
Typed Abstract State Machines

Giuseppe Del Castillo
(Universit�at-GH Paderborn, Germany

giusp@uni-paderborn.de)

Yuri Gurevich
(University of Michigan, USA
gurevich@eecs.umich.edu)

Karl Stroetmann
(Siemens AG, Germany

Karl.Stroetmann@mchp.siemens.de)

Abstract: As introduced in the Lipari guide, Abstract State Machines (abbreviated
as ASMs) are untyped. This is useful for many purposes. However, typed languages
have their own advantages. Types structure the data, type checking uncovers errors.
Here we propose a typed version of ASMs.
Key Words: abstract state machine, type system, polymorphism
Category: D.3.1, F.1.1, F.3.2, F.3.3

1 Introduction

In programming languages, there is a clear tendency towards typed languages.
BCPL, the untyped forerunner of C, has been completely replaced by C and C++.
Similarly Lisp is being gradually replaced by ML and Haskell. Concerning logic
programming, the last years have seen the development of several typed logic
programming languages, e.g., Mercury [HSC96], Protos-L [Bei95a], and G�odel
[HL92]. Among others, there are the following important reasons for the intro-
duction of types:

1. To facilitate structuring of the data of an application.
2. To have a type checker that automatically detects errors at compile time.

Detecting errors automatically when writing a program is certainly useful. How-
ever, the real value of type checking often becomes apparent in the maintenance
phase of the software life cycle. It is here that the type checker reveals de-
pendencies between di�erent parts of a program that may easily be overlooked
otherwise.

There are similar reasons for adding types to speci�cation languages. Fur-
thermore, following the object oriented software engineering approach one starts
building a complex system by building the object model. It is obvious that this
process is facilitated by a suitable type system. However, typing a speci�cation
language is not without its own pitfalls; cf. [LP97]. The same richness of types
that makes it convenient to describe types in applications may become an im-
pediment. In the worst case, it may lead to inconsistencies of the type system.
[LP97] cites some examples. Also, for a rich type system the well-typedness prob-
lem tends to get hard and might even be undecidable. And then one of the main
typing bene�ts is lost.

1

On the other hand, in a weak type system, some functions that would be total
if only their domains could be expressed as types become partial. With most
speci�cation languages, the notion of a partial function is di�cult to handle. In
fact, much of the intricacies of modern speci�cation languages have their origin
in the treatment of partial functions. Fortunately, in the framework of ASMs
[Gur95] this problem has been solved: formally speaking, all functions are total.
This is achieved by providing a default value. As a consequence, the richness
of a type system is less vital for ASMs than it is for many other speci�cation
languages.

For these reasons, we propose a simple type system for ASMs. We present a
type system that introduces parametric polymorphism as suggested by [Mor68]
and [Mil78]. Our type system can be described as the type system of the program-
ming language ML [MTH90] restricted to the �rst order case and without the
let-construct. A followup paper [GS98] extends our type system in several ways
including casting [FM90] and a modest version of type classes [NHN80, WB89].

This paper is organized as follows. Section 2 introduces types and terms. The
notion of a typeable term is given and we discuss the concept of a principal type.
Section 3 presents typed ASMs. Section 4 elaborates the previously introduced
concepts with an example. Finally, Section 5 is a concluding discussions.

This is not the �rst paper on typed ASMs. In the pioneering paper [Zam97],
Zamulin presented a di�erent and more ambitious approach. We discuss his work
in Section 5.

In order for this paper to be self contained, we give, in the appendix, an
algorithm for computing the principal type of a typeable term. (This algorithm
is based on uni�cation [Rob65].) Since this paper is concerned mainly with the
concept of a typed ASM, we do not discuss the implementation of the algorithm.)
There is no pretence on originality here; the algorithm can be derived from the
relevant text books, e.g., [Hin96, Mit96]. However, the derivation may be not
completely obvious to some readers interested in ASMs but not familiar with
lambda calculus. Our unpretentious appendix may be useful to them.

There was a division of labour among the authors of this paper. The second
and third authors did the theoretical part. The �rst author implemented the
type checking algorithm [Cas98] and provided the example in Section 4.

2 Types and Terms

In this section we de�ne the syntax of terms and types, de�ne typeable terms,
and present the amount of type theory that is needed for the development of
typed ASMs. For the readers convenience we prove a number of known facts, for
example the uniqueness of principal types is proved. Of course, this is standard
material that can also be found in text books dealing with type theory, e.g.,
[Hin96, Mit96].

2.1 Syntax of Types

De�nition 1 (Type Vocabulary, Types) A type vocabulary is a pair
hT; arityi such that Tis a set of type constructors and arity is a function

arity:T! N

2

assigning an arity to every type constructor F 2T.
Fix an in�nite list of type parameters. Then the types of the given type vo-

cabulary are de�ned inductively:

1. Every type parameter is a type.
2. If F is an n-ary type constructor and �1; : : : ; �n are types, then F (�1; : : : ; �n)

is a type.

The set of type parameters used in a type � is denoted by Par(�). If Par(�) = ;,
then � is called a closed type, otherwise � is called a generic type. �

Notation: We denote type parameters by capital letters S and T . Type con-
structors are denoted by words written in lower case and set in typewriter style,
i.e., int, float, or char are examples of type constructors. The lower case Greek
letters �, %, �, and � are used to denote types. �

Example 1 Consider a type vocabulary

hfint; float; bool; string; list; dictionaryg; arityi,

where arity is de�ned as follows:

arity(int) := 0, arity(float) := 0, arity(bool) := 0,
arity(string) := 0, arity(list) := 1, and
arity(dictionary) := 2.

Then the following constructions are types:

int, list(int), dictionary(string; list(int)),
T , list(T), and dictionary(string; T)

The constructions appearing in the �rst line are all closed types, while for any
type � in the second line we have Par(�) = fTg. �

2.2 Vocabulary

De�nition 2 (Vocabulary) A vocabulary is a tuple

V = hT;arity;F; Profilei

where hT; arityi is a type vocabulary and the components F and Profile satisfy
the following:

1. F is a set the elements of which are called function symbols.
2. Profile is a function assigning a pro�le to every function symbol f 2 F:

f : �1 � : : :� �n ! �

Here �1; : : :�n; � are types. If n = 0 we write f : � instead of f :! � .

The function Par computing the type parameters of a type is extended to pro�les.
We have

Par(�1 � : : :� �n ! �) := Par(�1) [: : :[Par(�n) [Par(�).

We call a function symbol f polymorphic i� Par
�
Profile(f)

�
6= ;. If the pro�le

of f is �1 � : : :� �n ! � , then n is called the arity of f .
We assume that an in�nite list of variables is �xed; variables are distinct

from function symbols and type parameters. �

3

The de�nition of a vocabulary given above does not assign types to variables.
Typing the variables would have been a reasonable choice. In that case, instead
of a single list of variables, we would have a family of lists of variables indexed
by types. Practically speaking, we would be forced to declare the type of every
variable.

Notation: If �1� : : :� �n ! � is a pro�le, then this pro�le is also written as
� ! � , i.e., we use the boldface � to denote �1 � : : :� �n. �

We require that every vocabulary contains a nullary type constructor bool
and the following logic function symbols: \true", \false", \:", \^", _", \!",
\default", and \=". The pro�les of these symbols are given as follows:

true : bool,
false : bool,
: : bool! bool,
^ : bool� bool! bool,
_ : bool� bool! bool,
! : bool� bool! bool,
= : T � T ! bool,
default : T .

