
THE LOGIC IN COMPUTER SCIENCE COLUMN

by

Yuri GUREVICH

Pairwise Testing�

Andreas Blassy Yuri Gurevichz

Abstract

We discuss the following problem, which arises in software testing.

Given some independent parameters (of a program to be tested), each

having a certain �nite set of possible values, we intend to test the

program by running it several times. For each test, we give the pa-

rameters some (intelligently chosen) values. We want to ensure that

for each pair of distinct parameters, every pair of possible values is
used in at least one of the tests. And we want to do this with as few

tests as possible.

1 Introduction

Quisani: I suppose that, with Andreas visiting Microsoft for an extended
period, you've been working together on logic and abstract state machines.

�Bull. Eur. Assoc. Theor. Comput. Sci., Oct. 2002
yPartially supported by NSF grant DMS{0070723 and by a grant from Microsoft Re-

search. Address: Mathematics Department, University of Michigan, Ann Arbor, MI
48109{1109, U.S.A., ablass@umich.edu. This paper was written during a visit to Mi-
crosoft Research.

zMicrosoft Research, One Microsoft Way, Redmond, WA 98052, U.S.A.,
gurevich@microsoft.com

1



Authors: Actually, we've recently been looking into software testing and
related combinatorial problems.

Q: Is that connected with your work on abstract state machines?

A: Indirectly. It is related to what our group, the Foundation of Software
Engineering group at Microsoft Research, is doing. The group has devel-
oped AsmL, a speci�cation language based on abstract state machines. To
make AsmL speci�cations more useful, the group is working on automated
derivation of test suites from AsmL speci�cations. This work generated con-
siderable interest among Microsoft test architects and test engineers.

Q: What combinatorial problems arise in testing?

A: The problem we've looked into is how to generate a test suite (a set of
tests) that is pairwise adequate in the following sense. Suppose a program
involves c parameters, each with a certain number of possible values; say the
ith parameter has ni possible values. A test is determined by giving a value
for each parameter. We want to �nd a test suite such that, for each pair of
distinct parameters, say the ith and jth, and for each pair of possible values
of these parameters, say x and y, there is a test in our suite where the ith

parameter has value x and the jth has value y. The objective is to accomplish
this with as few tests as possible.

Q: I guess you assume that, for any two parameters, every pair of possible
values is relevant.

A: Indeed we do. Moreover, we assume1 that every assignment of values to
the parameters is legal and so can be tested.

Q: Since this is for computer purposes, not for pure mathematics, I assume
all the ni are �nite.

A: Of course.

Q: But won't some of them be awfully large? The parameters could, for
example, represent oating-point numbers.

A: Yes, but in that case one reduces the number of values by taking into
account the program to be tested. The program usually suggests a splitting of
the range of a oating-point parameter into a few sub-ranges, within each of

1The purpose of this assumption is to simplify our exposition, not to limit the appli-
cability of pairwise testing. It may, for example, be useful to test illegal situations, to see
what error messages occur.

2



which the program acts similarly. Then for testing purposes one uses just one
representative (or a small number of representatives) from each sub-range.
In the applications that our group has encountered, c and all the ni were
no larger than 50. And often some of the parameters were Boolean ones, so
some of the ni were only 2.

Q: Were you able to make good progress?

A: We did but can't claim much credit. When we began looking at these
matters we were told that [8] had the essential information. That paper cites
[3, 4] where related ideas are used. We looked at the methods proposed in
these papers and felt that certain combinatorial ideas could be pro�tably
applied, giving test suites that have few tests and are easy to �nd. We devel-
oped three such ideas, which we call the \aÆne," \recursive," and \Boolean"
ideas. We realized that some classical combinatorial issues, like Latin squares
and projective geometry, are relevant. In the meantime, we traced references
back to earlier sources and we also found one recent relevant paper. The
aÆne idea, it turns out, goes back at least to [2] in pure combinatorics, and
recently Williams [13] had applied it and the recursive idea to testing. The
Boolean idea uses well-known combinatorial results from [5, 6, 7, 12]; their
relevance to testing is described in the introduction of [11].

Q: I'd like to hear more about it, and I hope that the record of our discussion
may bene�t others as well. It is useful to have in one place all those seemingly
unrelated facts scattered in the literature as well as your own insight.

A: All right. Let's begin by looking at the methods proposed in the papers
we �rst looked at, [3, 4, 8].

2 Incremental Constructions

Q: Before that, just to make sure I understand the problem, let me check
that some things that look obvious to me are really correct.

If you increase the number of parameters (leaving the ni for the old pa-
rameters unchanged), or if you increase some ni's then the number of tests
you need will increase or, at best, stay the same. Also, the number of tests
you need is at least the product of the two largest ni's. If you're so lucky as
to have only two parameters (c = 2), then this product is exactly the number
of tests you need.

3



A: Right; all these things are indeed obvious. In fact, the product of the two
largest ni's is exactly the number of tests you need even if there are three
parameters. But that's not quite so obvious; it will become clear in a while.

Everyone seems to agree that a convenient way to represent a test suite
is as a matrix. There is one row for each test, and there is one column for
each parameter. The entry in any particular row and column is the value of
the column's parameter in the row's test. Pairwise adequacy of the test suite
means that the columns are pairwise independent, i.e., for every two columns
and every choice of a possible entry in each of them, there is a row where the
chosen entries occur in those two columns. (The idea behind the terminology
\independent" is that, if you know an entry in one column, that gives you no
information about the entry in the same row and another column. To avoid
confusion, we stress that we do not ask for probabilistic independence of two
columns, where each pair of values would occur in the same number of rows.
The simpler sort of independence that we use is sometimes called qualitative
independence, a terminology that goes back to [9]. We'll omit \qualitative"
because we won't need any other sort of independence.)

We'll use the notation r for the number of rows in our matrices (to go
with c for the number of columns); thus r represents the number of tests in
a suite, and it is what we want to minimize (for �xed c and ni's).

Let's use the word requirement for a set of two ordered pairs, which we
write in the form fi 7! x; j 7! yg where i and j are distinct columns (rep-
resenting parameters) and x and y are possible values of those parameters.
We'll say that a matrix satis�es this requirement if it has a row in which the
entries in columns i and j are x and y, respectively. So we seek matrices that
satisfy all the requirements.

With this terminology, we can describe the two methods that we were
aware of when we began our work. They both involve building a matrix
gradually, trying to satisfy the requirements as eÆciently as possible.

2.1 The AETG Method

A: One method, presented in [3, 4], builds the matrix one row at a time. It
keeps track of the requirements that remain to be satis�ed, and it chooses
each new row by a combination of randomization and greed, with a view to
satisfying many of the as yet unsatis�ed requirements. In more detail, the
algorithm creates a new row as follows, as long as any requirements remain

4



unsatis�ed. Choose a column i and a value x for the corresponding parameter
such that i 7! x occurs in the largest number of unsatis�ed requirements.
Fill in x as the value in the new row and column i. Then �ll in the remaining
places in the new row in a random order, choosing the value for each entry
in turn so as to maximize the number of previously unsatis�ed requirements
that become satis�ed. Of course, the result here depends on the random
ordering. So the authors suggest in [4] that each row be computed some
number of times (they suggest 50), with di�erent random orders, and that
the best result be used (where \best" means satisfying the most previously
unsatis�ed requirements).

