
Existential Second-Order Logic Over Strings

THOMAS EITER AND GEORG GOTTLOB

Technische Universität Wien, Wien, Austria

AND

YURI GUREVICH

Microsoft Research, Redmond, Washington

Abstract. Existential second-order logic (ESO) and monadic second-order logic (MSO) have at-
tracted much interest in logic and computer science. ESO is a much more expressive logic over
successor structures than MSO. However, little was known about the relationship between MSO and
syntactic fragments of ESO. We shed light on this issue by completely characterizing this relationship
for the prefix classes of ESO over strings, (i.e., finite successor structures). Moreover, we determine
the complexity of model checking over strings, for all ESO-prefix classes. Let ESO(4) denote the
prefix class containing all sentences of the shape ?RQw, where R is a list of predicate variables, Q is
a first-order quantifier prefix from the prefix set 4, and w is quantifier-free. We show that
ESO(?*@?*) and ESO(?*@@) are the maximal standard ESO-prefix classes contained in MSO, thus
expressing only regular languages. We further prove the following dichotomy theorem: An ESO
prefix-class either expresses only regular languages (and is thus in MSO), or it expresses some
NP-complete languages. We also give a precise characterization of those ESO-prefix classes that are
equivalent to MSO over strings, and of the ESO-prefix classes which are closed under complementa-
tion on strings.

Categories and Subject Descriptors: F.1.1. [Computation by Abstract Devices]: Models of Computa-
tion—automata, relations between models; F2.2. [Analysis of Algorithms and Problem Complexity]:
Nonnumerical Algorithms and Problems—computations on discrete structures; F.4.1. [Mathematical
Logic and Formal Languages]: Mathematical Logic—computational logic; model theory; F.4.3. [Math-
ematical Logic and Formal Languages]: Formal Languages—classes defined by grammars or automata

General Terms: Theory

An extended abstract of this paper has appeared in Proceedings of the 13th IEEE Symposium on Logic
in Computer Science (LICS ’98) (Indianapolis, Ind., June 21–24). IEEE Computer Society Press, Los
Alamitos, Calif., 1998, pp. 16 –27.
Y. Gurevich did this research while on a leave of absence from the University of Michigan.
This research was supported by the Austrian Science Fund Project NZ29-1NF and by National
Science Foundation (NSF) grant CCR 95-04375.
Authors’ Present Addresses: T. Eiter, Institut für Informationssysteme, Technische Universität Wien,
A-1040 Wein, Austria, e-mail: eiter@kr.tuwien.ac.at; G. Gottlob, Institut für Informationssysteme,
Technische Universität Wien, A-1040 Wien, Austria, e-mail: gottlob@dbai.tuwien.ac.at; Y. Gurevich,
Microsoft Research, One Microsoft Way, Redmond, WA 98052.
Permission to make digital / hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the Association for Computing Machinery (ACM), Inc. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 2000 ACM 0004-5411/00/0100-0077 $05.00

Journal of the ACM, Vol. 47, No. 1, January 2000, pp. 77–131.

Additional Key Words and Phrases: Finite model theory, second-order logic, existential fragment,
prefix classes, model checking, finite words, strings, regular languages, S1S, descriptive complexity,
NP, decision problem, finite satisfiability.

1. Introduction

Second-order logic over finite structures has attracted the interest of logicians,
mathematicians, and computer scientists for a long time. In particular, several
important results have been obtained that link logic to automata theory and
complexity theory.

Two fundamental results in this context are the famous Büchi Theorem [Büchi
1960], which says that monadic second-order logic (MSO) over strings precisely
characterizes the regular languages, and Fagin’s Theorem [Fagin 1974], which
states that existential second-order logic (ESO) exactly expresses the NP proper-
ties over finite structures (in particular, over finite strings). Thus, over strings,
ESO is a much more expressive logic than MSO. However, little was known
about the relationship between syntactic fragments of ESO and MSO.

In this paper, we shed light on this issue by investigating prefix classes of
(nonmonadic) ESO over finite strings. Before explaining in more detail both the
problem studied and the results obtained, we spend a few paragraphs describing
the context of our research and the most important earlier results related to it.

1.1. LOGICAL CHARACTERIZATION OF NP. The class NP is one of the most
well-known classes of problems, and has been attracting much interest from both
the practical as well as the theoretical side. To date, a large and steadily
increasing number of problems in practice is known to be complete for this class,
while no polynomial time algorithm for any of these problems is known; the P 5
NP question is one of the main challenging open problems in computer science.

This question has been tackled from different directions in the hope of
utilizing tools and the rich body of knowledge from different, well-developed
areas. One such attempt was a reduction of the P 5 NP question to problems in
logic. In this context, Fagin [1974] gave a purely logical characterization of NP in
terms of second-order logic, where there is no notion of machine, computation,
or time. He proved that over finite structures, the properties which are decidable
in NP are precisely those which are definable in existential second-order logic
(ESO), that is, expressible through a sentence of the form ?Rw, where ?R means
existential quantification over a list R 5 R1, . . . , Rn of relational variables Ri

and w is a first-order formula.
Fagin’s Theorem was successfully used in various areas for establishing

different types of results. For example, it has been exploited in database theory
for assessing the expressive power of query languages, cf. Kolaitis and Papadimi-
triou [1991], Schlipf [1995], Saccá [1997], or in computation theory to character-
ize subclasses of NP or to establish logically defined hierarchies of nondetermin-
istic complexity classes within NP.1 Another use is in the area of optimization
theory, where based on Fagin’s Theorem, logical definitions of classes of
optimization problems were given, cf. Papadimitriou and Yannakakis [1991],
Panconesi and Ranjan [1993], and Kolaitis and Thakur [1995].

1 See, for example, Ajtai [1983], Grandjean [1985], Lynch [1992], and Olive [1998].

78 T. EITER ET AL.

1.2. PREFIX CLASSES. In the above investigations, syntactic subclasses of ESO
were studied. In particular, prefix classes play an important role. Prefix classes are
the most natural and the most commonly studied fragments of predicate logic. A
prefix class is a class of formulas in prenex normal form whose quantifier prefixes
obey a certain pattern. Denote by ESO(4) the prefix class consisting of all
ESO-sentences ?Rw, where w is in prenex normal form with a quantifier prefix
from a first-order prefix class 4. Then, Fagin’s Theorem actually characterizes
NP as the class ESO(@*?*).

The interest in prefix-classes dates back a long time ago. Actually, the classical
decision problem of Hilbert is the following problem, where FO(4) denotes the
set of prenex first-order formulas, possibly containing free occurrences of
predicate variables:

Instance: formula w in FO(4)

Question: Is w (finitely) satisfiable?

Reformulated in the context of second-order logic, this is equivalent to
whether for a given 4:

Instance: formula w in ESO(4)

Question: Is w (finitely) satisfiable?

This question has been studied in depth over the past decades, and an
exhaustive classification of decidable and undecidable prefix classes is known
(see Börger et al. [1997]); there are huge complexity gaps between elementarily
decidable and undecidable classes. The ESO(4) classification played an impor-
tant role in the identification of fragments of ESO that obey the 0-1 law, that is,
the property that over finite structures, a sentence is almost surely true or almost
surely false, cf. Kolaitis and Vardi [1990] and Pacholski and Szwast [1991]. It
turned out that there is a close relationship between decidable classes and those
satisfying the 0-1 law.

1.3. ORDERED STRUCTURES, STRINGS, AND BÜCHI’S THEOREM. While the
above results on NP are on arbitrary finite structures, computer science mainly
deals with ordered structures. In fact, the input to a computing device such as a
finite automaton or a Turing machine is implicitly ordered by the position of the
data in the input stream or on the input tape, respectively. Accordingly, many
important issues in finite model theory were considered in the context of ordered
structures (see below for a short description of results and references).

Strings, that is, words over a finite alphabet, are ordered structures of
particular importance. The set of strings satisfying a given formula F is a formal
language. We can thus directly compare classes of formal languages to logical
formalisms.

In order to do this formally, we need to confine ourselves to a logical
representation of strings. There are several possibilities and we have chosen the
simplest here. We represent a string over an alphabet A as a structure over a
finite universe U 5 {1, . . . , n} (representing the positions of the string),
equipped with the natural successor relation Succ over U, constants min and max

79Existential Second-Order Logic over Strings

for the first and the last position, respectively, and a predicate Ca for each letter
a [A, such that Ca(i) is true iff the ith position of the string consists of letter a.

A fundamental result relating logic to formal languages is Büchi’s Theorem
[Büchi 1960] (also found by Trakhtenbrot [1961]), which says that monadic
second-order logic (MSO) defines over finite strings precisely the regular
languages. Hence, over finite strings, MSO is much weaker than ESO, which
expresses all languages in NP.

In fact, over finite strings, even the class ESO(@*) expresses all languages in
NP; this follows from the more general result that over finite successor struc-
tures, that is, finite structures equipped with a successor predicate, every ESO
sentence is equivalent to some ESO(@*) sentence [Leivant 1989; Eiter et al.
1996].

1.4. MAIN PROBLEMS STUDIED. Combining and extending the results of Büchi
and Fagin, it is natural to ask: What about (nonmonadic) prefix classes ESO(4)
over finite strings? We know by Fagin’s theorem that all these classes describe
languages in NP. But there is a large spectrum of languages contained in NP
ranging from regular languages (at the bottom) to NP-hard languages at the top.
What can be said about the languages expressed by a given prefix class ESO(4)?
Can the expressive power of these fragments be characterized? In order to clarify
these issues, we investigated, in particular, the following problems:

—Which classes ESO(4) express only regular languages?
In other terms, for which fragments ESO(4) is it true that for any formula F [
ESO(4) the set Mod(F) 5 {W uW ?5 F} of all finite strings (over a given
finite alphabet) satisfying F constitutes a regular language? Any fragment
fulfilling this condition is called regular. By Büchi’s Theorem this question is
identical to the following: Which prefix classes of ESO are (semantically)
included in MSO?

Note that by Gurevich’s classifiability theorem (cf. Börger et al. [1997]) and
by elementary closure properties of regular languages, it follows that there is a
finite number of maximal regular prefix classes ESO(4), and similarly, of
minimal nonregular prefix classes; the latter are, moreover, standard, that is,
the quantifier prefix class 4 is either the set of all prefixes or it can be
described by a string over the alphabet {@, ?, @*, ?*}. It is our aim to
determine the maximal regular prefix classes and the minimal nonregular
prefix classes.

—What is the complexity of model checking (over strings) for the nonregular
classes ESO(4), that is, deciding whether W ?5 F for a given W (where F is
fixed)?

Model checking for regular classes ESO(4) is easy: it is feasible by a finite
state automaton. We also know (e.g., by Fagin’s Theorem) that some classes
ESO(4) allow us to express NP-complete languages. It is therefore important
to know (i) which classes ESO(4) can express NP-complete languages, and (ii)
whether there are prefix classes ESO(4) of intermediate complexity between
regular and NP-complete classes.

—Which classes ESO(4) capture the class REG of all regular languages? A class
of logical sentences captures REG, if all regular languages and only those can
be expressed in it. By Büchi’s Theorem, this question is equivalent to the

80 T. EITER ET AL.

question of which classes ESO(4) have exactly the expressive power of MSO
over strings.

—For which classes ESO(4) is finite satisfiability decidable, that is, given a
formula F [ESO(4), decide whether F is true on some finite string?

—Which classes ESO(4) are closed under complementation over strings?

1.5. MAIN RESULTS. The present paper answers all the above questions
exhaustively. Some of our results are rather unexpected. In particular, we prove a
surprising dichotomy theorem which sharply classifies all ESO(4) classes as
either regular or intractable. Our main results are summarized as follows:

(1) The class ESO(?*@?*) is regular (Theorem 8.2). This theorem constitutes
the technically most involved result of this paper. Given that this class is
nonmonadic, it was not possible to exploit any of the ideas underlying Büchi’s
proof for proving it regular. The main difficulty consists in the fact that relations
of higher arity may connect elements of a string that may be very distant from
one another and it is not a priori clear how a finite state automaton should be
able to guess such connections and check their global consistency. To solve this
problem, we have to develop completely new methods. In particular, we prove
new combinatorial results on hypergraphs and applied them to logic.

Interestingly, model checking for the fragment ESO(?*@?*) is NP-complete
over graphs. For example, the well-known set-splitting problem can be expressed
in it. Thus, the fact that our input structures are monadic strings is essential (just
as for MSO).

(2) The class ESO(?*@@) is regular (Theorem 9.1). The regularity proof for
this fragment is easier but also requires new techniques. Note that model
checking for this class, too, is NP-complete over graphs.

(3) Any class ESO(4) not contained in the union of ESO(?*@?*) and
ESO(?*@@) is not regular (Proposition 3.1).

Thus, ESO(?*@?*) and ESO(?*@@) are the maximal regular standard prefix
classes. The unique maximal (general) regular ESO-prefix class is the union of
these two classes, i.e, ESO(?*@?*) ø ESO(?*@@) 5 ESO(?*@(@ ø ?*)) (The-
orem 9.7).

It turns out that there are three minimal nonregular ESO-prefix classes,
namely the standard prefix classes ESO(@@@), ESO(@@?), and ESO(@?@). All
these classes express nonregular languages by formulas whose list of second-
order variables consists of a single binary predicate variable.

Therefore, results (1)–(3) give a complete characterization of the regular classes
ESO(4). A picture of the situation is given in Figure 1. The picture also
visualizes further results, and is explained in more detail below.

(4) We obtain the following dichotomy theorem: Let ESO(4) be any prefix
class. Then, either ESO(4) is regular, or ESO(4) expresses some NP-complete
language (Theorem 10.5). This means that model checking for ESO(4) is either
possible by a deterministic finite automaton (and thus in constant space and
linear time) or it is already NP-complete. Moreover, for all NP-complete classes

81Existential Second-Order Logic over Strings

ESO(4), NP-hardness holds already for sentences whose list of second-order
variables consists of a single binary predicate variable. There are no fragments of
intermediate difficulty between REG and NP.

(5) The above dichotomy theorem is paralleled by the solvability of the finite
satisfiability problem for ESO (and thus FO) over strings. We show that over
finite strings, satisfiability of a given formula from a class ESO(4) is decidable if
and only if ESO(4) is regular (Theorem 11.1).

(6) We give a precise characterization of those prefix classes of ESO that are
equivalent to MSO over strings, that is, of those prefix fragments that capture the
class REG of regular languages (Theorem 12.5). This provides us with com-
pletely new logical characterizations of REG. Moreover, we establish that any
regular ESO-prefix class is over strings either equivalent to full MSO, or is
contained in first-order logic, in fact, in FO(?*@) (Theorem 12.3). We further
show that there is a unique minimal ESO prefix class which captures NP, namely
ESO(@*) (Proposition 10.6). Our proof uses results in Leivant [1989] and Eiter
et al. [1996] and well-known hierarchy theorems.

(7) We give a precise characterization of those regular prefix classes of ESO
which, over strings, are closed under complementation. In particular, we show
that any nontrivial regular class ESO(4) is closed under complementation iff
some quantifier prefix Q [4 contains either the sequence @@ or the sequence
@?; this is the case iff ESO(4) captures REG (Theorem 12.5). Moreover, it
follows from our previously described results (1)–(4) that if NP Þ co-NP, then no
nonregular prefix class is closed under complementation. Assuming NP Þ co-NP
we have thus completely determined those prefix classes of ESO which are closed
under complementation over strings (Theorem 12.7).

Our main results are summarized in Figure 1. In this figure, the set of all
ESO-prefix classes is divided into four regions. The upper two regions contain all
classes that express nonregular languages, and therefore, as we show, also
NP-complete languages. The uppermost region contains those classes which

FIG. 1. Complete picture of the ESO-prefix classes on finite strings.

82 T. EITER ET AL.

capture NP, that is, express all languages in NP. These classes are called
NP-tailored. The region next below, separated by a dashed line, contains those
classes which can express some NP-hard languages, but not all languages in NP.
Its bottom is constituted by the minimal nonregular classes, ESO(@@@),
ESO(@?@), and ESO(@@?). The lower two regions contain all regular classes.
The maximal regular standard prefix classes are ESO(?*@?*) and ESO(?*@@).
The dashed line separates the classes which capture precisely REG (called
regular-tailored), from those which do not; by our results, the expressive capabil-
ity of the latter classes is restricted to first-order logic (in fact, to FO(?*@)). The
minimal classes which capture REG are ESO(@?) and ESO(@@).

Furthermore, all nontrivial classes contained in the lowest region are (prov-
ably) not closed under complementation. All classes in the upper region of
regular classes (regular-tailored) are closed under complementation, while those
in the region above regular classes are not closed under complementation unless
NP 5 co-NP.

1.6. POTENTIAL APPLICATIONS. Monadic second-order logic over strings is
currently used in the verification of hardware, software, and distributed systems.
An example of a specific tool for checking specifications based on MSO is the
MONA tool developed at the BRICS research lab in Denmark [Basin and
Klarlund 1995; Henriksen et al. 1996; Klarlund 1998].

Observe that certain interesting desired properties of systems are most natu-
rally formulated in nonmonadic second-order logic. Consider, as an unpreten-
tious example,2 the following property of a ring P of processors of different
types, where two types may either be compatible or incompatible with each
other. We call P tolerant, if for each processor p in P there exist two other
distinct processors backup1(p) [P and backup2(p) [P, both compatible with
p, such that the following conditions are satisfied:

(1) for each p [P and for each i [{1, 2}, backupi(p) is not a neighbor of p;
(2) for each i, j [{1, 2}, backupi(backupj(p)) [y { p, backup1(p),

backup2(p)}.

Intuitively, we may imagine that in case p breaks down, the workload of p can be
reassigned to backup1(p) or to backup2(p). Condition (1) reflects the intuition
that if some processor is damaged, there is some likelihood that also its
neighbors are (e.g., in case of physical affection such as radiation), thus
neighbors should not be used as backup processors. Condition (2) states that the
backup processor assignment is antisymmetric and anti-triangular; this ensures,
in particular, that the system remains functional, even if two processors of the
same type are broken (further processors of incompatible type might be broken,
provided that broken processors can be simply bypassed for communication).

Let T be a fixed set of processor types. We represent a ring of n processors
numbered from 1 to n where processor i is adjacent to processor i 1 1 (mod n)
as a string of length n from T* whose ith position is t if the type of the ith
processor is t; logically, Ct(i) is then true. The property of P being tolerant is

2 Our goal here is merely to give the reader some intuition about a possible type of application.

83Existential Second-Order Logic over Strings

expressed by the following second-order sentence F:

F : ?R1?R2@x?y1?y2.compat~ x, y1! ` compat~ x, y2! `

R1~ x, y1! ` R2~ x, y2! `

` i51,2 ` j51,2 ~¬ Ri~ yj, x! ` ¬ R1~ yj, yi! ` ¬ R2~ yj, yi!! `

x Þ y1 ` x Þ y2 ` y1 Þ y2 `

¬ Succ~ x, y1! ` ¬ Succ~ y1, x! ` ¬ Succ~ x, y2! ` ¬ Succ~ y2, x! `

~~ x 5 max!3 ~ y1 Þ min ` y2 Þ min!! `

~~ x 5 min!3 ~ y1 Þ max ` y2 Þ max!! ,

where compat(x, y) is the abbreviation for the formal statement that processor x
is compatible to processor y (which can be encoded as a simple Boolean formula
over Ct atoms).

