
THE LOGIC IN COMPUTER SCIENCE COLUMN
1

by

Yuri GUREVICH 2

From Invariants to Canonization

Abstract

We show that every polynomial-time full-invariant algorithm for graphs

gives rise to a polynomial-time canonization algorithm for graphs.

1 Motivation

In theoretical computer science, the standard computation model is (still) that of
Turing machines. Inputs and outputs of Turing machines are strings. Accordingly
algorithms transform strings to strings. In real-life computing, often, inputs and
outputs can be bene�cially viewed as structures 3. A good example is relational
databases. In principle, structures can be encoded with strings. Let us examine
this more carefully.

We start with the special case of ordered structures. An ordered graph (G;<)
can be encoded by listing the rows of its adjacency matrix one after another; the
given order of vertices gives rise to the order of rows and the order of columns.
Alternatively, (G;<) can be encoded by listing, in the lexicographical order, all
expressions E(i; j) such that the ith and jth vertices of (G;<) are adjacent. In
either case, Code(G;<) uniquely de�nes the isomorphism type of (G;<), and the
other way round: Code(G1; <1) = Code(G2; <2) () (G1; <1) �= (G2; <2).

1The Bull. of Euro. Assoc. for Theor. Computer Sci.,no. 63, October 1997.
2Partially supported by NSF and ONR. Address: EECS Dept., Univ. of Michigan, Ann

Arbor, MI 48109-2122, USA. Email: gurevich@umich.edu.
3The term structure is used in the sense of mathematical logic. In this article, by default,

structures are �nite.

1

One is tempted to say that (G;<) and Code(G;<) are easily computable from
each other, even though this is not quite correct: (G;<) is not a string and thus
cannot serve as input or output in the conventional model4. Nevertheless (G;<)
and Code(G;<) are closely related, and Code(G;<) does represent (G;<) faith-
fully. Both encodings, but especially the second, generalize easily from the class
of graphs to an arbitrary class of structures5. In the rest of the article, we pre-
tend that Turing machines can compute with ordered structures as inputs and/or
outputs.

Now we turn our attention to structures that are not necessarily ordered. A

priori, there is no problem; a structure A can be represented by any ordered
version (A;<) of it. This means of course that a structure with at least two
elements is assigned multiple codes. So what? Is there any problem with that?
Actually yes, there is a problem. In combinatorics, database theory, etc., it is
often important to not distinguish between isomorphic structures. For example,
a database query is supposed to give you information about the database rather
than its implementation. The question arises whether one can encode structures
in polynomial time in a way that respects isomorphisms. We recall two well-known
de�nitions.

De�nition 1 A full-invariant algorithm for graphs is an algorithm I that assigns
a binary string6 to every ordered graph in such a way that

I(G1; <1) = I(G2; <2) () G1
�= G2:

The graph invariant hypothesis asserts that there exists a polynomial time full-
invariant algorithm for graphs. 2

An example of a full-invariant algorithm is an algorithm that, given an or-
dered version of a graph G, computes the lexicographically �rst string of the form
Code(G;<). Unfortunately, it is not known (or believed) that there is a polyno-
mial time version of that algorithm. If I is any full-invariant algorithm, then all
information about a graph G is contained in the string I(G) = I(G;<). But can
one extract any information about G from I(G) in polynomial time? Of course,
you could recapture the graph if I(G;<) has the form Code(G;<0). Such an in-
variant would de�ne a canonical ordering <0 of the vertices of G that does not
depend on the given ordering <; the resulting ordered graph (G;<0) could be seen
as the canonical (or normal) form of (G;<).

4This remark gives away the bias of this author who proposed a computation model which
works with arbitrary structures [Gu95]. Of course, the encoding problem for ordered structures
should not be exaggerated; once understood, it is handled easily.

5For simplicity, throughout this article, a class of structures always consists of structures of
the same vocabulary.

6Binary strings are strings in the alphabet f0; 1g.

2

De�nition 2 A graph canonization algorithm is an algorithm C which transforms
ordered graphs to ordered graphs and satis�es the following two requirements:

C(G;<) = (G0; <0) =) G0 �= G;

G1
�= G2 =) C(G1; <1) �= C(G2; <2):

The graph canonization hypothesis asserts that there exists a graph canonization
algorithm that works in polynomial time. 2

The two de�nitions readily generalize from the class of graphs to other classes
of structures. If I is a full-invariant algorithm for a class K, A 2 K and (A;<) is
an ordered version of A, de�ne I(A) = I(A;<).

Clearly the graph canonization hypothesis implies the graph invariant hypoth-
esis. In the next section, we will prove the converse. The reader can skip the rest
of this section.

The isomorphism relation on graphs gives rise to an equivalence relation on
binary strings: x � y if either neither string codes an ordered graph or else
there are ordered graphs (G1; <1) and (G2; <2) such that x = Code(G1; <1),
y = Code(G2; <2) and G1

�= G2. The two de�nitions can be reformulated in
terms of the equivalence relation �. Being unable to prove much about �, the
authors of [BG1], generalized the two de�nitions (and their relatives) to arbitrary
equivalence relations E on binary strings and analyzed what is or is not true for
all such relations E. Theorem 2 of [BG1] asserts, in particular, that the canoniza-
tion problem for E is not necessarily Cook-reducible7 to the invariant problem for
E. Let's weaken the canonization hypothesis by replacing polynomial time with
nondeterministic polynomial time. More exactly the weak canonization hypothesis

for a string equivalence relation E is this: There exists a canonization algorithm
y = f(x) for E such that the length jyj is bounded by a polynomial of jxj and the
graph of f is NP. According to Theorem 3 of [BG2], the statement \for all E, the
invariant hypothesis implies the weak canonization hypothesis" implies improbable
complexity phenomena. One such phenomenon is that, for all NP sets A;B (say
of integers), there would exist disjoint A0 � A and B0 � B with A0 [B0 = A [B.