2.2 The Lei-Tai Method

A: Another method, presented in [8], involves building up the number of
parameters gradually, so that at a typical stage in the process one has a test
suite for the �rst c0 parameters, where c0 < c, and one wants to enlarge it to
a test suite for the �rst c0 + 1 parameters. The method starts with the �rst
two parameters, where, as you observed, it's trivial to �nd an optimal test
matrix. The general step, from c0 to c0 + 1, involves adding to the matrix
a new column (for the new parameter) and, unless we're very lucky, adding
some new rows to make this column independent of the previous ones. The
step proceeds in two parts, a \horizontal" part, �lling in the part of the new
column that involves existing rows, and a \vertical" part, adding new rows.
The authors of [8] observe that, once the horizontal part is completed, there
is no choice about the number of new rows to be added in the vertical part.
Here are the details. For each value v of the new parameter and for each
old column i, let D(v; i), the de�cit of value v with respect to column i, be
the number of unsatis�ed requirements of the form fi 7! x; c0 + 1 7! vg. At
the end of the horizontal part of the step, satisfying such requirements will
demand D(v; i) new rows with v in the new column. A single new row can
handle requirements from any or all of the old columns i, so the vertical part
needs to add

D(v) = max
i�c0

D(v; i)

new rows with v in the last column, for a total of

X
v

D(v) =
X
v

max
i

D(v; i)

5



new rows at this step. We'll refer to D(v) as the (total) de�cit of the value
v.

Q: So the real work in this method is in the horizontal part of each step.

A: Essentially. There is some freedom in the vertical part, even though
the number of new rows is �xed. For example, which pairs of requirements,
involving the same v and di�erent i's, should be satis�ed by the same row?
And if D(v; i) < D(v) for certain v and i, then there will be some places in
column i where any value could be entered. These sorts of freedom might be
used to make future steps work better, but this issue is not addressed in [8].
So, indeed, the work is done in the horizontal part.

In fact, two approaches to the horizontal part are proposed in [8]. One
approach tries all possible ways to �ll in the horizontal part and chooses one
to minimize the number of new rows in the vertical part.

Q: Wait a minute. Aren't there usually a huge number of ways to �ll in the
horizontal part? Will this computation terminate in reasonable time?

A: You're right, and this problem is recognized in [8]. The authors point out
that the work can be reduced somewhat, since permuting the values of the
new parameter has no e�ect. Nevertheless, this approach is feasible only for
very small cases. That's why a second approach is o�ered.

The second approach to the horizontal part amounts to the following
greedy algorithm. Fill in the entries in the new column one by one, choosing
each value so as to maximize the number of previously unsatis�ed require-
ments that become satis�ed.

Q: For the �rst entry to be �lled in, any one of the new values will satisfy c0

new requirements, so it doesn't matter what value is used for this entry.

A: Right. In fact, for the �rst few entries in the new column, the greedy
strategy can �ll in distinct values of the new parameter, as each will sat-
isfy the maximum possible number c0 of previously unsatis�ed requirements.
Things become non-trivial only in rows that remain after each possible value
has been used once.

Q: Are the entries in the new column and old rows �lled in a random order?

A: The algorithm in [8] just �lls them in top-to-bottom order. But one could
randomize, try it several times, and take the best of the results.

6



2.3 A Variation on the Lei-Tai Heuristics

A: There is another way to improve the algorithm. As it stands, the horizon-
tal part is greedily maximizing the number of requirements that get satis�ed.
But that goal isn't really what's wanted. Suppose a value v has, at the end
of the horizontal part, just two unsatis�ed requirements and they involve the
same column i. Then v will have to be the new-column entry in two new
rows, with di�erent elements in column i to satisfy the two requirements.
Suppose, on the other hand, that v has, at the end of the horizontal part,
more than two unsatis�ed requirements, but all referring to di�erent columns.
Then these requirements can be satis�ed with just one new row having v in
the last column. So we are better o� in the second scenario, even though
the number of unsatis�ed requirements is greater. To put it another way,
algorithm seeks to minimize

X
v

X
i

D(v; i)

but the number of new rows needed in the vertical part is, as we saw,

X
v

max
i

D(v; i):

So we should try to minimize that instead.
We therefore considered modifying the horizontal part of the Lei-Tai al-

gorithm from [8] to greedily reduce this sum of maxima. At each row, put
into the new column a value whose D(v) is thereby reduced.2

We experimented on some speci�c values of c and the ni's, and we found
that this modi�cation needs to be re�ned in order to produce real bene�ts.
The modi�cation is useful in the late stages of the horizontal part, but it
seems counterproductive in the early stages. We tried several versions of
the algorithm, greedily reducing various weighted combinations of the sum
of all the D(v; i)'s (as in the Lei-Tai algorithm) and the sum over v of the
maximum over i of D(v; i) (as in our proposed modi�cation). The weight
factors depended on the row number, giving the Lei-Tai version more weight
for the early rows and giving our modi�cation more weight for the later

2If there is no such value, then you may want to choose a value v so as to reduce as
much as possible the number of i's for which D(v; i) = D(v); the point of that reduction
is that it improves our chances of reducing D(v) later.

7



rows. In our experiments, the best results occurred when the ratio of the two
weights was proportional to the cube of the row number. But the number of
experiments we did was too limited to support any general claims.

Q: Is this modi�cation of the Lei-Tai algorithm one of the ideas anticipated
in [2], [11], and [13]?

A: No. The ideas they anticipated are what we call the aÆne idea,3 the
Boolean idea, and the recursive idea.

3 The AÆne Idea

Q: What are those ideas?

A: Let's start with the aÆne idea in a special case. Let p be a prime number.
Then there is a matrix with p2 rows, p columns, entries in f0; 1; : : : ; p� 1g,
and all columns independent.

Q: So this would correspond to p parameters, each with p values. One
of my trivial observations was that we'll need p2 rows even for just two p-
valued parameters, so you're saying it costs no more rows to handle p such
parameters than to handle just two.

A: Right. In fact, the method extends to handle p+ 1 such parameters, but
let's look at p of them �rst.

The idea is to work with aÆne functions over the prime �eld Z=p of p
elements. Imagine the p2 rows of our matrix as being labeled with the ordered
pairs (a; b) of elements from Z=p and imagine the p columns as labeled by
the elements of Z=p. Then the entry in row (a; b) and column i is ai + b,
where addition and multiplication are done modulo p, i.e., done in the �eld
Z=p.

Q: So the row labels (a; b) are viewed as designating the p2 aÆne functions
of one variable over Z=p.

A: Right; that's why we call this construction the aÆne idea. Figure 1 shows
the matrix for p = 3. The actual matrix is the part to the right of the vertical
line; the column to the left just shows the row labels.

3The anticipation covers the aÆne idea over �elds, not the most general case described
below.

