
Probabilistically Checkable Arguments

Yael Tauman Kalai∗

Microsoft Research
yael@microsoft.com

Ran Raz†

Weizmann Institute of Science
ran.raz@weizmann.ac.il

Abstract

We give a general reduction that converts any public-coin interactive proof into a one-round
(two-message) argument. The reduction relies on a method proposed by Aiello et al. [ABOR00],
of using a Private-Information-Retrieval (PIR) scheme to collapse rounds in interactive proto-
cols. For example, the reduction implies that for any security parameter t, the membership
in any language in PSPACE can be proved by a one-round (two-message) argument of size
poly(n, t), which is sound for malicious provers of size 2t. (Note that the honest prover in this
construction runs in exponential time, since she has to prove membership in PSPACE, but we
can choose t such that 2t is significantly larger than the running time of the honest prover).

A probabilistically checkable argument (PCA) is a relaxation of the notion of probabilistically
checkable proof (PCP). It is defined analogously to PCP, except that the soundness property
is required to hold only computationally. We consider the model where the argument is of one
round (two-message), where the verifier’s message depends only on his (private) randomness.
We show that for membership in many NP languages, there are PCAs (with efficient honest
provers) that are of size polynomial in the size of the witness. This compares to the best PCPs
that are of size polynomial in the size of the instance (that may be significantly larger). The
number of queries to these PCAs is poly-logarithmic. These results are proved as follows:

Similarly to the above mentioned reduction from interactive proofs to one-round arguments,
we give a general reduction that converts any interactive-PCP, with certain properties, into a
PCA. Roughly speaking, an interactive-PCP (recently defined in [KR08]) is a proof-string that
can be verified by reading a small number of its bits, with the help of an interactive proof with
very small communication complexity. Roughly speaking, we show that any interactive-PCP,
with certain properties, can be converted into a PCA, where the size of the PCA is polynomial
in the size of the interactive-PCP’s proof-string and in the communication complexity of the
interactive-PCP’s interactive phase. The number of queries to the PCA is polynomial in the
number of queries to the interactive-PCP’s proof-string and in the communication complexity
of the interactive-PCP’s interactive phase.

Combined with a recent interactive-PCP construction of Goldwasser, Kalai and Rothblum [GKR07]1,
the reduction implies the following result: Let t > log n be a security parameter. The satisfi-
ability of a Boolean formula Φ(z1, . . . , zk) of size n can be proved by a PCA of size poly(k, t),
which is sound for malicious provers of size 2t. The number of queries to the PCA is poly(t),
and the running time of the honest-prover is poly(n, t). More generally, the satisfiability of a
Boolean circuit Φ(z1, . . . , zk) of size n and depth d can be proved by a PCA of size poly(k, d, t),
which is sound for malicious provers of size 2t. The number of queries to the PCA is poly(d, t),
and the running time of the honest-prover is poly(n, t).

∗Part of this work was done while the author was visiting the Weizmann Institute. Supported in part by NSF
CyberTrust grant CNS-0430450.

†Supported by Binational Science Foundation (BSF), Israel Science Foundation (ISF) and Minerva Foundation.
1Our reduction, and the theorem of [GKR07] were obtained in parallel, roughly at the same time. The result

below follows from their combination.

The soundness property, in all our results, relies on exponential hardness assumptions for
PIR schemes.

1 Introduction

In this paper, we define and study the new notion of probabilistically checkable argument (PCA), (see
Subsection 1.1). We give a general reduction that uses a poly-logarithmic PIR scheme to convert any
public-coin interactive proof into a one-round (two-message) argument, (see Subsection 1.2). For
example, the reduction shows that membership in any language in PSPACE can be proved by a one-
round (two-message) argument of polynomial size, (see Subsection 1.3). Similarly, we give a general
reduction that converts any efficient interactive-PCP, with certain properties, into a short PCA, (see
Subsections 1.4, 1.5). Combined with a recent efficient construction of interactive-PCPs [GKR07],
the reduction gives, for membership in many NP languages, PCAs that are significantly shorter
than the known PCPs for these languages, (see Subsection 1.6).

1.1 Probabilistically Checkable Arguments

The PCP theorem states that the satisfiability of a formula Φ(z1, . . . , zk) of size n can be proved by
a proof of size poly(n) that can be verified by reading only a constant number of its bits [BFL90,
FGLSS91, AS92, ALMSS92]. Note, however, that in many cases the size of the witness, k, is
significantly smaller than the size of the instance, n. A central line of research in the area of PCPs
is devoted to constructing short PCPs. In particular, one could hope that the satisfiability of a
formula Φ(z1, . . . , zk) of size n could be proved by PCPs of size poly(k), rather than poly(n), (see
for example [HN06]). However, a very interesting recent result of Fortnow and Santhanam shows
that this is very unlikely, as it implies that NP ⊆ coNP/poly [FS08].

In this paper, we consider the relaxed setting of probabilistically checkable argument (PCA). We
show that for many NP languages, there are PCAs that are of size polynomial in the size of the
witness, rather than polynomial in the size of the instance. The number of queries to these PCAs
is poly-logarithmic in n.

Roughly speaking, a PCA is a relaxation of the notion of PCP, where the soundness property is
required to hold only computationally. We consider the model where the argument is of one round
(two-message), where the verifier’s message depends only on his (private) randomness2. Before the
protocol starts, the verifier generates two strings that we refer to below as a “secret key” and a
“public key”, and sends the public key in the first message. The prover’s message depends on the
verifier’s public key. The verifier in turn will need to use his secret key for verification.3

More precisely, a PCA system is associated with three algorithms: a key generation algorithm G,
a proof generation algorithm P, and a verification algorithm V. It is also associated with five
parameters t, p, q, c, s, where t, p, q are integers and c, s are reals, s.t. 0 ≤ s < c ≤ 1. (Informally, t
is the security parameter, p is the size of the PCA, q is the number of queries allowed to the PCA,
c is the completeness parameter and s is the soundness parameter). We think of the parameters
t, p, q, c, s as functions of the instance size n.

2We note that one could consider several other models for PCA, such as, PCA in the common random string
model, where there is a public random string that both the prover and the verifier can see, and the argument is
composed of only one message sent by the prover to the verifier.

3We note that each pair of secret and public keys can only be used once. Our soundness’ proof are only valid
in this case. Moreover, it was noted to us by Rafael Pass that by observing wether a verifier accepted or rejected a
contrived message (sent by the prover), the prover can gain information about the secret key of the verifier.

2

Let L be an NP language, defined by L = {x : ∃w s.t. (x,w) ∈ RL}. Suppose that Alice wishes
to prove to Bob that x ∈ L. Assume that Bob applied in the past the key generation algorithm G,
and thus is associated with a pair of secret and public keys (SK, PK) ← G(1t). Assume that Bob
sent to Alice the public key PK. We assume that both Alice and Bob know L and that they both
get as input an instance x of size n. Alice gets an additional input w (supposedly a witness for the
membership of x ∈ L). A PCA system allows Alice to generate a string π ← P(x,w, PK) of p bits.
Bob is allowed to access at most q bits of the string π, and based on these bits he decides whether
to accept or reject the statement x ∈ L. We require the following completeness and soundness
properties:

1. Completeness: For any x ∈ L and any witness w (given to the prover as input) such that
(x,w) ∈ RL, the verifier, associated with a pair of secret and public keys (SK, PK) ← G(1t),
accepts π ← P(x, w, PK) with probability at least c. Namely,

Pr[Vπ(x, SK,PK) = 1] ≥ c

where the probability is over (SK,PK) ← G(1t), over π ← P(x, w, PK), and over the
randomness of V.

2. Soundness: For any x 6∈ L and any cheating prover P̃ of size ≤ 2t,

Pr[V π̃(x, SK, PK) = 1] ≤ s

where π̃ = P̃(PK), and the probability is over (SK,PK) ← G(1t) and over the randomness
of V.

For the formal definition of PCA, see Section 2.

1.2 From Interactive Proofs to One-Round Arguments

We propose a general method for reducing the number of rounds in any public-coin interactive
proof (that is, an interactive proof where all the bits sent by the verifier are random, and con-
sist of the verifier’s random coin tosses). More specifically, our method uses a PIR scheme to
convert any public-coin interactive proof into a one-round (two-message) argument. The idea of
using a PIR scheme to reduce the round complexity in interactive protocols was proposed by
Aiello et al. [ABOR00], who used a PIR scheme to convert the (short) 4-message argument for
NP proposed by [K92, M94], into a (short) 2-message protocol. Although their 2-message protocol
is very natural, attempts to prove its soundness have failed. Moreover, Dwork et al. [DLNNR04]
exhibit inherent difficulties in such attempts (for the protocol of [ABOR00] and for extensions of
this protocol). Dwork et al. note that the essence of the problem is that seemingly independant
executions of PIR schemes may have, so called, spooky interactions. We prove that our method,
which is based on the ideas of Aiello et al. [ABOR00], is sound, if the initial interactive protocol
involves only one prover, and is a proof.

