall that Z, stands for the Markov chain on the lamp graph H,, and their
conditional independence given L,(t)-s. Due to (3.3) and 7y being strong
stationary for H we have for all v € G that

P(Zy(Lo(t)) = fo,mr(v) < Lo()[X71,4] = 7r (fo) - Plra(v) < Lo (6)| X1 4]

Now we use that 7 (v)-s are conditionally independent given the local times
to see that

P [Xto = (i?x)aTo < t‘X[Lt]]
=P [YweG:Z,(L(t )) = fv,TH('U) < Ly(t), Xy = 2, | X7 4]

= [[ru(fo) TP (7 (v) < Lo(8)| X1 4]

veG veG
Note that the second product gives exactly P [T° <t X, t]], yielding
(3.10) P [X7 = (f,2),7° <t] = [[ru(f) ZP 7 <t Xpg] P[X]
vEG [1 t]
As X; = x remains fixed over the summation, thus summing over all possible

X|[1,t] trajectories yields

PIX7 = (f,z),7° <t] = H?TH [o)P[Xe =2, 7° <.
veG
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To turn the inequality 7° < t inside the probability to equality can be done
the same way as in (3.3) and left to the reader. To see that the vector
of halting states (h(fy(0)),y) is a halting state for 7° for any y € G is
based on the simple fact that reaching the halting state vector (h(fy)vea, )
means that all the halting states h(fy,),v € G have been reached on all the
lamp graphs H,,v € G-s. Thus, by definition of the halting states, all the
strong stationary times 757 (v) have happened. Then, by its definition, 7 has
happened as well. ]

Recall the definition (3.7) of 7% amond. Then we can construct a strong
stationary time for H ! G, described in the next lemma.

LEMMA 3.5. Let 7° be the stopping time defined as in Lemma 3.3, and
let Tq(x) be a strong stationary time for G starting from x € G and define
5 by

(3.11) 75 =7+ 176(Xr0),

where the chain is re-started at 7¢ is started from (F. iomond> Xrdiamond)s
run independently of the past and 1 is measured in this walk. Then, 75 is

a strong stationary time for H ! G.

PrROOF OoF LEMMA 3.5. The intuitive idea of the proof is based on the
fact that 7¢ is conditionally independent of 74-s and thus the lamp graphs
stay stationary after reaching 7°, and stationarity on G is reached by adding
the term 7¢(X;o). The proof is not very difficult but it needs a delicate
sequence of conditioning. To have shorter formulas, we write shortly P for
P(iyxo)‘ First we condition on the events {7° = s, X{ = (g,y)} and make
use of (3.8) from Lemma 3.3.

(3.12)
P [X;> = (i,l’),T; = t] = Z P [Xf = (i,x)ﬂ'é} =tr° =5, X = (g,y)]
s<t;(g,y)
: H m(gw) -Pr° =35, Xs =1].
veG

Now for the conditional probability inside the sum on the right hand side
we have

P [Xto = (iv ac),7§ = t‘,]_o - S,X;} = (gv y)]
=P [X? = (f,2);1a(y)0bs =t —s|7° =5, X = (g,9)]
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where 7G(y) o 65 means the time-shift of 7¢(y) by s, and we also used that
T¢ is only depending on y. We claim that

Z(P(g,y)[xfs—(f, ) —t—S HT"HQU>

g veG

=P, X s =xz,7¢(y) =t — s H T (fv)
veG

= na(@)Pylra =t —s] [[ 7u(fo)-

veG

The first equality holds true since 7¢(y) is independent of the lampgraphs
and the transition rules of X° on H { G tells us that the lamp-chains stay
stationary. We omit the details of the proof. The second equality is just
the strong stationarity property of 7. Thus, using this and rearranging the
order of terms on the right hand side of (3.12) we end up with

> Pyra=t—sPr° =5,X, =] ma(x) [ ma(fo)
s<t,yeG veG

Then, realizing that the sum is just P[7® 4+ 7 (X0 ) = t] finishes the proof.
t

We continue with a lemma which relates the separation distance to the
total variation distance: Let us define first

(3.13) do(t) = | Pl(z,") — 7)oV = Z|Ptx y) —(y)|.
yEQ

The total variation distance of the chain from stationarity is defined as:

d(t) := max dy(1).

The next lemma relates the total and the separation distance:

LEMMA 3.6. For any reversible Markov chain and any state x € €2, the
separation distance from initial vertex x satisfies:

(3.14) dy(t) < s.(t)
(3.15) s2(2t) < 4d(t)
PROOF. For a short proof of (3.14) see [2] or [I3, Lemma 6.13], and

combine [13, Lemma 19.3] with a triangle inequality to conclude (3.15). [
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We will also make use of the following lemma: ([13, Corollary 12.6])

LEMMA 3.7. For a reversible, irreducible and aperiodic Markov chain,

lim d(t)Yt = A,

t—o00

with A, = max{|A| : X\ eigenvalue of P, A # 1}.