8



Figure 1: AÆne Matrix for p = 3

0i+ 0 0 0 0
0i+ 1 1 1 1
0i+ 2 2 2 2
1i+ 0 0 1 2
1i+ 1 1 2 0
1i+ 2 2 0 1
2i+ 0 0 2 1
2i+ 1 1 0 2
2i+ 2 2 1 0

Q: You don't show the column labels?

A: They're the entries in the row 1i + 0, so it didn't seem worthwhile to
repeat them across the top of the �gure.

Q: OK. In this example it's easy to see that the columns are pairwise inde-
pendent.

A: It's easy to see it in general. Indeed, to satisfy the requirement fi 7!
x; j 7! yg, we need a row (a; b) such that

ai + b = x

aj + b = y:

The determinant of this linear system of equations for a; b is

����i 1
j 1

���� = i�j 6= 0.

As Z=p is a �eld, the required a and b exist.

Q: This establishes your claim about p parameters with p values being han-
dled in p2 tests. You also claimed that this can be improved to handle one
more parameter; how do you do that?

A: Add another column, whose entry in row (a; b) is a. See Figure 2. To see
that this column is independent of the previous ones, we need to solve for
a; b equations of the form

ai+ b = x

a = y;

9



Figure 2: Extended AÆne Matrix for p = 3

0i + 0 0 0 0 0
0i + 1 1 1 1 0
0i + 2 2 2 2 0
1i + 0 0 1 2 1
1i + 1 1 2 0 1
1i + 2 2 0 1 1
2i + 0 0 2 1 2
2i + 1 1 0 2 2
2i + 2 2 1 0 2

and this is trivial. (It does not need that p is prime.)

Q: The obvious question now is whether yet another column can be added,
maintaining pairwise independence, without adding more rows.

A: The answer is negative; p+ 1 is the best you can do. Let's postpone the
proof for a while and continue discussing the aÆne method.

Q: OK. The method looks pretty good if

� the two largest ni are equal,

� their common value n is prime, and

� c � n + 1.

Then you get n2 rows, and we know there's no possibility of doing better.
But what if those conditions aren't all satis�ed?

A: If the two largest ni's are not equal but not very di�erent, the aÆne
method may still be reasonably good if the largest ni is prime and c is at
most 1 larger. If the largest ni is signi�cantly larger than all the others,
then a reasonable approach is to �rst solve the problem without the largest
ni (hence with c reduced by 1) and then to restore the omitted ni by (the
variant described above of) the method of Lei and Tai.

Q: What if the two largest ni's are equal, say to n, and c � n + 1, but n
isn't prime?

10



A: A natural approach is to use the aÆne method with p being the �rst
prime � n.

Q: How much bigger than n is that p likely to be? I remember reading
somewhere that there's always a prime between n and 2n, but if p is near 2n
then the number of rows you get, p2, is unpleasantly large compared to the
n2 that one might hope for.

A: The situation isn't quite that bad. In the �rst place, the prime number
theorem says that the density of primes near n is close to 1= lnn, so usually
one needs to look only logarithmically4 past n to �nd a prime.

Q: That's \usually"; what about the worst case?

A: For that, one needs an expert on the distribution of primes, so we asked
Hugh Montgomery of the University of Michigan. He provided most of the
following asymptotic information.

There is a constant � < 1 such that, for all suÆciently large n, there is
a prime between n and n + n�. The best (smallest) � currently known is
0.525 (see [1]), but it is conjectured that every positive � will work. On the
other hand, there are, for any K, in�nitely many n with no prime between
n and n +K logn. There is no consensus (let alone a theorem) about, say,
n+K(logn)2.

So for large n, there is relatively little penalty for going to the next prime:
n2+O(n1:525) tests in the worst case and n2+O(n logn) on average, compared
to an optimum n2 (when the two largest ni are both n).

In practice, the values of n that arise are not so large. In fact, they are
small enough so that a simple lookup table can give the least prime p � n.
For n � 100 we always have p � n + 7 (and p � n + 5 except when n = 90
or 91). In addition, the following variants of the aÆne idea may help.

The aÆne idea works over any �nite �eld, whether or not it has the form
Z=p. Every power q of any prime p is the number of elements of a �nite �eld.
For any such q, the aÆne idea produces a matrix with q2 rows, q+1 columns,
q di�erent entries, and all columns independent.

Consider, for example, the 4-element �eld. It has characteristic 2, i.e.,
x+x = 0 for all x in this �eld. The four elements are 0, 1, g, and g+1 where
g2 + g + 1 = 0. The two equations x + x = 0 and g2 + g + 1 = 0 (together
with the �eld axioms) determine the arithmetic of this �eld and thus let us

4We use ln for the natural logarithm, base e, and log for the logarithm with base 2.

11



Figure 3: Extended AÆne Matrix over 4-Element Field

0i+ 0 0 0 0 0 0
0i+ 1 1 1 1 1 0
0i+ g g g g g 0
0i+ g + 1 g + 1 g + 1 g + 1 g + 1 0
1i+ 0 0 1 g g + 1 1
1i+ 1 1 0 g + 1 g 1
1i+ g g g + 1 0 1 1
1i+ g + 1 g + 1 g 1 0 1
gi+ 0 0 g g + 1 1 g
gi+ 1 1 g + 1 g 0 g
gi+ g g 0 1 g + 1 g
gi+ g + 1 g + 1 1 0 g g
(g + 1)i+ 0 0 g + 1 1 g g + 1
(g + 1)i+ 1 1 g 0 g + 1 g + 1
(g + 1)i+ g g 1 g + 1 0 g + 1
(g + 1)i+ g + 1 g + 1 0 g 1 g + 1

write down a 16 by 5 matrix (Figure 3) with 4 entries and with all columns
independent.

Q: So in e�ect a prime power is as good as a prime.

A: Right, provided you don't mind doing arithmetic in general �nite �elds.
There is another variant of the aÆne method that uses rings of the form

Z=q for non-prime values of q.

Q: Those rings aren't �elds, so your proof that the columns are independent
won't work.

A: Right; in fact the columns won't all be independent, but some of them
will be. Speci�cally, if we let i range from 0 to p� 1 where p is the smallest
prime divisor of q, then the columns labeled i will be pairwise independent.
Indeed, proceeding as in the �eld case, we �nd that when i and j are in
this range and distinct then the equations we must solve for a and b have a
determinant i � j, which is non-zero and smaller than p in absolute value.
Thus, this determinant is relatively prime to q and therefore invertible in
Z=q. Therefore, the required a and b exist (and are unique).

12



Q: So you get a matrix with q2 rows, q entries per column, pairwise inde-
pendent columns, but only p columns, rather than the q columns you could
get using a �eld.

A: Right. You can get one more column as before; its entry in row (a; b) is
a.

Q: Could you get more columns by using as your column labels not simply 0
through p� 1 but some cleverly chosen set of more than p elements of Z=q?

A: No. No matter how clever you are, any set of more than p elements will
have two members that are congruent modulo p. Then the two corresponding
columns will not be independent.

Q: So p + 1 is the best you can hope for with the aÆne method over Z=q.
That looks considerably worse than what you get by using �nite �elds.