A Private Information Retrieval (PIR) scheme, a concept introduced by Chor, Goldreich,
Kushilevitz, and Sudan [CGKS98] and by Kushilevitz and Ostrovsky [KO97]4, allows a user to
retrieve information from a database in a private manner. More formally, the database is modeled

4The original PIR scheme of [CGKS98] had information theoretic privacy but required several copies of the
database that cannot interact with each other. The first PIR scheme with a single database (with privacy under
computational assumptions) was obtained in [KO97].

3

as an N bit string x = (x1, . . . , xN), out of which the user retrieves the i’th bit xi, without revealing
any information about the index i. A trivial PIR scheme consists of sending the entire database
to the user, thus satisfying the PIR privacy requirement in the information-theoretic sense. A PIR
scheme with communication complexity smaller than N is said to be non-trivial. In this paper, we
are interested in poly-logarithmic PIR schemes, formally defined by Cachin et al. [CMS99]. Roughly
speaking, a poly-logarithmic PIR scheme is a PIR scheme with poly-logarithmic communication
complexity. For the formal definition of poly-logarithmic PIR scheme, see Subsection 3.2.

Roughly speaking, we are able to prove the following result. Assume the existence of a poly-
logarithmic PIR scheme (as defined in [CMS99]). Assume that there exists a public-coin interactive
proof system (P,V) for proving membership in some language L; with communication complexity
`, completeness c, and soundness s. Then for any security parameter t ≥ max{`, log n}, there
exists a one-round (two-message) argument system (P ′,V ′) for L, with communication complexity
poly(t), completeness c− 2−t2 , and soundness s + 2−t2 against malicious provers of size ≤ 2t. The
verifier V ′ runs in time poly(t, n) (assuming that V runs in time poly(n)). The prover P ′ runs in
time poly(T, t, 2λ), where T is the running time of P, and λ is the total number of bits sent from
V to P in the interactive proof system (P,V).

Moreover, the resulting one-round argument system (P ′,V ′) has the property that the first
message, sent by V ′, depends only on the random coin tosses of V ′ (and is independent of the
instance x), and can be computed in time poly(t).

The main idea of the proof is as follows. For every round i of the protocol (P,V), the prover P ′
prepares a database DBi (of size at most 2λ) of the response of P (in round i) on all the possibilities
of bits sent by V (in all rounds). The verifier V ′ retrieves the response of P from this database, using
a PIR scheme. This is done simoulataneously for all rounds of the protocol. Intuitively, the use of a
PIR scheme ensures that when the prover P ′ prepares the database DBi, she cannot use information
about the bits sent by the verifier in later rounds. As mentioned above, Dwork et al. show that
this intuition is misleading in many cases [DLNNR04]. Nevertheless, we are able to prove that our
protocol is sound. Thus, in this particular case, spooky interactions are not a problem.

Note that the running time of the honest prover P ′ is exponential in λ, where λ is the total
number of bits sent from V to P in the interactive proof system (P,V). This is the case because
P ′ has to handle the databases DBi of size 2λ. We are able to improve a little bit over that and
to prove a similar result, where the prover’s running time is poly(T, t, 2λ), where this time λ is
the maximum number of bits of the verifier’s messages that the prover “needs” to read in order to
compute one bit to be sent to the verifier.

For more details, see Section 4.

1.3 One-Round Arguments for PSPACE

The reduction from Subsection 1.2 can be used to convert any public-coin interactive proof into a
one-round argument. In particular, it can be used for giving one-round arguments for membership
in PSPACE languages.

For any language L in PSPACE, there exists a public-coin interactive proof system (P,V) for
proving membership in L; with communication complexity ` = poly(n), completeness 1, and ex-
ponentially small soundness [LFKN90, S92]. Using our general reduction, we can translate this
interactive proof into a one-round argument as follows: For any security parameter t ≥ max{`, n},
there exists a one-round (two-message) argument system (P ′,V ′) for L, with communication com-
plexity poly(t), completeness 1 − 2−t, and soundness 2−t against malicious provers of size ≤ 2t.
The verifier V ′ runs in time poly(t). The prover P ′ runs in time poly(t, 2`).

4

Note that the running time of the honest prover P ′ is exponential. This seems necessary because
the prover has to prove membership in PSPACE languages. Note, however, that we can choose t
to be significantly larger than `, say, t = `3. In this case, the honest prover runs in time poly(2`),
while the proof is sound for malicious provers of size ≤ 2`3 .

1.4 Interactive-PCP

An interactive-PCP (say, for the membership x ∈ L) is a combination of a PCP and a short
interactive proof. Roughly speaking, an interactive-PCP is a proof that can be verified by reading
only a small number of its bits, with the help of a short interactive proof.

More precisely, let L be an NP language, defined by L = {x : ∃w s.t. (x,w) ∈ RL}. Let
p, q, l, c, s be parameters as follows: p, q, l are integers and c, s are reals, s.t. 0 ≤ s < c ≤ 1.
(Informally, p is the size of the PCP, q is the number of queries allowed to the PCP, l is the
communication complexity of the interactive proof, c is the completeness parameter and s is the
soundness parameter). We think of the parameters p, q, l, c, s as functions of the instance size n.
An interactive-PCP with parameters (p, q, l, c, s) for membership in L is an interactive protocol
between an (efficient) prover P and an (efficient) verifier V , as follows:

We assume that both the prover and the verifier know L and get as input an instance x of
size n, and the prover gets an additional input w (supposed to be a witness for the membership
x ∈ L). In the first round of the protocol, the prover generates a string π of p bits. (We think
of π as an encoding of the witness w). The verifier is still not allowed to access π. The prover
and the verifier then apply an interactive protocol, where the total number of bits communicated
is l. During the protocol, the verifier is allowed to access at most q bits of the string π. After the
interaction, the verifier decides whether to accept or reject the statement x ∈ L. We require the
following completeness and soundness properties:

There exists an (efficient) verifier V such that:

1. Completeness: There exists an (efficient) prover P , such that: for every x ∈ L and any
witness w (given to the prover P as an input), if (x,w) ∈ RL then the verifier accepts with
probability at least c.

2. Soundness: For any x 6∈ L and any (not necessarily efficient) prover P̃ , and any w (given to
the prover P̃ as an input), the verifier accepts with probability at most s.

For the formal definition of interactive-PCP, see Subsection 3.1.

1.5 From Interactive-PCP to PCA

We give a general reduction that converts any efficient interactive-PCP, with certain properties, into
a short PCA. The main idea is to use the reduction from Subsection 1.2 to convert the interactive
phase of the interactive-PCP into a one-round argument.

Roughly speaking, we are able to prove the following result. Assume the existence of a poly-
logarithmic PIR scheme (as defined in [CMS99]). Assume that there exists an interactive-PCP
system (P,V) with parameters p, q, `, c, s for some NP language L, such that the interactive phase
of (P,V) is public-coin, and each bit sent by the prover in the interactive phase depends on at
most λ bits sent by the verifier. Then, for any security parameter t ≥ max{`, log n}, there exists
a PCA system (G′,P ′,V ′) with parameters t, p′, q′, c′, s′ for the language L, where p′ = poly(p, t),
q′ = poly(q, t), c′ ≥ c− 2−t2 , and s′ ≤ s + 2−t2 . The prover P ′ runs in time poly(t, n, 2λ).

For more details, see Section 5.

5

1.6 Short PCAs for Satisfiability

Efficient constructions of interactive-PCPs were given in [KR08, GKR07]. In particular, in [GKR07],
the following theorem was proven.

Let Φ(z1, . . . , zk) be a Boolean circuit of size n and depth d, and assume without loss of generality
that k ≥ log n (otherwise, it is easy to check the satisfiability of Φ in time poly(n)). Let s be
such that, log n ≤ s ≤ poly(n). Then, the satisfiability of Φ can be proved by an interactive-
PCP with the following parameters. Size of the PCP: p = poly(k, d). Number of queries: q =
poly(s). Communication complexity of the interactive phase: ` = poly(d, s). Completeness: 1.
Soundness: 2−s. Moreover, the interactive phase is public-coin, and each message sent by the
prover depends only on the preceding λ = O(log n) bits sent by the verifier.

Using our reduction from interactive-PCP to PCA, together with the theorem of [GKR07], one
obtains the following result. (Our reduction and the theorem of [GKR07] were obtained roughly at
the same time. The result below follows from their combination).

Let Φ(z1, . . . , zk) be a Boolean circuit of size n and depth d. Let t be a security parameter,
such that, log n ≤ t ≤ poly(n). Then, the satisfiability of Φ can be proved by an efficient PCA
system (i.e., PCA with an efficient prover), with the following parameters. Size of the PCA:
p = poly(k, d, t). Number of queries: q = poly(d, t). Completeness: 1− 2−t. Soundness: 2−t.