F is the natural second-order formulation of the tolerance property of a ring
of processors. This formula is in the fragment ESO(?*@?*); hence, by our
results, we can immediately classify tolerance as a regular property, that is, a
property that can be checked by a finite automaton.

In a similar way, one can exhibit examples of ESO(?*@@) formulas that
naturally express interesting properties whose regularity is not completely obvi-
ous a priori. We thus hope that our results may find applications in the field of
computer-aided verification.

1.7. FURTHER RELATED WORK. Since Büchi’s logical characterization of the
regular languages and Fagin’s logical characterization of NP, several further
logical characterizations of complexity classes or types of formal languages have
been obtained.

The following are some classical results concerning general (not necessarily
monadic) finite structures. Stockmeyer [1977] has shown that full second-order
logic captures the polynomial hierarchy (PH). Immerman [1986] and Vardi
[1984] proved that polynomial time is captured by fixpoint logic over ordered
structures, and Grädel [1991; 1992] established this for ESO(@*, Horn) (see also
Leivant [1989] where this result occurs implicitly). The related result that the
well-known database query language Datalog captures P over ordered structures
is already implicit in Vardi [1984] and Immerman [1986]. Abiteboul and Vianu
have studied several other database query languages, and they showed that the
classes of total and partial fixpoint queries coincide on arbitrary finite structures
if and only if P 5 PSPACE (see Abiteboul et al. [1995]). Many complexity
classes, including LOGSPACE and NLOGSPACE, were logically characterized
by Immerman [1986]. Most of these results and many others are covered by
books or surveys.3

3 See, for example, Immerman [1999], Ebbinghaus and Flum [1995], Gurevich [1988], and Fagin
[1993].

84 T. EITER ET AL.

Our results add to previous knowledge about the relationships between
nonmonadic ESO fragments and MSO over strings. They contrast with previous
results on graphs. We show that existential MSO and ESO(?*@?*) coincide over
strings. This is not true for graphs. It was known that over finite graphs,
disconnectivity is expressible in existential MSO [Fagin 1975], and 2-colorability
and completeness of a graph are clearly in existential MSO; however, none of
these properties is expressible in ESO(?*@?*), even in presence of a successor
[Eiter and Gottlob 1998]. Therefore, ESO(?*@?*) and MSO have different
expressive power over ordered graphs. Further relevant discussions of ESO and
MSO fragments over graphs and general structures can be found in de Rouge-
mont [1987], Schwentick [1994; 1995], Rosen [1999], and Durand et al. [1998].

To the best of our best knowledge, there has been no previous characterization
of the regular languages by nonmonadic fragments of ESO. However, many
papers cover either extensions or restrictions of MSO or REG.

Lynch [1992] for example, has studied the logic over strings obtained from
existential MSO by augmenting it with addition. He proved that this logic
captures NTIME(n), that is, nondeterministic linear time. Grandjean [1985] and
Olive [1998] obtained interesting results related to those of Lynch. They gave
logical representations of the class NLIN, that is, linear time on random access
machines, in terms of second-order logic with unary functions instead of relations
(in their setting, also the input string is represented by a function).

Lautemann et al. [1995] recently proved that the class CFL of context-free
languages is characterized by ESO formulas of the form ?Bw where w is
first-order, B is a binary predicate symbol, and the range of the second-order
quantifier is restricted to the class of matchings, that is, pairing relations without
crossover. Note that this is not a purely prefix-syntactic characterization of CFL.
From our results and the fact that some languages which are not context-free can
be expressed in the minimal nonregular ESO-prefix classes, it follows that a
syntactic characterization of CFL by means of ESO-prefix classes is impossible.

Several restricted versions of REG where studied and logically characterized
by restricted versions of ESO. McNaughton and Papert [1971] showed that
first-order logic with a linear ordering precisely characterizes the star-free regular
languages. This theorem was extended by Thomas [1996] to v-languages, that is,
languages of infinite words. Later several hierarchies of the star-free languages
were studied and logically characterized (see, e.g., Thomas [1996], and Pin [1986;
1994; 1996]). Straubing et al. [1995] showed that first-order logic with modular
counting quantifiers characterize the regular languages whose syntactic monoids
contain only solvable groups. These and many other related results can be found
in the books and surveys (see, e.g., Straubing [1994], Thomas [1996], and Pin
[1986; 1994; 1996]).

1.8. STRUCTURE OF THE PAPER. The rest of this paper is organized as follows.
Section 2 introduces basic concepts and notation. In Section 3, we show that the
classes ESO(@@@), ESO(@@?), and ESO(@?@) all express the canonical non-
regular language L 5 {anbn}. In Section 4, we derive a new combinatorial
theorem on hypergraphs, which is a crucial tool for proving that ESO(?*@?*) is
regular. The latter result, which is the technically most demanding of this paper,
is gradually established in Sections 5– 8. In particular, Section 6 proves the result
under the restriction to successor-free ESO(@?*) sentences; Section 7 general-

85Existential Second-Order Logic over Strings

izes it to ESO(@?*) sentences. The general result is then proved in Section 8.
The regularity of the class ESO(?*@@) is shown in Section 9. For better
readability, the proof in that section is given under simplifying assumptions; a full
proof is in the appendix.

The problem of model checking is considered in Section 10, where we prove a
dichotomy theorem for model checking. In Section 11, we determine the classes
4 for which finite satisfiability is decidable. Section 12 identifies those classes
ESO(4) that capture REG and those that are closed under complementation.
The final section (Section 13) addresses further research issues and concludes
the paper.

2. Preliminaries and Notation

We consider second-order logic with equality (unless explicitly stated otherwise)
and without function symbols of positive arity. Predicates are denoted by capitals
and individual variables by lower case letters; a bold face version of a letter
denotes a tuple of corresponding symbols.

A prefix is any string over the alphabet {?, @}, and a prefix set is any language
4 # {?, @}* of prefixes. A prefix set 4 is trivial, if 4 5 À or 4 5 {l}, that is, it
consists of the empty prefix. In the rest of this paper, we focus on nontrivial
prefix sets.

A generalized prefix is any string over the extended prefix alphabet {?, @, ?*,
@*}. A prefix set 4 is standard, if either 4 5 {?, @}* or 4 can be given by some
generalized prefix.

For any prefix Q, the class ESO(Q) is the set of all S1
1 formulas ?Rw, where w

is a prenex first-order formula with prefix Q; for any prefix set 4, the class
ESO(4) is the union ESO(4) 5 øQ[4 ESO(Q).

For example, ESO(?*@?*) is the class of all formulas ?R?y@x?zw, where w is
quantifier-free; this is the class of ESO-prefix formulas, whose first-order part is
in the well-known Ackermann class with equality.

Recall that a literal is an atomic formula or the negation of such; equalities and
inequalities are also literals. It is usual, when one deals with conjunctive normal
forms, to define a clause as a set of literals interpreted as the disjunction of its
members. We deal with disjunctive normal forms. Accordingly, we redefine a
clause as set of literals interpreted as the conjunction of its members. A DNF
formula can be seen as a set of clauses. For any formula F [ESO({@, ?}*)
whose quantifier-free part is a DNF w 5 ~ i d i, we denote by D(F) (simply D, if
F is understood) the set of all clauses d i of w.

Let A 5 {a1, . . . , am} be a finite alphabet. A string over A is a finite
first-order structure W 5 ^U, Ca1

W, . . . , Cam

W , SuccW, minW, maxW&, for the
vocabulary sA 5 {Ca1

, . . . , Cam
, Succ, min, max}, where

—U is a nonempty finite initial segment {1, 2, . . . , n} of the positive integers;
—each Cai

W is a unary relation over U (i.e., a subset of U) for the unary predicate
Cai

, for i 5 1, . . . , m, such that the Cai

W are pairwise disjoint and ø i Cai

W 5
U.

—SuccW is the usual successor relation on U, and minW and maxW are the first
and the last element in U, respectively.

We refer to the predicates Cai
also as colors.

86 T. EITER ET AL.

Observe that this representation of a string is a successor structure as
discussed, for example, in Eiter et al. [1996]. An alternative representation uses
the standard linear order , on U instead of the successor Succ. In full ESO, , is
tantamount to Succ since either predicate can be defined in terms of the other.
We come back to this issue in Section 13.

The strings W for A correspond to the nonempty finite words over A in the
obvious way; in abuse of notation, we often use W in place of the corresponding
word from A* and vice versa.

A SO sentence F over the vocabulary sA is a second-order formula whose only
free variables are the predicate variables of the signature sA, and in which no
constant symbols except min and max occur. Such a sentence defines a language
over A, denoted +(F), given by +(F) 5 { W uW ?5 F}. We say that a language
L # A* is expressed by F, if +(F) 5 L ù A1 (thus, for technical reasons,
without loss of generality we disregard the empty string); L is expressed by a set S
of sentences, if L is expressed by some F [S. We say that S captures a class C
of languages, if S expresses all and only the languages in C.

Let A be a finite alphabet. A sentence F over sA is called regular, if +(F) is a
regular language. A set of sentences S (in particular, any ESO-prefix class) is
regular, if for every finite alphabet A, all sentences F [S over sA are regular.

Büchi [1960] has shown the following fundamental theorem. Let MSO denote
the fragment of second order logic in which all predicate variables have arity at
most one,4 and let REG denote the class of regular languages.

PROPOSITION 2.1 (BÜCHI’S THEOREM). MSO captures REG.

Note that Büchi’s Theorem was independently found by Trakhtenbrot [1961].
That MSO can express all regular languages is easy to see, since it is

straightforward to describe the behavior of a finite state automaton by an
existential MSO sentence. In fact, this is easily possible in monadic ESO(@?) as
well as in monadic ESO(@@). Thus, we have the following lower expressiveness
bound on ESO-prefix classes over strings.

PROPOSITION 2.2. Let 4 be any prefix set. If 4 ù {?, @}*@{?, @}1 Þ À, then
ESO(4) expresses all languages in REG.

3. Nonregular ESO-Prefix Classes

In this section, we present some ESO-prefix classes that are not regular. In
particular, we show that ESO(@@@), ESO(@@?), and ESO(@?@) include a well-
known nonregular language. This means that whenever we have in a prefix Q two
universal FO quantifiers separated or followed by some other FO quantifier, then
any class containing Q is nonregular. As it will appear later, these three prefix-classes
are the minimal nonregular standard prefix-classes of ESO.

PROPOSITION 3.1. The language L 5 {anbnun $ 0} can be expressed by
sentences

(i) ?R@x@y?z.w1,
(ii) ?R@x@y@z.w2, and

4 Observe that we assume MSO allows one to use nullary predicate variables (i.e., propositional
variables) along with unary predicate variables. Obviously, Büchi’s Theorem survives.

87Existential Second-Order Logic over Strings

(iii) ?R@x?y@z zw3,

where R is binary and the w i are quantifier-free.

PROOF. The language L is defined by the sentence

F 5 ?R@x@y?z.R~min, max! ` Ca~min! `

@R~ x, y!3 ~¬ R~ y, x! ` ~Ca~ x! 7 Cb~ y!!!# `

@~R~ x, y! ` Ca~ x!!3 ~Succ~ x, z! ` ~ z Þ y3 R~ y, z!!!# `

@~R~ x, y! ` Cb~ x!!3 ~Succ~ z, x! ` R~ y, z!!# .

The formula says that R is a directed graph such that an arc goes from min to
max, that the first letter of the word is an a, that R is asymmetric and that arcs
are between letters of different colors; the penultimate conjunct says that if an
arc leads from an element ea colored with Ca to an element eb colored with Cb,
then an arc must lead from eb to the successor of ea, unless the elements ea and
eb are adjacent; the last conjunct states a similar condition for arcs from Cb’s to
Ca’s.

To see that F works properly, consider first any word W 5 anbn in L. Then,
(W, R) ?5 F , where R 5 {(i, 2n 2 i 1 1) u1 # i # n} ø {(2n 2 i 1 1, i 1
1) u1 # i , n}. Conversely, suppose that (W, R) ?5 F, where W 5 c1c2

. . . cm

and each ci [{a, b}. By induction on i # m/ 2, show that the following holds:

ci 5 a, cm2i11 5 b, R~i, m 2 i 1 1! , and R~m 2 i 1 1, i 1 1! .

Thus, if m is even, we have finished. Suppose then m 5 2n 1 1 for some n, so
that the given word W is of the form ancn11bn. In particular, we have R(n, m 2
n 1 1) and R(n, n 1 2). By F, R(n, n 1 2) implies R(n 1 2, n 1 1), and
R(n 1 2, n 1 1) ` Cb(n 1 2) implies Ca(n 1 1) ` R(n 1 1, n 1 1).
However, R(n 1 1, n 1 1) contradicts the asymmetry of R.

For (ii), we slightly modify the previous formula F by turning the existential
quantifier ?z into a universal quantifier @z, and by replacing the last two
conjuncts with

~R~ x, y! ` Ca~ x! ` Succ~ x, z! ` z Þ y!3 R~ y, z!

and

~R~ x, y! ` Cb~ x! ` Succ~ z, x!!3 R~ y, z! ,

respectively.
For (iii), observe that with first-order quantifier prefix @?@, it is easy to say

that R describes a partitioning of the string in 2-element sets {e1, e2}, such that
e1 has color Ca and e2 has color Cb:

@x?y@z@R~x, y! ` ~Ca~x!7 Cb~ y!! ` ~R~x, z!3 R~z, x!! ` ~R~x, z!7 z 5 y!#.

Indeed, observe that R must be symmetric, and by the first and the last con-
junct, we have @x?!yR(x, y). Moreover, it can be easily said with first-order

88 T. EITER ET AL.

prefix @?@ that a string W is of the form anbm (say that every Cb is followed by
a Cb). e

COROLLARY 3.2. The ESO-prefix classes ESO(@@?), ESO(@@@), and
ESO(@?@) express some nonregular languages.

In Section 10, we will derive by a more complicated proof even stronger
results: the three ESO-prefix classes in Corollary 3.2 do not only express
nonregular languages, they even express NP-complete languages.

Observe that the syntactic incomparability of ESO-prefix classes does not
mean that their expressive capabilities over strings are incomparable. In particu-
lar, we show the following:

PROPOSITION 3.3. Over strings, ESO(@?@) reduces to ESO(@@@). In other
words, every language expressible in ESO(@?@) is expressible in ESO(@@@).

PROOF. We begin with the following lemma.

LEMMA 3.4. Let P, Q be (j 1 1)-ary predicate symbols, j $ 0, and let x be a
j-tuple of individual variables. Then, @x?yP(x, y) is over strings equivalent to
?Q@x@y@z.a for an appropriate quantifier-free formula a.

PROOF OF LEMMA. Intuitively, Q(x, y) means that P(x, z) holds for some z #
y. This can be expressed as follows:

@x@y@z~Q~x, min!3 P~x, min!! ` ~Succ~ y, z!

3 @Q~x, z!3 ~P~x, z! ~ Q~x, y!!#!;

we conjunct Q(x, max) to this and get the desired a. e

To reduce ESO(@?@) to ESO(@@@), let

F 5 ?R@x?y@z.w,

where w is quantifier-free. Seconder-order skolemization gives an equivalent

F9 5 ?R?F@@x?yF~ x, y! ` @x@y@z~F~ x, y!3 w~ x, y, z!!# .

Now use the lemma and then convert the resulting formula into the prenex form.
e

(Note that this proposition can not be applied in the proof of Proposition 3.1,
since it introduces additional predicate variables in the formula.)

4. A Combinatorial Theorem on Hypergraphs

In this section, we prove a result on hypergraphs. This result may be of
independent interest and will be used in Sections 6 and 8.

We introduce the concept of [e]-transversal of a (directed) hypergraph, which
is a key concept in the proofs of the main results in Sections 6 and 8. For
understanding those proofs, it is necessary to be acquainted with the definitions
of the present section.

An r-uniform directed hypergraph H 5 (N, E) consists of an r-ary relation E
over a finite set N, that is, E # Nr. (Note that other authors use the term

89Existential Second-Order Logic over Strings

directed hypergraph, for a different concept.) N is called the set of nodes and E
the set of (hyper)edges. Whenever we use the term hypergraph in this paper, we
actually mean uniform directed hypergraph. Directed (finite) graphs are a special
case given by r 5 2.

We denote by Pos(a, e) the set of all positions at which a occurs in edge e. Let,
for instance e 5 ^5, 6, 4, 5&, then Pos(5, e) 5 {1, 4}, Pos(6, e) 5 {2}, Pos(8,
e) 5 À, and so on.

By abuse of notation, we often write uH u instead of uE u for a hypergraph H 5
(N, E). Moreover, for two hypergraphs H 5 (N, E) and H9 5 (N9, E9), we
write H # H9 iff N # N9 and E # E9.

Let H 5 (N, E) a hypergraph. The degree degH(a) of a node a [N is the
number of edges of H in which a occurs. This notion generalizes to sets W of
vertices: If W # N, then the degree degH(W) of set W is the number of edges e [
E that meet W, that is, that have at least one component in W.

A transversal of a hypergraph H 5 (N, E) is a set T # N such that T meets all
e [E. A transversal is minimal, if it is of minimal cardinality.

Let us now introduce a more sophisticated concept of transversal, the excluded
edge transversal.

Definition 4.1. Let H 5 (N, E) be a hypergraph and e [E an edge. Then,
an [e]-transversal of H is a subset T of N such that each edge e9 [E 2 {e} has
at least one component b such that b [T and Pos(b, e9) #y Pos(b, e), that is, b
occurs in e9 at least at one position where it does not occur in e.

Note that each [e]-transversal of H is a transversal of (N, H 2 {e}), but not
necessarily vice-versa. Furthermore, if T is an [e]-transversal of H, then every U
such that T # U # N is an [e]-transversal of H.

An [e]-transversal is minimal, if it contains a minimal number of elements. We
denote by te(H) the cardinality of a minimal [e]-transversal of H.

Example 4.1. Let H 5 (N, E) with N 5 {1, 2, 3, 4, 5} and E 5 {e1, . . . ,
e6}:

e1: 1 1 2 4 4
e2: 1 1 1 4 4
e3: 5 4 3 2 1
e4: 2 2 2 3 3
e5: 1 2 2 2 2
e6: 4 4 2 4 4

Then T 5 {1, 2, 4} is an [e1]-transversal of H, but T9 5 {2, 4} and T0 5 {1,
2} are not, even though T9 and T0 are both transversals of (N, E 2 {e1}). Note
that T is even a minimal [e1]-transversal of H. This can be seen as follows: Every
[e1]-transversal of H must contain 1 to meet e2 correctly and 4 to meet e6
correctly. In order to meet e4 it must contain either 2 or 3. Therefore, it must
contain at least three elements. T has three elements and is thus minimal. We
have te1

(H) 5 3.

90 T. EITER ET AL.

Definition 4.2. Let H 5 (N, E) be a hypergraph. Then t(H) is defined by

t~H! 5
O e[E te~H!

uH u
.

Thus, t(H) is the average minimal [e]-transversal size of the hypergraph H.
The goal of this section is to show that the asymptotic growth of t(H) is
superlinear in log uH u.

Let us first state two simple lemmas.

LEMMA 4.1. Let H9 # H and let e be an edge of H9. Then te(H9) # te(H).

PROOF. It suffices to note that every [e]-transversal of H necessarily contains
an [e]-transversal of H9. e

LEMMA 4.2. Let H 5 (N, E) and H9 5 (N9, E9) be two hypergraphs. If H9 # H,
then t(H9) z uH9u # t(H) z uHu.