A: This method is useful if the required number c of columns happens to be
small compared to the largest ni. Even if the given c is large, the recursive
idea (to be explained in a moment) sometimes leads to sub-problems with
small c.

4 The Recursive Idea

A: Let n be the largest ni, and suppose that c is signi�cantly larger than n.
The aÆne idea requires us to use a prime power q that is at least c� 1 (or,
in the ring version, a number whose smallest prime divisor is at least c� 1,
which is even worse). So we get a matrix with q2 � (c � 1)2 rows. Every
column of the matrix has q distinct entries, far more than we need, but the
aÆne method can't take advantage of this to reduce the number of rows.

The aÆne method can, nevertheless, make a contribution even in the case
of large c. One approach is to begin by considering only some subset of the
parameters, small enough so that the aÆne method provides a good matrix,
and then to extend this matrix by the Lei-Tai method, perhaps modi�ed as
discussed above, to incorporate the rest of the parameters.

Q: So you'd use a matrix built using the aÆne idea instead of the two-column
matrix that Lei and Tai use as the starting point for their construction.

A: Right. We experimented a bit with this method on one of the examples
given by Lei and Tai, 20 parameters with 10 values each. We used the aÆne

13



Figure 4: Partial Matrix for 12 Three-Valued Variables

0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 1 1 1 0 1 1 1 0
2 2 2 0 2 2 2 0 2 2 2 0
0 1 2 1 0 1 2 1 0 1 2 1
1 2 0 1 1 2 0 1 1 2 0 1
2 0 1 1 2 0 1 1 2 0 1 1
0 2 1 2 0 2 1 2 0 2 1 2
1 0 2 2 1 0 2 2 1 0 2 2
2 1 0 2 2 1 0 2 2 1 0 2

method with p = 11. The results were somewhat better, but not dramatically
better, than the Lei-Tai method.

4.1 Multiple Layers

A: There is another, more systematic way to use the aÆne method with
large c. We call it the recursive idea. Choose q � n as before but q < c.
Let w be the number of columns we can handle with this q, namely q + 1 if
q is a prime power (and we use the �eld of size q) or p + 1 where p is the
smallest prime divisor of q (if we use Z=q). Form the q2�w matrix given by
the aÆne method, and repeat it horizontally to �ll the required c columns.
Columns i and j are independent except when i and j are congruent modulo
w. Figure 4 shows an example where n = 3 and c = 12. (The vertical lines in
the �gure are just to make the copies of the original, 4-column matrix easier
to see.)

Now we need to add more rows to make the columns within each congru-
ence class modulo w pairwise independent. There are w congruence classes,
each of size c=w (rounded to an integer). For each congruence class, we
handle the columns in that class separately, by adding copies of the original
q2 � w matrix below the matrix already constructed. In our example, the
�rst congruence class is handled as shown in Figure 5.

We'll refer to the newly added rows as the second layer of the matrix (and
the original rows as the �rst layer).

14



Figure 5: More of the Matrix for c = 12 and n = 3

0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 1 1 1 0 1 1 1 0
2 2 2 0 2 2 2 0 2 2 2 0
0 1 2 1 0 1 2 1 0 1 2 1
1 2 0 1 1 2 0 1 1 2 0 1
2 0 1 1 2 0 1 1 2 0 1 1
0 2 1 2 0 2 1 2 0 2 1 2
1 0 2 2 1 0 2 2 1 0 2 2
2 1 0 2 2 1 0 2 2 1 0 2
0 0 0
1 1 1
2 2 2
0 1 2
1 2 0
2 0 1
0 2 1
1 0 2
2 1 0

15



Figure 6: The Whole Matrix for c = 12 and n = 3

0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 1 1 1 0 1 1 1 0
2 2 2 0 2 2 2 0 2 2 2 0
0 1 2 1 0 1 2 1 0 1 2 1
1 2 0 1 1 2 0 1 1 2 0 1
2 0 1 1 2 0 1 1 2 0 1 1
0 2 1 2 0 2 1 2 0 2 1 2
1 0 2 2 1 0 2 2 1 0 2 2
2 1 0 2 2 1 0 2 2 1 0 2
0 0 0 0 1 1 1 1 2 2 2 2
1 1 1 1 2 2 2 2 0 0 0 0
2 2 2 2 0 0 0 0 1 1 1 1
0 0 0 0 2 2 2 2 1 1 1 1
1 1 1 1 0 0 0 0 2 2 2 2
2 2 2 2 1 1 1 1 0 0 0 0

Q: The �rst three rows in the second layer of Figure 5 don't contribute to
the independence of these columns. They just duplicate earlier rows.

A: That's right, so we can omit these three rows. Notice, though, that if we
had c � 13 and thus had four columns in some equivalence class, then only
the �rst row of the second layer would be redundant. The second and third
rows would not be constant, so they actually contribute to the independence.

In our example, omitting the three redundant rows and handling the other
congruence classes similarly, we get Figure 6.

That �nishes the job in this example, but in general two columns would
still be identical if their positions di�ered by a multiple of w2. So if c were
greater than w2 then we'd need a third layer to handle these congruence
classes. In general, we get a matrix with dlogw ce = dlog c= logwe layers of
q2 � 1 rows each, except that the �rst layer has q2 rows. (The q2 � 1 comes
from the fact that the �rst, all-zeros row would be the same in every layer,
so it can be omitted from all layers but one.)

Q: It seems the extra column added to the aÆne method, the column not
given by aÆne functions, is causing trouble here by allowing only the �rst

16



row of each layer to be omitted.

A: That's true. If we used the original, \pure," aÆne method, then each layer
but the �rst would have only q2 � q rows, because all the aÆne functions of
the form 0i+ b would give redundant rows. On the other hand, w would be
decreased by 1, so there is a danger that we might need an additional layer.
So there is a trade-o�, whose value often depends on the e�ect of rounding
the ratio of logarithms to an integer.

One can improve on this pure aÆne method as follows. In the �rst layer,
use the aÆne method with the extra column. Any two columns that are not
yet independent are in fact identical. So in subsequent layers we don't need
any constant rows. So in all layers but the �rst we can use the pure aÆne
method minus its �rst q rows.

Q: How is this better than the pure aÆne method? They both use q2 rows
in the �rst layer and q2 � q rows in each subsequent layer.

A: Yes, but the improvement uses a larger w in the top layer, so the con-
gruence classes to be treated in subsequent layers are a little smaller. As a
result, we may get by with one fewer layer.

There is another variation that is occasionally useful. We can choose q
independently for the di�erent layers. This may be particularly useful at
the last layer, where the congruence classes remaining to be treated may be
smaller than n and we can therefore use a q that is not a prime power and
still have w large enough.

Q: You mentioned that the aÆne and recursive ideas are already in the
literature.

A: Yes, Bose [2] uses the aÆne idea (over �elds, not over general Z=q) to
construct what amount to test matrices, though he uses the terminology of
Latin squares. (When he wrote his paper, software testing and even comput-
ers were far in the future.) Williams [13] applies Bose's construction along
with the recursive idea to the problem of testing.