In particular, if Φ(z1, . . . , zk) is a Boolean formula of size n, and log n ≤ t ≤ poly(n), the
satisfiability of Φ can be proved by an efficient PCA system, with the following parameters. Size of
the PCA: p = poly(k, t). Number of queries: q = poly(t). Completeness: 1− 2−t. Soundness: 2−t.

2 Definition of PCA

Let L be any NP language defined by L = {x : ∃w s.t. (x,w) ∈ RL}. Let t, p, q, c, s be parameters
that satisfy the following: The parameters t, p, q : N → N are integers, and the parameters c, s :
N→ [0, 1] are reals, such that for every n ∈ N, 0 ≤ s(n) < c(n) ≤ 1.

Definition 1. A triplet (G,P,V) of probabilistic Turing machines is a PCA system for L with
parameters (t, p, q, c, s), if the following holds:

• G is a probabilistic Turing machine that runs in time poly(t), and V is a probabilistic oracle
machine that runs in time poly(t, n).

• For every (x,w) ∈ RL (where |x| = n) and every (SK,PK) ← G(1t(n)), the algorithm
P(x,w, PK) generates a bit string π of size at most p(n), and the oracle machine Vπ(x, SK, PK)
reads at most q(n) bits of π.

• Completeness: For every (x,w) ∈ RL (where |x| = n),

Pr[Vπ(x, SK, PK) = 1] ≥ c(n)

(where the probability is over (SK,PK) ← G(1t(n)), over π ← P(x,w, PK), and over the
randomness of V).

• Soundness: For every x 6∈ L (where |x| = n), and every cheating prover P̃ of size ≤ 2t(n),

Pr[V π̃(x, SK,PK) = 1] ≤ s(n)

(where π̃ = P̃(PK), and the probability is over (SK,PK) ← G(1t(n)) and over the randomness
of V).

6

Remark. Note that in Definition 1 we did not specify the complexity of P. We say that a PCA
system (G,P,V) is efficient if P runs in time poly(t, n).

3 Preliminaries

3.1 Interactive-PCP (IPCP)

Let L be any NP language defined by L = {x : ∃w s.t. (x,w) ∈ RL}. Let p, q, `, c, s be parameters
that satisfy the following: The parameters p, q, ` : N → N are integers, and the parameters c, s :
N→ [0, 1] are reals, such that for every n ∈ N, 0 ≤ s(n) < c(n) ≤ 1.

Definition 2. A pair (P,V) of probabilistic polynomial time interactive Turing machines is an
interactive-PCP for L with parameters (p, q, `, c, s), if for every (x,w) ∈ RL the prover P(x,w)
generates a bit string π of size at most p(n) (where n = |x|), such that the following properties are
satisfied.

• Completeness: For every (x,w) ∈ RL,

Pr[(P(x,w),Vπ(x)) = 1] ≥ c(n)

(where n = |x|, and the probability is over the random coin tosses of P and V).

• Soundness: For every x /∈ L, every (unbounded) interactive Turing machine P̃, and every
string π̃ ∈ {0, 1}∗,

Pr[(P̃(x),V π̃(x)) = 1] ≤ s(n)

(where n = |x|, and the probability is over the random coin tosses of V).

• Complexity: The communication complexity of the protocol (P(x,w),Vπ(x)) is at most `(n),
and V reads at most q(n) bits of π.

3.2 Private Information Retrieval (PIR)

A PIR scheme consists of three algorithms: QPIR, DPIR and RPIR. The query algorithm QPIR

takes as input a security parameter t, the database size N , and an index i ∈ [N] (that the user
wishes to retrieve from the database). It outputs a query q, which should reveal no information
about the index i, together with an additional output s, which is kept secret by the user and will
later assist the user in retrieving the desired element from the database. The database algorithm
DPIR takes as input a security parameter t, the database (x1, . . . , xN) and a query q, and outputs
an answer a. This answer enables the user to retrieve xi, by applying the retrieval algorithm RPIR,
which takes as input a security parameter t, the database size N , an index i ∈ [N], a corresponding
pair (q, s) obtained from the query algorithm, and the database answer a corresponding to the
query q. It outputs a value which is supposed to be the i’th value of the database.

In this paper we are interested in poly-logarithmic PIR schemes, formally defined by Cachin
et al. [CMS99], as follows.5

Definition 3. Let t be the security parameter and N be the database size. Let QPIR and DPIR be
probabilistic circuits, and let RPIR be a deterministic circuit. We say that (QPIR, DPIR, RPIR) is
a poly-logarithmic private information retrieval scheme if the following conditions are satisfied:

5Definition 3 is not worded exactly as the one in [CMS99], but was shown to be equivalent to it in [KR06].

7

1. (Size Restriction:) QPIR and RPIR are of size ≤ poly(t, log N), and DPIR is of size ≤
poly(t,N). The output of QPIR and DPIR is of size ≤ poly(t, log N).

2. (Correctness:) ∀N , ∀t, ∀database x = (x1, . . . , xN) ∈ {0, 1}N , and ∀i ∈ [N],

Pr[RPIR(t,N, i, (q, s), a) = xi | (q, s) ← QPIR(t,N, i), a ← DPIR(t, x, q)] ≥ 1− 2−t3 .

3. (User Privacy:) ∀N , ∀t, ∀i, j ∈ [N], and ∀adversary A of size at most 2t3,
∣∣Pr[A(t,N, q) = 1 | (q, s) ← QPIR(t,N, i)]−
Pr[A(t,N, q) = 1 | (q, s) ← QPIR(t,N, j)]

∣∣ ≤ 2−t3 .

4 From Interactive Proofs to One-Round Arguments

In this section, we propose a general method for reducing the number of rounds in any public-coin
interactive proof (that is, an interactive proof where all the bits sent by the verifier are random,
and consist of the verifier’s random coin tosses). More specifically, our method uses a PIR scheme
to convert any public-coin interactive proof into a one-round (two-message) argument.

Lemma 4.1. Assume the existence of a (uniform) poly-logarithmic PIR scheme (as defined in
Definition 3).6 Assume that there exists a public-coin interactive proof system (P,V) for proving
membership in some language L, with communication complexity `, completeness c, and sound-
ness s. Then for any security parameter t ≥ max{`, log n}, there exists a one-round (two-message)
argument system (P ′,V ′) for L, with communication complexity `′ = poly(t, `) = poly(t), com-
pleteness c′ ≥ c − 2−t2, and soundness s′ ≤ s + 2−t2 against provers of size ≤ 2t. The verifier V ′
runs in time ≤ poly(t, n) (assuming that V runs in time poly(n)). The prover P ′ runs in time
≤ poly(T, t, 2λ), where T is the running time of P, and λ is the total number of bits sent from V
to P in the interactive proof system (P,V).

Moreover, the resulting one-round argument system (P ′,V ′) has the property that the first mes-
sage, sent by V ′, depends only on the random coin tosses of V ′ (and is independent of the instance
x),7 and can be computed in time ≤ poly(t).

Rather than proving Lemma 4.1 directly, we prove a stronger and more general lemma. The
more general lemma converts any interactive proof (P,V), in which the verifier’s messages depend
only on the verifier’s random coin tosses (and in particular, any public-coin interactive proof), into
a one-round argument (P ′,V ′). Moreover, the resulting prover P ′ is more efficient than the one in
the statement of Lemma 4.1. More specifically, the running time of P ′ is ≤ poly(T, t, 2λ), where
T, t are as in the statement of Lemma 4.1 (i.e., T is the running time of P, and t is the security
parameter of the underlying PIR scheme), but λ here is defined differently than in Lemma 4.1.
Recall that in Lemma 4.1, λ was the total number of bits sent by the verifier. Intuitively, here
λ is the maximum number of bits of the verifier’s messages, that the prover “needs” to read in
order to compute one bit to be sent to the verifier. Namely, if λi denotes the number of bits of
the verifier’s messages, that the prover “needs” to read in order to compute its i’th bit (to be
sent to the verifier), then λ = max{λ1, . . . , λ`}. We formalize this via the following definition of a
history-ignorant interactive proof.

6We assume the existence of such a PIR scheme for any parameters N and t.
7The fact that this message depends only on the random coin tosses of V ′ (and is independent of x) will be crucial

when converting an interactive-PCP system into a PCA system in Section 5.

8

Definition 4. An `-round interactive proof (P,V) for proving membership in a language L is
said to be history-ignorant, if for every input x ∈ L, every auxiliary input w ∈ {0, 1}∗,8 and for
every i ∈ [`], the message sent by the (honest) prover P(x,w) in the i’th round of the protocol
(P(x,w),V(x)) depends only on the message sent by V in the i’th round of the protocol (and on
x,w and the random coin tosses of P),9 and does not depend on the messages sent by V before the
i’th round.

