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Abstract. We study the problem of secure two-party and multiparty
computation (MPC) in a setting where a cheating polynomial-time ad-
versary can corrupt an arbitrary subset of parties and, in addition, learn
arbitrary auxiliary information on the entire states of all honest par-
ties (including their inputs and random coins), in an adaptive manner,
throughout the protocol execution. We formalize a definition of multiparty
computation secure against adaptive auxiliary information (AAI-MPC),
that intuitively guarantees that such an adversary learns no more than
the function output and the adaptive auxiliary information. In particular,
if the auxiliary information contains only partial, “noisy,” or computa-
tionally invertible information on secret inputs, then only such informa-
tion should be revealed.
We construct a universally composable AAI two-party and multiparty
computation protocol that realizes any (efficiently computable) func-
tionality against malicious adversaries in the common reference string
model, based on the linear assumption over bilinear groups and the n-th
residuosity assumption. Apart from theoretical interest, our result has
interesting applications to the regime of leakage-resilient cryptography.
At the heart of our construction is a new two-round oblivious transfer
protocol secure against malicious adversaries who may receive adaptive
auxiliary information. This may be of independent interest.

1 Introduction

Historically, when formalizing security definitions for cryptographic protocols, it
was noted that adversarial parties may enter a protocol with relevant knowledge
from the past. Meaningful security definitions should thus embed the important
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requirement that, even armed with such side information, an adversary still
must not be able to break the security of the protocol. For example, in a zero-
knowledge proof system [22], it should not be the case that an adversarial verifier
with partial information about a witness, can now suddenly recover the entire
witness from the protocol. This natural property was formalized by requiring
that, for any adversary with any potential auxiliary input z on the inputs of the
honest parties prior to the execution of the protocol, this adversary still learns
nothing beyond the inputs and prescribed outputs of corrupted parties (and, of
course, the auxiliary input z it learned prior).

In the last two decades, as cryptographic protocols have become increasingly
prevalent (often within everyday online activities, run in parallel), and as new
classes of strong attacks have emerged, it has become increasingly evident that
adversaries may also acquire auxiliary information on the internal state of honest
parties during the protocol execution. This may take place, e.g., by performing
physical attacks on an implementation of a processor (say, a smart card or a
hardware token) [31, 2, 26], or when the randomness used by an honest party in
a protocol is correlated with randomness used in other applications. Unfortu-
nately, this case is no longer covered under historical definitions: the moment an
adversary is able to learn any side information, say, about the randomness of an
honest party in the protocol, the security guarantees break down.

In this work, we seek to extend the standard notion of security with (static)
auxiliary inputs to the setting of general adaptive auxiliary information. We
study secure general two-party and multiparty computation [34, 21] in the set-
ting where an adversary, who corrupts an arbitrary subset of parties in the pro-
tocol, is able to learn arbitrary (efficiently computable) auxiliary information on
the entire states of all the honest parties (including their inputs and random
coins), in an adaptive manner, throughout the protocol execution. We formalize
a meaningful definition of security within this setting, and construct two-party
and multiparty computation protocols satisfying our definition.

How to Define Security Against Adaptive Auxiliary Information? Se-
curity of MPC protocols is formalized by comparing the real-world protocol
execution to an ideal-world experiment where the parties interact directly with
a trusted party who receives all parties’ inputs and responds only with the cor-
rect function output. Formally, an MPC protocol is said to be secure under the
classical definition if for every real-world adversary with some auxiliary input
(say) z, there exists an ideal-world adversary (a.k.a. simulator) with the same
auxiliary input z, who simulates the output of the real-world experiment.

Our goal is to generalize this definition to the setting where side information
can be learned during the protocol. We model adaptive auxiliary information
by allowing the adversary to specify (efficiently computable) functions fi, adap-
tively throughout the protocol. For each such query, the selected function is
evaluated on the entire secret states of the honest parties, and the result is given
to the adversary as auxiliary information. Intuitively, we wish to guarantee that
an adversary who participates in the protocol and receives adaptive auxiliary
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information throughout the protocol’s lifetime still learns nothing beyond the
inputs and outputs of the corrupted parties, and the auxiliary information.