Above, T is a type parameter, therefore the function symbols \=" and \default"
are polymorphic. The intention is that T ranges over all closed types. Therefore
the pro�le for \=" is interpreted as a short hand notation for the following set
of pro�les�

= : � � � ! bool j � is a closed type
	
.

This interpretation shows that the identity of the type parameter T is irrelevant:
The semantics of the pro�le =: T � T ! bool is the same as the semantics of
=: S � S ! bool for a type parameter S di�erent form T .1

In the rest of this paper we assume that a vocabulary satisfying the require-
ments given above has been �xed.

Note: Before proceeding, we should discuss the function symbol default and
its pro�le. The intention is that for every closed type the function default de-
notes a corresponding default value. We stipulate that, in the case of the type
bool, default denotes the value false. The user is free to choose other default
values. In the case of the type int (of integers) one may choose to interpret
default as 0. Alternatively, it may be more convenient to extend the set of inte-
gers with a new element called default. (The latter is especially convenient if one
deals with partial functions.) Suppose we have chosen the integer default to be
0. Then both default = false and default = 0 are true. However, we may not
be mislead into concluding false = 0. The reason is that the function default
has a meaning only if its type has been �xed. As default has the polymorphic

1 In order to stress that the identity of the type parameter T appearing in the pro�le
of \=" does not matter, we could have used the notation

= : 8T (T � T ! bool).

For example, this is done in the literature on the programming language ML [MTH90].
For notational simplicity, we make these universal quanti�ers implicit.

4

pro�le T , we have to determine the context in which default appears in order to
instantiate the type parameter T . For example, in the equation default= false
the function pro�le of \=" forces us to interpret T as bool. If the pro�le of 0 is
int, then T has to be interpreted as int in the equation default= 0.

The overloading of default is similar to the overloading of the empty list.
Suppose we have polymorphic function symbols nil and cons in our vocabulary:

nil : list(T)
cons : T � list(T)! list(T)

Here the symbol nil denotes the empty list, while cons(x; l) inserts the element
x at the beginning of the list l. Then the meaning of nil is only determined
by its context: nil could denote both the empty list of integers and the empty
list of Booleans. It is reasonable to assume that the empty list of Booleans is
di�erent from the empty list of integers. �

2.3 Syntax of Terms

The notion of a term is de�ned inductively: variables are terms and if f is an
n-ary function symbol and t1; : : : ; tn are terms, then f(t1; : : : ; tn) is a term, too.
If t is a term, then the set of variables occurring in t (denoted FV(t)) is de�ned
by induction on t as usual. A term t is a closed term i� FV(t) = ;.

Notation: We denote variables by the lower case letters x, y, z. We also use
lowercase strings like xs and ys to denote variables. f is used as a meta-variable
to range over function symbols. Concrete function symbols are denoted by strings
written in lower case and set in type write style, i.e., append is an example of a
function symbol. Terms are denoted by the letters s and t. �

Example 2 If append is a function with pro�le

append: list(T)� list(T)! list(T),

then the following strings are terms:

append(nil; xs), append(cons(x; xs); ys). �

In order to de�ne the notion of a typeable term, we introduce parameter
substitutions. A parameter substitution � is a �nite set of pairs of the form�

T1 7! �1; : : : ; Tn 7! �n
�

where T1; : : : ; Tn are distinct type parameters and �1; ::; �n are types. We call
the set fT1; : : : ; Tng the domain of � (denoted dom(�)).

A parameter substitution � =
�
T1 7! �1; : : : ; Tn 7! �n

�
is interpreted as a

function mapping type parameters to types as follows:

�(T) :=

�
�i if T = Ti;
T otherwise:

This function is extended to types homomorphically:

�
�
F (�1; : : : ; �n)

�
:= F

�
�(�1); : : : ; �(�n)

�
.

We use a post�x notation to denote the result of evaluating � on a type � ,

5

i.e., we write �� instead of �(�). The application of a parameter substitution
� to a pro�le is de�ned as expected:

(�1 � : : :� �n ! �)� = �1� � : : :� �n�! ��.

If � and � are types such that �� = � holds for some parameter substitu-
tion �, then � is called an instance of �. In this case we also say that � is
more general than � (denoted � � �). Instances of pro�les are de�ned similarly.

Example 3 We have list(T) � list(int) since

list(T)[T 7! int] = list(int) �

If �1 and �2 are parameter substitutions, then their composition �1 � �2 is
de�ned such that T (�1 � �2) = (T�1)�2 holds for all type parameters T . If
�1, �2; and � are parameter substitutions such that �2 = �1 � �, then �1 is
more general than �2 (denoted �1 � �2).

De�nition 3 (Appropriate) A pro�le � ! � is appropriate for a function
symbol f 2 F i� it is an instance of Profile(f), i.e., if there exists a parameter
substitution � such that

(� ! �) = Profile(f)�.

A pro�le � ! � is closed if it contains no parameters. �

Example 4 Since Profile(=) is equal to T �T ! bool, we conclude that both
the pro�les

int� int! bool and float� float! bool

are appropriate for \=". �

De�nition 4 (Type Assignment) A type assignment

� = fx1 : �1; : : : ; xn : �ng

maps distinct variables x1; : : : ; xn to types �1; : : : ; �n respectively. �

If � is a type assignment, x is a variable and � is a type, then the type assignment
�; x : � is de�ned as follows:

(�; x : �)(y) :=

�
� if y = x,
� (y) otherwise.

If �1 and �2 are type assignments that agree on the intersection of their domains,
then the union of these type assignments is de�ned as follows:

(�1 [�2)(x) :=

�
�1(x) if x 2 dom(�1),
�2(x) if x 2 dom(�2).

If � is a parameter substitution and � is a type assignment, then the type
assignment �� is de�ned as (��)(x) := � (x)�. Furthermore, we de�ne

Par(�) :=
S�

Par
�
� (x)

�
: x 2 dom(�)

	
.

A type annotation is a pair t : � where t is a term and � is a type.
We proceed to de�ne the notion of a typeable term.

6

De�nition 5 (Typeable Term) First we de�ne when a type assignment �
entails a type annotation t : � , symbolically � ` t : � .

1. If � (x) = � , then

� ` x : � .

2. If � ` si : �i for all i = 1; : : : ; n and the pro�le �1 � : : : � �n ! � is
appropriate for f , then

� ` f(s1; : : : ; sn) : � .

Now, a term t is typeable i� there exist a type assignment � and a type � such
that � ` t : � . �

Example 5 The terms append(nil; xs) and append(cons(x; xs); ys) are both
typeable: It su�ces to de�ne the type assignment � as follows:

� =
�
x : T; xs : list(T); ys : list(T)

	
. �

Note: The typeability or untypeability of a term may be not completely ob-
vious. For example, (i) cons(x; x) is untypeable but (ii) cons(nil; nil) is ty-
peable. To prove (i), assume that � ` cons(x; x) : � and let � = � (x). Recall
that the pro�le of cons is T � list(T) ! list(T). It follows that the pro�le
� � � ! � is appropriate for cons and thus there is a parameter substitution
� such that T� = � = list(T)�. But this is impossible because the depth2

of the type list(T)� exceeds that of T�. To prove (ii), recall that the pro�le
of nil is list(T). Let � be the empty type assignment, �1 = list(int) and
�2 = � = list(�1). Clearly �1 and �2 are appropriate for nil and therefore �
entails nil : �1 as well as nil : �2. But �1 � �2 ! � is appropriate for cons.
Hence � ` cons(nil; nil) : � .