PROOF. We have

t~H9! z uH9 u 5 O
e[E9

te~H9! # O
e[E9

te~H! # O
e[E

te~H! 5 t~H! z uH u.

Here, the first inequality follows from Lemma 4.1, as H9 # H. e

We are now ready for the main result of this section.

THEOREM 4.3. For every positive integer r, there is a monotone polynomial p
such that every r-uniform hypergraph H satisfies uHu , p(t(H)).

PROOF. We prove the statement by induction on r.
(Induction Base) If r 5 1, then uH u 5 t(H) 1 1, and the statement trivially

holds.
(Induction Step) Suppose that p witnesses the claim for r, and let H 5 (N, E)

be an r 1 1-uniform hypergraph. Without loss of generality, we assume that
uH u . 1; by definition of t(H), we then have t(H) $ 1.

Since t(H) is an average over all te(H), there must exist an edge e [E such
that te(H) # t(H).

Let T be a minimal [e]-transversal of H. Then, uT u # t(H). Since T meets all
edges of H except possibly e, it follows that degH(T) $ uH u 2 1 $ uH u/ 2.

Consequently, there exists an element a [T such that a occurs in at least
uH u/(2 uT u) edges of H, that is, degH(a) $ uH u/(2 uT u). Let A be the set of all
edges of H containing a. We have uA u $ uH u/(2 uT u).

The element a may occur in different positions in the edges in A. However,
since there are only r 1 1 positions, there must exist a position i such that a
occurs in at least uA u/(r 1 1) $ uH u/(2 uT u(r 1 1)) elements of A at position i.
Let B # A be the set of all edges in A containing a in the ith position. Let c :5
2(r 1 1). Note that c is a constant depending only on r and that uB u $
uH u/(c uT u) $ uH u/(c z t(H)).

Let H9 5 (N, B). Clearly, H9 # H. Retain that

uH u # c z uH9 u z t~H! . (1)

91Existential Second-Order Logic over Strings

Define G :5 (N, Ba) where

Ba 5 $^a1, . . . , ai21, ai11, . . . , ar11& u^a1, . . . , ar11& [B%;

that is, Ba is obtained from B by dropping the ith column (which uniformly
contains a in B).

Note that uG u 5 uH9 u and, as easily seen, t(H9) 5 t(G).
Since G is r-uniform, applying the assumption on p yields

uH9 u 5 uG u , p~t~G!! 5 p~t~H9!! . (2)

Furthermore,

uH u z t~H9! # c z uH9 u z t~H! z t~H9! by (1)

c z uH u z t~H! z t~H! by Lemma 4.2

so that

t~H9! # c z t~H! z t~H! . (3)

Finally

uH u # ~c z t~H!! z uH9 u by (1)

~c z t~H!! z p~t~H9!! by (2)

~c z t~H!! z p~c z t~H! z t~H!! by (3) and the monotonicity of p .

It follows that the statement holds for r 1 1, which concludes the induction and
the proof of the theorem. e

Since any polynomial p(n) is asymptotically dominated by 2n and t(H) is
larger than some number dr for all sufficiently large uH u, we obtain from the
previous theorem the following result.

COROLLARY 4.4. For each positive integer r, there exists a constant cr $ 0 such
that for any r-uniform hypergraph H with uHu $ cr, the inequality t(H) . loguHu
holds.

5. Supports and Normal Forms

In this section, we introduce some machinery which is used in the subsequent
sections. In Section 5.1, we introduce concepts and notation. In Section 5.2, we
prove some normal form theorems, which will be convenient in proofs.

5.1. SELECTORS, WITNESS FUNCTIONS, SUPPORTS, AND CONFLICTS. Recall that,
in this paper, a term is an individual variable or an individual constant. Call a
clause w(x1, . . . , xn) complete (or a complete type) with respect to a given
vocabulary and a set of terms if it is a maximal syntactically consistent conjunc-
tion of literals in the given vocabulary with variables in { x1, . . . , xn}.

Definition 5.1 (NF1). Let A be an alphabet. An ESO(@?*) sentence F has
the normal form 1, in short NF1, if its quantifier-free part is a disjunction w 5
~D(F) of clauses D(F) such that each d [D(F) is complete for the vocabulary

92 T. EITER ET AL.

of F and for a set of individual variables (not necessarily all individual variables
in F).

Definition 5.2. Let F be an NF1 sentence ?R@x?y1
. . . ?yr.w with quanti-

fier-free part w, and let W be a string with universe U 5 U(W). A support for
(W, F) is a pair S 5 ^s, f&, where s and f are as follows:

—s is a map: U 3 D(F). Any such map is called a selector function for (W, F).
—f 5 ^f[1], . . . , f[r]& is an r-tuple of functions f[i]: U 3 U. Any such r-tuple

is called a witness function for (W, F).

Given a support V 5 ^s, f& for (W, F), we introduce the following notation:

—For any a [U, the witness tuple for a is the tuple f(a), and witset(a, V) is the
set { f[i](a) u1 # i # r} of witness elements for a.

—For any A # U, wit(A, V) is the set { f(a) ua [A} of the witness tuples for all
elements in A, and wit(V) is the set wit(U, V) of all witness tuples according
to V.

—For any d [D(F), culp(d, V) is the set s21(d) 5 {a [U us(a) 5 d} of
elements (“culprits”) assigned to d in V, and wit(d, V) is the set wit(culp(d,
V), V) of the witness tuples for all culprits for d.

—For any a [U, lit(a, V) is the collection of ground literals which results from
replacing x, y1, . . . , yr with a, f[1](a), . . . , f[r](a) in s(a). If A # U, then
lit(A, V) 5 ø{lit(a, V) : a [A}, lit(d, V) 5 lit(culp(d, V), V), and
lit(V) 5 lit(U, V).

—For any a [U, a free witness literal of a is a literal in lit(a, V) that does not
contain a. By freelit(a, V) we denote the set of free witness literals of a. If A
U, then freelit(A, V) 5 øa[A freelit(a, V) and freelit(V) 5 freelit(U, V).

—Finally, lit(W) is the set of all ground literals true in W.

Example 5.1. Consider a formula F 5 ?R@x?y1?y2?y3.(w1 ~ w2 ~ . . .),
where

w1 5 Ca~ x! ` Ca~ y1! ` Cb~ y2! ` Cb~ y3!

` Succ~ x, y1! ` Succ~ y2, y3! ` R~ x, y2! ` R~ x, y3! · · ·

w2 5 Cb~ x! ` Ca~ y1! ` Ca~ y2! ` Cb~ y3! ` Succ~ x, y1! ` ¬ R~ y2, y3! · · ·

Let W be the string depicted below, and let V 5 ^s, f& be a support for W and F,
such that s(2) 5 w1, s(11) 5 w1, and s(24) 5 w2, and where f is defined on 2, 11,
and 24 as depicted.

Then,

lit(2, V) 5 {Ca(2), Ca(3), Cb(8), Cb(9), Succ(2, 3), Succ(8, 9), R(2, 8),
R(2, 9), . . . },

93Existential Second-Order Logic over Strings

lit(11, V) 5 {Ca(11), Ca(12), Cb(20), Cb(21), Succ(11, 12), Succ(20, 21),
R(11, 20), R(11, 21), . . . },

lit(24, V) 5 {Cb(24), Ca(25), Ca(2), Cb(21), Succ(24, 25), ¬ R(2,
21), . . . }.

Hence, lit(V) 5 {R(2, 8), R(2, 9), R(11, 20), R(11, 21), ¬ R(2, 21), . . . }.
The set lit(W) contains the literals Cb(1), ¬ Ca(1), Ca(2), ¬ Cb(2), . . . ,
Ca(26), ¬ Cb(26), Succ(1, 2), Succ(2, 3), ¬ Succ(1, 3), etc; the literal ¬ R(2,
21) belongs to freelit(V). e

A support V for (F, W) is called locally consistent if, for each a [U, the
union lit(a, V) ø lit(W) is consistent. A support V is called consistent, if the
union lit(V) ø lit(W) is consistent; otherwise V is inconsistent.

The following lemma is obvious.

LEMMA 5.1. W ?5 F iff there exists a consistent support for F and W.

Elements a, b of W conflict over a support V if the set lit(a, V) ø lit(b,
V) ø lit(W) contains some atom L together with its negation; such L is a
conflict induced by a and b over V. We denote by conf(a, b, V) the set of all
conflicts induced by a and b over V. The following lemma is obvious:

LEMMA 5.2. Let V be a support for (W, F). Then V is inconsistent if and only if
there exists a pair a, b [U of elements conflicting over V, and V is locally
inconsistent if and only if there exists an element a [U such that a conflicts with
itself over V.

5.2. FURTHER NORMAL FORMS

Definition 5.3 (NF2). An NF1 sentence F 5 ?R@x?y1
. . . ?yrw is in normal

form 2 (NF2), if and only if it fulfills the following conditions:

(a) If distinct variables u, v occur in a clause, then the clause contains the
inequality literal u Þ v.

(b) For each clause d, there exists a monadic predicate symbol P in R such that
d contains the literal P(x) and the literals ¬ P(y1), . . . , ¬ P(yr).

LEMMA 5.3. Let G 5 (V, E) be a finite directed graph with a bound r on the
out-degree degG

1(v) 5 u{v9 [V : (v, v9) [E}u of each node v. Then G is 2r 1
1-colorable.

PROOF. Induction on the number n of nodes. The case n 5 1 is obvious.
Suppose that the lemma has been proved for n 2 1. Since r is the bound on the
out-degree, the average in-degree is #r and therefore the average (total) degree
is #2r. Hence, there is a node v of degree #2r. By the induction hypothesis, the
rest of the graph can be (2r 1 1)-colored. The neighbors of v use at most 2r
colors; an unused color can be used to color v. e

A simple compactness argument shows that the lemma holds also for infinite
graphs, but we will not use that result here.

THEOREM 5.4. Every NF1 sentence F can be transformed into an equivalent
(over strings) NF2 sentence F*.

94 T. EITER ET AL.

PROOF. Let F be as in the definition of NF1. To satisfy requirement (a),
eliminate an equality x 5 j or j 5 x, where x precedes j in the canonical
ordering of variables, remove that literal and substitute x for j everywhere else in
the clause.

To satisfy requirement (b), consider any string W ?5 F and any support V for
(F, W). Create a directed graph G on U(W) by linking every culprit x to each of
its witness elements. Obviously, the out-degrees are bounded by r; by Lemma 5.3,
G is 2r 1 1-colorable. Since this is true for any support V, the (2r 1
1)-colorability follows from F itself. Introduce 2r 1 1 new monadic predicates
P1, . . . , P2r11 and replace each clause d [F by a collection of new clauses
augmenting d with all possible “colorings” of all individual variables in d by
means of the predicates Pi subject to the following restriction: x has a color
different from the colors of all other variables. (Coloring of a variable x with
color predicate Pi means asserting Pi(x) and ¬ Pj(x) for all j Þ i.) It is easy to
see that the resulting sentence F* is equivalent to F. e

Definition 5.4 (NF3). An NF2 sentence F 5 ?R@x?y1
. . . ?yrw is in normal

form 3 (NF3) if each clause contains all individual variables x, y1, . . . , yr.

THEOREM 5.5. For every sentence F 5 ?R@x?y1
. . . ?yrw, there exists an NF3

sentence F* equivalent to F on strings of length at least r 1 1.

PROOF. The goal is achieved in three steps.

Step (1). If a clause d of F does not contain all individual variables, augment it
with literals x Þ j where x ranges over the variables in F and j ranges over the
variables missing in d. Let F1 be the result. Clearly, F1 satisfies the condition (a)
from the definition of NF2.

Step (2). Use the second part of the proof of Theorem 5.4 to transform F1 into
F2 that is in NF2.

Step (3). If a clause of F2 is not complete with respect to the vocabulary of F,
replace it with an equivalent disjunction of complete clauses. e

6. Successor-free ESO(?*@?*) Is Regular

In this and the following two sections, we prove that ESO(?*@?*) is regular. The
proof is rather involved. In this section, we prove the regularity of the fragment
of ESO(@?*) that does not use Succ or min or max. In Section 7, we prove the
regularity of the fragment ESO(@?*) that does not use min or max. Finally, in
Section 8, we prove the regularity of ESO(?*@?*).

In Section 6.1, we introduce the semantic concept of boundedness and show
that a sentence is regular if it is bounded. The main result of this section is then
established in Section 6.2.

6.1. BOUNDED SENTENCES. Let K be a positive integer. An NF1 sentence F is
K-bounded if, for each W ?5 F, there exists a consistent support V for (W, F)
with uwit(V) u # K, so that the total number of witness tuples is #K. The
sentence F is bounded if it is K-bounded for some K.

THEOREM 6.1. If a successor-free NF1 sentence F (in which min, max do not
occur) is bounded, then F is regular.

95Existential Second-Order Logic over Strings

PROOF. Suppose that an NF1 sentence F is K-bounded. We show that F is
equivalent to a monadic second-order sentence, and thus, by Büchi’s Theorem, F
is regular.

Let F be of the form

?R@x?y1 · · · ?yr ~
g[D

g,

where R is a list of predicate variables and the g are the clauses of D 5 D(F).
Note that whenever (W, F) has a consistent support, then there is also a

consistent support V for (W, F) such that at most K z r elements of U(W)
appear in all witness tuples. Let Z 5 { z1, . . . , zK z r} be a set of K z r fresh
individual variables. Transform F to the following equivalent second-order
sentence F9:

?z1 · · · ?zK zr?R@x ~
g[D

~
z1, . . . ,zr[Z

g@ y1/z1, . . . , yr/z r# ,

where yi/z i means substitution of z i for yi. Let D9 be the set of all clauses in F9.
Now it is not hard to see how all predicates of arity .1 can be eliminated from
F9. For notational simplicity, we assume that R consists of one binary predicate
R. Note that each R-literal occurring in F9 has all its arguments among
{ x} ø Z. Replace each atom R(j, x) by a new unary atom Rj,x(x) or nullary
atom Rj ,x. That is, replace R(zi, zj) by Rzi,zj

, R(zi, x) by Rzi, x(x), R(x, zi) by
Rx,zi

(x), and R(x, x) by Rx, x(x). A clause g [D9 yields a clause g*. Let R* be
the list of new monadic predicate symbols Rj,x corresponding to the new atoms.
Formula F9 is then equivalent to

?z1 · · · ?zK zr?R*@xSc ` ~
g[D9

g*D ,

where @xc asserts that the new predicates are properly correlated. The formula
c is a conjunction of formulas like

z2 5 z33 ~Rx ,z2
~ x! 7 Rx ,z3

~ x!!

or

x 5 z23 ~Rz1, x~ x! 7 Rz1,z2
! .

This final formula is monadic. e

6.2. SUCCESSOR-FREE NF1 SENTENCES ARE REGULAR. In this section, we
prove that every successor-free NF1 sentence F is regular. The crux of the proof
is roughly described as follows: It is sufficient to show that F is bounded. To
prove this, we take a string W such that W ?5 F and a support V for F and W
having a minimal extent (i.e, assigning—in a precise sense—a minimal number of
witness tuples). Since the number of witness tuples (for short, witnesses) in V is
minimal, it is not possible to lump different witnesses together (i.e, we cannot
replace the witness of one element by the witness of another element and thus
decrease the number of witnesses). Since it is impossible to lump witnesses

96 T. EITER ET AL.

together, something must be responsible for this impossibility. Namely, for each
element a and each witness w of another element different from its own witness
w0, there must exist at least one literal L induced by V that blocks the possibility
of using w as witness for a instead of w0. Such literals L are called blockers. For
example, in Example 5.1, the literal ¬ R(2, 21) is a blocker, because it blocks the
reuse of the witnesses of position 11 for position 2 in the string W.

We compute a lower bound on the number of necessary blockers. We note that
the set of blockers for a particular element a having w0 as witness corresponds to
a [w0]-transversal of the hypergraph H formed by all witnesses. By Corollary 4.4,
the size of this transversal is on average at least loguH u. Moreover, it will be
shown that the sets of blockers corresponding to different elements are disjoint.
Therefore, uH u z loguH u is a lower bound on the total number of blockers
necessary to ensure the minimality of V. However, any support V can induce only
a linear number of literals (and thus blockers). By comparing the linear upper
bound with the uH u z loguH u lower bound, we conclude that the number of
witnesses is constant; as a consequence, formula F is bounded.

THEOREM 6.2. Every successor-free NF1 sentence (in which min, max do not
occur) is regular.

PROOF. Let F 5 ?R@x?y1
. . . ?yr.w be a successor-free NF1 sentence. By

Theorem 5.5, we assume without loss of generality that F is in NF3.
We denote by , the number of literals appearing in a clause of F; note that

since F is in NF3, all clauses of w have the same number of literals. For
convenience, we write D as shorthand for D(F).

We show that there exists a constant K such that if W ?5 w, then there exists a
consistent support V for F and W such that uwit(V) u # K. Thus F is bounded
and by Theorem 6.1 regular.

Assume thus that W ?5 F. Then let V 5 ^s, f& be a consistent support for F
and W such that the sum

O
g[D

uwit~g, V! u

is minimal over all consistent supports, that is, for no other consistent support V9
of F and W this sum is smaller.

Let d [D be a clause of w, let X 5 culp(d, V), that is, the set of elements in
U(W) that are mapped by s to the clause d, and let q 5 uwit(d, V) u.

Since F is in NF3, it is also in NF2 and thus it fulfills part (b) of Definition 5.3,
and s(b) Þ s(a) holds for all elements a [X and b [witset(a, V). Since all
elements of X have the same image d under s, the following property is true:

Fact 6.3. @a@b [X, b [y witset(a, V).

We define an equivalence relation ; on X as follows:

@u@v [X : u , v iff f~u! 5 f~v! .

Note that there are exactly q 5 uwit(d, V) u equivalence classes in X/;. Denote
by Z1, . . . , Zq the different equivalence classes of X/;.

For a, b [X we denote by V[a 3 0(b)] the support obtained from V by
assigning to a the witnesses of b instead of its own witnesses. Formally, V[a 3

97Existential Second-Order Logic over Strings

0(b)] 5 ^s, f9& where f9(a) 5 f(b) and f9(v) 5 f(v) for each v [U(W)\{a}.
Observe that literals in lit(V9)\lit(V) where V9 5 V[a 3 0(b)] must involve a
and apart from a only elements in witset(b, V).

CLAIM 6.4. @Z [X/; ?a [Z @b [X\Z: V[a 3 0(b)] is inconsistent.