Note that it is not immediately apparent how to formalize this notion. Whereas
in the static setting both the adversary and the simulator receive the exact same
auxiliary input z, in the adaptive setting, it doesn’t make sense even syntacti-
cally to say that the same auxiliary input functions are applied both in the real
world and in the ideal world: this is because the real-world auxiliary input func-
tion will expect to take as input the secret states of parties executing a protocol,
whereas in the ideal world no protocol is ongoing.

A natural attempt to formalize security in this setting may be to require that
if the real adversary learns ℓ bits of auxiliary information, then the simulator
can also learn at most ℓ bits of auxiliary information. While this is a natural
requirement (and our definition will achieve at least this requirement), unfor-
tunately, it may be too weak. For example, the auxiliary information learnt by
a real-world adversary (say, via physical processes) may be large but “noisy,”
giving very little information about the honest parties’ inputs. Or, the honest
parties’ inputs may be information-theoretically determined but computation-
ally unpredictable given the real-world auxiliary information. In these cases, the
above definition may not provide a meaningful security guarantee since the sim-
ulator may be able to simulate the honest parties “trivially” by first learning a
large portion (or all!) of their inputs as auxiliary information. Ideally, we would
like to formalize the intuitive requirement that the auxiliary information in the
ideal world is “no more” than that in the real world.

Our Security Definition. We capture the desired security notion by plac-
ing additional restrictions on the ideal-world simulator. In particular, for each
auxiliary input function f that the real-world adversary generates, we require
that the simulator generates a “translation function” T that takes as input only
the secret inputs of the honest parties, and generates “simulated states” for the
honest parties at each point in the protocol. These simulated states should be
computationally indistinguishable from the real states, and should be consistent
with the simulated transcript. Then, for each auxiliary input function f that is
requested in the real world, the same auxiliary information function is applied
in the ideal world, but it is applied to the simulated states. In other words, the
ideal world auxiliary function will be the composed function f ◦ T . This pre-
vents the ideal-world adversary from “learning too much” via the ideal-world
auxiliary information: for example, if the requested function f has short output,
reveals only useless unused information, or leaves its inputs unpredictable, then
the same restrictions will also hold for the ideal-world auxiliary information.

We say that an MPC protocol is secure against adaptive auxiliary information
if for every PPT real-world adversary who makes arbitrary adaptive (efficiently
computable) auxiliary information queries, there exists a PPT ideal-world simu-
lator who, given the corresponding auxiliary information (as described above), is
able to simulate the output of the real-world experiment. Intuitively, this defini-
tion guarantees that the security of the honest parties “gracefully degrades” with
the amount of auxiliary information that the real adversary is able to obtain.
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We remark that our definition is similar to that of [3, 20], occurring within the
setting of zero-knowledge and protocols against passive adversaries.

1.1 Our Results

We construct two-party andmultiparty computation protocols (for any efficiently
computable function) secure against adaptive auxiliary information in the uni-
versal composability (UC) framework [7] in the common reference string (CRS)
model. Namely, we prove the following theorem:

Main Theorem (Informal). For any n ≥ 2, there exists a UC-secure n-party
protocol in the CRS model for evaluating any efficiently computable function,
such that for any malicious PPT adversary who (statically) corrupts any subset
of parties and learns any amount of (efficiently computable) adaptive auxiliary
information Z, this adversary learns nothing beyond the inputs and outputs of
corrupted parties, and the same auxiliary information Z (formalized as discussed
above). This holds based on the linear assumption over bilinear groups and the
n-th residuosity assumption.5

No bound on the auxiliary information. We emphasize that, as in the
classical (static auxiliary input) setting, our result does not require any a priori
bound on the amount of the auxiliary information that the adversary may be able
to learn. Instead, our protocol guarantees that for any amount of information the
real-world adversary is able to (adaptively) acquire throughout the protocol, this
“same amount” of auxiliary information is given to the ideal-world simulator,
thus providing graceful degradation of security. This advantageous property is in
contrast with nearly all existing results in leakage-resilient cryptography, which
require the user to specify at design time an amount of information leakage he
wishes to protect against (growing the system parameters accordingly); if an
adversary is able to garner more leakage at runtime than the preset bound, then
security of these schemes no longer hold.