Notice that the two occurrences of nil were treated di�erently from the two
occurrences of x. A type assignment cannot assign di�erent types to di�erent
occurrences of the same variable. On the other hand, di�erent occurrences of the
same function symbol may come with di�erent appropriate pro�les. �

The following Lemma is an immediate consequence of De�nition 5 and of
De�nition 3 of a pro�le being appropriate for a function symbol.

Lemma 6 Suppose that t = f(s1; : : : ; sn) and f : �1 � : : : � �n ! � . Then
� ` t : � i� there exists a parameter substitution � such that �� = � and
� ` si : �i� for all i = 1; : : : ; n. �

As it stands, the type of a typeable term is not unique. There is an obvious
example for a typeable term that has many di�erent types. Consider the function
symbol nil representing the empty list. Its pro�le is given as

nil: list(T).

According to De�nition 5, the term nil has, among others, the types list(int),
list(bool), and list(T). Obviously, the type list(T) is more general than the
other types, we have

list(T) � list(bool) and list(T) � list(int).

2 The depth of a type can be de�ned formally by a straightforward inductive de�nition.

7

For pairs consisting of a type assignment and a type we de�ne the relation \�"
as follows: We have h�; �i � h�; � i i� there exists a parameter substitution �
such that �� = � and �� = � .

Now we can give the de�nition of a principal type.

De�nition 7 (Principal Type) A type � is a principal type of a term t if there
exists a type assignment � such that:

1. dom(�) = FV(t).
2. � ` t : �.
3. If � ` t : � and dom(�) = FV(t) holds, then h�; �i � h�; � i.

An appropriate � is a principal type assignment associated with the annotation
t : �. �

Example 6 The type list(T) is a principal type of the term

append(cons(x; xs); ys).

An appropriate principal type assignment is given as�
x : T; xs : list(T); ys : list(T)

	
. �

Note: If � is a principal type of a term t and � is a principal type assignment
associated with the annotation t : �, then � is not unique. To see this, consider
the term x = x. We have

fx : Tg ` (x = x) : bool and fx : Sg ` (x = x) : bool,

showing that both � = fx : Tg and � = fx : Sg are principal type assignments
associated with the annotation (x = x) : bool.

The principal type of a term is not unique either. For example, both list(T)
and list(S) are principal types for nil. �

We show that a principal type and an associated principal type assignment
are unique up to renaming of parameters. In order to prove this, we need the
following lemma.

Lemma 8 (Uniqueness) If � � � and � � �, then there exists a renaming �
of type parameters such that �� = � .

Proof: Since � � � , there exists a substitution � with �� = � . Moreover �
can be chosen so that its domain contains only those parameters that occur in
�. We claim that � is a renaming of parameters, in other words,

1. for every parameter T , we have that T� is a parameter,
2. � is injective.

Since � � �, there exists a substitution � with �� = �. Thus ��� = �. To show
the �rst claim, for every type % let size(%) be the number of occurrences of type
constructors in %. For every parameter substitution 	 , size(%) � size(%).
Further, if T is a parameter in % and T	 is not a parameter, then size(%) >
size(%).

8

Now assume, by contradiction, that some T� is not a parameter. Since T
occurs in � we have size(�) = size(���) � size(��) > size(�) which is
impossible.

We conclude the proof by showing that � does not map di�erent parameters
to the same parameter, i.e., we can not have T� = S� if S is di�erent from T .
We argue as follows: Since for every parameter T we have that T� is a parameter,
the number of parameters occurring in �� is less or equal than the number of
parameters in �. Similarly, the number of parameters in ��� is less or equal
than the number of parameters in ��. Assume that S and T both occur in �
and that S� = T�. But then �� would contain strictly less parameters than
�. Therefore, ��� would also contain strictly less parameters than � which is
impossible since � = ���. �

The Lemma just proved generalizes as follows.

Corollary 9 If h�; �i � h�; � i and h�; � i � h�; �i, then there exists a renaming
� of type parameters such that �� = � and �� = � . �

The uniqueness of a principal type and an associated principal type assignment
up to renaming is now immediate. The existence of a principal type and an
associated principal type assignment is less obvious. The appendix presents an
algorithm that, given a term t, checks whether t is typeable. Furthermore, in
case t is typeable the algorithm computes a principal type of t and an associated
principal type assignment.

In order to de�ne the semantics of a typeable term t, we need to know the
types of all subterms of t. Therefore, we de�ne annotated terms next. Intuitively,
an annotated term is a term where every subterm has been annotated with a
type.

De�nition 10 (Annotated Term) The notions of an annotated term �, the
corresponding naked term j�j, and the type of � are de�ned inductively:

1. If x is a variable and � is a type, then x : � is an annotated term of type � .
We have jx : � j := x.

2. If f is an n-ary function symbol, � is a type and for all i = 1; : : : ; n we have
that �i is an annotated term, then f(�1; : : : ; �n) : � is an annotated term of
type � . Further, jf(�1; : : : ; �n) : � j := f(j�1j; : : : ; j�nj). �

Like the de�nition of a term, the de�nition of an annotated term is purely
syntactical and does not relate to the pro�les of the functions symbols. We
introduce the notion of an annotated term being typeable next.

De�nition 11 (Typeable Annotated Term) If a type assignment � is given,
then the notion of an annotated term � being entailed by � (denoted � ` �) is
de�ned inductively:

1. If � (x) = � , then � ` x : � .
2. If f is an n-ary function symbol, �1�: : :��n ! � is appropriate for f , � ` �i

for all i = 1; : : : ; n, and the type of �i is �i, then � ` f(�1; : : : ; �n) : � .

An annotated term � is typeable if there exists a type assignment that entails it.
�

If a typeable term t is given, then we can use the principal type assignment of t
to compute an annotated term � such that � ` � and j�j = t. This annotated
term � is called the full annotation of t.

9

2.4 Quanti�ers

According to the Lipari Guide [Gur95], terms may have quanti�ers. For the
simplicity of exposition, up to now we have considered only quanti�er-free terms.
Next, we extend the de�nition of terms and the related de�nitions to the general
case.

First, extend the de�nition of terms to include quanti�ers as well. That is, if
t is a term, then (8x)t and (9x)t are terms. Free and bound variables of a term t
are de�ned as expected. They are denoted by FV(t) and BV(t), respectively. It
is convenient to assume that there are no name clashes between free and bound
variables. Also, di�erent occurences of quanti�ers should bind di�erent variables.
This can always be achieved via a suitable variable renaming.

Remark: For applications and implementation, the followingmore explicit no-
tation is convenient:

(8x : g)t, (9x : g)t.

Here g is a Boolan-valued term (the guard) containing the variable x and there-
fore limiting the quanti�cation range. Logically these terms are equivalent to

(8x)(g ! t), (9x)(g ^ t). �

Next, we extend the de�nition of a term being typeable. To this end, we add the
following clause to De�nition 5.