PROOF OF CLAIM. Assume the claim does not hold. Then there exist a set
Z [X/; and a function h : Z 3 X\Z such that for each a [Z, V[a 3
0(h(a))] is consistent. Let Z 5 {c1, . . . , ck}. We show that the support V* 5
^s, f *&, defined by

V* 5 V@c130~h~c1!!#@c230~h~c2!!# · · · @ck30~h~ck!!# ,

is a consistent support for F and W.
To prove this, suppose V* is inconsistent. This inconsistency must be caused by

two conflicting elements a, b [Z. Indeed, let L 5 lit(U(W)\Z, V); then,
lit(V*) 5 L ø øa[Z lit(a, V*), where lit(a, V*) 5 lit(h(a), V)[h(a)/a] is the
set of literals lit(h(a), V) in which h(a) is uniformly replaced by a. Since
lit(V*) ø lit(W) is inconsistent but, by choice of h, lit(V[a 3
0(h(a))]) ø lit(W) and thus its subset L ø lit(a, V*) ø lit(W) is consistent,
it follows that for some a, b [Z, lit(a, V*) ø lit(b, V*) ø lit(W) is not
consistent, that is, conf(a, b, V*) Þ À. Moreover, conf(a, b, V*) must contain
two opposite literals L and L9 5 ¬ L that involve at least one of a, b. In fact, if
both L, L9 would involve neither a nor b, then L, L9 [lit(h(a), V) ø lit(h(b),
V) ø lit(W) # lit(V) ø lit(W), which is a contradiction. Assume without loss of
generality that both L and L9 involve a. Then L, L9 [y lit(b, V*), because by
Fact 6.3, a cannot occur in f *(b) 5 f(h(b)) and thus a does not occur in lit(b,
V*). Hence L, L9 [lit(a, V*) ø lit(W), and thus lit(a, V*) ø lit(W) is
inconsistent. Since lit(a, V*) ø lit(W) # lit(V[a 3 0(h(a))]) ø lit(W), this
implies that V[a 3 0(h(a))] is inconsistent. However, V[a 3 0(h(a))] is
asserted to be consistent; it follows that V* is consistent.

But by the definition of ; and V*, we have uwit(d, V*) u 5 uwit(d, V) u 2 1 and
thus ¥g[D uwit(g, V*) u , ¥g[D uwit(g, V) u, which contradicts our minimality
assumption on V. The claim is proved. e

Choose for each Zi an element ai [Zi such that for each b [X\Zi, the
support V[ai 3 0(b)] is inconsistent. Let wi :5 f(ai), for each 1 # i # q, and
let Vi, j :5 V[ai 3 0(aj)]. Note that by Fact 6.3, ai does not occur in wj, for
each 1 # i, j # q.

A conflict in Vi, j must involve a literal L9i, j in

lit~Vi, j!\lit~V! # lit~ai, Vi , j! .

Hence, the literal Li, j which is the opposite of L9i, j is in lit(V). Since L9i, j is a new
literal, it involves ai. It is easy to see that L9i, j cannot be unary or an equality
(otherwise, it would belong to lit(V)). Since L9i, j [y lit(ai, V), it follows that
some b occurs in wj in a position where it does not occur in wi. Notice also that
both L9i, j and Li, j contain apart from ai only elements from wj.

Fix such a literal Li, j and an element b as described for ai and wj and refer to
them as blocker(ai, wj) and dart(ai, wj), respectively.

98 T. EITER ET AL.

Let, for each 1 # i # q,

B~ai! 5 $blocker~ai, wj! u1 # j # q, j Þ i% , and

D~ai! 5 $dart~ai, wj! u1 # j # q, j Þ i% .

(Note that D(ai) ù witset(aj, V) Þ À, for all 1 # i Þ j # q.) For 1 # i # q,
we have

r z uB~ai! u $ uD~ai! u;

indeed, every element e [D(ai) must occur in at least one blocker(ai, wj) [
B(ai), and at most r elements e [D(ai) can occur in a single blocker(ai, wj).
Moreover, from Fact 6.3 and taking into account the constants occurring in
B(ai), it follows that

B~ai! ù B~aj! 5 À, for all 1 # i Þ j # q.

Consequently,

U ø
i51

q

B~ai!U 5 O
i51

q

uB~ai! u $
1

r
O
i51

q

uD~ai! u.

Let H be the hypergraph H 5 (U(W), {wiu1 # i # q}). Then, it is easy
to see that for 1 # i # q, D(ai) is a [wi]-transversal of H. Hence, we have
uD(ai) u $ twi

(H) and thus

U ø
i51

q

B~ai!U 5 O
i51

q

uB~ai! u $
1

r
O
i51

q

uD~ai! u

$
1

r
O
i51

q

twi
~H! 5

t~H! z uH u

r
5

t~H! z q

r
.

Denote by vert(H) the set of all elements b [U(W) occurring in some edge of
H and let lit(H, V) 5 øb[vert(H) lit(b, V).

We show the following:

—For all 1 # i, j # q such that i Þ j, blocker(ai, wj) belongs to lit(H, V) or
freelit(V).

To verify this, first observe from the properties of Li, j that blocker(ai, wj) [
lit(U(W) 2 {ai}, V). It follows that if blocker(ai, wj) [y freelit(V), then
blocker(ai, wj) [lit(b, V) for some b [U(W)\{ai} which occurs in wj. This
means blocker(ai, wj) [lit(H, V), however.

Now let us determine a lower bound for the number of blockers blocker(ai, wj)
which are in freelit(V).

First observe that

ulit~H, V! u # , z q z r.

(Recall that , is the number of literals in a clause.)

99Existential Second-Order Logic over Strings

It follows that

U ø
i51

q

B~ai! ù freelit~V!U $
t~H! z q

r
2 , z q z r;

thus,

t~H! z q

r
2 , z q z r # ufreelit~V! u.

Assume now without loss of generality that the d [D we have chosen is such
that q 5 uwit(d, V) u is maximal over all clauses d [D. Then,

ufreelit~V! u # uD u z q z ,.

From these bounds on ufreelit(V) u, we derive that for maximal q, we have

t~H! z q

r
2 , z q z r # uD u z q z ,,

whence

t~H! 2 , z r2 # uD u z , z r.

If q . cr, then uH u . cr, and since H is r-uniform, by Corollary 4.4, we have
t(H) . loguH u 5 log q. From this and the previous inequation we obtain
(log q) 2 , z r2 # uD u z , z r, and thus log q # , z r z (r 1 uD u), from which it
follows that

q # 2, z r z (r1 uD u).

Let k0 5 max{cr, 2, z r z (r1 uD u)}. Then q # k0.
Now let K 5 k0 z uD u. Note that K is a constant that depends only on the

formula F.
Since q is maximal, we have

uwit~V! u # O
g[D

uwit~g, V! u # uD u z q # k0 z D 5 K,

which means that uwit(V) u # K. This shows that F is bounded. e

7. ESO(@?*) Is Regular

In this section, we show how Theorem 6.2 can be lifted to the case where the
successor predicate Succ is present, but min and max may not occur; we will deal
with the constants min and max in the next section.

7.1. LOCAL AND REMOTE WITNESSES. In this subsection, we extend the basic
concepts and definitions from Section 5.1.

Let F 5 ?R@x?y1
. . . ?yrw be a sentence (with Succ) in NF3. In the presence

of successor, the witnesses y1, . . . , yr of a clause d [D(F) are split into two
parts: the yi which are (directly or transitively) connected to x via Succ, which we

100 T. EITER ET AL.

call the local witnesses of x, and all other yi, which we call the remote witnesses of
x.

Accordingly, if we have a consistent support V 5 ^s, f& for F and a string W,
then f(a), witset(a, V), and wit(a, V) for any a [U(W) are split into a local
and a remote part, which is designated by index l and r, respectively.

More precisely, we have:

—f l(a) and fr(a) are the projections of f(a) to the components which hold the
local (respectively, remote) witness elements of a according to s(a); in
particular, fr(a) 5 f(a) if d has no local witnesses.

—witsetl(a, V) (respectively, witsetr(a, V)) is the set of all elements occurring in
f l(a) (respectively, fr(a)).

—witl(A, V) 5 { f l(a) ua [A} and witr(A, V) 5 { fr(a) ua [A}, for any A #
U(W).

—witl(d, V) 5 witl(culp(d), V) and witr(d, V) 5 witr(culp(d), V), for every d [
D(F);

—freelitr(a, V) is the set of all literals L [lit(a, V) such that only elements from
witsetr(a, V) occur in L. In other words, neither a nor any local witness of a
occurs in L.

Notice that lit(W) now also contains all interpreted literals for Succ which are
true in W. The definition of local consistency and consistency of a support V
remains unchanged. We observe that the Lemmas 5.1 and 5.2 hold in the
generalized setting.

7.2. FOURTH NORMAL FORM. For lifting the proof that ESO(@?*) sentences
are regular to the case with successor, we have to deal with local and remote
witness elements in an appropriate way.

Notice that all local witness elements are uniquely determined by the culprit.
Therefore, only remote witness elements can be reused. As we will show,
whenever W ?5 F, then a consistent support V for F and W exists which uses
only a constant number of remote witness elements (where the constant depends
only on the formula F).

In order to deal with local witness elements, it is convenient to introduce a
further normal form.

Definition 7.1. (NF4) An ESO(@?*) sentence F in NF3 has the normal form
4 (NF4), if it satisfies the following condition:

(c) For each clause d [D(F) and each local witness variable yi, there exists a
monadic predicate symbol Q in R such that Q(yi) is a conjunct of d while for
each variable yj, 1 # j Þ i # r occurring in d, ¬ Q(yj) is a conjunct of d.

Informally, condition (c) in the NF4 allows us to avoid locality conflicts when
reusing witnesses; it prevents that local witness elements of a [culp(d, V) are
witness elements of any b [culp(d, V) different from a.

THEOREM 7.1. For every NF1 sentence F 5 ?R@x?y1
. . . ?yr.w, where w is

quantifier-free, there exists a sentence F* in NF4 such that for each string W of
length at least r 1 1, W ?5 F iff W ?5 F*.

101Existential Second-Order Logic over Strings

PROOF. This can be established by following the proof of Theorem 5.5, by
doing a little more coloring in the formula in the proof of Theorem 5.4. In the
reduction to the graph coloring there, we add for each node b in the graph G on
each occurrence of b as a local witness element r 2 1 extra edges, directed from
b to all witness fellows for this occurrence; that is, if b [witsetl(a, V), then we
add arcs to every node b9 [witset(a, V)\{b}.

Since an element b may only occur a bounded number of times as a local
witness (#c z r for some constant c), the graph G that we construct this way has
out-degrees bounded by c9 z r2 for some constant c9, and hence G is (2c9 z r2 1
1)-colorable for some constant c9. Proceed then by asserting the coloring in the
usual way. e

We now have the following lemma, which generalizes Fact 6.3 in the proof of
Theorem 6.2.

LEMMA 7.2. Let X 5 culp(d, V) for some consistent support V for a string W
and d [D(F) where F is a formula in NF4. Then, the following holds:

@a@b [X : a [y witset~b, V! ` @a Þ b f witsetl~a , V! ù witset~b , V! 5 À# .

PROOF. From condition (b) of NF4 (a and b have the same color, and every
element in witset(b, V) has a color different from b’s color), it follows a [y
witset(b, V). Suppose that for some a, b [X an element c [witsetl(a,
V) ù witset(b, V) exists. Suppose c is colored red. By the coloring technique
(condition (c) of NF4), all local witness elements of a have a different color, and
all remote witness elements have a color different from all local witness colors.
Since b [X and c [witset(b, V), c must be for b at the same local witness
position as for a. But this means that b 5 a, a contradiction to the assumption.
This proves the lemma. e

7.3. BOUNDED SENTENCES WITH SUCCESSOR. The concept of boundedness is
generalized in the following way. An NF1 sentence F (with Succ) is bounded, if
there exists a constant K such that for each W modeling F, there exists a
consistent support V for F and W such that uwitr(V) u # K, that is, the number of
remote witness parts in V is at most K.

Theorem 6.1 is adapted as follows:

THEOREM 7.3. Every NF1 sentence F (in which min and max do not occur)
which is bounded is regular.

PROOF. The proof is analogous to the proof of Theorem 6.1, but slightly more
involved.

Let as in the proof of Theorem 6.1 be Z 5 { z1, . . . , zk} the fresh variables
for the remote witness elements. Transform F to F9:

?z1 · · · ?zk?R@x?y1 · · · ?yr ~
g[D(F)

~
z1, . . . ,zr[Z

g@q1, . . . , q r# ,

where q i stands for yi/z i, if yi is a remote witness variable for g, and for yi/yi (i.e.,
replace yi by itself) if yi is a local witness variable for g. Let us assume as in the
proof of Theorem 6.1 that R consists of one binary predicate R (the general case
is similar).

102 T. EITER ET AL.

The replacement of binary atoms R(j, x) by new monadic atoms Rj ,x(x) is
done in a similar way, but for each local witness yi from j, x, we must record in
Rj,x the local position of yi to x with respect to Succ; this can be handled if we
assume without loss of generality that y1, y3, . . . , y2i11, . . . (odd index) is the
first, second, ith successor of x and y2, y4, . . . , y2i, . . . (even index) is the first,
second, ith element before x.

For example, Ry2,z1
(x) then tells that the predecessor of x is in relation R to

element z1, and Ry3, x(x) that the second element after x is in relation R to x.
The formula c ensures the compatibility of the monadic predicates that we

have introduced, and again consists of a conjunction of FO formulas for each
pair of new predicates Rj,x and Rj9,x9.

For the previous two predicates, that formula would look like:

@x@y1 · · · @yr@u@v1 · · · @vr~@Succ~ y2, x! ` Succ~u, v1! ` Succ~v1, v3!

` ~ y2 5 v3! ` ~ z1 5 x!#3 @Ry2,z1
~ x! 7 Ry3, x~u!#!;

(Variables u, v1, . . . , vr replace x, y1, . . . , yr for accessing the Ry3, x.)
Repeating this process gives again a monadic formula F*, and proves the

theorem. e

7.4. NF1 SENTENCES WITH SUCCESSOR ARE REGULAR. We now prove the
generalization of Theorem 6.2 to the setting where successor literals occur in the
formula. The proof is similar to the proof of Theorem 6.2 but somewhat more
involved. The main differences caused by the successor literals are informally
described as follows:

—For each fixed selection function s, disjunct d, and element a with s(a) 5 d,
the local witnesses of any support V 5 ^s, f& are unambiguously determined
by d. In other words, for any two consistent supports V 5 ^s, f& and V9 5 ^s,
f9&, it must hold that f l(a) 5 f9l(a). If V is a consistent support, then, for
different elements a and b, where s(a) 5 s(b) and a, b have local witnesses,
any support V[a 3 0(b)] is inconsistent because of a local witness mismatch.
Note that such an inconsistency is a local inconsistency and does by no ways
imply the existence of blockers as in the successor-free case. It thus makes no
sense to consider supports of type V[a 3 0(b)]. Instead, we will consider
supports V[a 3 0r(b)], where the remote part fr(a) of a is replaced by the
remote part fr(b) of b, while the local part of a remains unchanged. The aim is
then to show that—for a minimal support—the inconsistency of all supports
V[a 3 0r(b)] requires the existence of a certain number of blockers.

—In the proof of Theorem 6.2, we observed the following property of any
support V9 5 V[a 3 0(b)]: Every literal in lit(V9) which was not already in
lit(V) must involve a and apart from a only elements in witset(b, V). In
analogy to this, we show the following property of any support V9 5 V[a 3
0r(b)] in the current setting with successors: Every literal in lit(V9) not
contained in lit(V) must involve some element from witsetl(a, V) ø {a} and
also some element occurring in fr(b).

—Recall Fact 6.3 from the proof of Theorem 6.2 (@a, b [culp(d, V), b [y
witset(a, V)). This fact was very useful to exclude certain types of conflicts,
which may lead to inconsistent supports but do not imply the (desired)

103Existential Second-Order Logic over Strings

existence of blocking literals in freelit(V). In the successor case, such undesired
conflicts may not involve the element a, but some element in f l(a), the local
witness environment of a. For this reason, we will use a slightly stronger
version of Fact 6.3, namely:

Fact 7.5. @a, b [culp~d, V! ,

a [y witset~b, V! ` @a Þ b f witsetl~a , V! ù witset~b, V! 5 À# .

Fact 7.5 states that none of the local witnesses of a interferes with any of the
witnesses of an element b that receives its witnesses by the same disjunct d of
w.

—In analogy to the proof of Theorem 6.2, the main goal is to show that the
inconsistency of V[a 3 0r(b)] for a large number of pairs a, b forces a large
number of blockers to appear in freelitr(V). In presence of successor, for some
pairs a, b, the inconsistency of V[a 3 0r(b)] still may be due to conflicting
Succ literals and not to a blocker. However, by exploiting Fact 7.5, we are able
to prove that this happens only in a limited number of cases, while still many
pairs a, b effectively require a blocker.

—As in the proof of Theorem 6.2, not all blockers blocker(ai, wj) are good
blockers in the sense that they belong to freelitr(V). In the successor-free case,
we could show that the number of such bad blockers is small and that most
blockers are good. Here we will show a similar result. However, due to the
presence of local witnesses, the proof is slightly different.

Apart from these differences, the proof of the theorem below follows closely
the proof of Theorem 6.2.

THEOREM 7.4. Every NF1 sentence with possible occurrences of Succ is regular.

PROOF. The proof is similar to the proof of Theorem 6.2, but now we have to
deal with possible inconsistencies due to the successor.

Let F 5 ?R@x?y1
. . . ?yrw be an NF1 sentence. By Theorem 7.1, we assume

without loss of generality that F is in NF4.
We show that there exists a constant K such that if W ?5 F, then there exists a

consistent support V for F and W such that uwitr(V) u # K. Thus, F is bounded
and by Theorem 7.3 regular.

Assume thus that W ?5 F. Then let V 5 ^s, f& be a consistent support for F
and W such that the sum

O
g[D

uwitr~g, V! u

is minimal over all consistent supports, that is, for no other consistent support V9
of F and W is this sum smaller.

Let d [D be a clause of w, let X 5 culp(d, V), that is, the set of elements in
U(W) that are mapped in V by s to the clause d, and let q 5 uwitr(d, V) u.

By Lemma 7.2, we have the following:

Fact 7.5. @a@b [X :

a [y witset~b, V! ` @a Þ b f witsetl~a , V! ù witset~b, V! 5 À# .

104 T. EITER ET AL.

We define an equivalence relation ; on X as follows:

@a@b [X : a , b iff fr~a! 5 fr~b! ,

that is, the elements a and b that have the same remote witness parts are in the
same class. Note that there are exactly q 5 uwitr(d, V) u equivalence classes in
X/;. Denote by Z1, . . . , Zq the different equivalence classes of X/;.

For a, b [X we denote by V[a 3 0r(b)] the support obtained from V by
assigning to a the remote witnesses of b instead of its own remote witnesses.
Formally, if V 5 ^s, f&, then V[a 3 0r(b)] 5 ^s, f9& such that f9(v) 5 f(v),
for every v [U(W)\{a}, and f9(a) is the (unique) tuple such that f9l(a) 5 f l(a)
and f9r(a) 5 fr(b).

Compared to V, any new literal L in lit(V[a 3 0r(b)]) must involve elements
from witsetl(a, V) ø {a} and also elements from fr(b), that is, witsetr(b, V). To
see this, note that by the definition of V[a 3 0r(b)] 5: V9, clearly all new
literals must be from lit(a, V9); since lit(a, V9) results from lit(b, V) by
substituting a and witl(a, V) for b and witl(b, V), respectively, and since, by Fact
7.5, neither a nor any local witness of a is a witness of b, any literal L [lit(a,
V9) which does neither contain a nor any element of witsetl(a, V) belongs to
lit(b, V), and thus L is not new. Hence, all new literals of V9 with respect to V
must contain an element of witsetl(a) ø {a}, and apart from a also some
element in witsetr(b, V).

CLAIM 7.6. @Z [X/; ?a [Z @b [X\Z : V[a 3 0r(b)] is inconsistent.