In the generalized lemma we propose a method for converting any `-round history-ignorant
interactive proof (P,V) (where the verifier’s messages depend only on the verifier’s random coin
tosses) into a one-round argument (P ′,V ′). As in Lemma 4.1, we show that the completeness and
soundness parameters remain almost the same, and the communication complexity increases by
at most a polynomial factor in the security parameter t. However, here the running time of the
resulting prover P ′ is ≤ poly(T, t, 2λ), where now λ is the length of the longest message sent by V
(rather than the total number of bits sent by V). Namely, if m1, . . . ,m` are the ` messages sent by
V throughout the protocol (P,V) (where the message mi is sent by V in round i), then

λ
def= max

i∈[`]
{|mi|}.

Lemma 4.2. Assume the existence of a (uniform) poly-logarithmic PIR scheme (as defined in
Definition 3). Assume that there exists a history-ignorant interactive proof system (P,V) for proving
membership in some language L, where the verifier’s messages depend only on the verifier’s random
coin tosses (and are independent of the interaction and the input). Let ` be the communication
complexity, c be the completeness parameter, and s be the soundness parameter of the proof system
(P,V). Denote by λ the length of the longest message sent by V, and assume that V uses at most
O(` · λ) random bits. Then for any security parameter t ≥ max{`, log n}, there exists a one-round
(two-message) argument system (P ′,V ′) for L, with communication complexity `′ = poly(t, `) =
poly(t), completeness c′ ≥ c− 2−t2, and soundness s′ ≤ s + 2−t2 against provers of size ≤ 2t. The
verifier V ′ runs in time ≤ poly(t, n) (assuming that V runs in time poly(n)). The prover P ′ runs
in time ≤ poly(T, t, 2λ), where T is the running time of P.

Moreover, the resulting one-round argument system (P ′,V ′) has the property that the first mes-
sage, sent by V ′, depends only on the random coin tosses of V ′ (and is independent of the instance
x). If each message sent by V can be computed in time ≤ poly(t) then the first message sent by V ′
can also be computed in time ≤ poly(t).

Before proving Lemma 4.2, we show that this lemma can be used to convert any (not necessarily
history-ignorant) interactive proof (P,V), where the verifier’s messages depend only on the verifier’s
random coin tosses, into a one-round argument (P ′,V ′), where the running time of the resulting
prover P ′ is ≤ poly(T, t, 2λ), and where λ is the maximum number of bits of the verifier’s messages
that the underlying prover P “needs” to read in order to compute one bit to be sent to the verifier.
We assume for simplicity that in the protocol (P,V), the prover P sends in each round a single bit.
This is without loss of generality since we can always increase the number of rounds artificially.

The idea is the following:10 First convert the interactive proof (P,V) into the following history-
ignorant interactive proof (P ′′,V ′′): The verifier V ′′ will first prepare all the messages to be sent by

8As is common, we allow the prover in the interactive proof system to use an auxiliary input, supposedly a witness
for x ∈ L.

9We think of each round as consisting of a message sent by the verifier V followed by a message sent by the
prover P.

10The discussion in this paragraph is only an intuition. The formal result is given by Definition 4 and Lemma 4.2.

9

V in the protocol (P,V). Note that this can be done in advance since according to our assumption,
the verifier’s messages depend only on the verifier’s random coin tosses (and are independent of
the interaction and the input). Then, in each round i, the verifier V ′′ will send P ′′ all the bits
that P “needs” in order to compute its i’th bit (i.e., its i’th round message) in the protocol (P,V).
The prover P ′′ will emulate the prover P, while reading only the message sent by V ′′ in the i’th
round. This results with a history-ignorant protocol, with the same completeness and soundness
parameters, and where the communication complexity increases by at most a polynomial factor.
The thing to notice is that in the i’th round the verifier V ′′ sends a message of size λi (where λi is
the number of bits of the verifier’s messages, that the prover P “needs” to read in order to compute
its i’th bit). What remains is to apply Lemma 4.2 to the history-ignorant protocol (P ′′,V ′′) in
order to obtain the desired one-round argument (P ′,V ′).

Proof of Lemma 4.2. Fix any history-ignorant interactive proof system (P,V) as in the state-
ment of the lemma, for proving membership in some language L. Denote by λ the length of the
longest message sent by V in the interactive proof (P,V) (λ ≤ `). We assume for simplicity (and
without loss of generality) that this protocol consists of exactly ` rounds, where in each round V
sends a message of size exactly λ, and P sends a single bit.

Fix any security parameter t ≥ max{`, log n}. Let

(QPIR, DPIR, RPIR)

be a poly-logarithmic PIR scheme, with respect to security parameter t and database size N
def= 2λ.

(We refer the reader to Subsection 3.2 for the definition of a poly-logarithmic PIR scheme.) We
next describe how to convert (P,V) into a one-round argument system (P ′,V ′) as in the statement
of the lemma.

Fix any x ∈ {0, 1}∗ (supposedly x ∈ L) and any string w ∈ {0, 1}∗ given to the prover as
auxiliary input. The one-round argument (P ′(x,w),V ′(x)) proceeds as follows:

• The verifier V ′(x) sends the first message, computed as follows:

1. Choose a random string rv ∈R {0, 1}O(`·λ), to be used when emulating the underlying
verifier V(x).

2. Compute the ` messages m1, . . . , m` ∈ {0, 1}λ sent by V(x) (with randomness rv). Note
that these messages can be computed in advance since in the protocol (P,V) all the
messages sent by V depend only on V’s random coin tosses.

3. For each i ∈ [`], let (qi, si) ← QPIR(t, N, mi).

4. Save the values (rv,m1, . . . , m`, s1, . . . , s`, q1, . . . , q`).11

5. Send (q1, . . . , q`) to P ′.
Note that if each message of V can be computed in time ≤ poly(t) then the message sent by
V ′ can be computed in time ≤ poly(t, `) = poly(t).

• Upon receiving a message (q1, . . . , q`) from V ′, the algorithm P ′(x,w) operates as follows:
11We note that the messages m1, . . . , m` do not need to be saved since they can be recomputed from rv. We save

them for simplicity.

10

1. Choose a random string rp ∈R {0, 1}T , to be used when emulating the underlying prover
P(x,w).

2. For each i ∈ [`], compute an N -size database DBi as follows: The m ∈ {0, 1}λ entry of
DBi contains the i’th bit that the prover P(x,w) (with randomness rp) would have sent
to V(x), if the i’th-round message sent by V(x) was m.12

3. For each i ∈ [`], compute ai ← DPIR(t,DBi, qi).

4. Send the message (a1, . . . , a`) to V ′.
• Upon receiving the message (a1, . . . , a`) from P ′, the algorithm V ′(x) operates as follows:

1. Restore the saved values (rv,m1, . . . , m`, s1, . . . , s`, q1, . . . , q`).

2. For every i ∈ [`], compute b′i
def= RPIR(t,N,mi, (qi, si), ai).

3. Accept if and only if V(x), with (initial) randomness rv, would have accepted the mes-
sages (b′1, . . . , b

′
`).

13

Complexity. The fact that the PIR scheme used is poly-logarithmic implies that the communi-
cation complexity is

∑̀

i=1

|ai|+ |qi| ≤ ` · poly(t, λ) = poly(t, `) = poly(t).

Also note that if the prover P of the interactive proof system runs in time T then the running time
of the prover P ′ of the one-round argument is at most poly(T, t, 2λ). This is the case since the
database algorithm DPIR runs in time

poly(t,N) = poly(t, 2λ).

Moreover, the running time of the verifier V ′ is polynomial in t and n = |x|.

Completeness. Fix any (x,w) (where |x| = n) such that

Pr[(P(x,w),V(x)) = 1] ≥ c(n) (1)

(where the probability is over the randomness of P and V).
We need to prove that

Pr[(P ′(x,w),V ′(x)) = 1] ≥ c(n)− 2−t(n)2

(where the probability is over the randomness of P ′ and V ′).

Fix any random string rv ∈ {0, 1}O(`·λ) chosen by V ′ in Step 1, and any random string rp ∈
{0, 1}T chosen by P ′ in Step 1. Let m1, . . . , m` ∈ {0, 1}λ be the ` messages sent by V(x) with
randomness rv. Let b1, . . . , b` ∈ {0, 1} be the ` messages sent by P(x,w) with randomness rp,
when interacting with V(x) with randomness rv. According to the correctness property of the
poly-logarithmic PIR scheme, for every i ∈ [`]

Pr
[
b′i = bi

] ≥ 1− 2−t3 ,

12We are using here the fact that the interactive proof system (P,V) is history-ignorant.
13This verdict test may require V ′(x) to use additional (fresh) randomness.