3. If �; x : � ` t : bool, then � ` (8x)t : bool and � ` (9x)t : bool.

The de�nition of an annotated term is changed by admitting
�
(8x : �)t : �

�
: %

and
�
(9x : �)t : �

�
: % as annotated terms. The de�nition of a typeable annotated

term is then upgraded by adding the following clauses:

3. If �; x : � ` � and the type of � is bool, then

� ` ((8x : �)�) : bool and � ` ((9x : �)�) : bool.

3 Basic Rules: Syntax and Semantics

In this section we turn to semantical notions. First, we introduce states. Essen-
tially, a state is a many-sorted algebra, so there is not much di�erence between
the notion of a state in the context of a typed ASM and the same notion as
de�ned in the Lipari Guide [Gur95] for untyped ASMs. States are used to de-
�ne the semantics of terms. Then, we proceed to give the syntax of rules. We
conclude this section with the de�nition of their semantics.

3.1 States and the Semantics of Terms

De�nition 12 (State) A state S is a pair h[[�]]; [[�; �]]i such that

1. [[�]] is a function interpreting every closed type � as a set [[�]].

10

2. [[�; �]] is a function interpreting every function symbol f together with any
closed pro�le �1 � : : :� �n ! � appropriate for f as a function

[[f�1�:::��n!�]]: [[�1]]� : : :� [[�n]]! [[�]].

A function of the form [[f�!�]] is called a basic function of the state S.

Furthermore, the functions [[�]] and [[�; �]] have to satisfy the following restrictions:

1. [[bool]] = ftrue; falseg where true and false are distinct elements.

2. The interpretation of \true", \false", \:", \^", _", \!", and \=" is as
expected. Further, [[defaultbool]] = false. �

With the de�nition of a state as it is given above it is not possible to evaluate
terms containing quanti�ers. In order to de�ne the semantics of these terms we
have to extend this de�nition. Assume a state S = h[[�]]; [[�; �]]i is given. Then
we extend the vocabulary as follows: For every closed type � and every element
c 2 [[�]] we choose a new nullary function symbol ĉ with pro�le ĉ : � . The function
[[�; �]] is extended to these new function symbols in the obvious way: we de�ne
[[ĉ�]] := c. In the following, if a state S is given, we will tacitly assume that
the vocabulary is extended as described above and that the ensuing upgrading
of the state is performed. Then, if t is a term possibly containing a variable x of
type � , � is closed and c 2 [[�]], then t[x=ĉ] is the result of replacing the variable
x in t with ĉ everywhere. A similar notation is used for rules.

In general, a term t is evaluated bottom up so that all subterms of t are
evaluated in the process. Call t type-closed if the principal type of t contains
no parameters. Further, call t hereditarily type-closed if every subterm of t is
type-closed. It is easy to see that the hereditary type-closedness is necessary
and su�cient for t to be evaluable in all states. In a particular state, t can be
evaluable even if this condition fails. Suppose, for example, that t is the term
length(nil) where length is a function computing the length of a list. Although
nil is not type-closed, the value of t is zero. We discuss this example in more
detail below.

Next, we de�ne the value of a typeable term t in a given state. We assume
that t is closed, that is FV(t) = ;.

De�nition 13 (Evaluation) Assume that a state S = h[[�]]; [[�; �]]i is given.
First, we de�ne the value of a typeable annotated term � that contains no type
parameters. This value is denoted [[�]]. The de�nition of [[�]] is by induction.

1. [[f(�1; : : : ; �n) : �]] := [[f�1�:::��n!�]]
�
[[�1]]; : : : ; [[�n]]

�
,

where �i is the type of �i.

2. [[((8x : �)t : bool) : bool]] :=�
true if [[t[x=ĉ] : bool]] = true for all c 2 [[�]];
false otherwise.

3. [[((9x : �)t : bool) : bool]] :=�
true if [[t[x=ĉ] : bool]] = true for at least one c 2 [[�]];
false otherwise.

11

If t is hereditarily type-closed, let � be the full annotation of t. Clearly,� contains
no type parameters. De�ne the value [[t]] of t equals [[�]]. �

If a term t of principal type � is given such that � is closed, then t need not be
hereditarily type closed, consider the term length(nil). Since the pro�le of the
function length is list(T) ! int, the full annotation of length(nil) is given
by length

�
nil : list(T)

�
: int and therefore length(nil) is not hereditarily

type closed. The evaluation of such a term requires help from the user. For
example, the user can annotate a function symbol with a type. In our example,
an annotation length(nil : int) would solve the problem.

Fortunately, in practical applications of typed ASMs, hereditary type-closed-
ness is rarely a problem. The reason is that terms of the form length(nil) do not
appear in speci�cations of dynamic functions3. Instead, you may �nd something
like length(cons(c; nil)). However, if the type of c is � and � is closed, then the
type of nil is constrained to be list(�) and therefore the term length(c; nil)
is hereditarily type closed.

3.2 Syntax of Rules

We recall the de�nition of rules and give an intuitive but informal description of
the semantics of the rules. At the same time, we de�ne inductively the notion
� ` R where � is a type assignment. The notation � ` R is read as \R is a
well-typed rule w.r.t. �". A rule without free variables is well-typed if it is well
type with respect to the empty type assignment.

1. Skip Rule: Let R be skip. Then R is a rule and � ` skip for any type
assignment � . The Skip Rule does contain neither free nor bound variables.
Therefore, we have FV(R) := BV(R) := ;.

Intuitively, the Skip Rule does nothing.

2. Update Rule: Let R be

f(s1; : : : ; sn) := t,

where s1, : : :, sn, and t are terms. Then R is a rule and � ` R i� there
are types �i, : : :, �n, and � such that � ` t : � and � ` si : �i for all
i = 1; : : : ; n. Furthermore, FV(R) := FV(s1) [� � � [FV(sn) [FV(t) and
BV(R) := BV(s1) [� � � [BV(sn) [BV(t).

Intuitively, the rule R updates the value of the dynamic functions f for the
arguments (s1; : : : ; sn) to t.

3. Block Rule: Let R be

do in-parallel
R1

R2

end-do.

3 Of course, these terms do appear frequently in the speci�cation of static functions
as, e.g., length. However, the speci�cation of static functions is not the topic of this
paper.

12

Then R is a rule and � ` R i� � ` R1 and � ` R2. Furthermore, we have
FV(R) := FV(R1) [FV(R2) and BV(R) := BV(R1) [BV(R2).

Intuitively, R1 and R2 are executed in parallel.

4. Conditional Rule: Let R be

if g
then R1

else R2

end-if.

Then R is a rule and � ` R i� � ` R1 and � ` R2. Furthermore, we have
FV(R) := FV(R1) [FV(R2) and BV(R) := BV(R1) [BV(R2).

Intuitively, execution of R means execution of R1 if g is true and execution
of R2 otherwise.

5. Do-forall Rule: Let R be

do forall x satisfying g
R0

end-do.

Then R is a rule and � ` R i�, �rst, x 62 dom(�) and, second, there is a
type � such that �; x : � ` g : bool and �; x : � ` R0. The variable x is
bound in R. Therefore, we have FV(R) :=

�
FV(g) [FV(R0)

�
� fxg and

BV(R) := BV(R0) [fxg.