PROOF OF CLAIM. Assume the claim does not hold. Then there exist a set
Z [X/; and a function h: Z 3 X\Z such that for each a [Z, V[a 3
0r(h(a))] is consistent. Let Z 5 {c1, . . . , ck}. We show that the support V* 5
^s, f *&, defined by

V* 5 V@c130 r~h~c1!!#@c230 r~h~c2!!# · · · @ck30 r~h~ck!!# ,

is a consistent support for F and W.
To prove this, suppose V* is inconsistent. This inconsistency must be caused by

two conflicting elements a, b [Z. Indeed, let L 5 lit(U(W)\Z, V); then,
lit(V*) 5 L ø øe[Z lit(e, V*), where lit(a, V*) 5 lit(h(a), V)[h(a)/a] is the
set of literals lit(h(a), V) in which h(a) is uniformly replaced by a. Since
lit(V*) ø lit(W) is inconsistent but, by choice of h, lit(V[a 3
0r(h(a))]) ø lit(W) and thus its subset L ø lit(a, V*) ø lit(W) is consistent,
it follows that for some a, b [Z, lit(a, V*) ø lit(b, V*) ø lit(W) is not
consistent, that is, conf(a, b, V*) Þ À.

Let {L, ¬ L} [conf(a, b, V*) be a conflict of a and b. Since every V[ci 3
0r(h(ci))] is locally consistent, also V* is locally consistent, and thus we
conclude that a Þ b and L, ¬ L [y lit(W).

Moreover, both L and L9 5 ¬ L must contain an element from either Sa 5
witsetl(a, V) ø {a} or from Sb 5 witsetl(b, V) ø {b}; if they would contain
neither, then L, L9 [lit(V) would hold, which contradicts the consistency of V.
Suppose then that L, L9 contain an element from Sa. Then, L, L9 [y lit(b, V*),
since, by Fact 7.5, no element from Sa can be a witness element of b. This is a
contradiction. An analogous contradiction arises for assuming that L, L9 contain
an element from Sb. It follows that V* is consistent.

105Existential Second-Order Logic over Strings

But, by the definition of ; and V*, we have uwit(d, V*) u 5 uwit(d, V) u 2 1
and thus ¥g[D uwit(g, V*) u , ¥g[D uwit(g, V) u, which contradicts our
minimality assumption on V. The claim is proved. e

Choose for each Zi an element ai [Zi such that for each b [X\Zi, V[ai 3
0r(b)] is inconsistent.

Note that, due to Fact 7.5, for every 1 # i Þ j # q, no element from
witsetl(ai, V) ø {ai} occurs in f(aj), that is, in witset(aj, V).

The inconsistency of V[ai 3 0 r(aj)] implies that there is a pair of opposite
literals Li, j, L9i, j 5 ¬ Li, j [lit(V[ai 3 0r(aj)]) ø lit(W). Since F has NF4, it
follows that either

(i) the predicate symbol of Li, j is Succ, or
(ii) the predicate symbol of Li, j is some predicate P of arity . 1 different from

Succ and equality.

Indeed, all monadic literals in lit(V[ai 3 0 r(aj)]) occur in lit(V), and by Fact
7.5 ai and its local witnesses are disjoint from aj and its witnesses, which makes
an equality conflict impossible.

Fact 7.5 tells us that for a particular j, only for a small number of i an Li, j as in
(i) is possible. Namely, an Li, j as in (i) implies that the contiguous segment Seg
constituted by witsetl(ai, V) ø {ai} is in lit(ai, V[ai 3 0 r(aj)]) adjacent to
some maximal contiguous segment Seg9 constituted by elements in witsetr(aj, V);
note that an overlap between Seg and Seg9 is not possible. Since the number of
maximal contiguous segments in witsetr(aj, V) is clearly bounded by r, for at
most 2r elements ai statement (i) applies. In the other cases, (ii) must be true.

Suppose that (ii) is true. Then, the following properties of Li, j, L9i, j can be
derived:

—both Li, j and L9i, j involve some element from Sai
5 witsetl(ai) ø {ai}. For,

otherwise Li, j and L9i, j would already have existed in lit(V) ø lit(W). Simi-
larly,

—at least one of Li, j, L9i, j must be from lit(ai, V[ai 3 0 r(aj)]).

—Li, j, L9i, j [y lit(W). Immediate.

—not both Li, j and L9i, j appear in lit(ai, V[ai 3 0r(aj)]). This follows from
Fact 7.5 and the local consistency of V.

Assume then without loss of generality that Li, j [y lit(ai, V[ai 3 0r(aj)]) and
L9i, j [lit(ai, V[ai 3 0r(aj)]). Since Li, j [lit(V[ai 3 0 r(aj)])\lit(W), it
follows that Li, j [lit(U(W)\{ai}, V) and thus Li, j [lit(V). On the other hand,
L9i, j [y lit(V), for otherwise V would be inconsistent.

Let wj 5 fr(aj), for j 5 1, . . . , q. The literals Li, j and L9i, j have the following
properties.

—Li, j and L9i, j must contain some element b from witsetr(aj, V) from some
position of wj at which in wi no b is present. To see this, assume the contrary.
Then since s(ai) 5 s(aj) 5 d, L9i, j [lit(ai, V) follows and thus Li, j, L9i, j [
lit(V). Contradiction. (Observe that from NF4 of F and condition (a) of
Definition 5.3, each element v [U(W) can occur at most once in any wk, and
hence uPos(v, wk) u # 1.)

106 T. EITER ET AL.

—Li, j, L9i, j contain apart from elements in Sai
only elements from witsetr(aj).

(Indeed, L9i, j 5 ¬ Li, j is in lit(ai, V[ai 3 0 r(aj)]).

Call a pair ai, aj Succ-consistent, if V[ai 3 0r(aj)] does not have any
inconsistency Li, j, L9i, j of type (i).

For each 1 # i, j # q such that ai, aj are Succ-consistent, fix a literal Li, j and
element b as described and refer to them as blocker(ai, wj) and dart(ai, wj),
respectively.

Let, for each 1 # i # q,

B~ai! 5 $blocker~ai, wj! u1 # j Þ i # q, ai, aj are Succ-consistent% , and

D~ai! 5 $dart~ai, wj! u1 # j Þ i # q, ai, aj are Succ-consistent% .

Notice that blocker(ai, wj) contains only elements from witsetl(ai, V) ø {ai}
and from wj (i.e., witsetr(aj)). Moreover, blocker(ai, wj) contains dart(ai, wj) and
some element from witsetl(ai, V) ø {ai}.

For 1 # i # q, we have

r z uB~ai! u $ uD~ai! u;

indeed, every element e [D(ai) must occur in at least one blocker(ai, wj) [
B(ai), and at most r elements e [D(ai) can occur in a single blocker(ai, wj).
Moreover, from Fact 7.5 and the elements occurring in B(ai), it follows that

B~ai! ù B~aj! 5 À, for all 1 # i Þ j # q.

Consequently,

U ø
i51

q

B~ai!U 5 O
i51

q

uB~ai! u $
1

r
O
i51

q

uD~ai! u. (4)

Let H be the hypergraph H 5 (U(W), {wiu1 # i # q}), and Hi # H the
hypergraph Hi 5 {wjuai, aj are Succ-consistent}, for 1 # i # q.

It is easily verified that for every 1 # i # q, the set D(ai) is a [wi]-transversal
of Hi.

Every [wi]-transversal T of Hi can be extended to a [wi]-transversal of H.
(Indeed, consider wj [H\Hi. Since wi 5 fr(ai) Þ fr(aj) 5 wj, there is a
position where wi and wj differ; pick an element bj in that position in wj. By
adding all bj’s to T, we obtain a [wi]-transversal of H.) Thus, if we set di 5
uH u 2 uHiu, we obtain the following inequation:

twi
~Hi! 1 di $ twi

~H! (5)

Indeed, we need to add at most di elements to a minimal [wi]-transversal of Hi

to obtain a [wi]-transversal of H.
By the above considerations on the predicate in literal Li, j, for every wj there

are at most 2r elements ai such that a Succ-conflict between ai and aj is present

107Existential Second-Order Logic over Strings

in V[ai 3 0 r(aj)]. Hence, we obtain

O
wi[H

uD~ai! u $ O
wi[H

twi
~Hi! (6)

$ O
wi[H

~twi
~H! 2 di!

$ S O
wi[H

twi
~H!D 2 2 z q z r

5 t~H! z uH u 2 2 z q z r.

Thus, we obtain from (4) and (6) the following bound on the number of blocking
literals:

U ø
i51

q

B~ai!U $
t~H! z q

r
2 2 z q. (7)

We show the following:

—For every 1 # i Þ j # q such that ai, aj are Succ-consistent, either

(a) blocker(ai, wj) [freelitr(V), or
(b) there exist b, b9 [U(W) such that b9 occurs in blocker(ai, wj), b9 [

witsetl(b) ø {b}, and blocker(ai, wj) [lit(b, V).

To verify this, recall that blocker(ai, wj) [lit(V); hence, if blocker(ai, wj) [y
freelitr(V), then some b [U(W) must exist such that blocker(ai, wj) [
lit(b, V)\freelitr(V). Thus, some b9 [witsetl(b) ø {b} exists such that b9 occurs
in blocker(ai, wj).

Let us check how many blockers can be covered by (b), for all 1 # i Þ j # q.
Denote by L the sets of all elements which occur in some blocker(ai, wj), where
1 # i Þ j # q. Since blocker(ai, wj) contains only elements from witsetl(ai,
V) ø {ai} and from wj, that is, from witsetr(aj), we have that (by commuting the
union terms):

L # ø
i#q

~witsetl~ai! ø $ai% ø witsetr~ai!! 5 ø
i#q

~witset~ai! ø $ai%! .

Since uwitset(ai) u # r, it follows that uL u # q(r 1 1).
Hence, there are at most q(r 1 1) possible choices for b9 as in (b). Fix b9, and

consider any possible b as in (b). Since b9 [witsetl(b) ø {b}, b and b9 are
close to each other; in particular, the distance between them cannot exceed r.
Thus, for a fixed b9 [L, there are at most 2r 1 1 choices for a b such that b9
[witsetl(b) ø {b} holds. It follows that there are at most q(r 1 1)(2r 1 1)
different b for all b9 [L. Now, since blocker(ai, wj) belongs to lit(b, V), and
there are at most , literals in lit(b, V), it follows that the overall number of
literals blocker(ai, wj) of type (b) is at most q(r 1 1)(2r 1 1),.

108 T. EITER ET AL.

All other literals blocker(ai, wj) must be covered by (a). It follows that

U ø
i51

q

B~ai! ù freelitr~V!U $
t~H! z q

r
2 2 z q 2 q~r 1 1!~2r 1 1! z ,.

Thus, we obtain the inequation

q z S t~H!

r
2 c0D # ufreelitr~V! u, (8)

where c0 5 (2 1 (r 1 1)(2r 1 1) z ,) depends only on F.
On the other hand, assume without loss of generality that the d [D we have

chosen is such that q 5 uwitr(d, V) u is maximal over all clauses d [D. Then,

ufreelitr~V! u # uD u z q z ,. (9)

From (8) and (9), we derive that for maximal q, we have

t~H! z q

r
2 c0 # uD u z q z ,,

whence

t~H! 2 c0 z r # uD u z , z r. (10)

Observe that H is r9-uniform for some r9 # r. If q . cr9, then uH u . cr9, and
since H is r9-uniform, by Corollary 4.4, we have t(H) . loguH u 5 log q. From
this and (10) we obtain (log q) 2 c0 z r # uD u z , z r, and thus log q # r z (c0 1
uD u z ,), from which it follows that

q # 2 r z(c01 uD u z,). (11)

Let k0 5 max{cr, 2 r z (c01 uD u z ,)} and K 5 k0 z uD u. Then, q # k0, and both k0
and K are constants only depending on formula F.

Since q is maximal, we have

uwitr~V! u # O
g[D

uwitr~g, V! u # uD u z q # k0 z D 5 K,

that is, uwitr(V) u # K. This shows that F is bounded, which proves the
theorem. e

8. ESO(?*@?*) Is Regular

The goal of this section is to finally show that the full class ESO(?*@?*) is
regular. To this aim, we first define some automata-theoretic concepts.

Definition 8.1. A simple nondeterministic transducer (SNT) is a tuple T 5 (A,
B, Q, E, qin, Qa), where

—A and B are finite alphabets, called the input alphabet and the output alphabet
of T, respectively;

109Existential Second-Order Logic over Strings

—Q is a finite set of states;
—E # Q 3 A 3 B 3 Q is a finite set of transitions, such that for each letter

a [A and each state q [Q, there exists some letter b [B and a state q9 [
Q such that the tuple (q, a, b, q9) [E.

—qin [Q is the initial state.
—Qa # Q is the set of accepting states.

A run R# of T on input string W [A* is a sequence of length uW u of tuples t i 5
(qi, ai, bi, q9i) [E, 1 # i # uW u, such that the following conditions are
satisfied:

—q1 5 qin,
—for 1 # i # uW u, ai 5 Wi is the ith letter of W.
—for 1 # i # uW u 2 1, qi11 5 q9i,
—q9uW u [Qa.

The output string R# (W) of such a run consists of the string b1b2
. . . b uW u in B*.

The SNT T associates with any input string W [A* a set of output strings
T(W) # B*, namely T(W) 5 {R# (W) uR# is a run of T on input W}.

Definition 8.2. Let L and L9 be languages over alphabets A and B, respec-
tively. Then, L is SNT reducible to L9, denoted by L a2 L9, iff there exists an
SNT T such that for each string W [A*, W [L iff T(W) ù L9 Þ À.

The following proposition is a simple special case of more general results on
transductions that can be found, for example, in Eilenberg [1974], Berstel [1979]
and Hopcroft and Ullman [1979] (in particular, see Hopcroft and Ullman [1979,
Theorem 11.2, p. 276]).

PROPOSITION 8.1. The class of regular languages is closed under SNT-reduc-
tions, that is, if L a2 L9 and L9 is regular, then also L is regular.

THEOREM 8.2. The class ESO(?*@?*) is regular.

PROOF. Let F be an ESO(?*@?*) formula of the form
?P?z1

. . . @zk@x?y1
. . . ?yr.w over an alphabet A, where w is quantifier-free.

Denote C 5 {min, max, z1, . . . , zk} and Terms 5 C ø { x, y1, . . . , yr}.
Without loss of generality, we assume that w is a disjunction of complete types
and that for all distinct t, t9 [Terms, each clause of w asserts t Þ t9 and
mentions all elements of Terms (cf. the proof of Theorem 5.4). Moreover, we
assume without loss of generality that each clause d of w contains for each term
t [Terms only one positive literal of the form Ca(t), where Ca is in the
signature (specifying the color of t). This literal is referred to as the color
qualification of t in d.

Let L 5 +(F) be the language defined by F on A. Let B 5 A ø A 3 C be
an extension of the alphabet A. For any letter e 5 (a, s) [B such that a [A
and s [C, we will refer to s as the label of e.

Let T be an SNT with input alphabet A and output alphabet B operating as
follows: For any string W [A*, T rejects W if uW u , uTermsu 5 k 1 r 1 3;
otherwise, T has all runs R# , which satisfy the following properties.

Denote the output for the letter Wi [A of W by R# (W) i, 1 # i # uW u, and
denote the output for W by R# (W).

110 T. EITER ET AL.

—The first letter W1 of W is transformed to R# (W)1 5 (W1, min), that is, the
label min is attached to the first letter.

—The last letter W uW u of W is transformed to R# (W) uW u 5 (W uW u, max), that is,
the label max is attached to the last letter.

—There are exactly k distinct positions 1 , i1, . . . , ik , uW u such that
R# (W) i1

5 (Wi1
, z1), R# (W) i2

5 (Wi2
, z2), . . . , R# (W) ik

5 (Wik
, zk). In other

terms, exactly k positions different from the first and the last of W are labeled
respectively with z1, . . . , zk.

—For all positions i [y {1, i1, . . . , ik, uW u}, R# (W) i 5 Wi.

The different nondeterministic runs of T produce the set T(W) consisting of
all output strings fulfilling the above conditions. It is obvious that such a
transducer T exists.

Let F9 be the NF1 sentence (with possible occurrence of Succ) over alphabet
B and the corresponding signature of the form

?P@x?y1 · · · ?yr?zmin?zmax?z1 · · · ?zk.w9,

where w9 is obtained from w as follows:

(1) Eliminate the constant min by replacing min everywhere with the variable
zmin and replace the color qualification Ca(min) of min in each clause d by
C(a,min)(zmin);

(2) Eliminate the constant max by replacing max everywhere with the variable
zmax and replace the color qualification Ca(max) of max in each clause d by
C(a,max)(zmax);

(3) Adjust all color qualifications of the zi variables as follows: For each clause
d, and each 1 # i # k, replace the color qualification Ca(zi) in d by
C(a,zi)(zi);

(4) Transform the so obtained formula into a disjunction of complete types.

Let L9 5 +(F9) be the language defined by F9. Since F9 is in NF1, L9 is
regular.

CLAIM 8.3. For each W [A*, W [L iff T(W) ù L9 Þ À.

PROOF OF CLAIM. Assume first W [L. Then, W ?5 F, and hence there exist
relations P and elements a1, . . . , ak in W such that

~W, P, a1 . . . , ak! ?5 @x?y1 · · · ?yrw~ z1, . . . , zk! .

Let R# be the run of T which for 1 # i # k outputs R# (W)ai
5 (Wi, zi). By the

construction of F9, R# (W) ?5 F9, hence R# (W) [L9. Since R# (W) [T(W), it
follows that T(W) ù L9 Þ À.

Conversely, assume that T(W) ù L9 Þ À. Then there is a run R# of T such
that R# (W) [L9, and hence there exist relations P on W such that

~R# ~W! , P! ?5 @x?y1 · · · ?yr?zmin?zmax?z1 · · · ?zk.w9.

Let a1, . . . , ak be the (unique) positions of R# (W) marked z1, . . . , zk, respec-
tively. Moreover, let amin 5 1 and amax 5 uW u. By the construction of F9 and the

111Existential Second-Order Logic over Strings

assumption about color qualifications in the disjuncts D(F), it is obvious that

~R# ~W! , P, amin, amax, a1, . . . , ak! ?5 @x?y1 · · · ?yr.w9~ zmin, zmax, z1, . . . , zk! ,

and thus

~R# ~W! , amin, amax! ?5 ?P?z1 · · · ?zk@x?y1 · · · ?yr.w9~ zmin, zmax! ,

whence

W ?5 ?P?z1 · · · ?zk@x?y1 · · · ?yr.w ,

and hence W ?5 F, which proves that W [L. e

In summary, we have shown that L a2 L9 via T. Since L9 is regular, by
Proposition 8.1, so is L. e

COROLLARY 8.4. Over strings, ESO(?*@?*) is equivalent to MSO and existen-
tial MSO.

As already mentioned in the Introduction (Section 1), equivalence of
ESO(?*@?*) and existential MSO does not hold on finite ordered graphs.
Indeed the property of disconnectivity of a finite ordered graph is expressible in
MSO, while it is not expressible in ESO(?*@?*) [Eiler and Gottlob 1998]. On
the other hand, both existential MSO and ESO(?*@?*) can express NP-
complete graph properties.

9. ESO(?*@@) Is Regular

In this section, we show that ESO(?*@@) is the second maximal standard
ESO-prefix class that is regular. There are no further such classes, and thus we
obtain a complete characterization of those ESO-prefix classes which are regular.

THEOREM 9.1. Over strings, every ESO(?*@@) sentence is equivalent to an
MSO sentence.

Theorem 9.1 together with Büchi’s Theorem (Proposition 2.1) implies the
desired result.

COROLLARY 9.2. The class ESO(?*@@) is regular.