11

(where b′i
def= RPIR(t, N, mi, (qi, si), ai) and the probability is over (qi, si) ← QPIR(t,N,mi) and

over ai ← DPIR(t,DBi, qi)).

Therefore, for every rv ∈ {0, 1}O(`·λ) and rp ∈ {0, 1}T ,

Pr[(b′1, . . . , b
′
`) = (b1, . . . , b`)] ≥ 1− ` · 2−t3 ≥ 1− 2−t2 .

This, together with Equation (1), implies that

Pr[(P ′(x,w),V ′(x)) = 1] ≥ c− 2−t2 ,

as desired.

Soundness. Fix any x /∈ L (where |x| = n), and any cheating prover P̃ of size ≤ 2t(n). Suppose
that

Pr[(P̃,V ′(x)) = 1] = s(n) + ε (2)

(where the probability is over the randomness of V ′).

We show that this implies that there exists a cheating prover for the underlying interactive proof
(P,V) that succeeds in cheating with probability greater than s(n) + ε − 2−t(n)2 , which in turn
implies that it must be the case that ε ≤ 2−t(n)2 , as desired.

To this end, we define a series of ` + 1 protocols

(P0,V0), . . . , (P`,V`).

These protocols are depicted in Figure 1.

The protocol (P0,V0) is defined exactly as the underlying interactive proof (P,V), and thus its
soundness is s (against an unbounded cheating prover). The protocol (P`,V`) is defined exactly as
the one-round argument (P ′,V ′), except that it has an additional third message sent from the verifier
to the prover. This additional message is of no significance since the verifier does not expect any
reply from the prover.14 Thus, according to our assumption in Equation (2), the protocol (P`,V`)
has a cheating prover P̃` of size ≤ 2t, such that

Pr[(P̃`,V`(x)) = 1] = s + ε. (3)

All the other protocols (Pi,Vi) are hybrids of these protocols, as defined in Figure 1. Namely, in
protocol (Pi,Vi), the first i rounds of (P0,V0) are collapsed into a single round, via the use of a
PIR scheme (as in protocol (P`,V`)), and the rest of the protocol continues as protocol (P0,V0).
More specifically, in protocol (Pi,Vi), the verifier first sends i queries (q1, . . . , qi) corresponding to
the first i messages of V0. The prover Pi replies with i answers (a1, . . . , ai). Then Vi reveals the
messages m1, . . . ,mi (corresponding to the queries q1, . . . , qi), and sends the values s1, . . . , si (that
are used together with q1, . . . , qi to extract the bits b1, . . . , bi from a1, . . . , ai). He also sends a new
message mi+1, computed by emulating the message that V0 sends in the i + 1’st round. Then, the

14This additional message is added only for the clarity of the hybrid process.

12

prover Pi sends bi+1, computed by emulating the i+1’st bit that P0 would have sent after receiving
the message mi+1. The protocol continues similarly to protocol (P0,V0).

We prove that for every i ∈ [`] and every parameter δ ∈ [0, 1], if the protocol (Pi,Vi) has a
cheating prover P̃i of size Ti ≤ 2t2.5

, such that

Pr[(P̃i,Vi(x)) = 1] ≥ δ,

then the protocol (Pi−1,Vi−1) has a cheating prover P̃i−1 of size ≤ Ti + 2t2.2
, such that

Pr[(P̃i−1,Vi−1(x)) = 1] ≥ δ − 2−t3 .

This, together with Equation (3), implies that the protocol (P0,V0) has a cheating prover P̃0 (of
size ≤ 2t2.5

), such that

Pr[(P̃0,V0(x)) = 1] ≥ s + ε− ` · 2−t3 ≥ s + ε− 2−t2

(where we assume that t is large enough). This in turn implies that ε ≤ 2−t2 , as desired.

Assume for the sake of contradiction that there exists i ∈ [`] and δ ∈ [0, 1] such that the protocol
(Pi,Vi) has a cheating prover P̃i of size Ti ≤ 2t2.5

for which

Pr[(P̃i,Vi(x)) = 1] ≥ δ, (4)

and yet for every cheating prover P̃i−1 of size ≤ Ti +2t2.2
for the protocol (Pi−1,Vi−1), it holds that

Pr[(P̃i−1,Vi−1(x)) = 1] < δ − 2−t3 . (5)

We show that this contradicts the user privacy of the underlying PIR scheme (QPIR, DPIR, RPIR).
More specifically, we show that there exist ` strings m1, . . . , m` ∈ {0, 1}λ and an additional string
m′ ∈ {0, 1}λ, such that: There exists an algorithm A that takes as input a query q (and has the
strings m1, . . . ,m`, m

′ ∈ {0, 1}λ and the index i ∈ [`] hardwired into it), and distinguishes between
the case that q is distributed according to

(q, s) ← QPIR(t,N, mi),

and the case that q is distributed according to

(q, s) ← QPIR(t,N,m′).

The messages m1, . . . , m` ∈ {0, 1}λ are chosen as follows: Emulate the verifier V0, and let m1, . . . , m` ∈
{0, 1}λ be the ` messages sent by V0 in the protocol (P0,V0(x)). (Note that we are using here the fact
that the messages sent by V0 depend only on V0’s random coin tosses, and thus can be determined
in advance.) The message m′ ∈ {0, 1}λ is chosen uniformly at random.
Algorithm A operates as follows:

1. For every j ∈ [i− 1] compute

(qj , sj) ← QPIR(t, N, mj).

13

2. Compute
(a1, . . . , ai)

def= P̃i(q1, . . . , qi−1, q).

3. For every j ∈ [i− 1] compute

bj
def= RPIR(t,N, mj , (qj , sj), aj).

4. Consider the protocol (P0,V0), restricted to the case that for every j ∈ [`], the message sent
by V0 in round j is mj , and for every j ∈ [i− 1] the message sent by P0 in round j is bj .

Compute the bit bi (to be sent by the prover in the i’th round), which maximizes the prover’s
probability of success (that is, the probability that V(x) accepts) given the transcript thus
far. Note that this bit can be computed in time poly(2`λ) ≤ poly(2t2). Similarly, compute
sequentially the bits bi+1, . . . , b`, where each bj (to be sent by the prover in the j’th round),
maximizes the prover’s probability of success given the transcript so far.

5. Output 1 if the verifier V0(x) accepts the transcript corresponding to m1, . . . , m`, b1, . . . , b`,
and output 0 otherwise.

In order to reach a contradiction, it remains to prove the following two claims.

Claim 4.3. If q corresponds to mi, then A outputs 1 with probability ≥ δ.

Claim 4.4. If q corresponds to m′, then A outputs 1 with probability < δ − 2−t3.

Claims 4.3 and 4.4, together with the fact that the size of A is ≤ 2t3 (for large enough t),
contradict the data privacy condition of the underlying PIR scheme.

Proof of Claim 4.3. Note that if q corresponds to mi then algorithm A simulates exactly the
first two messages in the protocol (P̃i,Vi). In particular, the bits b1, . . . , bi−1 (corresponding to the
prover’s messages a1, . . . , ai−1) are distributed exactly as the ones corresponding to the messages
generated by P̃i. As for bi, . . . , b`, algorithm A carries out the best response strategy for the prover,
while choosing the verifier’s messages exactly as the verifier Vi does. Thus,

Pr[A outputs 1] ≥ Pr[(P̃i,Vi(x)) = 1] ≥ δ,

where the latter inequality follows from Equation (4).

Proof of Claim 4.4. Equation (5) implies that it suffices to prove that if A outputs 1 with
probability η (in the case that q corresponds to m′) then there exists a cheating prover P̃i−1 of size
≤ Ti + 2t2.2

for the protocol (Pi−1,Vi−1) such that

Pr[(P̃i−1,Vi−1(x)) = 1] = η. (6)

The cheating prover P̃i−1, upon receiving the first message (q1, . . . , qi−1) from the verifier Vi−1(x),
operates as follows:

1. Choose uniformly at random m′ ∈R {0, 1}λ, and let

(q′i, s
′
i) ← QPIR(t,N, m′).

14

2. Compute
(a1, . . . , ai)

def= P̃i(q1, . . . , qi−1, q
′
i),

and send the message (a1, . . . , ai−1) to Vi−1.

3. Upon receiving the message (s1, . . . , si−1,m1, . . . , mi−1,mi) from Vi−1, compute the messages
b1, . . . , bi−1 corresponding to a1, . . . , ai−1. Namely, for every j ∈ [i− 1], let

bj
def= RPIR(t,N, mj , (qj , sj), aj).

4. Consider the protocol (P0,V0), restricted to the case that for every j ≤ i, the message sent by
V0 in round j is mj , and for every j ≤ i−1 the message sent by P0 in round j is bj . Compute
the bit bi (to be sent by the prover in the i’th round), that maximizes the prover’s probability
of success (i.e., the probability that V0(x) accepts), given the transcript thus far. Send the bit
bi to the verifier. (Note that this message can be computed in time poly(2`λ) ≤ poly(2t2).)