Intuitively, execution of R means executing in parallel all rules R0[x=ĉ] for
which the condition g[x=ĉ] is satis�ed.

6. Choose Rule: Let R be

choose x satisfying g
R0

end-choose.

Then R is a rule and � ` R i�, �rst, x 62 dom(�) and, second, there is a
type � such that �; x : � ` g : bool and �; x : � ` R0. The variable x is
bound in R. Therefore, we have FV(R) :=

�
FV(g) [FV(R0)

�
� fxg and

BV(R) := BV(R0) [fxg.

Intuitively, executing R amounts to choosing an element c such that g[x=ĉ]
holds and then executing R0[x=ĉ].

A program is just a rule. A programwithout any choose rules is called deterministic.
In the following, it is convenient to distinguish between static and dynamic func-
tions. A function f is called static (with respect to a given program) if the pro-
gram contains no updates of the form f(s1; : : : ; sn) := t. Obviously, a static
function does not change during the computation4.

4 In this paper, we do not discuss the notion of external functions, i.e. functions that
are changed by the environment. If we admit external functions as discussed in the
Lipari Guide, then the de�nition of a static function is changed. We then have to
require additionally that a static function is not updated by the environment.

13

Example 7 Assume we have a type Vertex representing nodes of a colored
graph. Assume further that l is a nullary dynamic function representing a list of
nodes and

color : Vertex! Color

is the function yielding the color of a vertex. We suppose that one of the colors
is red. If � = fx : Vertexg then

� ` color(x) := red

To proceed, assume the static function

member : T � list(T)! bool

is given and has the obvious meaning. Then, if R is

do forall x satisfying member(x; l)
color(x) := red

end-do,

then R is a well-typed rule, since we have ; ` R. Intuitively, execution of R
colors all nodes in l with red. Note that R does not contain free variables. �

A rule is called transparent i� there are no name clashes between two bound
variables or between a bound variable and a free variable. As a matter of conve-
nience, we will use only transparent rules, renaming variables if necessary. This
assumption is convenient in order to de�ne the semantics of rules that bind vari-
ables, i.e., the Do-forall Rule and the Choose Rule. In de�ning the semantics
of these rules, we substitute constants for variables. These substitutions would
be much more cumbersome to de�ne if they had to be aware of free and bound
variables.

3.3 Semantics of Deterministic Rules

The semantics of rules is given by sets of updates.

De�nition 14 (Update) A triple

f; hx1; : : : ; xni; y

�
is an update i� f is an

n{ary function symbol and there exists a pro�le �1 � : : :� �n ! � appropriate
for f such that

1. Par(�) = ; and Par(�i) = ; for all i = 1; : : : ; n,

2. y 2 [[�]] and xi 2 [[�i]] for all i = 1; : : : ; n. �

Conceptually, an update speci�es how the function table of a dynamic function
has to be updated. An update set is a set of updates. In order to de�ne the
semantics of a well-typed rule, we have to extend the notion of hereditary type
closedness to rules. De�ne the full annotation of a rule R by replacing all terms
in R by their full annotation. Call a rule R executable i�, �rst, its set of free
variables is empty and, second, its full annotation is hereditarily type closed,
i.e., i� no type parameters occur in its full annotation. Then, we de�ne the
semantics of an executable rule R in state S as an update set. This update set
is denoted by den(R;S). It is de�ned by induction:

14

1. R is skip. Then

den(R;S) := ;.

2. R is f(s1; : : : ; sn) := t. Then

den(R;S) :=
�

f; h[[s1]]; : : : ; [[sn]]i; [[t]]

�	
.

3. R is
do in-parallel

R1

R2

end-do.
Then

den(R;S) := den(R1; S) [den(R2; S).

4. R is
if g

then R1

else R2

end-if.

Then

den(R;S) =

�
den(R1; S) if [[g]] = true;
den(R2; S) if [[g]] = false.

5. R is
do forall x satisfying g

R0

end-do.

Then there is a type assignment � and a type � such that �; x : � ` R0.
De�ne

den(R;S) :=
S�

den(R0[x=ĉ]; S) : c 2 [[�]]^ [[g[x=ĉ]]] = true
	
.

Finally, to �re a rule R in a state S compute the update set den(R;S). Then
change the state S by updating the values of the functions [[f�1�:::��n!�]] as
prescribed by the update set den(R;S), i.e., for every update

f; hx1; : : : ; xni; y

�
in den(R;S) the interpretation of f is changed so that

[[f�1�:::��n!�]](x1; : : : ; xn) = y

holds.
Remark: We saw above that a term can be evaluable in some states even
if it is not hereditary type-closed. A similar observation applies to rules. Our
notion of executability of a rule R guarantees that R is executable in all states
(of su�ciently rich vocabulary). A rule that is not hereditary type-closed can be
executable in some states.

3.4 Semantics of Non-deterministic Rules

We �rst give the informal semantics of the Choose Rule. Assume that the rule
R has the form

choose x satisfying g

15

R0

end-choose.

and let S be a state. Then there is a type assignment � and a type � such that
�; x : � ` R0. To �re R at S, check if the set�

c 2 [[�]] : [[g[x=ĉ]]] = true
	

is empty. If it is, do nothing. Otherwise, choose any element c from this set and
�re the rule R0[x=ĉ].

In order to give the formal semantics for non-deterministic rules one has
to de�ne the notion of the non-deterministic semantics nden(R;S) of a rule R
in a state S as a family of update sets. Firing a rule is then done by non-
deterministically choosing an update set from this family and then �ring this
update set. Here, we forgo a formal de�nition and refer to [Gur97] for the details.
It is straightforward to adapt the de�nition given in the above reference to the
typed case.

4 An Example

A speci�cation language that is easy to reason about should be concise. But
one needs syntactic sugar to ease the work of speci�cation writing. For example,
there are some pretty obvious generalizations of the syntax for rules given in the
previous sections. To give an example, the construction

if g then R end-if

is considered to be an abbreviation of

if g then R else skip end-if.

In a similar way, the construction

let x = t in R end-let

abbreviates R[x=t]. This construction is useful if t is a complex term that has
serveral occurrences in the rule R. Furthermore, the Block Rule is generalized
to contain any �nite set of rules and the Do-forall Rule is generalized to support
quanti�cation over a �nite number of variables. For reasons of space we do not
give the details.

In the following example, we make heavy use of the type list. This type is
constructed by the two function symbols nil and cons. Their pro�les have al-
ready been given in Section 2, we repeat them here for the reader's convenience:

nil : list(T)
cons : T � list(T)! list(T)

To simplify notation, we adopt the following conventions for writing terms of
type list: We write [] instead of nil and [x|xs] instead of cons(x; xs). Fur-
thermore, if l is a given list, x is variable and t is a term of type bool containing
the variable x, then [x 2 l j t] is the list of those elements of l which satisfy the
condition t.

We need some static functions for lists. First, there is the function append

append : list(T) � list(T)! list(T).

16

This function is de�ned by the following recursive equations.

append([]; l) = l
append([x j l1]; l2) = [x j append(l1; l2)].

Further, the function

member : T � list(T)! bool

checks whether the �rst argument is an element of the second argument. Instead
of member(x; l) we use the shorthand x 2 l.

Next, we consider the Graph Reachability problem:

Given: A graph G = (V;E) with distinguished nodes source and target.