The two fundamental steps to prove Lemma 3.7 are the inequalities stating
that for all x € 2 we have
)\t
de(t) < sg(t) < 2
(316) x( ) - I( ) " Tmin
Ao < 2d(t)

with Tyin = mingeq 7(y). This inequality follows from [13, Equation (12.11),
(12.13)].

We note that Lemma 3.6 implies that the assertion of Lemma 3.7 stays
valid if we replace d(t)!/* by the separation distance s(t)/*.

4. Relaxation time bounds.

4.1. Proof of the lower bound of Theorem 1.3. We prove ¢; = 1/(161og 2)
in the lower bound of the statement of Theorem 1.3. First note that it is
enough to prove that tpit(G) and |G|t (H) are both lower bounds, hence
their average is a lower bound as well. First we start showing the latter.

Let us denote the second largest eigenvalue of @ by Ay and the cor-
responding eigenfunction by 1. It is clear that E,(¢) = 0 and we can
normalize it such that Var,, (¢) = E., (1?) = 1 holds. Let us define

¢:V(H1G) =R, o((f,2) =Y ¢(fu),

weG

thus ¢ is actually not depending on the position of the walker, only on the
configuration of the lamps. Let X7 = (F}, X;) be the lamplighter chain with
stationary initial distribution 7°. In the sequel we will calculate the Dirichlet
form (3.1) for ¢ at time ¢, first conditioning on the path X0, ¢] of the walker:

§16] = 3B [(6(X7) ~ (X))

(4.1) .
= 5B (Bre [(0(X7) — ¢(X7))*1 X0, ]])
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We remind the reader that in each step of the lamplighter walk, the state
of the lamp graph H, is refreshed both at the departure and arrival site
of the walker. Thus, knowing the trajectory of the walker implies that we
also know L,(t), the number of steps made by the Markov chain Z, on H,,.
Moreover, the collection of random walks (Z,), ., on the lamp graphs are
independent given L,(t)-s.

We can calculate the conditional expectation on the right hand side of
(4.1) by using the argument above and the fact that E, () = 0 as follows:

(4.2)
Exe [(9(X7) = 6(X0)X[0.1)] = | ((Zu(Lu(t) = $(Z0(0))*| Lu(t)]
veG

Next, the product form of the stationary measure 7° ensures that we can
move to my inside the sum and condition on the starting state Z,(0):

Ere| (4 (Zo(Lo(1))) = ¥ (Z(0)))* | Lu(8)]
=2E, ¢ = 2Ery [¢ (Z0(0)) Ez,(0)[¥ (Zo(Lo(1))) | Z:(0)]] ,
Since 1 was chosen to be the second eigenfunction for @, clearly

Ez, )% (Zo(Lo(1)))] = /\é“(t)w(ZU(O)). Using the normalization
E.,[¢?] =1, we arrive at

(43)  Ew |(0(X7) = 0(X9) 1X[0,1] =216 =2 a5

veG

Since ), c Lo(t) = 2t and the function A7 is convex, Jensen’s inequality

implies that
Ly 2t/|G
SN0 2 6] 3
veG
Combining this with (4.3) and (4.1) and setting t = t* = |G|t;a(H) =
|G|/(1 — Amr) we arrive at

log A
£(8) < |G| (1 v ) <G| (1-271Y),

where in the last step we assumed Ay > 1/2, since in this case we have
(1-=Ag)tlog Ay > —2log 2. On the other hand, if Ay < 1/2, than t.o(H) <
2 and we will use the other lower bound tnit(G) which is at least of order
|G|. Dividing by Varz.¢ = |G|, and using the variational characterization
of the spectral gap in Lemma 3.1, we get that the spectral gap v+ at time
t* satisfies

e <1 =272,
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Since ~y; is by definition the spectral gap of the chain at time ¢, we have
(4.4) 1—X(H1G)Y <1-275.
Thus

5log2 > t* (1 — X (HQ)),

so we get a lower bound ¢, (H ! G) > 5T1g2|G\trel(H).

To get the lower bound #;;(G)/4 we adjust the proof for 0 — 1 lamps
(H = Z3) [13, Theorem 19.1] to our setting. First pick a vertex w € G which
maximizes the expected hitting time Er, (7). As before, we will use the
second eigenfunction ¢ with eigenvalue Ay with E, () = 0,E,, (¥?) =1
and define

¢ ((f,2)) = ¥(fw).
Easy to see with the same conditioning argument we used in (4.2) and (4.3)
that the Dirichlet form at time ¢ equals

&() =1 —Eno [Agw(”}

Now we will show that E o [AJLLIW (t)] > 1/4. To see this we first note that for

any ¢t we have for the hitting time 7, of w € G

EU(TU,) <t+ thith[Tw > t]
Eﬂ'G (Tw) <t+ thitPﬂ'G [Tw > t]

To see the first line: either the walk hits w before time ¢, or the expected
additional time it takes to arrive at w is bounded by ty;; regardless of where
it is at time t. The second line follows by averaging over 7g.