4.2 An Explicit Formula

A: It seems useful to observe | and it doesn't seem to be in the literature
| that the matrices given by the pure aÆne idea for a prime p plus the
recursive idea admit a rather simple, explicit description. Number the rows

17



and columns starting at 0. The entry in row z and column i is z if 0 � z < p
and �

a

�
i

p l

�
+ b

�
mod p; if z = p+ l(p2 � p) + (a� 1)p+ b;

with 1 � a < p, 0 � b < p, and 0 � l.

Q: I'm not sure that's really \rather simple". I understand \z if 0 � z < p",
which just means that the �rst p rows are constant. But please explain the
non-trivial part of the formula.

A: OK, let's look at the formula piece by piece, starting with the part z =
p+ l(p2�p)+(a�1)p+ b. This is just a compact way of saying that row z is
in layer l, where we start numbering layers at 0, and within layer l it is row
number (a� 1)p+ b. Remember that, when we use the pure aÆne method,
each layer but the �rst has p2 � p rows, so p + l(p2 � p) is the number of
rows in layers strictly preceding layer l. (For uniformity of terminology here,
we regard the �rst p rows, the constant ones, as strictly preceding layer 0.)
So, as we start numbering rows at 0, layer l begins at row p+ l(p2 � p) and
continues to row p+(l+1)(p2� p)� 1, inclusive. This is precisely the range
of p+ l(p2 � p) + (a� 1)p+ b as a ranges from 1 to p� 1 and b ranges from
0 to p� 1.

Now within layer l, increasing z corresponds to lexicographically increas-
ing the pair (a; b). This is because b ranges only from 0 to p � 1, so any
increase of a, even by only 1, increases (a � 1)p + b by at least p and thus
outweighs any decrease in b. So as z increases through layer l, the pair (a; b)
runs through all the relevant coeÆcients for aÆne functions ax+ b over Z=p,
in lexicographic order. (Remember that a = 0 is omitted since it would
produce constant rows, duplicating rows we already had earlier.)

It remains to see how these aÆne functions are used. Let's look �rst at the
easiest case, layer 0. Here we should have, in the �rst p columns, the matrix
given by the aÆne method, and in subsequent columns simply repetitions
of this matrix. So in the �rst p columns, where 0 � i < p, we should have
entries ai+ b, calculated in Z=p, i.e., calculated modulo p. These entries and
the repetitions in later columns, with period p, are given by a(i mod p) + b
calculated modulo p, which simpli�es to ai + b mod p. (It's a simpli�cation
of the mathematical description, reducing modulo p only once, at the end.
For computation, it may be better to reduce as you go rather than waiting
until the end.) And this simpli�ed formula is exactly the one we had above,
when l = 0, since then bi=p lc = i.

18



In the next layer, where l = 1, we take care of the pairs of columns that
have not already achieved independence, namely those whose numbers are
congruent modulo p. And we take care of them by putting more copies of the
same aÆne matrix, but with columns labeled di�erently. Thus, the �rst p
columns (0 � i < p) are each the �rst in their respective congruence classes,
so their entries in layer 1 are like the entries of the �rst column, i = 0, in
layer 0. Similarly, the next p columns (p � i < 2p) get, in layer 1, the entries
that the next single column, i = 1, had in layer 0. Continuing in this way, we
see that columns from pj to (p+ 1)j � 1 inclusive get, in layer 1, the entries
that column j had in layer 0. In other words, the layer 1 entries in column i
are the layer 0 entries in column j = bi=pc, namely

�
a

�
i

p

�
+ b

�
mod p:

Q: OK. I see how, when you continue recursively, you'll get higher powers
of p in the denominator, because in layer l you're concerned with pairs of
columns whose numbers i are congruent modulo p l. Now that I see what's
going on, the formula does look simple.

5 The Boolean Idea

Q: What is the third idea you mentioned, the Boolean idea?

A: As the name might suggest, it applies in the special case where all the
parameters are Boolean, i.e., all ni = 2. Then a solution of the testing
problem, an r � c Boolean matrix, can be viewed as a family (indexed by
the columns, i.e., by the parameters) of subsets of an r-element set, say
f1; 2; : : : ; rg. The set indexed by i consists of those m such that the entry in
row m, column i is true (or 1).

Independence of the rows is equivalent to the following requirements on
these sets:

� No one is a subset of another.

� No two are disjoint.

� No two cover the whole set f1; 2; : : : ; rg.

19



Indeed, the �rst of these three requirements says that the pairs of values
(1; 0) and (0; 1) occur in each pair of columns, the second requirement says
that (1; 1) occurs, and the last requirement says that (0; 0) occurs.

An equivalent way of expressing these requirements is:

� No two of the sets are complementary.

� The sets and their complements form an antichain (i.e., none is included
in another).

So we are looking for antichains, closed under complementation, in the
Boolean algebra of subsets of f1; 2; : : : ; rg. Then our test matrix is formed
by choosing, in this antichain, one member of each complementary pair and
using (the characteristic functions of) the chosen sets as the columns of our
matrix.

How big can a complement-closed antichain of subsets of f1; 2; : : : ; rg be?
Half of that will be the largest c that can be handled with r rows in the
Boolean situation.

If r is even, Sperner's theorem [12] says that the largest possible antichain
of subsets of an r-set consists of the subsets of size r=2. Since this antichain is
closed under complementation, we �nd that the largest c that can be handled
with r rows is

c =
1

2

�
r

r=2

�
=

�
r � 1

r=2

�
:

If r is odd, Sperner's theorem says that the largest antichains have size�
r

(r � 1)=2

�
, but these are not closed under complementation.

You can construct a complement-closed antichain by �xing one element in
the r-set, say 1, and taking all of the (r� 1)=2-element subsets that contain
1 and all of the (r + 1)=2-element subsets that don't contain 1.

It turns out (as a consequence of the Erd}os-Ko-Rado theorem [5]) that
these are the largest complement-closed antichains. So the largest c that can
be handled with r rows is

c =

�
r � 1

(r � 3)=2

�
:

Q: What is this Erd}os-Ko-Rado theorem?

20



A: The theorem asserts that, for any r and any k � r=2, if F is a family of
k-element subsets of an r-set and if every two elements of F intersect, then

the cardinality jFj is at most

�
r � 1

k � 1

�
.

Q: So it's not directly about complement-closed antichains. How does it
imply a bound on the size of those?

A: Well, suppose A is a complement-closed antichain of subsets of an r-set
where r is odd. Let B consist of those elements of A whose cardinality is
smaller than r=2. Notice that the elements of A that are not in B, namely
those of size greater than r=2, are exactly the complements of the sets in B.
Notice also that every two sets in B intersect, for if X were disjoint from Y
then X would be a subset of the complement of Y , contradicting the fact
that A is an antichain.

Q: So if all the sets in B had the same size k < r=2, then the Erd}os-Ko-Rado
theorem would imply that

jBj �
�
r � 1

k � 1

�
�
�

r � 1

(r � 3)=2

�
;

which agrees with your claim. But I don't see why all the sets in B should
have the same size.

A: They won't in general, but we can modify B, without decreasing its
cardinality, and without losing its crucial properties that it is an antichain
and that every two members meet, yet so that after the modi�cation all its
members have size (r � 1)=2.