Question: Does there exists a path from source to target in G?

Before we give an algorithm for this problem, we discuss the representation of the
graph. We assume that Vertex is a nullary type constructor that is interpreted
as the set of vertices. The set of vertices V of the given graph is represented by
the nullary function nodes with pro�le

nodes : list(Vertex).

In our modelling, we represent the set of edges E by the binary relation

edge : Vertex� Vertex! bool.

A common algorithm that solves the Graph Reachability problem for graphs
that contain no cycles proceeds by iteratively constructing a list reachable of
vertices reachable from source. To compute reachable, an auxiliary \border
list" border that is a sublist of reachable is used. Therefore, reachable and
border are dynamic functions with the following pro�les:

reachable : list(Vertex)
border : list(Vertex)

We need a dynamic function guiding the ow of control. Its pro�le is

mode : Mode,

where the nullary type constructor Mode represents a set containing the strings
initial, construct, and examine. Finally, as a result of the computation, the
dynamic function

output : bool

will answer the question whether there is a path from source to target.
The algorithm is now implemented by three rules. The �rst rule initializes

the lists source and border to the singleton list [source].

if mode = initial
then do in-parallel

reachable := [source]
border := [source]
mode := construct

end-do
end-if

17

The next rule is the working horse of the algorithm. It iteratively extends the
list of reachable nodes:

if mode = construct
then if border 6= []

then choose x satisfying x 2 border
let l = [y 2 nodes j edge(x; y) ^ y 62 border)] in

do in-parallel
reachable := append(reachable; l)
border := append([z 2 border j z 6= x]; l)

end-do
end-let

end-do
else mode := examine
end-if

end-if

The �nal rule checks whether target is an element of the list reachable.

if mode = examine
then if target 2 reachable

then output := true
else output := false
endif

endif

The rules given above are well-typed. This can be checked mechanically us-
ing a type checker. For example, we have used the type checker that has been
implemented as part of a workbench for ASMs developed at the University of
Paderborn [Cas98]. Of course, the bene�t of type checking gets most obvious
when dealing with ill-typed terms. Therefore, let us assume that the second rule
is changed as follows:

if mode = construct
then if border 6= []

then choose x satisfying x 2 border
let l = [y 2 nodes j edge(x; y) ^ y 62 border)] in

do in-parallel
reachable := append([reachable]; l)
border := append([z 2 border j z 6= x]; l)

end-do
end-let

end-do
else mode := examine
end-if

end-if

Above, we have changed the update

reachable := append(reachable; l)
into

reachable := append([reachable]; l)

18

The resulting rule is no longer well-typed. The type checker produces the error
message

type check error -- function
append: list(T) * list(T) -> list(T)

called with argument of type
list(list(Vertex)) * list(Vertex)

(though in a slightly di�erent syntax). The error message is due to the fact that
append expects its arguments to be lists of the same type, but in the erroneous
update the �rst argument of append has type list(list(Vertex)), while the
second argument has type list(Vertex).

Of course, the previous example is rather small and therefore the error is
pretty obvious. However, the situation changes when the speci�cations get larger.
When rules are changed in the maintenance phase of a big speci�cation, people
maintaining this speci�cation tend to forget dependencies between di�erent parts
of it. Often, type errors are the result. Then a type checker is a valuable tools
that helps keeping the speci�cation consistent.

5 Concluding Remarks

When one de�nes a new concept, there often is a choice between di�erent alter-
natives. In order to choose between these alternatives, one needs some guiding
principles. In the �rst subsection, we formulate some principles and discuss how
they have inuenced the design of typed ASMs. The second subsection is devoted
to the issue of polymorphic dynamic functions. Finally, in the third subsection,
we discuss our motivation for excluding the import construct from typed ASMs.

5.1 Guiding Principles

First and foremost, a speci�cation language has to be simple. A customer that
needs a new software or hardware system does not usually specify his system rig-
orously. Instead, he hires a requirement analyst. Together, they create an initial
speci�cation. It is important that the customer is able to read this speci�cation
in order to assess whether the system meets his requirements. This calls for the
speci�cation language to be simple. But then the type system of this speci�-
cation language should be simple too. In this connection, we opted to adapt
the type system of ML to our needs. That type system is both simple and well
understood.

Of course, simplicity is only one requirement on a type system. Another is
expressibility. There is a tension between the two requirements. For example, a
satisfactory integration of parametric polymorphism (which plays an important
role in functional programming) and inclusion polymorphism (which plays an
important role in the object oriented approach) is an open problem, and the
type system of ML lacks inclusion polymorphism. In [GS98], we will extend
our type system in the direction of inclusion polymorphism along the lines of
[Bei95b].

One of the important features of the ASM approach is that speci�cations
can be given at any level of abstraction. To keep this freedom for typed ASMs,

19

we have left the interpretation of types abstract. The only requirement is that
every closed type is interpreted as a set. We could have made a di�erent choice
by requiring the type constructors to be interpreted as functions taking sets
as inputs and producing sets as outputs. But nothing would be gained in the
alternative approach unless we specify how the type constructors work. However,
if we specify how the constructors work, the freedom of abstraction would be
lost.

Therefore, we leave the speci�cation of type constructors open. Of course,
the user of typed ASMs is free to be more speci�c. In a number of applications it
is convenient to specify type constructors via certain constructor functions that
generate the type in question as a term algebra modulo some set of axioms. To
give an example, the unary type constructor Set denoting �nite sets is conve-
niently de�ned as the algebra generated by the constructor functions

empty : Set(T),
insert : T � Set(T)! Set(T),

satisfying the equations

insert
�
x; insert(y; s)

�
= insert

�
y; insert(x; s)

�
,

insert(x; insert(x; s)) = insert(x; s).

With the current de�nition of typed ASMs the user has the freedom to use def-
initions of this (or other) kind. But we do not want to con�ne the user to the
algebraic style of de�ning data types. This is the main di�erence between our
approach and the work of Zamulin [Zam97]. Zamulin o�ers a system that is not
con�ned to the speci�cation of the dynamic parts of an algorithm. He also in-
troduces a speci�cation language for specifying the static part of an ASM. This
provides obvious bene�ts but much of the exibility of the ASM approach is lost
in the process. With untyped ASMs, the user can use any method for specifying
the static part. The present paper preserves this freedom. This freedom is essen-
tial for the integration of formalmethods into an industrial development process.
Often, engineers already use semiformal speci�cation techniques for parts of their
design. If a formal speci�cation language is to be successfully integrated into an
industrial process, it is vital that the language can incoporate as much as possi-
ble of the existing notation. This is our reason for not prescribing how the static
part of an ASM should be speci�ed.

5.2 A Remark on Polymorphic Dynamic Functions

Recall that a term t is evaluable in all states only if it is hereditarily type-
closed. In this connection, one may want to require that the pro�les of dynamic
functions contain no type parameters. This strong condition still allows for a
kind of implicit polymorphism. To see this, consider the problem of �nding the
shortest path in a graph. In general, an algorithmfor computing the shortest path
does not need to know the nature of the vertices of the graph. It is no problem to
formulate a general algorithm of this kind as an ASM [Str97]. The idea is to have
a nullary type constructor Vertex whose interpretation is left abstract. Using
this abstract type, we can formulate an algorithm that is essentially polymorphic
in the type Vertex, although formally Vertex is not a type parameter.