Continue in this manner, by sending the bits bi+1, . . . , b`, where each such message is the one
that maximizes the prover’s probability of success, given the transcript thus far.

Note that (in the case that q corresponds to m′) algorithm A emulates exactly the protocol
(P̃i−1,Vi−1(x)). Therefore,

Pr[(P̃i−1,Vi−1(x)) = 1] = Pr[A outputs 1] = η,

as desired.

It remains to note that the size of P̃i−1 is ≤ Ti + poly(2t2) ≤ Ti + 2t2.2
(for large enough t).

P0 V0

m1←−−−−−−−−
b1−−−→
m2←−−−−−−−−
b2−−−→
...

m`←−−−−−−−−
b`−−−→

· · ·

Pi Vi

q1, . . . , qi←−−−−−−−−−−−
a1, . . . , ai−−−−−−−−−−−→

s1, . . . , si,m1, . . . , mi+1←−−−−−−−−−−−−−−−−−−
bi+1−−−−→

...

m`←−−−−−−−−
b`−−−−→

· · ·

P` V`

q1, . . . , q`←−−−−−−−−−−−
a1, . . . , a`−−−−−−−−−−−→

s1, . . . , s`,m1, . . . , m`←−−−−−−−−−−−−−−−−

Figure 1: Definition of (P0,V0), . . . , (P`,V`)

15

Finally, note that the moreover part of Lemma 4.2 holds. Namely, that the first message
(q1, . . . , q`), sent by the verifier V ′(x), depends only on the random coin tosses of V ′ (and is inde-
pendent of x), and can be computed in time poly(t, `) = poly(t), assuming that each message sent
by V can be computed in time poly(t).

5 From Interactive-PCPs to PCAs

In this section, we propose a general method for converting an interactive-PCP system (with certain
properties) into a PCA system. This method is very similar to the method of converting an
interactive proof into a one-round argument (presented in Section 4). Namely, it uses a PIR
scheme to reduce the round complexity of the interactive phase of the interactive-PCP system into
one round (two-messages). Then, the first message (sent by the verifier) in this one-round protocol,
is interpreted as the verifier’s public-key in the PCA system; and the second message (sent by the
prover) in the one-round protocol, together with the interactive-PCP oracle, are interpreted as the
PCA string.

Theorem 1. Assume the existence of a (uniform) poly-logarithmic PIR scheme (as defined in Def-
inition 3). Assume that there exists an interactive-PCP system (P,V) with parameters (p, q, `, c, s)
for some NP language L, such that the interactive phase is history-ignorant,15 and each message
sent by the verifier in this phase depends only on the verifier’s random coin tosses (and is in-
dependent of the interaction, the PCP string π, and the input x), and can be computed in time
≤ poly(`). Denote by λ the length of the longest message sent from V to P in the interactive phase
of the interactive-PCP system (P,V). Assume that V uses at most O(` · λ) random bits. Then,
for any security parameter t ≥ max{`, log n} there exists a PCA system (G′,P ′,V ′) with param-
eters (t, p′, q′, c′, s′) for the language L, where p′ = poly(p, t), q′ = poly(q, t), c′ ≥ c − 2−t2, and
s′ ≤ s + 2−t2. The prover P ′ runs in time ≤ poly(t, n, 2λ).

The proof of this theorem is very similar to the proof of Lemma 4.2.

Proof of Theorem 1. Fix an NP language L = {x : ∃w s.t. (x,w) ∈ RL}. Let (P,V) be an
interactive-PCP system for L with parameters (p, q, `, c, s), as in the statement of the theorem.
Denote by λ the length of the longest message sent by V in the interactive phase of (P,V) (λ ≤ `).
We assume for simplicity (and without loss of generality) that the interactive phase consists of
exactly ` rounds. In each round i ∈ [`], V sends a message mi of size exactly λ (which depends only
on the verifier’s random coin tosses), and P sends a single bit bi. For every (x,w) ∈ RL, the prover
P(x, w) generates a bit string π of size at most p(n) (where n = |x|). We assume for simplicity
(and without loss of generality) that π is of size exactly p(n).

Fix any security parameter t ≥ max{`, log n}. Let (QPIR, DPIR, RPIR) be a poly-logarithmic
PIR scheme, with respect to security parameter t and database size N

def= 2λ. (We refer the reader
to Subsection 3.2 for the definition of a poly-logarithmic PIR scheme.) We next describe how to
convert the interactive-PCP system (P,V) into a PCA system (G′,P ′,V ′) as in the statement of
the theorem.

• G′(1t(n)) operates as follows:
15A history-ignorant interactive phase is defined in the same way as a history-ignorant interactive proof. See

Definition 4.

16

1. Choose a random string rv ∈R {0, 1}O(`·λ) (to be used when emulating the messages sent
by the underlying PCP verifier V).

2. Compute the ` messages m1, . . . , m` ∈ {0, 1}λ sent by V (with randomness rv) in the
interactive phase of (P,V). Note that these messages can be computed in advance (since
all the messages sent by V depend only on V’s randomness).

3. For each i ∈ [`], let (qi, si) ← QPIR(t, N, mi).

4. Let PK = (q1, . . . , q`) and let SK = (rv, m1, . . . , m`, s1, . . . , s`, q1, . . . , q`).16

5. Output the pair (SK, PK).

Note that G′ runs in time ≤ poly(t), since each message sent by V can be computed in time
≤ poly(`) ≤ poly(t).

• For every (x,w) ∈ RL (where |x| = n) and every (SK, PK) ← G′(1t(n)), the algorithm
P ′(x,w, PK) operates as follows.

1. Parse PK = (q1, . . . , q`).

2. Choose a random string rp ∈R {0, 1}poly(n) (to be used when emulating the underlying
PCP prover P(x,w)).

3. Compute the oracle π, as computed by P(x,w) (with randomness rp).

4. For each i ∈ [`], compute an N -size database DBi as follows: The m ∈ {0, 1}λ entry
of DBi contains the bit bi that the PCP prover P(x,w) (with randomness rp) would
have sent to V(x) in the i’th round of the interactive phase of (P,V), if the i’th-round
message sent by V(x) was m.17

5. For each i ∈ [`], compute ai ← DPIR(t,DBi, qi).

6. Output π′ def= (π, a1, . . . , a`)

• For every (x,w) ∈ RL (where |x| = n), every (SK, PK) ← G′(1t(n)), and every string π′

(supposedly of the form π′ = (π, a1, . . . , a`)), the oracle machine (V ′)π′(x, SK, PK) operates
as follows:

1. Query the oracle π′ at all the coordinates i > p(n). Denote the values obtained by the
oracle by (a1, . . . , a`).

2. Parse PK = (q1, . . . , q`) and SK = (rv,m1, . . . , m`, s1, . . . , s`, q1, . . . , q`).

3. For every i ∈ [`], compute b′i
def= RPIR(t,N,mi, (qi, si), ai).

4. Compute the q oracle queries made by V(x) (with randomness rv), assuming the `
messages that the prover P sent V during the interactive phase were b′1, . . . , b

′
`. Denote

these q queries by i1, . . . , iq ∈ [p(n)].

5. Query the oracle at the coordinates i1, . . . , iq, and obtain q answers, denoted by πi1 , . . . , πiq .

6. Output 1 if and only if the verifier Vπ(x) (with randomness rv) outputs 1 after receiving
the messages b′1, . . . , b

′
` from the prover P and receiving the bits πi1 , . . . , πiq from the

oracle.
16We note that the messages m1, . . . , m` do not need to be part of the secret key since they can be recomputed

from rv. We save them for simplicity.
17We are using here the fact that the interactive phase of (P,V) is history-ignorant.

17

The fact that the PIR scheme used is poly-logarithmic implies that

p′ = |π|+
∑̀

i=1

|ai| ≤ |π|+ ` · poly(t, λ) = p + poly(t, `) = poly(p, t),

and

q′ = q +
∑̀

i=1

|ai| ≤ q + ` · poly(t, λ) = poly(q, t).

Also note that the running time of the PCA prover P ′ is at most poly(n, t, 2λ). This is the case
since the database algorithm DPIR runs in time

poly(t,N) = poly(t, 2λ).

It remains to prove that c′ ≥ c− 2−t2 and s′ ≤ s + 2−t2 .

Completeness. Fix any (x,w) (where |x| = n) such that

Pr[(P(x,w),Vπ(x)) = 1] ≥ c(n) (7)

(where the probability is over the randomness of P and V).
We need to prove that

Pr[(V ′)π′(x, SK, PK) = 1] ≥ c(n)− 2−t(n)2

(where the probability is over (SK, PK) ← G′(1t(n)), over π′ ← P ′(x,w, PK), and over the ran-
domness of V ′).