Application to Leakage-Resilient Protocols. There has been an extensive
amount of work on leakage-resilient cryptography in recent years, primarily fo-
cused on the setting of non-interactive primitives (see e.g., [29, 16, 1, 15, 32, 30,
6, 14]). Our result can be used to achieve leakage-resilient interactive protocols,
an area that has received comparatively little attention (see Section 1.3).

As alluded to above, our MPC protocol directly provides meaningful security
guarantees in the setting of leakage: where such a “leaky” adversary learns no
more than the inputs and outputs of the corrupted parties, and the leakage infor-
mation. This can be seen by viewing the adaptive auxiliary information as joint
leakage on the secret states of the honest parties during the protocol execution.6

5 The n-th residuosity assumption can be replaced with any lossy trapdoor function
(LTDF) with some specific properties. Roughly speaking, we require LTDFs that
are bijective and “sufficiently lossy”.

6 We note, however, this differs from the security model considered in [3], where leakage
on the state of each party is “disjoint” in both the real- and ideal-world experiments.
Indeed, achieving security in such a model is an interesting open problem.
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Further, when combined with previous work on leakage-resilient cryptography,
our result yields applications where “standard” security is guaranteed in the face
of bounded leakage. Below, we discuss two such applications:

• Leakage-Resilient MPC in the leak-free preprocessing model. A recent work of
Boyle et al. [4] builds upon our results to construct multi-party secure com-
putation protocols to achieve standard ideal-world security (where no leakage
is allowed in the ideal world) against real-world adversaries that may leak
continuously from the secret state of each honest player separately, assum-
ing a one-time leak-free preprocessing phase and a large number of parties.
At a very high level, they achieve their result by applying our multi-party
secure computation protocol to the leakage-resilient computation compiler
of Goldwasser and Rothblum [23].

• Leakage-resilient threshold cryptosystems. In a threshold cryptosystem [13],
parties hold shares of a single secret key, and only a quorum of parties can
jointly execute the corresponding secret functionality (e.g., decryption). Our
MPC protocol, when combined with an underlying leakage-resilient crypto-
graphic primitive (e.g., [1] for public-key encryption), yields a corresponding
leakage-resilient threshold cryptosystem. The security guarantee of our pro-
tocol implies that any information learned by an adversary who controls any
strict subset of a quorum, and obtains leakage on the joint secret states of all
honest parties during the collective decryption protocol, reduces to simply
the output value and corresponding leakage on the underlying secret key.

1.2 Technical Overview

Our starting point is the GMW paradigm for building MPC protocols [21].

The First Approach. Recall the GMW paradigm begins by designing an MPC
protocol secure against semi-honest (i.e., passive) adversaries, and then compiles
the protocol into one secure against malicious adversaries by “enforcing” semi-
honest behavior via use of zero-knowledge proofs, a commitment scheme, and a
coin-tossing protocol.

We begin by mirroring this approach in the setting of adaptive auxiliary in-
put. We directly achieve MPC secure against adaptive auxiliary information in
the semi-honest setting by instantiating the basic GMW protocol with the obliv-
ious transfer protocol of [3] (that has analogous semi-honest security properties).
Further, continuing onto the GMW compiler, we see that zero-knowledge proofs
secure against adaptive auxiliary information were already constructed in [20,
3], and equivocal commitment schemes [18] were also shown to have the required
security properties [20, 3]. We are thus almost within reach of our final goal.

Unfortunately, in the remaining step, one runs into serious problems. Note
that in order to reduce the malicious security of the compiled protocol to the
semi-honest security of the original protocol, the coin-tossing protocol to be
used in the compiler must be fully simulatable, in that the simulator must be
able to choose the output of the coin toss, and simulate the protocol to force this
output, for both honest and corrupted parties. It is not clear how to construct
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a coin-tossing protocol secure against adaptive auxiliary information.7 Indeed,
as shown recently by Chung et al. [11], constructing such a protocol in the two-
party setting is in fact impossible. We refer the reader to the full version for
further discussion on this issue.