One may introduce the notion of a procedure so that every procedure P
de�nes a number of type parameters that remain �xed during the execution of

20

P . Then one can write, for example, a procedure P for computing the shortest
path in a graph. Vertex would be a type parameter that is �xed in P and can
appear, without endangering the evaluability of terms, in function pro�les of
dynamic functions speci�c to P .

Without introducing procedures (as in this paper), one can use a nullary
type constructor to play the role of a type parameter which would be �xed in a
procedure.

5.3 Import and Reserve

One major di�erence between typed and untyped ASMs is the absence of the
import rules in typed ASMs. To recall, in untyped ASMs, an import rule

import x
R0(x)

end-import

chooses an element a from the so called reserve and executes the rule R0(a).
The reserve consists of indistinguishable elements which do not belong to any
particular universe. No function produces a reserve element, and every function
produces a default value if at least one of the arguments is in the reserve. The
idea of the reserve does not �t well the static and structured paradigm of types.
To illustrate one di�culty, consider for example the type list(T) introduced
previously. The value of the term cons(r; []) should be unde�ned if r is a reserve
element; it becomes de�ned when r is imported. But then cons is no longer a
static function. Thus we have decided to drop the import construct. Import was
convenient to extend, for example, the current set of nodes. There are alternative
ways to achieve the same goals.

Dropping the reserve renders a number of de�nitions simpler. For example,
the May 1997 Draft of the ASM Guide [Gur97] de�nes the denotation of a
deterministic rule as an equivalence class of update sets: two update sets that
di�er merely in the choice of reserve elements are equivalent. Here, we do not
have reserve elements around and can de�ne the denotation of a deterministic
rule as an update set.

References

[ASM] Abstract state machines. Web site of the University of Michigan at
http://www.eecs.umich.edu/gasm/.

[Bei95a] Christoph Beierle. Concepts, implementation, and applications of a typed
logic programming language. In Beierle and Pl�umer [BP95], chapter 5, pages
139{167.

[Bei95b] Christoph Beierle. Type inferencing for polymorphic order-sorted logic pro-
grams. In Leon Sterling, editor, Proceedings of the 1995 International Con-
ference on Logic Programming. MIT Press, 1995.

[BP95] Christoph Beierle and Lutz Pl�umer, editors. Logic Programming: Formal
Methods and Practical Applications. Studies in Computer Science and Arti�-
cial Intelligence. Elsevier Science B.V./North-Holland, Amsterdam, Holland,
1995.

[Cas98] Giuseppe Del Castillo. ASM-SL, a speci�cation language based on Gure-
vich's Abstract State Machines: Introduction and tutorial. Technical report,
Universit�at-GH Paderborn, 1998. to appear.

21

[Fit95] Melvin Fitting. First-order logic and automated theorem proving. Texts and
monographs in computer science. Springer, New York, second edition, 1995.

[FM90] You-Chin Fuh and Prateek Mishra. Type inference with subtypes. Theoret-
ical Computer Science, 73(2):155{175, 1990.

[GS98] Yuri Gurevich and Karl Stroetmann. Typed ASMs: Adding casting and
overloading (tentative title), 1998. In preparation.

[Gur95] Yuri Gurevich. Evolving algebras 1993: Lipari guide. In Egon B�orger, editor,
Speci�cation and Validation Methods, pages 3{36. Oxford University Press,
1995. Available at [ASM].

[Gur97] Yuri Gurevich. May 1997 draft of the ASM guide. Technical Report CSE-
TR-336-97, University of Michigan, EECS Department, 1997. Available at
[ASM].

[Hin96] Roger Hindley. Basic Simple Type Theory. Cambridge University Press,
1996.

[HL92] Patricia M. Hill and John W. Lloyd. The G�odel programming language.
Technical Report CSTR{92{27, Department of Computer Science, Univer-
sity of Bristol, 1992.

[HSC96] Fergus Henderson, Zoltan Somogyi, and Thomas Conway. Determinism anal-
ysis in the mercury compiler. In Proceedings of the Australian Computer

Science Conference, pages 337{346, Melbourne, Australia, January 1996.
[LP97] Leslie Lamport and Lawrence C. Paulson. Should your speci�cation language

be typed. Report 147, DEC Systems Research Center, Palo Alto, CA, May
1997.

[Mil78] Robin Milner. A theory of type polymorphism in programming. Journal of
Computer and System Sciences, 1978.

[Mit96] John C. Mitchell. Foundations for Programming Languages. The MIT Press,
1996.

[MM82] Alberto Martelli and Ugo Montanari. An e�cient uni�cation algorithm.
ACM Transactions on Programming Language Systems, 4:258{282, 1982.

[Mor68] Jim H. Morris. Lambda Calculus Models of Programming Languages. PhD
thesis, MIT, 1968.

[MTH90] Robin Milner, Mats Tofte, and Robert Harper. The De�nition of Standard
ML. MIT Press, 1990.

[NHN80] R. Nakajima, M. Honda, and H. Nakahara. Hierarchical program speci�ca-
tion: a many-sorted logical approach. Acta Informatica, 14:135{155, 1980.

[Rob65] John Alan Robinson. A machine-oriented logic based on the resolution prin-
ciple. Journal of the ACM, 12(1):23{41, 1965.

[Str97] Karl Stroetmann. The constrained shortest path problem: A case study in
using ASMs. J.UCS, 3(4):304{319, 1997.

[Wan87] Mitchell Wand. A simple algorithm and proof for type inference. Fundamenta
Infomaticae, 10:115{122, 1987.

[WB89] Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism less
ad hoc. ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, 1989.

[Zam97] Alexandre V. Zamulin. Typed Gurevich machines revisited. Joint NCC and
IIS Bulletin of Computer Science, 5:1{30, 1997.

Acknowledgements

We thank Egon B�orger, Bertil A. Brandin, Sabine Glesner, Jim Huggins, Martin M�ul-
ler, Peter P�appinghaus, and Alexandre V. Zamulin for commenting on drafts of this
paper. Furthermore, we would like to thank three anonymous referees, who have given
very detailed and helpful comments.

The second author has been partially supported by NSF grant CCR 95-04375 and
ONR grant N00014-94-1-1137. The third author has been partially supported by BMBF
grant 01 IS 519 A 9.

22

A Type Inference

In the following we need the notion of a type equation. This is a string of the
form � ' � where � and � are types. A parameter substitution � solves the type
equation � ' � i� �� = ��.

The type inference algorithm presented below proceeds in two stages: First,
we compute a set of type equations. Secondly, we decide whether these type
equations are solvable using the Martelli-Montanari algorithm for uni�cation
[MM82]. Our algorithm for type inference is derived from the algorithmpresented
by [Wan87] for type checking lambda terms.

We proceed to give the details of our algorithm.The purpose of this algorithm
is to check whether a term t is typeable and to compute a principal type and an
associated principal type assignment in case t is typeable. To this end we need
to �nd a type assignment � and a type � such that � ` t : � can be established.
We proceed as follows:

1. We associate a unique type parameter Tx with every variable x in such a way
that the type parameters associated with di�erent variables are distinct. It
is assumed that there are in�nitely many type parameters that are not of
the form Tx. We call parameters of the form Tx variable-linked.