Next, [13, Lemma 10.2] states that thiy < 2max, E;[r,] holds for ev-
ery irreducible Markov chain. We exactly picked w such that it maximizes
E..(7), so we have tpiy < 2E;,[7,], so multiplying the previous displayed
inequality by 2 gives

thit < 2t + 2thitPﬂG [Tw > t]

Now substituting ¢ = ty,;;/4 and rearranging terms results in
Uhit 1
Pﬂ—G |:’7'w > T Z Z

Since { Ly (thit/4) = 0} = {7w > tnit/4}, we can use this inequality to obtain
the upper bound

A 1 3
€ /a(8) =1 - Bro [Agw(th“/‘”} <1—Prglry > /4 <1-7=7.
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Analogous to the last lines of the proof of the lower bound above, (see (4.4))
we obtain the other desired lower bound:

1 1
teol(H) > i (G).
ol( )_2log24ht(G)

Putting together the two bounds we get

1 1
> I -
trel(H i G) > max{810g2thlt(G), 510g2|G|trel(H)}

~ T610g2 (thit(G) + |Gltrel (H)) -

4.2. Proof of the upper bound of Theorem (1.3). To prove the upper
bound, we will estimate the tail behavior of the strong stationary time 75
in Lemma 3.5, relate it to s°(¢), the separation distance on H ! G, and then
use Lemmas 3.7 and 3.6 to see that s°(t)'/* — X°. We will use separation-
optimal 7 and 7¢ in the construction of 75. The existence is guaranteed by
Theorem 3.2. We will use P for P .,y for notational convenience. Combining
(3.5) and the fact that 7° happens when all the stopping times 74 (v),v € G
have happened on the lamp graphs, by union bound we have for any choice
of 0<a<l1

S(t.2) (1) S Ppa[15 > 1] <Py [T > at] + P(sq [15 > t|7° < at]

(4.5) < Plreoy > at/3]

(4.6) +P [Hw €G: Ly(at) < %‘TCOV < at/3}

(4.7) +P [Elw € G:1g(w) > Ly(at) Vv € G : Ly(at) > 2’02‘}
(4.8) +max P, [7¢ > (1 — )]

(g:v)

Namely, there are four possibilities: The first option is that there is a state
w € G which is not hit yet, i.e. the cover time of the chain is greater
than at/3: giving the term (4.5). The constant 1/3 could have been chosen
differently, we picked at/3 such that the remaining 2at/3 time still should
be enough to gain large enough local time on the vertices v € G. Secondly,
even though any state w on the graph G is reached before time at/3, the
remaining time was not enough to have at least at/2|G| many moves on
some lamp graph H(w), term (4.6). The third option is that even though
there have been many moves on all the lamp graphs, there is a vertex w € G
where 777 (w) has not happened yet, yielding the term (4.7). We will handle
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the three terms separately. The fourth term handles the case where the
strong stationary time 7¢ is too large. (For convenience, we will write ¢
instead of o in estimating the first three formulas.)

We can estimate the first term (4.5) by a union bound:

_log2 ¢
(4.9) Plreoy > t/3]| < P[E3w: 7, >t/3] <|G[2e 6 thit,

where tp; is the maximal hitting time of the graph G, see (1.4). To see this,
use Markov’s inequality on the hitting time of w € G to obtain that for all
starting states v € G we have P, [1, > 2t1;t] < 1/2, and then run the chain
in blocks of 2tp;¢. In each block we hit w with probability at least 1/2, so we

have 1
PU[Tw > K(chlt)] S 2?

To get it for general t, we can move from |t/tpit] to t/tn; by adding an extra
factor of 2, and (4.9) immediately follows by a union bound.

For the third term (4.7) we claim the following upper bound holds:
(4.10) .

1 .t
P [Elw :7H(w) = Lo (t) Vo : Ly(t) > ga| < \GyiHe 2[Gltrer (H)

Tmin

To see this we estimate the probability of the event {7j(w) > Lu(t) |Lw(t) >
2‘%} on a single lamp graph and then use a union bound to lose a factor |G|
and arrive at the right hand side. First note that according to Lemma 3.7,
the tail of the strong stationary time 7 is driven by A},. More precisely,
using the inequality (3.16) we have that for any initial state h € H:

" 1 t/2|G|
P [TH(w) - 2\G|] = (2|G|) - Wmin(H))\H
1 (1 — )\H)t
c__ L B S O
~ Tmin(H) exp{ 2G| }

Since we have made at least L, (t) > ﬁ steps on each coordinate, the claim
(4.10) follows. The fourth term (4.8) can be handled analogously and yields
an error probability exp{—ct/t;c1(G)} which then, taking the power of 1/t
and limit as in Lemma 3.7, will lead to a term of order t,,(G). Then, taking
into account that t,e1(G) < ctmix(G) < Ctypit(G) holds for any lazy reversible
chain (see e.g. [13, Chapter 11.6,12.4]), we can ignore this term.