Q: How do you do that? If it works, it clearly �nishes the proof.

A: We'll need the following well known fact.

Lemma 1 If k < r=2 then there is a one-to-one function that assigns to
each k-element subset of an r-set a (k + 1)-element superset of it.

Q: I haven't seen this lemma before, but I think I see how it will �nish your
proof. Apply the lemma to the smallest elements in B, and replace each of
these smallest elements of B by its image, a set larger by 1. This clearly
preserves the property that all pairs of sets from B meet, as we've replaced
certain sets by supersets. It also preserves the antichain property, equally

21



trivially. And it doesn't decrease the size of B because the newly added sets
were not there before, as B was an antichain.

So, as long as the minimum size of sets in B is smaller than (r� 1)=2, we
can increase it. Repeating this process, we end up with all sets in B having
size (r � 1)=2, so the Erd}os-Ko-Rado theorem applies.

But how do you prove the lemma?

A: It's an application of the matching theorem. By that theorem, it suÆces
to show that, if we take any collection X of k-element subsets of our r-set
and if we de�ne

Y = fY : jY j = k + 1 and 9X 2 X X � Y g;
then jX j � jYj. And this is easy if we just count in two ways the number P
of pairs (X; Y ) with X 2 X , Y 2 Y and X � Y .

On the one hand, each X 2 X occurs in exactly r� k such pairs, for any
element of the complement ofX can be added to form a Y . So P = (r�k)jX j.
On the other hand, any Y 2 Y occurs in at most k + 1 such pairs, as each
possible X is obtained by removing one of the k + 1 elements of Y . So
P � (k + 1)jYj. Therefore

(r � k)jX j � (k + 1)jYj:
As k < r=2, we have r � k � k + 1, and it follows that jX j � jYj.
Q: So for Boolean parameters, you know exactly how many pairwise inde-
pendent columns can be obtained from a given number of rows. How does
this compare with what the aÆne and recursive ideas give you?

A: Using Stirling's approximation for the factorials involved in the binomial
coeÆcients, we �nd that, for large r,

c � 2r�1

r
2

�r
:

Inverting this, to express r in terms of c, we get

r = log c+O(log log c):

The constant in the O(: : : ) is small; any constant > 1=2 will do.
For comparison, the aÆne and recursive ideas give, for the Boolean case,

asymptotically 2 log c.

22



We also note that one of the examples given in [8] for comparison with
[3, 4] involved only Boolean parameters, 100 of them. For this example, the
method of [8] gives a matrix with 15 rows, and the method of [3, 4] gave a
matrix of 12 rows.5 The Boolean method needs only 10 rows for this example.
Furthermore, the matrix is very easy to write down. The �rst row can be
taken to be all 0's. Then in each column �ll in exactly �ve 1's and four 0's
in the remaining spaces. Do this in such a way that all the columns are
di�erent; for example, go through the 5-element subsets of a 9-element set
in lexicographic order. (There are 126 such sets, so we could in fact handle
an additional 26 columns without needing any more rows.)

Q: Do the authors of these testing papers know about the Boolean method?

A: Some of them certainly do. The fact that 100 Boolean parameters can
be handled with 10 tests is stated in both [3] and [4], and the latter refers
to [11] where the general result is stated. But the context in which this 10
occurs in [3, 4] is a comparison of methods for getting independence with
methods that get probabilistic independence. It is not suggested that the
Boolean method should be used in practice or combined with other known
methods.

It may be worth emphasizing that the matrices given by the Boolean
method are very easy to construct. Essentially, one just has to lexicograph-
ically (or in some other convenient order) generate subsets of a �xed size in
a �xed set.

Q: So the case of 2-valued variables works as nicely as one could hope. The
exact optimum is known and an optimal matrix is easy to produce. Might
there be similar good news for 3-valued variables?

A: Sloane briey discusses the case of 3-valued variables in the introduction
of [11]. Unfortunately the situation is nowhere near as nice as in the 2-valued
case.

As we saw above, the optimal r for c 3-valued parameters is 9 for c =
2; 3; 4. The optimal r for c = 5 is 11. Beyond that, Sloane gives a table
of the best known r's for c up to 12, he gives references for some explicit
constructions, and he cites an asymptotic result that the optimal r satis�es
r = 3

2
log c(1 + o(1)).

5These numbers are taken from [8]. Note that the methods involve non-determinism or
randomization. It appears that numerous repetitions are needed to get results this good.

23



It seems to be a diÆcult combinatorial problem to say more about the
case of 3-valued variables. If you're interested, you should probably look up
the work cited in [11].

6 Random Attempts

Q: What would happen if, instead of applying these combinatorial or alge-
braic methods, you just tried to build a test matrix at random?

A: That's an interesting question. It would be a shame if all this work didn't
produce something better than randomness.

Consider the case of c parameters, each with the same number n of pos-
sible values. Let's �ll in the entries of an r � c matrix at random, with n
possible values for the entries. The questions to consider are:

� What is the probability of getting all the columns independent?

� How big must r be so that this probability is non-zero (so r rows suÆce
for c columns when all ni = n)?

� How big must r be so that this probability is large (so that we can
generate an appropriate matrix at random)?

If r is as in the second question, then we have a probabilistic proof of the
existence of an r � c test matrix for n-valued parameters. If r is as in the
third question, then we have a good chance of �nding such a test matrix by
randomization.

In fact, there's a better way to use randomization. As soon as r is big
enough to make the probability p of success not too tiny, we can choose a
moderate-sized k and build k=p random r � c matrices. We'll have a good
chance that at least one of them will have pairwise independent columns.
The \good chance" depends on k, but k = 20 will surely do for practical
purposes; so we just need r big enough so that 20=p is a feasible number of
attempts.

Notice, by the way, that the actual testing, with the necessary repetitions,
may involve more computation time than producing the test matrix. So it
may be worthwhile to expend considerable computational e�ort on getting
the test matrix to have few rows.

24



Now let's estimate the probabilities. The probability that a particular
requirement fi 7! x; j 7! yg (meaning entries x; y in columns i; j) is satis�ed
by a particular row is 1=n2. So the probability that it is not satis�ed by any
row is, since the rows are independent in the probabilistic sense,�

1� 1

n2

�r

:

So the expected number of unsatis�ed requirements is�
1� 1

n2

�r
c(c� 1)

2
n2:

This is an upper bound for the probability that some requirement is unsatis-
�ed. So when this expectation is < 1 then there exists an r � c matrix with
entries from an n-element set and with all pairs of columns independent.

For the expectation to be < 1, we need approximately

r > 2n2 ln c+ n2(2 lnn� ln 2):

Note that this involves a term proportional to n2 logn, which our methods
didn't need. Also, the other main term is

2n2 ln c = 2n2
log c

log e
=

n2 log c

log
p
e
:

Since
p
e < 2, this term is larger than n2 log c, whereas the aÆne and recur-

sive ideas together give asymptotically n2 log c= logw.

Q: So randomization is not the best option.