It turned out that the equivalence relation � is special.

2 The Theorem

Theorem 1 The graph invariant hypothesis implies the graph canonization hy-

pothesis.

Proof Assume that I0 is a polynomial time full-invariant algorithm for graphs.
De�ne an expanded graph to be a graph with an additional binary relation on its
vertices.

7For logicians: Cook reducibility is polynomial time Turing reducibility.

3

Lemma 1 There is a polynomial time full-invariant algorithm I for expanded

graphs.

Proof of the lemma. We will exhibit a polynomial time transformation T of
expanded graphs into ordinary graphs such that two expanded graphs (G1; R1)
and (G2; R2) are isomorphic if only if the graphs T (G1; R1) and T (G2; R2) are
isomorphic. The desired I(G;R) = I0(T (G;R)).

Remark. More precisely (taking into account the limitations of the conven-
tional computation model), the algorithm transforms an arbitrary ordered ex-
panded graph (G;R;<0) into an ordered graph (H;<) in such a way that the
isomorphism type of H does not depend on the given order <0, and the isomor-
phism type of H uniquely de�nes the isomorphism type of (G;R). The desired
I(G;R;<0) = I0(H;<). We will continue to use the more convenient language of
the previous paragraph.

Construction The graph H = T (G;R) is an extension of G. Decorate every
element a of G with two adjacent elements a0; a00 of degree one. For every pair
(a; b) 2 R, connect a to b by means of three auxiliary elements as follows.

a b

That ends the construction of H. If G contains n vertices and R contains r pairs,
then H contains 3n+ 3r vertices.

To check that H uniquely de�nes (G;R), notice that the vertices of G are the
only vertices of H with two neighbors of degree one. The lemma is proved. 2

We continue the proof of the theorem. Let I be a full-invariant algorithm for
expanded graphs.

Notation. If v is a vertex of a graph G, let [v] be the binary relation f(v; v)g.
If v1; :::; vk are di�erent vertices of G and k > 1, let [v1; :::; vk] be the partial order
f(vi; vj) : 1 � i < j � kg on the vertices of G.

Construction We construct the desired canonization algorithm C. Let (G;<0)
be an ordered graph with n vertices. Here and in the rest of the proof, we ignore
the case n = 1.

Step 1. Let s1 be the lexicographically �rst string of the form I(G; [v]) and let
v1 be the �rst (with respect to <0) vertex v with I(G; [v]) = s1.

Step k, where 1 < k � n. We assume that vertices v1; : : : ; vk�1 have been con-
structed. Let sk be the lexicographically �rst string of the form I(G; [v1; : : : ; vk�1; v])
and let vk be the �rst (with respect to <0) vertex v with I(G; [v1; : : : ; vk�1; v]) = sk.

The desired C(G;<0) = (G; [v1; : : : ; vn]). End of construction.

4

Obviously C works in polynomial time and C(G;<) = (H;<0) =) G �= H. In
the remainder of the proof, we check that G �= H =) C(G;<1) �= C(H;<2).

Let C(G;<1) = (G; [v1; : : : ; vm]) and C(H;<2) = (H; [w1; : : : ; wn]), and assume
that G �= H. Then G;H have the same number of vertices; hence m = n. By
induction on k, we show that (G; [v1; : : : ; vk]) �= (H; [w1; : : : ; wk]). When k = n,
this gives the desired conclusion.

Let f be an isomorphism from G to H. Then I(G; [v]) = I(H; [fv]) for all v in
G, so that

minfI(G; [v]) : v 2 jGjg = minfI(H; [w]) : w 2 jHjg

and therefore (G; [v1]) �= (H; [w1]). Here jXj is the set of vertices of the graph X

and min is taken of course with respect to the lexicographic order.
Suppose that k � n and we have already proved that there exists an isomor-

phism
f : (G; [v1; : : : ; vk�1]) �! (H; [w1; : : : ; wk�1]):

Then I(G; [v1; : : : ; vk�1; v]) = I(H; [w1; : : : ; wk�1; fv]) for all v in jGj�fv1; : : : ; vk�1g,
so that

min
n
I(G; [v1; : : : ; vk�1; v]) : v 2 jGj � fv1; : : : ; vk�1g

o
=

min
n
I(H; [w1; : : : ; wk�1; w]) : w 2 jHj � fw1; : : : ; wk�1g

o

and therefore (G; [v1; : : : ; vk]) �= (H; [w1; : : : ; wk]). 2

Corollary 1 Let K be any class of structures. The graph invariant hypothesis

implies the canonization hypothesis for K.

Proof First check that Lemma 1 generalizes from expanded graphs to any class of
structures and in particular to expanded K structures. Then repeat the remaining
part of the proof of Theorem 1 replacing graphs with K structures. 2

Acknowledgment Thanks to Andreas Blass for useful comments.

References

BG1 A. Blass and Y. Gurevich, \Equivalence relations, invariants, and normal
forms", SIAM Journal on Computing 13 (1984), 682{689.

BG2 A. Blass and Y. Gurevich, \Equivalence relations, invariants, and normal
forms, II", Springer Lecture Notes in Computer Science 171 (1984), 24{42.

Gu Yuri Gurevich, \Evolving Algebra 1993: Lipari Guide", in \Speci�cation and
Validation Methods", Ed. E. Boerger, Oxford University Press, 1995, 9{36.
Later updates of the guide appear at http://www.eecs.umich.edu/gasm/

5