The intuition behind the estimates below for the second term (4.6) is that
since the total time was at least 2t/3 after hitting, regularity of G implies

that the average number of moves on a lamp graph equals 4¢/(3|G|) by the
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double refreshment at any visit to the vertex. Thus, the probability of having
less than ¢/(2|G|) moves must be small.

More precisely, we introduce the excursion-lengths to a vertex w € G: Let
us define for all w € G the first return time to state w as

R(w) = inf{t > 0: X; = w|Xo = w}.

The strong Markov property implies that the length of the i-th excursion
R;(w), defined as the time spent between the (i — 1)th and ith visit to w,
are i.i.d random variables distributed as the first return time R(w).

Thus, having not enough local time on some site w € G can be expressed
in terms of the excursion lengths R;(w)-s as follows:

t/4G
t 2t
. t 2 :
(411) P |dw: Lw(t) S W‘TCOV S § S ‘G’Iul;leaé(Pw o Rz(w) Z § y
1=

since conditioning on hitting before ¢/3 ensures that we had at least 2¢/3
steps to gain the t/4|G| visits to w, and by the definition (3.6) of L, (), this
guarantees that L, (t) < t/2|G]|.

We aim to estimate the right hand side of (4.11) using the moment gen-
erating function of the first return time R(w). To be able to carry out the
estimates we need a bound on the tail behavior of the return times. A very
similar argument can be used to the one we used for the tail of the cover
time (4.9), namely the following holds:

P, [R(U)) > 2tnit + 1] =Py, [Xl #+ w] E [PX1 (’Tw > 2thit‘Xl)]

o 2thit -2
Running the chains in blocks of 2t,;; + 1, one can see that in each block
the chain has a chance at least 1/2 to return to w, so we have for each

t > 2pi + 1

t
1\ 2tnic+1 log2 t
(4.12) P[Rw>t]§2<) " :3exp{— o8 }
2 2 tni

where the factor 3 comes from ignoring to take the integer part of ¢/ty;; and
neglecting the +1 term in the denominator.
We can use this tail behavior to estimate the moment generating function

E {eﬁRw} < MG L E[ePRe1{R, > 2|G|}]

oo
= 281G +/ Ple’ftv > 2]dz
e2B8|G|
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where we cut the expectation at 2|G|. Using the bounds in (4.12) yields:

o0 1
E {eﬁRw} < 2PIG] +/ P[R, > — log z]dz

281G B
00 log 2
< 625|G| + 2/ 2 2Bthic dz.
281G
Setting arbitrary 5 < log2/(2tn;;) makes the second term integrable, and
with the special choice of § = 1&% we obtain the following estimate:
(4.13) E [eﬁRw} < 2BIG| 4 9p=2BIG] < ((2+0)BIG]

with an appropriately chosen 0 < ¢ < 1/3. Now we apply Markov’s in-

. . /41G| p. . . .
equality to the function e? S Ri(w) o estimate the right hand side of

(4.11):
el ) N
(4.14) P, | > Ri(w)>2t/3| <e 3" E [eﬁRw} 1al
i=1

where we also used the independence of the excursions R;(w)-s. Using the

estimate in (4.13) to bound the right hand side we gain that

EES 2 246)8|G|-

P, | 3 Riw)>2/3| <e 30207 Ta
i=1

(4.15)

1-3 1—0)log2 t

where we used 3 = log2/(4tpi;), and modified ¢ := 36/2 < 1/2. Using the
relation of the local time to the excursion lengths in (4.11) we finally get
that the second term (4.6) is bounded from above by

t log2 t
4.1 P |3w: Ly(t) < —— |ty < /3| < — .
(19 0 Bul) gl <11 < Glewp {250}

Mind that all the estimates (4.9), (4.10) and (4.16) were independent of the
initial state (f,z) € H ! G, so using the second inequality in (3.16) and

maximizing over all possible initial states yields us
(4.17)

4|G| t
b<odo(t) <28°(t) < ——— TolO ()
Aol < 24°(t) < 25°(t) < " eXp{ 2\Gytrel(H>}

(1—6)log2 t log2 t
4 —_— 4G - —
rhew { 24 thit +4/Glexp 6 thit
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In the final step we apply Lemma 3.7: we take the power 1/t and limit as ¢

tends to infinity with fixed graph sizes |G| and |H| on the right hand side of
(4.2) to get an upper bound on Ay. Then we use that (1 —e™®) < x + o(z)
for small  and obtain the bound on t,q finally:

48
trel(H 2 G) S max {2|G|tre](H), 10g2thit} .
This finishes the proof of the upper bound on the relaxation time.

5. Mixing time bounds. Based on the fact that H has a separation-
optimal strong stationary time 7z, the idea of the proofs is to relate the
separation distance to the tail behavior of the stopping times 7¢ and 735
constructed in Lemmas 3.3 and 3.5, respectively. Then these estimates are
turned into bounds of the total variation distance using the relations in
Lemma 3.6. This method gives us the upper bound in (1.7) and the cor-
responding lower bound under the assumption (A). For the lower bound
without the assumption, we will need slightly different methods.