2. We de�ne a universal type assignment � by setting �(x) := Tx. For the
rest of this paper, � is assumed to denote this particular type assignment.

3. We de�ne a function TypeEqs that takes a term t and a type � and produces
a set of type equations. The de�nition of the function TypeEqs will ensure
that t is typeable i� TypeEqs(t : T) is solvable. Here T is any fresh type
parameter, that is a type parameter that is not variable-linked and does not
occur in the pro�les of the function symbols in t. Furthermore, if � is a most
general solution of TypeEqs(t : T), then T� is a principal type of t and ��
is the associated principal type assignment.

4. The question whether TypeEqs(t : T) is solvable is decided by the Martelli-
Montanari uni�cation algorithm [MM82]. This algorithm also computes a
most general solution in case TypeEqs(t : T) is solvable. Uni�cation is dis-
cussed in a number of text books on logic, e.g. [Fit95].

Now all we have to do is to de�ne the function TypeEqs and to prove that it has
the desired properties. We give a simple inductive de�nition of TypeEqs(t : �).
The basic idea is to apply the inductive de�nition of typeable terms backwards.

De�nition 15 (TypeEqs)

1. If x is a variable, then

TypeEqs(x : �) := f� ' Txg.

2. Assume f : �1 � : : :� �n ! � . Then

TypeEqs
�
f(s1; : : : ; sn) : �

�
:= f� ' �g [

nS
i=1

TypeEqs(si : �i).

3. TypeEqs
�
(8x)t : �

�
:=

�
� ' boolg [TypeEqs(t : bool).

4. TypeEqs
�
(9x)t : �

�
:=

�
� ' boolg [TypeEqs(t : bool). �

23

The de�nition of the type inference algorithm is now complete. Of course, we
still have to prove its correctness. This is done in the following subsection. To
simplify this exposition, we restrict our attention to the case of terms containing
no quanti�ers.

Note: The type inference algorithm presented above infers the types of all
variables. Sometimes the user may want to declare the types of certain vari-
ables. The type inference algorithm is easily adapted to provide this additional
exibility: If the user declares that the variable x occurring in a term t has type
� , then the equation Tx = � is added to the set of type equations generated for
checking whether t is typeable. �

Example 8 Assume that t is append(cons(x; xs); ys). Assume further that the
pro�les of the function symbols occurring in t are given as follows:

cons : R� list(R)! list(R),
append: list(S) � list(S)! list(S).

Then TypeEqs(t : T) is calculated to be the following set:�
T ' list(S); list(S) ' list(R); R ' Tx; list(R) ' Txs; list(S) ' Tys

	
It is easy to see that the substitution � de�ned as�

T 7! list(S); R 7! S; Tx 7! S; Txs 7! list(S); Tys 7! list(S)
�

is a most general solution of TypeEqs(t : T). This shows that t is typeable and
that list(S) is a principal type of t. A principal type assignment is the following:�

x : S; xs : list(S); ys : list(S)
	
. �

A.1 Correctness of the Type Inference Algorithm

Recall that a type annotation is a pair t : � . A parameter substitution � solves a
type annotation i� �� ` t : �� holds. A type constraint is either a type equation
or a type annotation. A parameter substitution � solves a set of type constraints
C i� it solves every type equation and every type annotation inC. This is written
� j= C. We de�ne a rewrite relation on sets of type constraints. It is the least
transitive relation ; such that:

1. C [fx : �g; C [f� ' Txg.
2. Assume that f : �1 � : : :� �n ! � . Then

C [ff(s1; : : : ; sn) : �g; C [f� ' �g [fsi : �i j i = 1; : : : ; ng.

If an annotation t : � is given, then the two rewrite rules can be used repeatedly
until the set TypeEqs(t : �) is derived. This is easily seen by induction on t.
Furthermore, the rewrite relation ; satis�es the following invariants.

1. � j= C2 ^ C1 ; C2) � j= C1 (I1)
2. � j= C1 ^ C1 ; C2) 9	 �

�
� � 	 ^ 	 j= C2

�
(I2)

Before proving these invariants, let us observe that they su�ce to reach our goals
which we formulate as Soundness Theorem and Completeness Theorem.

Theorem 16 (Soundness) If � solves TypeEqs(t : �), then �� ` t : ��.

24

Proof: By the assumption, � j= TypeEqs(t : �). Since the constraint set ft : �g
rewrites to TypeEqs(t : �), the invariant (I1) shows � j= t : �. �

Theorem 17 (Completeness) If � ` t : � and T0 is a fresh type parameter
(that is neither variable-linked nor occurs in � or �), then TypeEqs(t : T0)
is solvable. If 	 is a most general solution of TypeEqs(t : T0), then T0	 is a
principal type of t with associated principal type assignment �	 .

Proof: Assume � ` t : �. W.l.o.g. dom(�) � FV(t). If FV(t) = fx1; : : : ; xng,
de�ne the parameter substitution � as

� := [T0 7! �; Tx1 7! � (x1); : : : ; Txn 7! � (xn)].

Then, � j= t : T0. Since TypeEqs(t : T0) rewrites to ft : T0g, the invariant
(I1) shows that � can be extended to a parameter substitution � such that
� j= TypeEqs(t : T0). Therefore TypeEqs(t : T0) is solvable. Next, assume 	 is the
most general solution. Then � can be written as 	� for an appropriate parameter
substitution �. Since � = T0� = T0� = (T0)� and � = �� = �� = (�)�
the claim is established. �

Proof of (I1): According to the de�nition of the rewrite relation;, it su�ces
to consider the following two cases.

1. C1 = C [fx : �g ; C [f� ' Txg = C2. The assumption is that � j= C2.
Then � j= C and Tx� = ��. Therefore �� ` x : �� and � j= C1.

2. C1 = C [ff(s1; : : : ; sn) : �g ; C [f� ' �g [fsi : �i j i = 1; : : : ; ng = C2,
where the pro�le of f is given as f : �1 � : : :� �n ! � . According to our
assumption we have � j= C, �� = ��, and � j= si : �i for i = 1; : : : ; n. Then
�� ` si : �i�. Therefore, �� ` f(s1; : : : ; sn) : �� and that yields the claim.

�

Proof of (I2): Again, it su�ces to consider the two cases corresponding to
the two rewrite rules.

1. C1 = C [fx : �g ; C [f� ' Txg = C2. The assumption is that � j= C1.
Then � j= C and �� ` x : ��. Therefore Tx� = ��. De�ne 	 := �.

2. C1 = C [ff(s1; : : : ; sn) : �g ; C [f� ' �g [fsi : �i j i = 1; : : : ; ng = C2,
where the pro�le of f is given as f : �1 � : : : � �n ! � . Without loss of
generality, we may assume that the type parameters that occur in this pro�le
do not occur in dom(�); the type parameters in the pro�le can be renamed.
According to our assumption we have � j= C and � j= f(s1; : : : ; sn) : �.
The latter implies �� ` f(s1; : : : ; sn) : ��. Lemma 6 shows that there is a
parameter substitution � such that

�� ` si : �i� for all i = 1; : : : ; n

and �� = ��. We can assume that dom(�) contains only type parameters
occurring in the pro�le of f . Then dom(�) and dom(�) are disjoint. De�ne
	 := � [�. �

25