A: Probably not. Notice, though, that we computed an r for which the
expected number of unsatis�ed requirements is < 1. Since this expectation is
an upper bound for the probability that some requirement is unsatis�ed, the
r we found certainly has weaker property that there is a non-zero probability
of satisfying all requirements. But it is imaginable that a smaller r might
have this weaker property, which is what we really want.

Finally, to answer the third of our questions above, if we increase r to
2n2 ln c+n2(2 lnn�ln 2)+An2 then the probability of not getting all columns
independent decreases to less than e�A. So by choosing a moderate sized A,
we have a good chance of getting a solution to the testing problem by just
�lling in the matrix at random.

25



In fact, if n isn't too big, we could choose A = 1=n2, i.e., we could add
just one more row to the number r computed above. The probability of not
getting pairwise independent columns would be at most e�1=n2 . By repeating
the random experiment O(n2) times, we'd have a good chance of �nding a
matrix with pairwise independent columns.

7 Projective Planes

Q: You promised to explain why there can't be a q2 � (q + 2) matrix with
q entries and independent columns. In other words, why can't the matrix
given by the aÆne method, which you already extended by one more column,
be extended by even more columns without adding rows?

A: The reason for that is best explained in terms of projective planes of order
q.

Q: Remind me what a projective plane is.

A: A projective plane consists of a set P of points, a set L of lines, and an
incidence relation between them (the relation being expressed by saying that
a point lies on a line or that a line goes through a point), subject to three
axioms:

� Every two distinct points lie on a unique common line.

� Every two distinct lines go through a unique common point.

� There exist four points of which no three lie on a common line.

A projective plane has order q if there are q + 1 points on every line. It is a
theorem that all lines have the same number of points; also, every point of a
projective plane of order q lies on exactly q + 1 lines.

Q: What does this have to do with test matrices?

A: It turns out that a q2 � (q + 1) matrix with q entries and pairwise inde-
pendent columns is essentially the same thing as a projective plane of order
q. (We're assuming q � 2. The matrix for q = 1 is trivial and what should be
a projective plane of order 1 is (intentionally) excluded by the third axiom
for projective planes.)

Q: What does \essentially the same thing" mean?

26



A: Probably the best way to explain it is to prove it, but for a formal
de�nition you could say that there are two constructions, one converting the
matrices in question into projective planes, and one in the reverse direction,
such that both composite constructions are the identity up to isomorphism.

Q: That's pretty abstract, and you say that the proof will make it clearer,
so please show me the proof.

A: OK. First, suppose we have a matrix of the speci�ed sort. Notice that, in
accordance with one of your observations near the beginning of our discus-
sion, in every two distinct columns, every pair of entries will appear together
in exactly one row.

Q: Right. Independence requires each pair to appear together, and there are
just barely enough rows for that, so no pair can appear together twice.

A: In particular, each of the q entries appears exactly q times in every column.
Now de�ne a projective plane as follows. The points are the (q+1)q pairs

(i; x) where i labels a column and x is an entry, plus one special point called
�. The lines and the incidence relation are de�ned as follows. First, there
is a line for each column; the line for column i is incident with the q points
(i; x) and with �. Second, there is a line for each row; the line for row m is
incident with those points (i; x) such that the entry in row m and column i
is x.

Every two distinct points lie on a unique common line. Indeed, if the
points are (i; x) and (j; y) with i 6= j, then the independence of columns i
and j gives a row whose line contains these points, and we saw above that
there is only one such row. Furthermore, no column gives a line containing
both, as i 6= j. If, on the other hand, the points are (i; x) and (i; y), then
column i gives the required line and it is clearly unique. Finally, if the points
are (i; x) and �, then again column i gives the unique line through both.

Every two distinct lines lie on a unique common point. It suÆces to
prove existence, as uniqueness is equivalent to the uniqueness proved in the
preceding paragraph. (Both say that you can't have two distinct lines going
through two distinct points.) If the two lines come from columns, then � is a
common point. If one line comes from column i and the other from row m,
then the common point is (i; x) where x is the entry in row m column i. The
non-trivial case is that both of the lines come from rows, say rows m and m0.
What we must prove is that there is a column in which these two rows have
the same entry.

27



To this end, we count in two ways the number of pairs (i; fs; tg) where
i is a column, s and t are distinct rows, and these two rows have the same
entry in column i. For the �rst count, we use the fact that each entry occurs
exactly q times in each column. So a particular column and a particular entry
will contribute q(q� 1)=2 pairs to our count. As there are q+1 columns and
q entries, the total count is

(q + 1) � q � q(q � 1)

2
=

q2(q2 � 1)

2
:

The second way of counting the pairs is as follows. There are q2 rows, so
there are exactly q2(q2 � 1)=2 possible second components fs; tg for one of
our pairs. Each such fs; tg contributes either one pair (i; fs; tg) or none,
depending on whether there is a column i with equal entries in rows s and
t. (We saw already that there can't be two such columns.) The only way
for the second count to match the �rst is for every possible fs; tg to have an
appropriate i and so to contribute a pair. This completes the proof of the
second axiom of projective planes.

Q: You can skip the third axiom; I already see how it follows immediately
from what you've proved and q � 2.

A: OK. Now we can answer your question about why you couldn't have a
matrix like those considered here but with q + 2 columns.

Suppose you had such a matrix. Pick arbitrarily one column, call it
column i, and let s and t be two rows in which column i has the same entry.
(Remember that each column has each entry q times and q � 2.) Now
imagine the matrix without column i. That determines a projective plane.
In particular (by the hardest part of the proof just completed), there is a
column j where rows s and t have the same entry; and j 6= i since we're
looking at the matrix without column i. But now look at another submatrix,
obtained by restoring column i and deleting some column other than i and
j. This has two columns, i and j, in which rows s and t have equal entries,
contrary to what we proved above.

Q: That answers my original question, but now I'm curious about something
else. You produced a projective plane from a matrix, but you also claimed
to be able to go in the other direction. How does that work?

A: We need to use the well-known fact that a projective plane of order q has
exactly q2 + q + 1 points and the same number of lines. Also, as mentioned

28



earlier, each line has q+1 points on it and each point has q+1 lines through
it. If you grant these facts, then the construction is easy.

Given a projective plane of order q, choose arbitrarily one of its points
and call it �. On each of the q + 1 lines through �, arbitrarily label the q
points other than � by labels 1; 2; : : : ; q. Now build a q2 � (q + 1) matrix as
follows. The q+1 columns are labeled by the q+1 lines l through �. The q2
rows are labeled by the remaining q2 lines. The entry in row m and column l
is the label of the intersection point of lines l and m. To see that the columns
are pairwise independent, consider any two distinct columns, say labeled by
lines l and l0, and any pair of labels x and x0 in f1; 2; : : : ; qg. Let p be the
point on l that was labeled x, and let p0 be the point on l0 that was labeled
x0. Then the line m through p and p0 does not go through �. (Proof: � is
the unique intersection point of l and l0. In particular p0 is not on l. But p0

is on m so m 6= l. Since l is the unique line through p and � and since p is
on m, it follows that � is not on m.) So m determines a row of our matrix,
and this row clearly has entries x and x0 in columns l and l0, respectively.