5.1. Proof of the upper bound of Theorem 1.4. The idea of the proof is
to use appropriate top quantiles of the strong stationary time 77 on H, and
give an upper bound on the tail of the strong stationary time 75 defined in
Lemma 3.5. Throughout, we (only) need that 77 and 7¢ in the construction
of 75 are separation-optimal. The existence is guaranteed by Theorem 3.2.
(Thus, 77 does not necessarily possess halting states.)

Let us denote the worst-case initial state top e-quantile of a stopping time
T as

(5.1) pauant 7y — max inf{t : Pyt > t] < ¢}
ye

We continue with the definition of the blanket time:

(5.2) By = inf {Vv,w €aqG: %:((tt)) < 2} .

Let us further denote

(5.3) B, = max E,(Bs2)

It is known from [8] that there exist universal constants C' and C’ such that
Cltcov <B; < thov-
Thus, our first goal is to show that at time

8B + |G|t})16c () + 176" (76) =: 8Ba + Gt} + tG = t°
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we have for any starting state (f,z) that

|

(5.4) Pyl >1°] <

We remind the reader that 75 = 7° + 7¢(X;+) and thus the following union
bound holds:

P [7’5> > to] <P[By>8By]+ P [TO > |G|ty + 8B2|B2 < 8B3]
(5:5) + I;leaé(PU [T¢ > tq|Ba < 8Bg, 7% < 8Ba + |G|tH],
where in the third term we mean that we restart the chain after time 8By +
|G|tY;, and measure 7¢ starting from there. The first term on the right hand
side is less than 1/8 by Markov’s inequality, the third is less than 1/16 by
the definition of the worst case quantile. The second term can be handled
by conditioning on the local time sequence of vertices and on the blanket
time: (for shorter notation we introduce t; := |G|t}; + 8B2)
(5.6)
P [7° > |G|tY + 8By|B;y < 8By

= Z P [Elw: {t(w) > Lw(tl)}’ (Ly(t1)), B2 = s] P (Ly(t1)), B2 =

s<8Ba,(Lo(t1)),

The fact that By < 8Bs means that the number of visits to every vertex
v € G must be greater than half of the average, which is at least %tzﬁl Since
L, () is twice the number of visits by (3.6), {7 (w) > Ly(t1)} C {tg(w) >
t% }. By the definition of the quantiles,

1
P th] < ——
holds for every h € H and w € G. Applying a simple union bound on the
conditional probability on the right hand side of (5.6) yields

1
P C>t <8Bo| < —— | P [(Ly(t =
ol >t sl 3 (6l ) P, Ba=s
$<8B,(Ly(t1)),

<

)

&l

where we used that the sum of the probabilities on the right hand side is
at most 1. Combining these estimates with (5.5) yields (5.4). It remains
to relate the worst-case quantiles to the total variation mixing times. Here
we will make use of the separation-optimal property of 7 and 7g. Now
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just consider the walk on G. Let us start the walker on G from an initial
state 9 € G for which the maximum is attained in the definition (5.1) of
quant

the quantile t1/16 (7). Then, by (3.15) we have that one step before the
quantile we have

1
= <Py 7o > 1 (76) = 1| = sy (150" (76) — 1)

16 —
1 quant
<4d ( (115" (re) = 1) ) -

This immediately implies that %(t?ﬁgt (1¢) = 1) < tmix (G, 6—14) . By the sub-

multiplicative property of the total variation distance d(kt) < 2Fd(t)F we
have that tpix(G, 6—14) < 6tmix (G, i) So we arrive at
(5.7) #1756 (76) = 1 < 12t (@)

Similarly, starting all the lamps from the position hg where the maximum is

attained in the definition of t% = t?}?él't G‘(TH), one step before the quantile

we have

1
16]C7| <P, [ta >th — 1] =sp, (th — 1) <4d((t —1)/2)
So we have
1 uan
(5.8) 5( (11/16|tG|(7'H) — 1) < tmix (H, ﬁ) _

On the other hand, on the whole lamplighter chain H ! G we need the
other direction: For every starting state (f,x) (3.14) and (5.4) implies that

dif,e)(t°) < S(p.0)(°) S Py 15 > 7] < 1/4
Maximizing over all states (f,z) yields
(5.9) b (H 1 G) < £°.

Putting the estimates in (5.7) and (5.8) to (5.9), we get that

1 1
tmix (H <t° < 8B 12t i 1+2 tmix | H, —— — .
(H1G) <t° < 8By(G) + (G)+1+ yG|( ( 64’G|>+2>

Since Bo(G) < Cteoy(G), and thix(G) < 2thit(G) < 2ty (G) for any G (see
for instance [13]), the assertion of Theorem 1.4 follows with Cy = 8(C + 3),
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where C' is the universal constant relating the blanket time By to the cover
time teoy in [3].