In the rest of this section, we prove Theorem 9.1 under simplifying assump-
tions. A compact full proof is given in the appendix.

Let F be a ESO(?*@@) sentence ?R?y@x1@x2.w where w is quantifier-free.

LEMMA 9.3. The sentence F is equivalent to a disjunction of ESO(?*@@)
sentences ?R?y@x1@x2wi such that each wi fixes (that is uniquely determines) the
quantifier-free type of y.

(A quantifier-free type of y is a complete type of y on 5 and the relations of a
string.)

PROOF. Let c1(y), . . . , cm(y) be the quantifier-free types of y consistent
with w. The desired w i 5 c i ` w. e

112 T. EITER ET AL.

In the rest of the proof, we assume, without loss of generality, that w fixes the
quantifier-free type of y, and that min and max do not occur in w (they can be
defined using additional variables ymin and ymax in y and adding ¬ Succ(x1, ymin)
and ¬ Succ(ymax, x1) to w).

Let y1, . . . , yn be the constituents of y. Without loss of generality, w implies
that all n 1 2 individual variables take different values. Indeed, if w implies that
two distinct constituents of y have the same values, then one of the constituents
can be eliminated.

Without loss of generality, restrict attention to strings of length $n 1 2. If
c(y, x1, x2) is quantifier-free, let @̇x1x2c(x1, x2) assert that c(y, x1, x2) holds for
all values x1, x2 such that

x1 Þ x2, `
i

x1 Þ yi, and `
i

x2 Þ yi.

Call this universal quantifier strict.

LEMMA 9.4. F is equivalent to a sentence of form ?R?y@̇x1x2c where c is
quantifier-free.

PROOF. Replace @x1@x2w(y, x1, x2) with @̇x1x2c(y, x1, x2), where c is the
conjunction of formulas

`
i , j

w~y, yi, yj! , `
i

w~y, x1, yi! ,

`
i

w~y, yi, x2! , and w~y, x1, x2! . e

We therefore will assume that the universal quantifier in F is strict.
We illustrate the rest of the proof on the example where R contains only unary

predicates and one binary predicate E. Thus, F 5 ?U?E?y@̇x1x2w1 where U is a
tuple of unary predicates.

LEMMA 9.5. Without loss of generality, w contains no E-atoms with at most one
universal variable.

PROOF. We illustrate the proof on the example where y contains only one
constituent y. In that case, there are seven possible E-atoms with at most one
universal variable:

E~ x1, x1! , E~ x2, x2! , E~ x1, y! , E~ x2, y! , E~ y, x1! , E~ y, x2! , E~ y, y! .

Using fresh unary predicate variables E*,*, E*,y, Ey,* and a nullary predicate
variable Ey,y replace the seven atoms in w with atoms

E*,*~ x1! , E*,*~ x2! , E*,y~ x1! , E*,y~ x2! , Ey ,*~ x1! , Ey ,*~ x2! , Ey ,y,

respectively. Let c be the resulting formula and let

C 5 ?U?E?P?y@̇x1x2c .

We check that C is equivalent to F. First suppose that a string W models F and
fix the values of all existential variables so that the expanded structure W*

113Existential Second-Order Logic over Strings

models @̇x1x2c. Let b be the value of y. Set

E*,*~ x! :5 E~ x, x!

E*,y~ x! :5 E~ x, b!

Ey ,*~ x! :5 E~b, x!

Ey ,y :5 E~b, b! .

Clearly W* ?5 ?P?Q?E?y@̇x1x2c and therefore W ?5 C.
Secondly suppose that a string W models C and fix the values of all existential

variables so that the expanded structure W* models @̇x1x2c. Let b be the value
of y. Notice that c says nothing about E on pairs (x, x), (b, x), (x, b). Redefine
E on these pairs with respect to the following recipe:

E~ x, x! :5 E*,*~ x!

E~ x, b! :5 E*,y~ x!

E~b, x! :5 Ey ,*~ x!

E~b, b! :5 Ey ,y.

The modified W* satisfies w. Hence, W ?5 F. e

Remark 9.1. The mnemonic names E*,*, E*,y and Ey,* ease transition to the
case when y has several constituents or R has several predicates of arity .1. If y
has two constituents y1, y2 but the binary predicate E still is the only nonunary
predicate, the new unary predicates are

E*,*, E*,y1, E*,y2, Ey1,*, Ey2,*

and the new nullary predicates are

Ey1,y1, Ey1,y2, Ey2,y1, Ey2,y2.

If y has only one constituent y and a ternary predicate R is the only nonunary
predicate in R, then the new unary predicates are

R*,*,*, Ry ,* ,*, R*,y ,*, R*,*,y, Ry ,y ,*, Ry ,* ,y, R*,y ,y

and the only new nullary predicate is Ry,y,y. e

In the rest of the proof, we assume that w does not contain E-atoms with at
most one universal variable. The only E-atoms that can appear in w are E(x1, x2)
and E(x2, x1).

Let P and Q be fresh nullary predicate variables, and let w9(y, x1, x2)
(respectively, w0(y, x1, x2)) be obtained from w(y, x1, x2) by replacing E(x1, x2)
with P (respectively, Q) and replacing E(x2, x1) with Q (respectively, P).

LEMMA 9.6. The formula ?E@̇x1x2w(y, x1, x2) is logically equivalent to the MSO
formula.

@̇x1x2?P?Q@~w9~y, x1, x2! ` w0~y, x2, x1!# .

114 T. EITER ET AL.

PROOF. Let a(y) 5 @̇x1x2w(y, x1, x2) and b(y) be the MSO formula above.
First, we suppose that (M, E) ?5 a(b), where M is any model. We check that

M ?5 b(b). Let a1, a2 be distinct elements of M that do not occur in b, and set
P :5 E(a1, a2), Q :5 E(a2, a1). Since (M, E) ?5 w(b, a1, a2), M ?5 w9(b, a1,
a2). Since (M, E) ?5 w(b, a2, a1), M ?5 w0(b, a2, a1). Thus, M ?5 ?P?Q[w9(b,
a1, a2) ` w0(b, a1, a2)]. Since a1, a2 were arbitrary distinct elements outside of
b, M ?5 b(b).

Secondly suppose that M ?5 b(b) and order the elements of M. For all
elements a1 , a2 in M that do not occur in b, choose (the values of) P and Q
such that M ?5 w9(b, a1, a2) ` w0(b, a2, a1). Set E(a1, a2) :5 P and E(a2, a1)
:5 Q. Define the remaining values of E arbitrarily.

We check that (M, E) ?5 a(b). Indeed, let a1 , a2 be distinct elements of M
outside of b. By the definition of E, M ?5 w9(b, a1, a2) ` w0(b, a2, a1). It
follows that (M, E) models both w(b, a1, a2) and w(b, a2, a1). Thus, (M,
E) ?5 a(b). Hence, M ?5 ?Ea(b). e

It follows that the sentence F is equivalent to an MSO sentence. This
establishes Theorem 9.1 (see appendix for a full proof).

By Corollary 9.2 and the results in the previous sections, we thus obtain the
following exhaustive characterization of the regular ESO-prefix classes.

THEOREM 9.7

(i) ESO(?*@?*) and ESO(?*@@) are the only maximal regular standard
ESO-prefix classes.

(ii) The unique maximal (general) regular ESO-prefix class is given by
ESO(?*@?*) ø ESO(?*@@) 5 ESO(?*@(@ ø ?*)).

(iii) There are three minimal nonregular ESO-prefix classes, which are the standard
ESO-prefix classes ESO(@@@), ESO(@@?), and ESO(@?@).

10. A Dichotomy Theorem for Model Checking

In this section, we establish a result which is rather unexpected: For any
ESO-prefix class, model checking is either possible by a DFA (and thus in
constant space), or it is NP-complete. This shows that there is a (provably) huge
gap in the computational complexity of different ESO-prefix classes.

THEOREM 10.1. Model checking for ESO(Q) (i.e., given a string W, decide
whether W ?5 F where F is fixed) is NP-complete, for every Q [{@@@, @@?, @?@}.
Moreover, NP-hardness holds for sentences whose list of second-order variables
consists of a single binary predicate variable.

PROOF. Clearly, the problem is in NP. For the hardness part, we show that
SAT can be reduced to model checking for S1

1(Q).
We first show this for Q 5 @@@, and then by adaptations of the proof for the

other prefixes. For making the proof more intelligible, we first show that SAT is
expressible by formulas with monadic and two predicate variables R, R9; later,
we will show how to get rid of all predicate variables except for R.

We choose a string encoding of SAT instances, which are collections of clauses
5 {C1, . . . , Cm} on propositional variables p1, . . . , pn, as follows.

115Existential Second-Order Logic over Strings

The alphabet is A 5 {0, 1, 1, 2, [,], (,) }. We encode the variables pi,
1 # i # n, by binary strings of length log n. Each string encoding pi is
enclosed by parentheses ‘(’,’)’. The polarity of a literal pi/¬ pi is represented by
the letters ‘1’ or ‘2’, respectively, which immediately follows the closing
parenthesis ‘)’ of the encoding of pi. A clause is encoded as a sequence of literals
which is enclosed in square brackets ‘[’,’]’. We assume without loss of generality
that # Þ À and that each clause Ci [# contains at least one literal.

For example, the clause set # 5 {{ p, q, ¬ r}, {¬ p, ¬ q, r}} is encoded by
the following string:

@~00! 1 ~01! 1 ~10! 2 #@~00! 2 ~01! 2 ~10! 1 #.

Here, the propositional variables p, q, r are encoded by the binary strings 00, 01,
10, respectively.

This encoding is somewhat redundant but very intuitive. It is evident that such
an encoding can be obtained from any standard representation of SAT in
logspace.

In what follows, we will use the formulas

eqcol~ x, y! 5 ~
,[A

~C,~ x! ` C,~ y!! , (12)

varenc~ x! 5 C (~ x! ~ C0~ x! ~ C1~ x! ~ C)~ x! , (13)

which state that the string has at positions x and y the same letter from A and
that x is a letter of a variable encoding, respectively.

Consider the S1
1(@@@) formula

F 5 ?G?V?R?R9@x@y@z.w,

where G and V are unary, R9 and R are binary, and w is the conjunction of the
following quantifier-free formulas:

wG 5 wG ,1 ` wG ,2 ` wG ,3,

where

wG ,1 5 ~C [~ x!3 ¬ G~ x!! ` ~C]~ x!3 G~ x!! ,

wG ,2 5 ~Succ~ x, y! ` ¬ C [~ y! ` ¬ C)~ y!!3 ~G~ y! 7 G~ x!! ,

wG ,3 5 ~C)~ y! ` Succ~ x, y! ` Succ~ y, z!!3

~G~ y! 7 @G~ x! ~ ~V~ y! ` C1~ z!! ~ ~¬ V~ y! ` C2~ z!!#! ,

and

wV 5 ~C)~ x! ` C)~ y! ` R~ x, y!!3 ~V~ x! 7 V~ y!! ,

wR 5 @R~ x, y!3 ~eqcol~ x, y! ` varenc~ x!!# ` @~C (~ x! ` C (~ y!!3 R~ x, y!# ,

` @~¬ C (~ x! ` Succ~ z, x!!3 ~R~ x, y! 7 ~R9~ z, y! ` eqcol~ x, y!!!# , (14)

wR9 5 Succ~ z, y!3 @R9~ x, y! 7 ~R~ x, z! ` ¬ C)~ z!!# .

116 T. EITER ET AL.

The intuition behind this formula is as follows: The predicate V assigns a truth
value to each occurrence of a variable in the represented clause set #, which is
given by the value of V at the closing parenthesis of this occurrence. The clause
set # is satisfiable, precisely if there exists such a V assigning every occurrence of
the same variable the same truth value, such that every clause is satisfied. This
property is checked by the use of G, R, and R9.

The predicate G is used for checking whether each clause C [# is satisfied
by the assignment V. To this end, the predicate G is set to false at the ‘[’ marking
the beginning of C, and set to true at the ‘]’ marking the end of C by formula
wG,1; the formulas wG,2 and wG,3 propagate the value of G from a position x in
the clause representation to the successor position y, where the value switches
from false to true if y marks the sign of a literal which is satisfied by V; the
conjunct ¬ C [in wG prohibits the transfer of G from the end of C to the
beginning of the next clause, for which G must be initialized to false.

The predicate R is used to identify the closing parentheses ‘)’ of the represen-
tations of occurrences of the same variables. For positions x and y at which the
string W has letter ‘)’, the predicate R(x, y) is true precisely if x and y mark the
end of the same variable name. This is used in the formula wV, which then simply
states that V assigns every occurrence of a variable p in # the same truth value.

The purpose of the formulas wR and wR9 is to ensure that R(x, y) has for
positions x and y which mark the ends of occurrences of the same variable the
desired meaning. This is accomplished in an inductive way. R(x, y) intuitively
expresses the following: x and y have the same color and must be part of the
encodings ox 5 (. . .) and oy 5 (. . .) of variable occurrences in #; moreover,
x and y are at the same distance from the beginnings of these encodings. By
reference to the predicate R9, R(x, y) furthermore expresses that these proper-
ties also hold for the pair (x2, y2), where x2 (respectively, y2) is the
predecessor of x in ox (respectively, of y in oy). The predicate R9 is an auxiliary
predicate since we may not introduce additional first-order variables, which are
needed in the natural statement of the inductive property of R.

The formulas wR and wR9 thus effect that if R(x, y) is true for positions x and
y with letter ‘)’ in the string, then x and y mark the end of the same variable.

We establish the following fact. Let for each x [W such that W ?5 varenc(x)
be bv(x) 5 max{ y uy # x, W ?5 C((y)} the position of the closest ‘(’ in W
preceding or identical to x. Moreover, denote by reldist(x) the distance between
bv(x) and x and by preds(x) 5 { y [W ubv(x) # y , x} the set of all elements
y preceding x in the encoding of the variable to which x contributes.

FACT 10.2. Suppose that for relations R, R9 we have (W, R, R9) ?5 @x@y@z.wR `
wR9. Then, for all elements x, y [W, R(x, y) holds iff

(1) W ?5 eqcol(x, y),
(2) W ?5 varenc(x),
(3) reldist(x) 5 reldist(y), and
(4) for all x9 [preds(x), y9 [preds(y), reldist(x9) 5 reldist(y9) implies

eqcol(x9, y9).

PROOF. For every elements x, y [W such that W ?5 ¬ eqcol(x, y) or
W ?5 ¬ varenc(x), we clearly have ¬ R(x, y) by formula wR. Thus, it suffices to

117Existential Second-Order Logic over Strings

consider all elements x, y [W such that W ?5 eqcol(x, y) ` varenc(x), (and
thus W ?5 varenc(y)).

For such x, y, we prove the claimed equivalence by induction on n 5
max{reldist(x), reldist(y)}.

For n 5 0, it is easy to see that the equivalence holds.
Consider thus n . 0. Then, we have reldist(x), reldist(y) . 0 and

W ?5 ¬ C((x). Suppose that R(x, y) holds. Then, by part (14) of formula wR, for
the predecessor x2 of x in W, R9(x2, y) holds (note that x2 must exist). By the
formula wR9, we have that for the predecessor y2 of y in W, R(x2, y2) is true.
From the induction hypothesis, we thus easily conclude that (3) and (4) hold if
R(x, y) holds.

Conversely, suppose that (1)–(4) hold. Then, by the induction hypothesis, we
have that R(x2, y2) holds where x2 and y2 are as previously. Since clearly
W ?Þ C)(y2), by wR9 we have that R9(x2, y) is true, and by part (14) of formula
wR we thus have that R(x, y) is true. This concludes the induction step and thus
the proof of Fact 10.2. e

On the other hand, for every word W encoding a SAT instance, we can define
relations R and R9 such that (W, R, R9) ?5 @x, y, z. wR ` wR9. Indeed, include
in R all tuples (x, y) which satisfy (1)–(4) in Fact 10.2, and include in R9 all
tuples (x, y1) such that (x, y) is in R, W ?5 Succ(y, y1), and W ?5 ¬ C)(y). For
these R and R9 we can check that (W, R, R9) ?5 @x, y, z.wR ` wR9.

CLAIM 10.3. For a string W encoding a clause set #, # is satisfiable iff W ?5 F.

PROOF OF CLAIM. Suppose that # is satisfiable. Then, there exists an
assignment V of truth values to all occurrences of propositional atoms in # such
that all occurrences of the same variables receive the same value and every
clause is satisfied. We thus can readily define relations V, G, R and R9 such that
(W, G, V, R, R9) ?5 @x@y@zw, and thus W ?5 F; on the segment encoding a
clause C [# in W, G is false until the end marker ‘)’ of the first encoding of a
variable in C such that V makes the corresponding literal true, and G is true
from there onwards.

On the other hand, suppose that W ?5 F. Hence, there exist relations G, V, R,
and R9 such that (W, G, V, R, R9) ?5 @x@y@zw . Define a truth assignment t to
the variables p in # by t(p) 5 V(x), where x [W is any end marker ‘)’ of the
encoding of an occurrence of p in #.

From Fact 10.2, it follows that if R(x, y) holds for elements x, y [W such
that W ?5 C)(x) ` C)(y), then x and y mark the ends of the occurrences of the
same variable. Hence, by formula wV, the end markers x1(p), . . . , xkp

(p) of the
encodings of all occurrences of variable p in # have the same value in V.
From formula wG, it thus follows that for every clause C [#, there must exist a
literal L [C such that t makes L true. Hence, # is satisfiable. This proves the
claim. e

This concludes the proof for the class ESO(Q) where Q 5 @@@. For the
remaining two classes (Q 5 @@?, Q 5 @?@), we slightly adjust F. Let C91 be
a fresh monadic predicate variable, and define

w1 5 Succ~ x, y!3 ~~C91~ x! 7 C1~ y!!;

118 T. EITER ET AL.

intuitively, w1 states that C91 is a left shift of C1 by one position in the string
(where the value of C91(max) is not specified).

Modify w now to a formula w9 as follows.

—add w1 as a conjunct;
—replace wG,3 by the following formula w9G,3:

w9G ,3 5 ~C)~ y! ` Succ~ x, y!!3

@G~ y! 7 ~G~ x! ~ ~V~ y! ` C91~ y!! ~ ~¬ V~ y! ` ¬ C91~ y!!!#;
—rewrite wR to w9R by moving Succ(z, x) in the third conjunct from the premise

to the consequent, that is,

w9R 5 @R~ x, y!3 ~eqcol~ x, y! ` varenc~ x!!# `

@~C (~ x! ` C (~ y!!3 R~ x, y!# ` @~¬ C (~ x! `

~ x Þ min!!3 ~Succ~ z, x! ` ~R~ x, y! 7 ~R9~ z, y! ` eqcol~ x, y!!!!#;
—and, replace wR9 by the formula

w9R9 5 ~ x Þ min!3 @Succ~ z, x! ` ~R9~ y, x! 7 ~R~ y, z! ` ¬ C)~ z!!!# .

Observe that in the formula w9, the variable z only occurs in w9R and in w9R9.
Let

F@@? 5 ?C91, G, V, R, R9@x@y?z.w9,

F@?@ 5 ?C91, G, V, R, R9@x?z@y.w9.

Then, for every string W which encodes a clause set #,

W ?5 F N W ?5 F@@? N W ?5 F@?@

Indeed, the formula @x@y?zw9(x, y, z) is true in an expanded structure (W,
C91, G, V, R, R9), iff for all elements a, b [W, w9(a, b, f(a)) is satisfied,
where f(a) is the predecessor of a in W, if a Þ min, and f(min) is arbitrary
(observe that then R(a, b) is false if a 5 min or b 5 min). Therefore, the
existential quantifier on z only depends on x and can be moved before @y.