Parse PK = (q1, . . . , q`) and SK = (rv,m1, . . . , m`, s1, . . . , s`, q1, . . . , q`). Let rp ∈ {0, 1}poly(n)

be the random string chosen by P ′ in Step 2. Let π′ = (π, a1, . . . , a`) be the oracle generated
by P ′(x,w, PK). Thus, π is the oracle generated by the underlying PCP prover P(x,w) with
randomness rp. Let b1, . . . , b` ∈ {0, 1} be the ` messages sent by P(x,w) with randomness rp,
when interacting with V(x) with randomness rv. According to the correctness property of the
poly-logarithmic PIR scheme, for every i ∈ [`],

Pr
[
b′i = bi

] ≥ 1− 2−t3

(where b′i
def= RPIR(t,N, mi, (qi, si), ai)).

Therefore,
Pr

[
(b′1, . . . , b

′
`) = (b1, . . . , b`)

] ≥ 1− ` · 2−t3 ≥ 1− 2−t2

(for large enough t). This, together with Equation (7), implies that

Pr[(V ′)π′(x, SK, PK) = 1] ≥ c− 2−t2 ,

as desired.

18

Soundness. Fix any x /∈ L (where |x| = n), and any cheating prover P̃ of size ≤ 2t(n), such that

Pr[(V ′)π′(x, SK,PK) = 1] ≥ s(n) + ε (8)

where π′ = P̃(PK), and where the probability is over (SK, PK) ← G′(1t(n)) and over the random-
ness of V ′).

We show that this implies that there exists a cheating prover for the underlying interactive-PCP
(P,V) that succeeds in cheating with probability greater than s(n) + ε − 2−t(n)2 , which in turn
implies that it must be the case that ε ≤ 2−t(n)2 , as desired.

To this end, we define a series of ` + 1 protocols

(P0,V0), . . . , (P`,V`).

These protocols are depicted in Figure 2.

The protocol (P0,V0) is defined similarly to the underlying interactive-PCP (P,V), with the
only difference being that in (P0,V0), the prover sends the string π to V0 in the clear as an
initial message, rather than an oracle. Thus, the soundness of (P0,V0) is s (against an unbounded
cheating prover). The protocol (P`,V`) is defined similarly to the PCA system (P ′,V ′), with the
only difference being that in (P`,V`) the prover does not take a public key PK = (q1, . . . , q`) as
input. Rather the verifier V` sends the public key PK = (q1, . . . , q`) to P` as an initial message.
Also, the protocol (P`,V`) has an additional third message sent from the verifier to the prover.
This additional message is of no significance since the verifier does not expect any reply from the
prover.18 Thus, according to our assumption in Equation (8), the protocol (P`,V`) has a cheating
prover P̃` of size ≤ 2t, such that

Pr[(P̃`,V`(x)) = 1] = s + ε. (9)

All the other protocols (Pi,Vi) are hybrids of these protocols, as defined in Figure 2. Namely, in
protocol (Pi,Vi), the first i rounds of (P0,V0) are collapsed into a single round, via the use of a
PIR scheme (as in protocol (P`,V`)), and the rest of the protocol continues as protocol (P0,V0).
More specifically, in protocol (Pi,Vi), the verifier first sends i queries (q1, . . . , qi) corresponding to
the first i messages of V0. The prover Pi replies with an initial message π (as computed by P0),
together with i answers (a1, . . . , ai) corresponding to (q1, . . . , qi). Then Vi reveals the messages
m1, . . . , mi (corresponding to the queries q1, . . . , qi), and sends the values s1, . . . , si (that are used
together with q1, . . . , qi to extract the bits b1, . . . , bi from a1, . . . , ai). He also sends a new message
mi+1, computed by emulating the message that V0 sends in the i + 1’st round. Then, the prover
Pi sends bi+1, computed by emulating the bit that P0 would have sent in the i + 1’st round, after
receiving the message mi+1. The protocol continues similarly to protocol (P0,V0).

We prove that for every i ∈ [`] and every parameter δ ∈ [0, 1], if the protocol (Pi,Vi) has a
cheating prover P̃i of size Ti ≤ 2t2.5

, such that

Pr[(P̃i,Vi(x)) = 1] ≥ δ,

18This additional message is added only for the clarity of the hybrid process.

19

then the protocol (Pi−1,Vi−1) has a cheating prover P̃i−1 of size ≤ Ti + 2t2.2
, such that

Pr[(P̃i−1,Vi−1(x)) = 1] ≥ δ − 2−t3 .

This, together with Equation (9), implies that the protocol (P0,V0) has a cheating prover P̃0 (of
size ≤ 2t2.5

), such that

Pr[(P̃0,V0(x)) = 1] ≥ s + ε− ` · 2−t3 ≥ s + ε− 2−t2

(where we assume that t is large enough). This in turn implies that ε ≤ 2−t2 , as desired.

Assume for the sake of contradiction that there exists i ∈ [`] and δ ∈ [0, 1] such that the protocol
(Pi,Vi) has a cheating prover P̃i of size Ti ≤ 2t2.5

for which

Pr[(P̃i,Vi(x)) = 1] ≥ δ, (10)

and yet for every cheating prover P̃i−1 of size ≤ Ti +2t2.2
for the protocol (Pi−1,Vi−1), it holds that

Pr[(P̃i−1,Vi−1(x)) = 1] < δ − 2−t3 . (11)

We show that this contradicts the user privacy of the underlying PIR scheme (QPIR, DPIR, RPIR).
More specifically, we show that there exist ` strings m1, . . . , m` ∈ {0, 1}λ and an additional string
m′ ∈ {0, 1}λ, such that: There exists an algorithm A that takes as input a query q (and has the
strings m1, . . . ,m`, m

′ ∈ {0, 1}λ and the index i ∈ [`] hardwired into it), and distinguishes between
the case that q is distributed according to

(q, s) ← QPIR(t,N, mi),

and the case that q is distributed according to

(q, s) ← QPIR(t,N,m′).

The messages m1, . . . , m` ∈ {0, 1}λ are chosen as follows: Emulate the verifier V0, and let m1, . . . , m` ∈
{0, 1}λ be the ` messages sent by V0 in the protocol (P0,V0). (Note that we are using here the fact
that the messages sent by V0 depend only on V0’s random coin tosses, and thus can be determined
in advance.) The message m′ ∈ {0, 1}λ is chosen uniformly at random.
Algorithm A operates as follows:

1. For every j ∈ [i− 1] compute

(qj , sj) ← QPIR(t, N, mj).

2. Compute
(π, a1, . . . , ai)

def= P̃i(q1, . . . , qi−1, q).

3. For every j ∈ [i− 1] compute

bj
def= RPIR(t,N, mj , (qj , sj), aj).

20

4. Consider the protocol (P0,V0), restricted to the case that the initial message sent by P0 is π,
for every j ∈ [`] the message sent by V0 in round j is mj , and for every j ∈ [i−1] the message
sent by P0 in round j is bj .

Compute the bit bi (to be sent by the prover in the i’th round), which maximizes the prover’s
probability of success (i.e., the probability that V0(x) accepts) given the transcript thus
far. Note that this bit can be computed in time poly(2`λ) ≤ poly(2t2). Similarly, compute
sequentially the bits bi+1, . . . , b`, where each bj (to be sent by the prover in the j’th round),
maximizes the prover’s probability of success given the transcript so far.

5. Output 1 if the verifier V0(x) accepts the transcript corresponding to (π, m1, b1, . . . , m`, b`),
and output 0 otherwise.

In order to reach a contradiction, it remains to prove the following two claims.

Claim 5.1. If q corresponds to mi, then A outputs 1 with probability ≥ δ.

Claim 5.2. If q corresponds to m′, then A outputs 1 with probability < δ − 2−t3.

Claims 5.1 and 5.2, together with the fact that the size of A is ≤ 2t3 (for large enough t),
contradict the data privacy condition of the underlying PIR scheme.

Proof of Claim 5.1. Note that if q corresponds to mi then algorithm A simulates exactly the first
two messages in the protocol (P̃i,Vi). In particular, the initial message π and the bits b1, . . . , bi−1

(corresponding to a1, . . . , ai−1) are distributed exactly as the ones corresponding to the messages
generated by P̃i. As for bi, . . . , b`, algorithm A carries out the best response strategy for the prover,
while choosing the verifier’s messages exactly as the verifier Vi does. Thus,

Pr[A outputs 1] ≥ Pr[(P̃i,Vi(x)) = 1] ≥ δ,

where the latter inequality follows from Equation (10).