We remark why we did not make the constant Cy explicit: If the blanket
time By were not used in our estimates, the error probability that some
vertex w € G does not have enough local time would need to be added.
This, similarly to the term (4.6) behaves like |G\efc(tc""HG'tmi"(H’é))/th“.
If we do not assume anything about the relation of tp;(G) and teoy(G)
and on tyix(H, %), then this error term will not necessarily be small. For
example, if G, is a cycle of length n, H,, is a sequence of expander graphs,
then teov(Gp) = thit(Gn) = O(n?), and tmiX(H,é) = log|H| - log |G| =
log |H|logn, and we see that the term is not small if log |H| = o(n/logn).

5.2. Proof of the lower bounds of Theorem 1./. As we did with the re-
laxation time, it is enough to prove that all the bounds are lower bounds
separately, then take an average. First we start showing that the upper
bound is sharp in 1.7 under the assumption that there is a strong stationary
time 7 with halting states.

5.2.1. Lower bound under Assumption (A). We first aim to show that
¢ |Gltmix(H, 1) < tmix(H 1 G).

Consider the stopping time 7¢ constructed in Lemma 3.3. Corollary 3.4
tells us that the tail of 7° lower bounds the separation distance at time ¢.
We again emphasize that this bound holds only if 77 in the construction of
7° is not only separation optimal but it also has a halting state. Our first
goal is to lower bound the tail of 7°, then relate it to the total variation
distance.

First set

1
l t l
(510) tH = t‘qélrfll/Q/Q(7H> — 1, to = 4’G|tH,

clearly this time is nontrivial if t?é?ff 1o /2(7'H) # 1. We handle the case if it
equals 1 later. We can estimate the upper tail of 7° by conditioning on the
number of moves on the lamp graphs H,,v € G:

(5.11)

P[>t >P[Fw e G : g(w) > Ly(t°%)]

> P [Gw € G : i (w) > Lu(t°)| (Lo (t°))o] P [(Ly(%))o]
(Lo(t°))o

For each sequence (L (t°)),ec we define the random set

Siray, = {w € G Ly(t?) <t }
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Since Y, Ly(t°) = 2t° = 1|G|t};, we have that for arbitrary local time
configuration (L, (t°))y,

(5.12) 1Sz, 2 1G1/2.

Thus we can lower bound (5.11) by restricting the event only to those w € G

coordinates which belong to this set, i.e. whose local time is small:

(5.13)

P >1°]> Y P[Bwe Sy, : ta(w) > Lu(t*)] (L (°)),] P [(Lo(t)),]
(Lo (t))w

> Z [Elw S S L)y - TH > tH‘ :| [(Lv(to)%] )

(Lo (t°))

1)

where in the second line we used that for w € S,), we have {7y (w) >
Ly(t°)} 2 {ru(w) > t%}. Conditioned on the sequence (L, (t°)),, the times
T (w) for w € Sy, are independent. On each lamp graph H(v) let us
pick the starting state to be hg € H where the maximum is attained in the
definition of t?g?nf 12/ (). Since ty is one step before the quantile, we have

(5.14) Prg | 7o (w) > 105 (rr) = 1] = |67/ /2.

We need to start the lamp-chains from the worst-case scenario hg € H for
two reasons: First, we needed to define the quantile as in (5.1) to be able to
relate it to the total variation mixing time on H, see below. Then, the fact
that t3" was defined as the worst-case starting state quantile means that
for other starting states the quantile may be smaller, and the lower bound
can possibly fail.

Combining (5.14) with (5.12) and the conditional independence gives us
the following stochastic domination from below to the event in (5.13)

P 3w e Sy, :TH ’ (t°)) w} >P[V > 0],

where V is a Binomial random variable with parameters (|G|/2, \G|_1/2/2).
Clearly, for |G| > 8 > 16(log 2)? we have

1 IGl/2 _|G|M2
) 2

P[V>O]:1—<1—

Combining this with (5.13) and summing over all possible (L, (t%))yeq se-
quences we easily get that
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Then, by Corollary 3.4 we have

o2
(o3 <o —
S(Eo»x)(t ) 2 1—e¢ 4

In the next few steps we relate the tail of 7° and 7y to the mixing time of
the graphs. First, combining the previous inequality with (3.15) implies that
for the starting state (hg,z) the following inequalities hold:

1— 6_|G|1/2/4 < S?ﬁo,m)(to) < 4d0(t0/2).
These immediately imply
1 1 1
(5.15) tmix(H G, 2) > o1° = 2|Glty
quant
|G|=1/2/2

tp investigates the worst case initial-state scenario, by inequality (3.5) for
any starting state h € H we have

Now we will relate ¢4, = ¢ () — 1 to the mixing time on H. Since

sty +1) <Py >ty +1] <|G|7Y?/2

Using dp,(t) < sp(t) (see Lemma 3.6) and maximizing over all h € H we get
that

(5.16) dy(tg +1) < |G|7Y2)2.