Thus, NP-hardness of model-checking holds for the prefix-classes ESO(@@@),
ESO(@?@), and ESO(@@?).

To conclude the proof of the theorem, we show first how we can get rid of the
binary predicate variable R9, and then how we can eliminate all monadic
predicate variables.

10.1. GETTING RID OF R9. Recall that F 5 ?G?V?R?R9@x@y@z.w. For
any relations G, V, R, R9 on a string W such that (W, G, V, R,
R9) ?5 @x@y@z.w, we observe the following:

(1) For all elements a, b [U(W), R(a, b) and R9(a, b) never hold
simultaneously; therefore, there is enough “space” in the relation R for
packing the tuples of R9 into R and discarding R9, provided we can
distinguish both groups of tuples from each other.

119Existential Second-Order Logic over Strings

(2) From Fact 10.2 it follows, in particular, that for elements a, b [W, R(a, b)
holds only if reldist(a) [reldist(b) (mod 2). On the other hand, as easily
seen, R9(a, b) only holds if reldist(a) [y reldist(b) (mod 2). This allows us to
distinguish possible tuples in R from possible tuples in R9. Thus, if we set
R :5 R ø R9, any tuple (a, b) of the new R stems from the old R, if
reldist(a) [reldist(b) (mod 2), and from R9, if reldist(a) [y reldist(b)
(mod2).

(3) The property reldist(x) [reldist(y) (mod 2) is clearly a regular property. It
can be logically defined via a monadic predicate P such that

P~ x! 7 ~reldist~ x! ; 0 ~mod 2!! .

In fact, if predicate P is available, then reldist(x) [reldist(y) (mod 2) if and
only if P(x) 7 P(y).

Based on these observations, it is clear that the following formula F* is
equivalent to F over SAT instances:

F* 5 ?P?G?V?R@x@y@z~wP~ x, y! ` w*~ x, y, z!! ,

where wP(x, y) defines the predicate P by

wP~ x, y! 5 ~C (~ x!3 P~ x!! `

@~Succ~ x, y! ` varenc~ x! ` varenc~ y!!3 ~P~ y! 7 ¬ P~ x!!# ,

and w* results from w by replacing any atom R(x, j) with R(x, j) ` (P(x) 7
P(j)) and replacing any atom R9(x, j) with R(x, j) ` ¬ (P(x) 7 P(j)).

From the sentences F@@? and F@?@, we can remove R9 in an analogous
manner, obtaining sentences F*

@@@ and F*
@?@.

10.2. GETTING RID OF MONADIC PREDICATE VARIABLES. Note that the only
monadic predicate variables in the formulas F*, F*

@@?, and F*
@?@ are C91, G, V,

and P. Moreover, for every choice of relations (G, V, P, R) witnessing that
W ?5 F* (respectively, (C91, G, V, P, R) witnessing that W ?5 F*

@@? or
W ?5 F*

@?@), the constants min and max do not occur in any tuple of R, if we
strip off possible such tuples arising from the packing of R9 into R by adding
R9(x, y) ?5 varenc(x) varenc(y) in the very beginning. Thus, it is possible to pack
the monadic predicates into R as follows.

Replace in F*, F*
@@?, and F*

@?@ uniformly C91(x) by R(min, x), G(x) by
R(max, x), V(x) by R(x, min), and P(x) by R(x, max). By doing this and some
minor adjustments, we obtain formulas F†, F@@?

† , and F@?@
† which contain R as

single predicate variable and which are over SAT instances equivalent to F*,
F*

@@?, and F*
@?@, respectively. e

COROLLARY 10.4. Let 4 # {?, @}* such that 4 ù ?*@(?1@{?, @}* ø @{?,
@}1) Þ À. Then, model checking for ESO(4) is NP-complete.

From Theorems 9.7 and 10.1, we obtain the following dichotomy theorem.

THEOREM 10.5 (DICHOTOMY THEOREM FOR MODEL CHECKING). Let 4 # {@,
?}* be any prefix set. Then,

120 T. EITER ET AL.

(i) ESO(4) expresses either only regular languages, or also some NP-complete
languages; equivalently,

(ii) model-checking for ESO(4) is either feasible by a finite-state automaton (and
thus in constant space and linear time), or NP-complete.

Observe that this dichotomy is provably strict and does not, like other
dichotomy theorems, for example, Schaefer’s result on SAT [Schaefer 1978] rely
on widely believed assumptions such as P Þ NP. Furthermore, not every
ESO-prefix class which expresses some NP-complete languages can express all of
NP. In fact, there is a unique minimal ESO-prefix class that captures NP.

PROPOSITION 10.6. The unique minimal ESO-prefix class (closed under subpre-
fixes) capturing NP over strings is ESO(@*).

PROOF (SKETCH). As shown in Leviant [1989] and Eiter et al. [1996], this class
captures NP over arbitrary finite ordered structures. Any (syntactically) smaller
class C must have a constant bound k on the number of universal FO-quantifiers.
But then model-checking for C is feasible in NTIME(nk) on a RAM, since all
“existential data” can be guessed nondeterministically. (On a TM, the exponent
may be slightly higher but still constant because it may be necessary to check the
consistency between several consecutive guesses.) By well-known time hierarchy
theorems, it follows that C cannot express all of NP. e

11. Finite Satisfiability

In this section, we prove some results concerning the satisfiability of ESO(4)
sentences F over strings, that is, deciding whether +(F) Þ À. Recall from the
introduction that the satisfiability problem for ESO(4) is a reformulation of the
satisfiability problem for FO(4).

It turns out that the separation of regular and nonregular ESO-prefix classes
also gives us a precise characterization of those classes for which satisfiability
over strings is decidable. In fact, the regular and the decidable classes coincide.

THEOREM 11.1. Let 4 be any prefix set. Then, over finite strings, the satisfiability
problem for ESO(4) is decidable if and only if ESO(4) is regular.

PROOF. The proofs of Theorem 8.2 (regularity of ESO(?*@?*)) and Theo-
rem 9.1 (regularity of ESO(?*@@)) are constructive, in the sense that a finite
state automaton recognizing +(F) can be effectively constructed from a given
sentence F. Hence, from Theorem 9.7 and the fact that the emptiness problem of
finite automata is decidable, it follows that for every regular class ESO(4),
satisfiability over finite strings is decidable.

Conversely, it suffices to show that satisfiability over finite strings is undecid-
able for all classes ESO(Q) where Q [{@@@, @@?, @?@}. This can be
established by a simple encoding of the question whether a given domino
problem has a periodic solution, which is up to minor adaptations identical to the
encoding of domino problems into formulas of the Kahr–Moore–Wang class in
the proof of Börger et al. [1997, Theorem 3.1.9]. For the reader’s convenience,
we describe the reduction here.

A domino system is a triple $ 5 ^D, H, V& where D is a finite set, whose
elements are called dominoes, and H, V # D 3 D are binary relations. $ tiles

121Existential Second-Order Logic over Strings

N 3 N, where N denotes the nonnegative integers, if there is a tiling t: N 3 N 3
D such that, for each i, j [N,

(i) If t(i, j) 5 d and t(i 1 1, j) 5 d9, then (d, d9) [H; and
(ii) If t(i, j) 5 d and t(i, j 1 1) 5 d9, then (d, d9) [V.

A domino system admits a periodic tiling of N 3 N, if there are integers
h, v . 0 such that for all i, j [N, t(i, j) 5 t(i 1 h, j) and t(i, j) 5 t(i, j 1
v). We note the following lemma.

LEMMA 11.2. Whether a given domino system $ admits a periodic tiling of N 3
N is undecidable.

Note that Berger [1966] proved that the unconstrained domino problem is
undecidable. The lemma is an immediate consequence of the stronger result that
the classes of domino systems that do not admit tilings of N 3 N and that admit
periodic tilings of N 3 N are recursively inseparable (see Börger et al. [1997,
Theorem 3.1.7]).

We describe an encoding of the question whether a domino system has a
periodic tiling into a formula from ESO(@?@); for the other classes, it is similar.
For each domino d [D, use a binary predicate variable Pd, and let P denote the
tuple of all these variables. Define the formula F as ?P@x?x9@y.w(x, x9, y),
where

w~ x, x9, y! 5 w s~ x, x9! ` `
dÞd9

¬ ~Pd~ x, y! ` Pd9~ x, y!! `

~
(d ,d9)[H

~Pd~ x, y! ` Pd9~ x9, y!! ` ~
(d ,d9)[V

~Pd~ y, x! ` Pd9~ y, x9!!

and

w s~ x, x9! 5 Succ~ x, x9! ~ ~ x 5 max ` x9 5 min! .

Intuitively, the formula ws expands a given finite string W periodically, by
considering the first position in W as the successor of the last position. This is
good enough for modeling a periodic tiling in which the horizontal period h and
the vertical period v coincide; as argued below, imposing the restriction that h 5
v must hold does not affect the answer of whether $ admits a periodic tiling. The
second conjunct of w states that at most one domino can be at any position, while
the last two conjuncts express that some domino must be there and the tiling is
admissible.

The formula F is satisfiable on finite strings over any fixed alphabet A, if and
only if $ admits a periodic tiling of N 3 N.

Indeed, if t is a periodic tiling of N 3 N with horizontal and vertical periods h
and v, respectively, then consider any string W on A whose length uW u is the least
common multiple of h and v. Define for all Pd in P relations on W by Pd(i, j) 7
t(i 2 1, j 2 1) 5 d. Then, (W, P) ?5 @x?x9@y.w(x, x9, y), and hence F is
satisfiable on finite strings over A.

Conversely, if for relations P on a string W over A, we have that (W,
P) ?5 @x?x9@y.w(x, x9, y), then the map t: N 3 N 3 D defined by t(i, j) 5 d

122 T. EITER ET AL.

iff (W, P) ?5 Pd(i9 1 1, j9 1 1), where i9 5 i mod uW u and j9 5 j mod uW u, is
a periodic tiling of N 3 N. e

From this theorem we immediately get a corollary on the finite satisfiability of
first order formulas over strings. Note that, as already mentioned in the
introduction, in the context of satisfiability, FO(4) formulas may contain free
predicate variables besides those occurring in the signature of the input string
(i.e., Succ, Ca, etc.).

COROLLARY 11.3. Over finite strings, for any prefix set 4 either

(i) the satisfiability problem for FO(4) is decidable and ESO(4) defines only
regular languages, or

(ii) the satisfiability problem for FO(4) is undecidable and ESO(4) defines some
NP-complete language.

12. Capturing REG and Closure under Complementation

In this section, we investigate ESO-prefix classes that capture the class of regular
languages, and that are closed under complementation.

The following lemma is well known; for an illustrative proof, see, for example,
Kolaitis and Papadimitriou [1990].

LEMMA 12.1. Every formula ?R?y1
. . . ?yk.w, where w is quantifier-free, is

equivalent to a formula ?y1
. . . ?ykzc, where c is quantifier-free.

A similar but weaker lemma holds if we allow one universal FO quantifier
before the quantifier-free part.

LEMMA 12.2. Over strings, every formula F 5 ?R?y1
. . . ?yk@x.w, where w is

quantifier-free, is equivalent to a finite disjunction of first-order formulas
?y1

. . . ?yk@x.c, where c is quantifier-free.

PROOF (SKETCH). The proof follows the lines of the proof of Theorem 9.1. F
can be assumed to be a disjunction of formulas F9 5 ?R?y1

. . . ?yk9@x.w9,
where k9 # k and w9 fixes the quantifier-free type of the variables yi such that
they are all different from each other and from min and max. It suffices to prove
the claim for a formula F of this form to obtain the result.

Predicates R [R of arity . 1 can be replaced in F by monadic predicates, so
that we may assume that all predicates in F have arity # 1. Moreover, the
quantifier-free part of F can be rewritten to a DNF ~ jd j of types d j each of
which extends the quantifier-free type of the variables yi by fixing the location of
x with respect to the variables yi and min and max such that if x 5 yi for some yi

(respectively, x 5 min, x 5 max) occurs in d, then x does not occur in any other
literal of d.

Remove then all clauses d i which contain an opposite pair of literals, remove
from the remaining types all literals R(x), ¬ R(x) where R is any (monadic)
predicate from R, and remove atoms R(c) where c [{min, max, y1, . . . , yk} by
using fresh nullary predicate variables. It is not hard to see that the resulting
formula (which contains no predicate variables of arity . 0) is equivalent to a
disjunction of formulas ?y1

. . . ?yk@x.c, where c is quantifier-free. This proves
the lemma. e

123Existential Second-Order Logic over Strings

THEOREM 12.3. Over strings, every language expressible in ESO(?*@) is express-
ible in FO(?*@).

PROOF. By Lemma 12.2, it remains to show that any disjunction w 5 ~ i51
k w i

of FO sentences w i 5 ?yi@x z c i, where c i is quantifier-free, is over strings
equivalent to some FO(?*@) sentence c. Let z 5 z1, . . . , zk be fresh FO
variables, and suppose the yi are pairwise disjoint; the desired c is

c 5 ?z?y1 · · · ?yk@xF ~
i

c i ` ~
i

~ zi 5 min! `

`
i

~~min Þ max ` zi 5 min!3 c i!G .

Intuitively, each zi serves as a switch; if min Þ max and zi 5 min, then the
formula w i is selected as a witness for the truth of w. This is checked by the
rightmost conjunct of c. The conjunct ~ i (zi 5 min) enforces that at least one
switch is on. However, for the extremal case where min 5 max the rightmost
disjunct does not work; this case is taken care of by the conjunct ~ i c i. e

By exploiting the previous lemmata, the following proposition is easily proved.

PROPOSITION 12.4. Let A 5 {a, b}. Then, (i) L1 5 a* is not expressible in
ESO(?*); (ii) L2 5 a*b* is not expressible in ESO(?*@); (iii) L3 5 {a, b}1{ba,
ab}{a, b}1 is not expressible in ESO({?, @}).

PROOF. Lemma 12.1, part (i) is easy; suppose a formula ?y.w(y), where w is
quantifier-free, expresses L1. Then, for every W [a*, there is some tuple c for
y on W such that W ?5 w(c). For W large enough, choose an element b in W
which is not coincident and not adjacent to min, max and any element in c, and
change the color of x. The resulting string W9 ?5 w(c); this contradicts that
?y.w(y) expresses L1.

Part (ii) is shown analogously. Suppose L2 were definable in ESO(?*@). Then,
from Lemma 12.2, it follows that L2 were definable by a finite disjunction w 5
~ i51

d w i of formulas w i 5 ?y1
. . . ?yk@xc i, for some k $ 0, where each w i is

quantifier-free.
Hence, for any string of form W 5 anbn, there is some w i such that W ?5 w i,

that is, there are elements a1, . . . , ak in W such that (W, a1, . . . , ak) ?5 @xc i.
For W large enough (choose n . 3k 1 2), there are elements xa and xb of
colors Ca and Cb in W, respectively, such that xa and xb are not adjacent or
coincident to any of min, a1, . . . , ak, max. Exchange the colors of xa and xb, and
let W9 be the resulting string. It is easy to see that (W9, a1, . . . , ak) ?5 @x z c i,
and thus W9 ?5 w. This contradicts that w defines L2.

To prove part (iii), suppose first L3 were definable in ESO(?). By Lemma
12.1, L3 would be definable by a sentence ?xw(x), where w is quantifier-free.
Consider the string W 5 aaba, which is in L3; it is easily seen that if
W ?5 ?xw(x), then either a4 ?5 ?xw(x) or ab2a ?5 ?xw(x); this contradicts that
?x zw(x) defines L3.

Suppose then L3 were definable in ESO(@). By Lemma 12.2, L3 were
definable by a disjunction w 5 ~ i51

n @xw i(x) of universal formulas @xw i(x),

124 T. EITER ET AL.

where w i(x) is quantifier-free. Consider W 5 a2baa2. Then, W ?5 @xw i(x) for
some i. Change the color of the third letter to Ca. Then, for the resulting W9 5
a6, we have W9 ?5 @xw i(x), since the third and fourth letter of W9 are
indiscernible for w i and w i is true for the fourth letter of W. This contradicts that
w defines L3. e

We thus establish the following result:

THEOREM 12.5. Let 4 be any nontrivial prefix set such that ESO(4) is regular.
Then, the following statements are equivalent:

(i) ESO(4) is closed under complementation;
(ii) ESO(4) captures REG;

(iii) 4 ù ?*@{@, ?}1 Þ À.

PROOF

(i) f (ii). Suppose that ESO(4) is closed under complementation. By Proposi-
tion 2.2, for establishing (ii) it suffices to show that 4 contains some prefix Q
which contains @? or @@ as a substring. We show that such a Q must exist in 4.

Suppose first that 4 contains any prefix Q9 such that uQ9 u . 1. Observe that
the complement L2 5 {a, b}*ba{a, b}* of the language L2 in part (ii) of
Proposition 12.4 is clearly expressible both in ESO(??) and in ESO(?@), while
L2 is neither expressible in ESO(??) nor in ESO(?@). Since ESO(4) is closed
under complementation, it follows that in this case, 4 contains some Q having
@? or @@ as substring.

Suppose now that every prefix Q [4 has length #1. We derive a contradic-
tion. Since 4 is nontrivial, it follows that either ? or @ must belong to 4, Suppose
@ [4. Since the complement L3 5 {l, a, b} ø {a, b}(a* ø b*){a, b} of the
language L3 in part (iii) of Proposition 12.4 is easily expressed in ESO(@) and
ESO(4) is, by hypothesis, closed under complementation, it follows that some
prefix Q9 such that uQ9 u . 1 must belong to 4; this is a contradiction. Hence, @
[y 4, and consequently {?} # 4 # {l, ?} (recall that l is the empty prefix).
Clearly, the complement L1 5 {a, b}*b{a, b}* of the language L1 in part (i) of
Proposition 12.4 is expressible in ESO(?), while L1 is not; this is a contradiction.
This proves (i) f (ii).

(ii) f (iii). Suppose that ESO(4) captures REG, and assume that
4 ù ?*@{?, @}1 5 À. Then, since ESO(4) is regular, it follows from Theorem
9.7 that 4 # ?*@. By part (ii) of Proposition 12.4, a*b* is not expressible in
ESO(?*@); hence, ESO(4) does not capture REG, which is a contradiction.

(iii) f (i). From Proposition 2.2 and the hypothesis, it follows that ESO(4)
captures REG; it is well known that REG is closed under complementation. e

COROLLARY 12.6. ESO(?*@) is the unique maximal regular ESO-prefix class
that does not capture REG.

Note that Theorem 12.3, Corollary 12.6 and the results by Immerman [1987]
imply that model checking for regular ESO-prefix classes which do not capture
REG is in low levels of AC0.

From the dichotomy theorem for model checking (Theorem 10.5), we thus
obtain the following dichotomy theorem for closure under complementation.

125Existential Second-Order Logic over Strings

THEOREM 12.7 (DICHOTOMY THEOREM FOR CLOSURE UNDER COMPLEMENTA-
TION). Let 4 # {?, @}* be any nontrivial prefix set. Then, under the assumption
NP Þ co-NP, the following statements are equivalent:

(i) ESO(4) is closed under complementation.
(ii) ESO(4) captures REG.

(iii) 4 ù ?*@{@, ?}1 Þ À and 4 ù ?*@(?1@{?, @}* ø @{?, @}1) 5 À.