Proof of Claim 5.2. Equation (11) implies that it suffices to prove that if A outputs 1 with
probability η (in the case that q corresponds to m′) then there exists a cheating prover P̃i−1 of size
≤ Ti + 2t2.2

for the protocol (Pi−1,Vi−1) such that

Pr[(P̃i−1,Vi−1(x)) = 1] = η. (12)

The cheating prover P̃i−1, upon receiving the first message (q1, . . . , qi−1) from the verifier Vi−1(x),
operates as follows:

1. Choose uniformly at random m′ ∈R {0, 1}λ, and let

(q′i, s
′
i) ← QPIR(t,N, m′).

2. Compute
(π, a1, . . . , ai)

def= P̃i(q1, . . . , qi−1, q
′
i),

and send the message (π, a1, . . . , ai−1) to Vi−1.

21

3. Upon receiving the message (s1, . . . , si−1,m1, . . . , mi−1,mi) from Vi−1, compute the messages
b1, . . . , bi−1 corresponding to a1, . . . , ai−1. Namely, for every j ∈ [i− 1], let

bj
def= RPIR(t,N, mj , (qj , sj), aj).

4. Consider the protocol (P0,V0), restricted to the case that the initial message sent by P0 is π,
for every j ≤ i, the message sent by V0 in round j is mj , and for every j ≤ i− 1 the message
sent by P0 in round j is bj . Compute the bit bi (to be sent by the prover in the i’th round),
that maximizes the prover’s probability of success given the transcript thus far. Send the bit
bi to the verifier. (Note that this message can be computed in time poly(2`λ) ≤ poly(2t2).)

Continue in this manner, by sending the bits bi+1, . . . , b`, where each such message is the one
that maximizes the prover’s probability of success, given the transcript thus far.

Note that (in the case that q corresponds to m′) algorithm A emulates exactly the protocol
(P̃i−1,Vi−1(x)). Therefore,

Pr[(P̃i−1,Vi−1(x)) = 1] = Pr[A outputs 1] = η,

as desired.

It remains to note that the size of P̃i−1 is ≤ Ti + poly(2t2) ≤ Ti + 2t2.2
(for large enough t).

P0 V0

π−−−−−−−−−−−−−→
m1←−−−−−−−−
b1−−−→
m2←−−−−−−−−
b2−−−→
...

m`←−−−−−−−−
b`−−−→

· · ·

Pi Vi

q1, . . . , qi←−−−−−−−−
π, a1, . . . , ai−−−−−−−−−−−−−−−−→

s1, . . . , si,m1, . . . , mi+1←−−−−−−−−−−−−−−−−−−
bi+1−−−−→

...

m`←−−−−−−−−
b`−−−−→

· · ·

P` V`

q1, . . . , q`←−−−−−−−−
π, a1, . . . , a`−−−−−−−−−−−−−−−−→

s1, . . . , s`,m1, . . . , m`←−−−−−−−−−−−−−−−−

Figure 2: Definition of (P0,V0), . . . , (P`,V`)

22

5.1 Corollaries

We next show how Theorem 1, together with the interactive-PCP system constructed in [GKR07],
yields an efficient PCA system. We use the following theorem from [GKR07].

Theorem 2. [GKR07] Let Φ(z1, . . . , zk) be a (fanin 2) Boolean circuit of size n and depth d, and
assume without loss of generality that k ≥ log n.19 Let s be such that, log n ≤ s ≤ poly(n). Then,
the satisfiability of Φ can be proved by an interactive-PCP with the following parameters. Size
of the PCP: p = poly(k, d). Number of queries: q = poly(s). Communication complexity of the
interactive phase: ` = poly(d, s). Completeness: 1. Soundness: 2−s.

Moreover, the interactive phase is public-coin, the verifier uses at most O(`) random bits, and
each message sent by the prover depends only on the preceding λ = O(log n) bits sent by the verifier.

The following is an immediate corollary of Theorem 1 and Theorem 2.

Corollary 1. Assume the existence of a (uniform) poly-logarithmic PIR scheme (as defined in
Definition 3). Let L = {x : ∃w s.t. (x, w) ∈ RL} be any NP language, and assume that RL is
given by a Boolean circuit of size poly(n) and depth d, where n = |x| denotes the instance size.
Let k = |w| denote the witness size. Let t be a security parameter, such that, log n ≤ t ≤ poly(n).
Then, the satisfiability of Φ can be proved by an efficient PCA system (i.e., PCA with a (honest)
prover that runs in time poly(n)), with the following parameters. Size of the PCA: p = poly(k, d, t).
Number of queries: q = poly(d, t). Completeness: 1− 2−t. Soundness: 2−t.

Proof. Fix any NP language L = {x : ∃w s.t. (x, w) ∈ RL}, as above. Fix s = t + 1. Theorem 2
implies that L has an interactive-PCP system with the following parameters: p = poly(k, d, log n),
q = poly(s), ` = poly(d, s), completeness 1, and soundness 2−s.

The fact that each message sent by the (interactive-PCP) prover depends only on the preceding
O(log n) bits sent by the verifier, implies that the interactive-PCP system can be converted into a
history-ignorant one, where the length of the longest message sent by the verifier in the interactive
phase is λ = O(log n). This increases the communication complexity ` by at most a quadratic factor,
and does not change the other parameters. The fact that the interactive phase of the (original)
interactive-PCP is public-coin, implies that in the resulting (history-ignorant) interactive-PCP,
each message sent by the verifier depends only on the verifier’s random coin tosses, and can be
computed in time ≤ poly(`).

Applying Theorem 1 (with security parameter t′ = poly(`, t)) to this interactive-PCP system,
results with a PCA system for L, with the desired parameters, where the prover runs in time
poly(n).

References

[ABOR00] W. Aiello, S. N. Bhatt, R. Ostrovsky, and S. Rajagopalan. Fast Verification of Any Re-
mote Procedure Call: Short Witness-Indistinguishable One-Round Proofs for NP. In Proc.
27th Interantional Colloquium on Automata, Language and Programming, (ICALP 2000).
(manuscript withdrown by the authors prior to ICALP).

[ALMSS92] S. Arora, C. Lund, R. Motwani, M, Sudan, and M. Szegedy. Proof Verification and
Hardness of Approximation Problems. In FOCS 1992: 14-23. Also in J. ACM 45(3): 501-555
(1998).

19Otherwise, it is easy to check the satisfiability of Φ in time poly(n).

23

[AS92] S. Arora, and S. Safra: Probabilistic Checking of Proofs: A New Characterization of NP.
In FOCS 1992: 2-13. Also in J. ACM 45(1): 70-122 (1998).

[BFL90] L. Babai, L. Fortnow, and C. Lund. Non-Deterministic Exponential Time has Two-Prover
Interactive Protocols. In FOCS 1990: 16-25. Also In Computational Complexity 1: 3-40 (1991).

[CMS99] C. Cachin, S. Micali, and M. Stadler. Computationally Private Information Retrieval
with Polylogarithmic Communication. In EUROCRYPT 1999, pages 402-414.

[CGKS98] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan. Private Information Retrieval.
In J. ACM 45(6), 1998, pages 965-981.

[DLNNR04] C. Dwork, M. Langberg, M. Naor, K. Nissim, and O. Reingold. Succinct Proofs for
NP and Spooky Interactions. Unpublished Manuscript.

[FGLSS91] U. Feige, S. Goldwasser, L. Lovasz, S. Safra, and M. Szegedy. Interactive Proofs and
the Hardness of Approximating Cliques. In FOCS 1991: 2-12. Also in J. ACM 43(2): 268-292
(1996).

[FS08] L. Fortnow, and R. Santhanam. Infeasibility of Instance Compression and Succinct PCPs
for NP. In STOC 2008: 133-142.

[GKR07] S. Goldwasser, Y. T. Kalai, and G. Rothblum. Delegating Computation: Interactive
Proofs for Muggles. In FOCS 2007: 113-122.

[HN06] H. Harnik, and M. Naor. On the Compressibility of NP instances and Cryptographic
Applications. In FOCS 2006: 719-728.

[KO97] E. Kushilevitz, R. Ostrovsky. Replication is NOT Needed: SINGLE Database,
Computationally-Private Information Retrieval. In FOCS 1997: 364-373.

[KR06] Y. T. Kalai, and R. Raz. Succinct Non-Interactive Zero-Knowledge Proofs with Prepro-
cessing for LOGSNP. In FOCS 2006: 355-366.

[KR08] Y. T. Kalai, and R. Raz. Interactive PCP. In ICALP 2008: 536-547.

[K92] J. Kilian. A note on efficient zero-knowledge proofs and arguments. In STOC 1992: 723-732.

[LFKN90] C. Lund, L. Fortnow, H. J. Karloff, and N. Nisan. Algebraic Methods for Interactive
Proof Systems. In FOCS 1990: 2-10. Also in J. ACM 39(4): 859-868 (1992).

[M94] S. Micali. CS Proofs (Extended Abstracts). In FOCS 1994: 436-453.

[S92] A. Shamir. IP=PSPACE. In J. ACM 39(4): 869-877 (1992).

24