On the other hand, the total variation distance for any Markov chain has
the following sub-multiplicative property for any integer k, see [13, Section
4.5]:

(5.17) d(kt) < 2Fd(t)*.

Taking t =ty + 1 and combining with (5.16) we have that

1
dp(2(ty +1)) < ddp(ty +1)* < e

which immediately implies
tmix(H,1/|G]) < 2(tg + 1).
Combining this with (5.15) yields the desired lower bound:

Ly,

1 1
T6|G| (tmix (H, @) - 2) S tmiX(H ! G) ]
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Mind that the term —2 in the brackets can be dropped when picking a
possibly smaller constant and take the graph large enough. The case when
t?g?_nf /2 /Q(TH) = 1 can be handled the following way: first mind that we
can exchange the quantile for arbitrary 0 < a < 1, and look at the proof
with t?Gu?_ni/z(TH). If this is still = 1 for all «, that means that 77 = 1 a.s.
In this case, it is enough to hit the vertices to mix immediately and thus
the mixing time |G|tmix(H ) is of smaller order than the cover time tqoy(G).
The case when |G| < 8 but |H| — oo is easy to see since in this case
tmix (H, ﬁ) < 2tmix(H) and one can argue that mixing on H { G requires
mixing on a single lamp graph H,, for a fixed w € G. Thus the lower bound
remains valid.

The cover time of G is already a lower bound for the 0 — 1 lamps case
by [18], hence also for general lamps, but, for completeness, we adjust the
proof in [13, Theorem 19.2] to our setting. By Lemma 3.3 we can estimate

the separation distance on H ! G as

8(ray(t) = Ppay [7° > 1]

(5.18) > P(Lx) [Fw € G : mr(w) > Ly(t)]
> P(Lx) [Fw e G: Ly(t)=0] = P(Lx) [Teov > t].

Now, using the submultiplicativity of d(t) in (5.17) and the relation of the
separation distance and the total variation distance in (3.15), we have that
at time 8tmix(H 1 G, 1/4):

2t 1

5ty (Btmix(H G, 7)) <Ad° (dtmix(H G, 7)) <477 < 7

Combining with (5.18) yields that for every starting state we have
P(Lz) [Tcov > Stmix(H LG, 1/4)] < 1/4.

Thus, run the chain in blocks of 8tmix(H ! G,1/4) and conclude that in
each block it covers with probability at least 3/4. Thus, the cover time is
dominated by 8tmix(H ! G,1/4) times a geometric random variable with
success probability 3/4, so we have

E(t 1) [Teov] < 1tmix(H UG, 1/4).

Maximizing the left hand side over all possible starting states yields tcoy (G) <
11tmix(H 1 G,1/4), finishing the proof.
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5.2.2. Proof of the lower bound of Theorem 1.4, without assumption (A).
Now we turn to the general case and first show that ¢ t.0(H)|G|log |G|
is a lower bound. No laziness assumption on the chain on H is needed to
get this bound. We will use a distinguishing function method. Namely, take
an eigenfunction ¢o of the transition matrix () on H corresponding to the
second eigenvalue Ag. Then let us define ¢ : H1 G — C:

(5'19) w((i7$)) = Z ¢2<fv)

veG

One can always normalize such that

Ero(¥) =Y Exfpo] =0 Varg(y) = > Varg(¢s) =G| 1

vEG vEG

This normalization has two useful consequences: First, by Chebyshev’s in-
equality, the set A = {¢ < 2|G|'/?} has measure at least 3/4 under station-
arity. Second, ¢2(go) := maxzey ¢2(g) > 1, otherwise the variance would be
less than 1. We aim to show that the set A has measure less then 1/2 at
time ctye1(H)|G|log |G| and then we are done by using the following charac-
terization of the total variation distance, see [2, 13]:

lv = pllry = sup{v(A) — u(A)}.
ACQ
Let us start all the lamp graphs from gy € H where the maximum is

attained for ¢o. Then we can condition on the local time sequence and use
the eigenvalue property of ¢s to obtain

By o) [0((E, X)) =E |E | Y da(Fu(t)] (Lv(t))v]]

(5.20) wee
wedG

Since ), L,(t) = 2t, we can apply Jensen’s inequality on the function y —
MY, to get a lower bound on the expectation:

= 1\
Ly (t G
S A 2|G|A},:G|<1— > .

(5.21) E
' weG trel(H)

By giving a lower bound on the right hand side we must assume here that
Ag > 0, or equivalently t,q(H) > C' > 1. Thus, first we handle the other
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case, i.e. when t.(H) < 2. Then the lower bound we are about to show is
of order |G|log |G| which is always at most the order of t.ov(G), due to a
result by Feige [9] stating that for simple random walk on any connected
graph G, teov(G) > (1 +0(1))|G|log |G|.