13. Conclusion and Further Work

In this paper, we have investigated the expressive power and complexity of the
ESO-prefix classes over strings. We succeeded to settle some of the major
questions on this issue, giving a complete picture of the regular ESO-prefix
classes, their relationship to MSO, the complexity of ESO prefix classes, and a
characterization of those classes that are closed under complementation.

Some of the results were rather unexpected and required novel and involved
combinatorial proof arguments. In particular, this applies to the fact that
ESO(?*@?*), that is, the ESO-standard prefix class in which the first-order parts
of sentences are from the Ackermann class with equality, and the proof of this
result appears to be rather difficult.

Our results show several dichotomy properties for ESO-prefix classes over
strings. In particular, model checking for a class ESO(4) is either feasible by a
finite state automaton (and therefore in constant space), or it is NP-complete; a
regular ESO(4) is either equivalent to MSO, or its expressive power is first-order
(in fact, restricted to S2

0); and, either ESO(4) is not closed under complementa-
tion (assuming NP Þ co-NP), or it captures the class REG of regular languages.
In summary, with respect to any of these criteria, each ESO-prefix class ESO(4)
exhibits either a very good or an extremely bad behavior. Moreover, this matches
observations on similar good/bad dichotomies of prefix classes which have been
noted earlier in different contexts, for example, 0 –1 laws for ESO-prefix classes
[Kolaitis and Vardi 1990]. For a discussion, see Fagin’s [1993, p. 20].

Three particular related research issues deserve further investigation:

—The scope of the present paper are finite strings. However, infinite strings or
v-words are another important area of research. In particular, Büchi has
shown that an analogue of his theorem (Proposition 2.1) also holds for
v-words [Büchi 1962]. For an overview of this and many other important
results on v-words, we refer the reader to the excellent survey paper [Thomas
1990]. In this context, we have started to investigate which of the results of the
present paper survive for v-words. For some results, such as Theorem 9.1 this
is obviously the case since no finiteness assumption on the input word
structures was made in the proof. For the generalization of other results, such
as Theorem 8.2, further research is needed.

—We are investigating which of our results survive in case a linear order , is
available on the word structures, and in case the successor relation Succ is
replaced by such a linear order. As already mentioned in Section 2, for full
ESO , is tantamount to Succ because of interdefinability. However, this is not
so for many of the limited ESO-prefix classes. Preliminary results suggest that
most of the results in this paper carry over to the , case.

126 T. EITER ET AL.

—A further issue is the extension of our results to the fragments Sk
1(4), k . 1

of second-order logic, and to all of SO(4).

Appendix A

THEOREM 9.1. Over strings, every ESO(?*@@) sentence is equivalent to an
MSO sentence.

PROOF. Let F be a formula ?R?y@x1@x2.w, where y 5 y1, . . . , yn is a vector
of FO variables and w is quantifier-free. Without loss of generality, we assume
that min and max do not occur in w (they can be defined using additional
variables ymin and ymax in y and adding ¬ Succ(x1, ymin) and ¬ Succ(ymax, x1) to
w).

Clearly, it suffices to consider only strings W such that uU(W) u $ n 1 2.
Therefore, by a similar argument as in Lemma 9.4, we may assume without loss
of generality that w is a DNF formula

w~y, x1, x2! 5 ~ x1 5 x2! ~ ~
i, j

~ xi 5 yj! ~ ~
dk

dk,

such that every clause dk is a complete type over T 5 { x1, x2, y1, . . . , yn} which
includes for every pair j, x of different variables in T the literal j Þ x.

We show that all predicates in R [R of arity .1 can be removed from F by
introducing new monadic predicates R*.

First, we can easily remove all occurrences of atoms R(x1, . . . , xm) from w
such that at most one of x1, x2 occurs in them as follows: Replace R(x1, . . . ,
xm),

—if x1 occurs in it, by a unary atom Rx91, . . . ,x9m(x1), where x9i 5 * if x i 5 x1 and
x9i 5 x i otherwise, for i 5 1, . . . , m;

—if x2 occurs in it, by a unary atom Rx91, . . . ,x9m(x2), where x9i 5 * if x i 5 x2 and
x9i 5 x i otherwise, for i 5 1, . . . , m;

—otherwise, by a nullary predicate Rx1, . . . ,xm.

For example, R(y1, x2, y2, x2) is replaced by Ry1,*,y2,*(x2), and R(y1, y3) by
Ry1,y3

. Intuitively, Rx91, . . . ,x9m
(xi) represents the atom R(x1, . . . , xm)[*/xi].

Let R* be the list of all predicates variables that we have introduced for all
R [R of arity .1, and let

F* 5 ?R*?R?y@x1@x2zw*,

where w* 5 ~d[D(F)d* and d* is the clause obtained from d by the above
replacements. Notice that in d*, every literal with a predicate R [R of arity .1
contains both x1 and x2.

Over any string W such that uU(W) u $ n 1 2, F is equivalent to F*. To see
this, observe that if F* is true, then any interpreted atom Rx91,. . .,x9m(e) occurring
in some satisfied interpreted clause d*(y, a1, a2) of w represents an interpreted
atom R(a1, . . . , am). By the inequality literals in d*(y, a1, a2), different atoms
Rx91, . . . ,x9m(e) occurring in satisfied clauses d*(y, a1, a2) represent different
R-atoms; moreover, there is no conflict between any R-atom, represented by
such an Rx91, . . . ,x9m(e) or by a nullary predicate Rx1, . . . ,xm, and any actual
interpreted R-literal occurring in some interpreted clause d* which is satisfied.

127Existential Second-Order Logic over Strings

It remains to remove all occurrences of atoms R(x1, . . . , xm) from F* where
R [R and both x1, x2 occur among x1, . . . , xm.

For each pair g*, d* [D(F*) such that the conjunction

Cg*,d*~y, x1, x2! 5 g*~y, x1, x2! ` d*~y, x2, x1!

does not contain a pair of opposite literals, let dg*,d*(y, x1, x2) be the
conjunction which results from C after removal of all literals that involve an R [
R of arity .1; denote by G the collection of all such dg*,d*. (Notice that for
different g*, d*, the clauses dg*,d* are not necessarily different.)

Let R1 be the monadic relations in R, and let

F9 5 ?R*R1?y@x1@x2.w9,

where w9 5 ~a[G a(y, x1, x2); notice that F9 is a monadic SO formula.

CLAIM 13.1. Over any string W such that uU(W)u $ n 1 2, W ?5 F9 7 F*.

Hence, W ?5 F9 7 F, which proves the result.
To prove the claim, suppose first that W ?5 F*. Then, relations R*, R and a

tuple b of elements in W exist such that for every pair a1, a2 of elements in W,
disjuncts g, d [D(F) exist such that

~W, R*, R, b! ?5 g*~b, a1, a2! ` d*~b, a2, a1! ,

and thus

~W, R*, R, b! ?5 dg*,d*~b, a1, a2! ,

where dg*,d* [G. This means (W, R*, R1, b) ?5 @x1@x2.w9, and hence W ?5 F9.
Now suppose W ?5 F9. Then, for suitable relations R*, R1 on W and a tuple b

of elements in W, we have

~W, R*, R1, b! ?5 @x1@x2.w9,

and thus for each pair a1, a2 of elements in W, there is some clause dg*,d* [G,
denoted by sa1,a2

, such that (W, R*, R*, b) ?5 sa1,a2
(a1, a2).

We define extensions for the R [R of arity . 1 as follows. For elements a1,
a2 [U(W) such that a1 # a2 in W according to Succ, we have sa1,a2

5 dg*,d*
for some g*, d* [D(F*). Let Cg*,d*(b, x1, x2) be the conjunction from which
dg*,d* results in the construction of F9. Then, C(b, a1, a2) does not contain any
pair of opposite literals. Include in R every tuple (e1, . . . , em) such that a
positive literal R(e1, . . . , em) occurs in C(b, a1, a2). Notice that if (e1, . . . ,
em) is added to R, then there are no elements a91 , a92 such that a91 Þ a1 or
a92 Þ a2 for which ¬ R(e1, . . . , em) occurs in the satisfied conjunction
Cg*9,d*9(b, a91, a92), where sa91,a92

5 dg*9,d*9. Indeed, the literals involving both
a91 and a92 are different from those involving both a1 and a2. Then,

~W, R*, R, b! ?5 g*~b, a1, a2! ` d*~b, a2, a1!;

128 T. EITER ET AL.

consequently,

~W, R*, R, b! ?5 @x1@x2 ~
d*[D(F*)

d*~b, x1, x2! ,

which means W ?5 F*. This proves the equivalence of F* and F9 over W and
concludes the proof of the theorem. e

Remark. In the above proof, neither the finiteness of the universe nor the particular features of word
structures (such as colors, succ) are used. Therefore, Theorem 9.1 generalizes to arbitrary structures.

ACKNOWLEDGMENTS. The authors thank E. Grädel and E. Rosen for comments
concerning decidability aspects of FO-prefix classes over finite strings; they
proposed Corollary 11.3 and suggested a reduction from domino problems for
proving the undecidability part. We also thank F. Neven as well as the referees
for a very close reading of the manuscript and their numerous comments.
Furthermore, we are grateful to H. Veith and H. Habiger for useful comments.
We acknowledge the support by the Austrian Science Fund Project NZ29-1NF
and the National Science Foundation (NSF) grant CCR 95-04375.

REFERENCES

ABITEBOUL, S., HULL, R., AND VIANU, V. 1995. Foundations of Databases. Addison-Wesley,
Reading, Mass.

AJTAI, M. 1983. S1
1 Formulae on Finite Structures. Ann. Pure Appl. Logic 24, 1– 48.

BASIN, D., AND KLARLUND, N. 1995. Hardware verification using monadic second-order logic. In
Proceedings of the 7th International Conference on Computer Aided Verification (CAV’95). Lecture
Notes in Computer Science, vol. 939. Springer-Verlag, New York, pp. 31– 41.

BERGER, R. 1966. The undecidability of the domino problem. Mem. AMS 66.
BERSTEL, J. 1979. Transductions and Context-Free Languages. Teubner, Stuttgart.
BÖRGER, E., GRÄDEL, E., AND GUREVICH, Y. 1997. The Classical Decision Problem. Springer,

Berlin-Heidelberg, Germany.
BÜCHI, J. R. 1962. On a decision method in restricted second-order arithmetic. In Proceedings of

the International Congress on Logic, Methodology and Philosophy of Science, E. Nagel et al., eds,
Stanford University Press, Stanford, Calif., pp. 1–11.

BÜCHI, J. R. 1960. Weak second-order arithmetic and finite automata. Z. Math. Logik Grund.
Math. 6, 66 –92.

DE ROUGEMONT, M. 1987. Second order and inductive definability on finite structures. Z. Math.
Logik Grund. Math. 33, 47– 63.

DURAND, A., LAUTEMANN, C., AND SCHWENTICK, T. 1998. Subclasses of Binary NP. J. Logic
Comput. 8, 2, 189 –207.

EBBINGHAUS, H.-D., AND FLUM, J. 1995. Finite Model Theory. In Perspectives in Mathematical
Logic. Springer-Verlag, New York.

EILENBERG, S. 1974. Automata, Languages, and Machines. Academic Press, New York.
EITER, T., AND GOTTLOB, G. 1998. On the expressiveness of frame satisfiability and fragments of

second order logic. J. Symb. Logic 63, 1, 73– 82.
EITER, T., GOTTLOB, G., AND GUREVICH, Y. 1996. Normal forms for second-order logic over finite

structures, and classification of NP optimization problems. Ann. Pure Appl. Logic 78, 111–125.
FAGIN, R. 1974. Generalized first-order spectra and polynomial-time recognizable sets. In Com-

plexity of Computation, R. M. Karp, ed. American Mathematics Society, Providence, R.I., pp. 43–74.
FAGIN, R. 1975. Generalized monadic spectra. Z. Math. Logik Grund. Math. 21, 89 –96.
FAGIN, R. 1993. Finite-model theory—A personal perspective. Theoret. Comput. Sci. 116, 1, 3–31.
GRÄDEL, E. 1991. The expressive power of second-order Horn logic. In Proceedings of the

Symposium on Theoretical Aspects of Computer Science (STACS ’91). Lecture Notes in Computer
Science, vol. 480, Springer-Verlag, New York, pp. 466 – 477.

GRÄDEL, E. 1992. Capturing complexity classes with fragments of second order logic. Theoret.
Comput. Sci. 101, 5–57.

129Existential Second-Order Logic over Strings

GRANDJEAN, E. 1985. Universal quantifiers and time complexity of random access machines. Math.
Syst. Theory 13, 171–187.

GUREVICH, Y. 1988. Logic and the challenge of computer science. In Trends in Theoretical
Computer Science, E. Börger, ed. chapter 1. Computer Science Press, Rockville, Md.

HENRIKSEN, J. G., JENSEN, J., JØRGENSEN, M., KLARLUND, N., PAIGE, B., RAUHE, T., AND SANDHOLM

A. 1996. Mona: Monadic second-order logic in practice. In Proceedings of Tools and Algorithms
for the Construction and Analysis of Systems, First International Workshop, TACAS’95. Lecture Notes
in Computer Science, vol. 1019. Springer-Verlag, New York, pp. 89 –110.

HOPCROFT, J., AND ULLMAN, J. 1979. Introduction to Automata Theory, Languages, and Computa-
tion. Addison-Wesley, Reading, Mass.

IMMERMAN, N. 1986. Relational queries computable in polynomial time. Inf. Cont. 68, 86 –104.
IMMERMAN, N. 1987. Languages that capture complexity classes. SIAM J. Comput. 16, 760 –778.
IMMERMAN, N. 1999. Descriptive Complexity. Springer-Verlag, New York.
KLARLUND, N. 1998. Mona & Fido: The Logic-Automaton Connection in Practice. In Proceedings

of the Conference on Computer Science Logic (CSL ’97), Mogens Nielsen, Wolfgang Thomas, eds.
Lecture Notes in Computer Science, vol. 1414. Springer-Verlag, New York, pp. 311–326.

KOLAITIS, P., AND PAPADIMITRIOU, C. 1990. Some computational aspects of circumscription. J.
ACM 37, 1 (Jan.), 1–15.

KOLAITIS, P., AND PAPADIMITRIOU, C. H. 1991. Why not negation by fixpoint? J. Comput. Syst. Sci.
43, 125–144.

KOLAITIS, P., AND THAKUR, M. N. 1995. Approximation properties of NP minimization classes.
J. Comput. Syst. Sci. 50, 391– 411.

KOLAITIS, P., AND VARDI, M. Y. 1990. 0-1 Laws and decision problems for fragments of second-
order logic. Inf. Comput. 87, 302–338.

LAUTEMANN, C., SCHWENTICK, T., AND THÉRIEN, D. 1995. Logics for context-free languages. In
Proceedings of the Conference on Computer Science Logic (CSL ’94). Leszek Pacholski, Jerzy Tiuryn,
eds. Lecture Notes in Computer Science, vol. 933, Springer-Verlag, New York, pp. 205–216.

LEIVANT, D. 1989. Descriptive characterizations of computational complexity. J. Comput. Syst. Sci.
39, 51– 83.

LYNCH, J. F. 1992. The quantifier structure of sentences that characterize nondeterministic time
complexity. Comput. Complex. 2, 40 – 66.

MCNAUGHTON, R., AND PAPERT, S. 1971. Counter-Free Automata. MIT Press, Cambridge, Mass.
OLIVE, F. 1998. A conjunctive logical characterization of nondeterministic linear time. In Proceed-

ings of the Conference on Computer Science Logic (CSL ’97), Mogens Nielsen, Wolfgang Thomas,
eds. Lecture Notes in Computer Science, vol. 1414, Springer-Verlag, New York, pp. 360 –372.

PACHOLSKI, L., AND SZWAST, W. 1991. On the 0-1 law for the existential second-order minimal
Gödel sentences with equality. In Proceedings of the 6th Annual Symposium on Logic in Computer
Science (LICS ’91). IEEE Computer Science Press, Los Alamitos, Calif., pp. 290 –285.

PANCONESI, A., AND RANJAN, D. 1993. Quantifiers and approximation. Theoret. Comput. Sci. 107,
145–163.

PAPADIMITRIOU, C. H., AND YANNAKAKIS, M. 1991. Optimization, approximation, and complexity
classes. J. Comput. Syst. Sci. 43, 425– 440.

PIN, J.-E. 1986. Varieties of Formal Languages. North Oxford, London and Plenum, New York.
PIN, J.-E. 1994. Logic on words. Bull. EATCS 54, 145–165.
PIN, J.-E. 1996. Semigroups and automata on words. Ann. Math. Artif. Int. 16, 343–384.
ROSEN, E. 1999. An existential fragment of second order logic. Arch. Math. Logic 38, 217–234.
SACCÁ, D. 1997. The expressive powers of stable models for bound and unbound DATALOG

queries. J. Comput. Syst. Sci. 54, 3, 441– 464.
SCHAEFER, T. J. 1978. The complexity of satisfiability problems. In Proceedings of the 10th Annual

ACM Symposium on the Theory of Computing (STOC ’78) (San Diego, Calif., May 1–3). ACM, New
York, pp. 216 –226.

SCHLIPF, J. 1995. The expressive powers of logic programming semantics. J. Comput. Syst. Sci. 51,
1, 64 – 86.

SCHWENTICK, T. 1994. Graph connectivity and monadic NP. In Proceedings of the IEEE Symposium
on Foundations of Computer Science (FOCS ’94). IEEE Computer Science Press, Los Alamitos,
Calif., pp. 614 – 622.

SCHWENTICK, T. 1995. Graph connectivity, monadic NP and built-in relations of moderate degree.
In Proceedings of the 22nd International Colloquium on Automata, Languages, and Programming

130 T. EITER ET AL.

(ICALP ’95), Zoltán Fülöp and Ferene Gicseg, Eds. Lecture Notes in Computer Science, vol. 944.
Springer-Verlag, New York, pp. 405– 416.

STOCKMEYER, L. J. 1977. The polynomial-time hierarchy. Theoret. Comput. Sci. 3, 1–22.
STRAUBING, H. 1994. Finite Automata, Formal Logic, and Circuit Complexity. Birkhäuser, Berlin,

Boston, Basel.
STRAUBING, H., THÉRIEN, D., AND THOMAS, W. 1995. Regular languages defined with generalized

quantifiers. Inf. Computat. 118, 289 –301.
THOMAS, W. 1990. Automata on infinite objects. In Handbook of Theoretical Computer Science,

volume B, chapter 4, J. van Leeuwen, ed. Elsevier Science Publishers B.V. (North-Holland).
THOMAS, W. 1996. Languages, automata, and logic. In Handbook of Formal Language Theory, vol.

III, G. Rozenberg and A. Salomaa, eds. Springer-Verlag, New York, pp. 389 – 455.
TRAKHTENBROT, B. A. 1961. Finite automata and the logic of monadic predicates. Dokl. Akad.

Nauk SSSR 140, 326 –329.
VARDI, M. Y. 1982. The complexity of relational query languages. In Proceedings of the 14th ACM

Symposium on the Theory of Computing (STOC ’82) (San Francisco, Calif., May 5–7). ACM, New
York, pp. 137–146.

RECEIVED APRIL 1988; REVISED MARCH 1999; ACCEPTED JUNE 1999

Journal of the ACM, Vol. 47, No. 1, January 2000.

131Existential Second-Order Logic over Strings