Q: So instead of using the aÆne method, starting with a �eld, we could get
equally good results starting with any projective plane. So maybe we're not
limited to prime powers for q.

A: Maybe. It's an open problem whether there are any �nite projective
planes whose orders are not prime powers. The �rst two non-prime-powers,
6 and 10, are known not to be orders of projective planes, but the question
is open for 12.

Q: So it might be that the only �nite projective planes are those arising from
�nite �elds.

A: No. It is known that there are �nite projective planes not isomorphic to
those given by �elds. But all those examples have prime power order. So,
in going from the construction using �elds to general projective planes, you
get new examples, but not (yet) new orders of examples. By the way, the
smallest order for which there are non-isomorphic projective planes is 9, and
there are exactly 4 isomorphism classes for this order.

8 Latin Squares

Q: You also promised to explain why the product of the two largest ni's is
an adequate number of rows not only in the obvious case where c = 2 but

29



Figure 7: A Latin Square

0 1 2
0 0 2 1
1 2 1 0
2 1 0 2

also for c = 3. And, while we're on that subject, what happens when c = 4?

A: The situation for c = 3 is probably easiest to see with an alternative way
of describing the test matrices. Let's assume, to simplify the notation, that
n1 � n2 � n3. So we're looking for a matrix with n1n2 rows. If the desired
matrix exists, then each pair of values for the �rst two parameters occurs
in exactly one row, so we can label the rows by these pairs of values. To
visualize this, imagine an n1 by n2 array,6 the rows (resp. columns) being
labeled by the values of the �rst (resp. second) parameter. So each location
in this array corresponds to a row of the original matrix. The third column
of the matrix can then be represented by copying its entry from any row of
the matrix into the corresponding location of the array. For example, the
3-column matrix in Figure 1 gives rise to the array in Figure 7.

The independence of the third column from each of the others is reected
in the fact that every value for the third parameter occurs in every row and
in every column. When n1 = n2 = n3 as in this example, such an array is
called a Latin square.

Now you can see why n1 � n2 rows in the matrix suÆce when c = 3. We
can �ll in the array by putting the n3 possible entries into the �rst n3 spaces
in the �rst row (there's enough room as n3 � n2) and then repeating this
pattern in the subsequent rows, cyclically shifting it by one space from each
row to the next. Then the remaining spaces in the table can be �lled in
arbitrarily, and the result will have the required properties. It's obvious that
every one of the entries appears in every row. That it also appears in every
column is because n1 � n2 so there are enough rows for the cyclic shifts to
go all the way around.

Q: So what about four parameters? Is the product of the two largest ni's

6To avoid confusion, we'll consistently use \array" for this representation and \matrix"
for the representation used in the preceding sections.

30



Figure 8: A Graeco-Latin Square

0 1 2
0 0/0 2/1 1/2
1 2/2 1/0 0/1
2 1/1 0/2 2/0

always a suÆcient number of rows to handle four columns?

A: No, not even in the case that all the ni have the same value n. The �rst
counterexample is n = 6.

Notice that, if the matrix has four columns, then we can represent the
third column by an array as above and the fourth column by a second such
array. Each of the two arrays has, as above, the property that every value
of the relevant parameter occurs in every row and in every column. Fur-
thermore, for every pair of values of the third and fourth parameters, there
must be a location occupied by those two values in the two arrays. One often
superimposes the two arrays, which makes this last condition easier to check.
For example, the matrix of Figure 2 gives the array (or superposed pair of
arrays) of Figure 8.

When, as in this example, n1 = n2 = n3 = n4, we have two superposed
Latin squares with the additional condition that every possible pair of entries
occurs (and occurs exactly once, because there isn't enough room for more
occurrences). This additional condition is often called orthogonality, and
a pair of orthogonal Latin squares is often called a Graeco-Latin square.
(Apparently the values of one parameter were traditionally represented by
Greek letters and the values of the other by Latin letters.)

In general, to say that n2 rows suÆce for a matrix with c columns, n
entries in every column, and all columns independent is the same as to say
that there are c� 2 pairwise orthogonal Latin squares of order n.

The question about always getting a fourth column, in the special case
where all the ni are equal, thus comes down to whether Graeco-Latin squares
of all orders exist.

Q: So when n is a prime power, then there are, by what we saw earlier, n�1
pairwise orthogonal Latin squares of order n, and there do not exist n of
them.

31



A: Right. The �rst case not settled by the aÆne idea (or equivalently by
projective planes) is n = 6.

That there do not exist two orthogonal Latin squares of order 6 is a
fairly classical combinatorial result, con�rming the �rst nontrivial case of a
conjecture of Euler. (Euler conjectured that there do not exist two orthogonal
Latin squares of order n whenever n � 2 (mod 4). The �rst two cases, n = 2
and 6, are correct, but all other cases are wrong.)

References

[1] Roger C. Baker, Glynn Harman, and J�anos Pintz, \The di�erence be-
tween consecutive primes. II," Proc. London Math. Soc. (3) 83 (2001)
532{562.

[2] R. C. Bose, \On the application of the properties of the Galois �elds
to the construction of hyper Graeco-Latin squares," Sankhya 3 (1938)
323{338.

[3] David M. Cohen, Siddharta R. Dalal, Jesse Parelius, and Gardner C.
Patton, \The combinatorial design approach to automatic test genera-
tion," IEEE Software, September 1996 83{87.

[4] David M. Cohen, Siddharta R. Dalal, Michael L. Fredman, Gardner C.
Patton, \The AETG system: An approach to testing based on combina-
torial design," IEEE Trans. on Software Engineering 23 (1997) 437{444.

[5] Paul Erd}os, Chao Ko, and Richard Rado, \Intersection theorems for
systems of �nite sets," Quart. J. Math. Oxford Ser. (2) 12 (1961) 313{
320.

[6] Gyula O. H. Katona, \Two applications (for search theory and truth
functions) of Sperner type theorems," in Collection of articles dedicated
to the memory of Alfr�ed R�enyi,II. Period. Math. Hungar. 3 (1973), 19{
26.

[7] Daniel J. Kleitman and Joel Spencer, \Families of k-independent sets,"
Discrete Math. 6 (1973) 255{262.

32



[8] Yu Lei and Kuo-Chung Tai, \A test generation strategy for pairwise
testing," Proc. 3rd IEEE High-Assurance Systems Engineering Sympo-
sium, November 1998.

[9] Edward Marczewski, \Ind�ependance d'ensembles et prolongement de
mesures (r�esultats et probl�emes)," Colloquium Math. 1, (1948). 122{132.

[10] Alfr�ed R�enyi, Foundations of Probability, Holden-Day, 1970.

[11] Neil J. A. Sloane, \Covering arrays and intersecting codes," J. Combi-
natorial Designs 1 (1993) 51{63.

[12] E. Sperner, \Ein Satz �uber Untermengen einer endlichen Menge," Math.
Z. 27 (1928) 544{548.

[13] Alan W. Williams, \Determination of test con�gurations for pair-wise
interaction coverage," Proc. 13th International Conf. on Testing of Com-
municating Systems, August, 2000.

33