When t,¢(H) > 2, we can use that 1—z > e~ 15" when 0 < z < 0.5 to get a
lower bound on the right hand side of (5.21). Then set t = ct,o1(H)|G|log |G|
turning the estimate in (5.20) into

Eg o) [W((Ey, X)) > |G]'~*¢2(g0)-

We can easily upper bound the conditional variance as follows:

Var [¢:|(Lo(t))vec] < Y Byy [65(Fu(t)|Lu ()] < |G|¢5(g0)-

weG

Now, let us estimate the measure of set A at time ¢ by using the lower bound
on the expectation:

Py, [0 < 2GIV2) <P o [l — B0l = d2(00) G — 2162

Now we use that ¢2(go) > 1 and if ¢ < 1/6 then on the right hand side,
the term ¢2(g0)|G|' 3¢ dominates, so for |G| large enough we can drop the
negative term and compensate it with a multiplicative factor of 1/2, say.
Thus, condition on the local time sequence first and see that for any sequence
(Ly(t)),ec Chebyshev’s inequality yields:

Var [1|(Ly () )vec]
1/4¢3(g0)|G|>~6¢

Combining this with the estimate on the conditional variance above yields
that

P(go,x) ["lpt S A‘ (Lv(t»veG] <

4
P(goyx) [r € Al (Lo(t)),] < W'

This bound is independent of the local time sequence, so the law of total
probability says we have the same upper bound without conditioning on the
local times. Now setting ¢ < 1/6 an |G| large enough we see that the right
hand side can be made smaller than 1/2, finishing the proof.

To see that the cover time is a lower bound in the general case, couple
the chain on H ! G to Zo ! G, i.e. jump to stationary distribution on H,
once the walker on the base hits vertex v and use [18] or [13] to see that
tcov(G) < 75miX(Z2 l G) < tmix(H l G)

Next we show that ¢|G|tmix(H) is a lower bound if the chain on H is lazy.
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Let us start with a definition for general Markov chain X on

tstop(G) == ma()zcmin {E[7]; T stopping time s.t. P,[X; = y] = 7(y) Yy € Q}.
Te

We call a stopping time mean-optimal if E[7] = tgp(G). Lovasz and Winkler

[15] show that optimal stopping rules always exist for irreducible Markov

chains. We aim to show that

1
§|G‘ 'tStOP(H) < tStOP(H { G)-

Take a mean optimal stopping time 7" on H ! G reaching minimal ex-
pectation, i.e. Eqp o)[7"] = tstop(H 1 G) for some (f*,2*) € H G and
E(;2)[m"] < tstop(H 1 G) for (f, ) # (7, x7).

We use this 7 to define a stopping rule 74 (v) on H,, for every v € G.
Namely, do the following: look at a coordinate v € G and at the chain
restricted to the lamp graph H,, i.e. only the moves which are done on the
coordinate H,. Then, stop the chain on H, when 7* stops on the whole
H)G.

Start the chain from any (f,2o). Since 3, Lo(t) = 2t, we have

= 2By o7,

Y Enolm©)] =Eg, o) [Z Ly(1")

veG veG

Take the vertex w € G (which can depend on (), which minimizes the
expectation By )[7g(w)]. Clearly for this vertex the expected value must
be less than the average:

2

: @E(io’xo)

Ef,[7H] [7"]
The left hand side is at least as large as what a mean-optimal stopping rule
on H can achieve, and the right hand side is at most ﬁtsmp(H ! G). Thus

we arrive at 1
§|G|tstop(H) S tStOp(H l G)

In the last step we use the equivalence from the paper [19, Corollary 2.5]
stating that fsiop and tmix are equivalent up to universal constants for lazy
reversible chains and get that

c1|Gltmix(H) < tmix(H 1 G).
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6. Further directions. The next step of understanding generalized
lamplighters walks might be to investigate which properties on G and H are

needed to exhibit cutoff (for a definition see [2, 13]), or to determine the
mixing time in the uniform metric.
For Zy G, already [!1] implies a total variation cutoff with threshold

%tCOV(Kn) for G being the complete graph and that there is no cutoff if G
is a cycle of length n. The results of [13] include a proof of total variation
cutoff for Zy ¢ Z2 with threshold tcoy(Z2). The results in [16] also includes
cutoff at 1/2t.ov(Gy), with some uniform local transience assumptions on
Gy, Further, Levi [11] proved that the wreath product of two complete
graphs K, x { K, 0 < A <1 exhibits a cutoff at (1 + \)/2nlogn.

For the mixing time in the uniform metric, we know [18, Theorem 1.4]
that if G is a regular graph such that tn;,(G) < K|G|, then there exists
constants ¢, C' depending only on K such that

(6.1)  clGl(tra(G) +10g |G) < tu(Z21 G) < C|G|(tmix(G) + log |G]).

These bounds fail to match in general. For example, for the hypercube Zg,
teel(Z9) = ©(d) [13, Example 12.15] while tx(Z4) = ©(dlogd) [13, Theo-
rem 18.3]. Then [12] showed that the lower bound is sharp in (6.1) under

conditions which are satisfied by the d(n) dimension tori G,, = for

arbitrary chosen n and d(n).
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