A New Stepping Stone: “Semi-Malicious” Adversaries. We thus aban-
don the approach of mimicking the GMW paradigm “out of the box.” We instead
consider a new intermediate step, lying closer to security against malicious adver-
saries, with the goal of eliminating the necessity for fully simulatable coin-tossing
in the final compiler. This amounts to constructing protocols that remain secure
even if an adversary potentially uses “bad” randomness in the protocol execu-
tion. To formalize this requirement, we consider the notion of a semi-malicious
adversary that follows the protocol execution (similar to a semi-honest adver-
sary), but can choose its random coins (and inputs) in any arbitrary manner.8

Once we construct a protocol for semi-malicious adversaries (that can learn
arbitrary auxiliary information), we can easily compile it into a secure protocol
for malicious adversaries by standard techniques. We do so using a modified ver-
sion of the GMW compiler adapted to our setting, implemented with equivocal
commitments [18, 9] and the UC-NIZKs of [24] that were shown to be secure
against adaptive auxiliary information by Garg et al. [20]. (We refer the reader
to the technical sections for more details.) The task then remains to construct
an MPC protocol that is secure against adaptive auxiliary information in the
presence of semi-malicious adversaries.

A close look at the basic GMW construction reveals that constructing semi-
malicious MPC reduces to constructing a semi-malicious oblivious transfer (OT)
protocol. (We note that this observation is also implicit in [28].) Since our goal
is to protect against adversaries who may learn adaptive auxiliary information,
we aim to construct OT protocols with similar security guarantees against semi-
malicious adversaries. We discuss this next.

Semi-Malicious OT. Our starting point is the adaptively secure semi-honest
OT protocol of Canetti et al. [9]. The [9] construction follows the “standard
template” of [17] for semi-honest OT, but replaces the underlying encryption
scheme with a non-committing encryption (NCE) scheme [8]. Namely, (1) The
receiver R generates and sends two public keys pk0, pk1 for the (non-committing)
encryption scheme—one for which he knows the secret key, and one “obliviously”
sampled; and (2) the sender S sends an encryption of each of his messages mi,
under the corresponding public key pki. The [9] scheme was shown to be secure
against adaptive auxiliary information in the semi-honest model by [3]. However,
the protocol fails in the semi-malicious model. Indeed, a semi-malicious receiver
can simply choose bad randomness to “obliviously” sample public keys for which

7 The leakage-resilient coin tossing result of [5] is not relevant to this setting. Their
construction requires an honest majority of parties (to attain information theoretic
guarantees), whereas our model allows an arbitrary number of corruptions.

8 The notion of semi-malicious adversaries is somewhat similar in spirit to the notion
of defensible adversaries considered by [25]. We refer the reader to Section 3 for a
comparison of the two notions.
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he can decrypt (and thus learn both messages of the sender). Further, a semi-
malicious sender may be able to create “malformed” ciphertexts that cause the
honest receiver to abort depending on his secret input. Circumventing these fatal
roadblocks demands a new set of techniques. We solve these problems as follows:

• First, we construct an underlying NCE scheme with strong security proper-
ties, which will guarantee security in the OT protocol as long as the adver-
sary’s randomness does not fall within a very small “bad” set. We achieve
this by building an NCE scheme where the public keys generated via the
oblivious key generation algorithm are almost always lossy (except if they
belong to some exponentially small set, such as the set of DDH tuples).
Now, unless the adversary’s randomness falls within this very small set, the
encryption of non-requested messages under his obliviously sampled public
keys will information theoretically hide the messages.

• Second, we develop a new methodology for generating private randomness
that prevents a malicious party from choosing randomness within this small
bad set. The challenge is doing so in the presence of adaptive auxiliary in-
formation, and while simultaneously providing the simulator the necessary
flexibility to “force” any randomness of his choice for honest parties.

A potential idea is to design a modified coin tossing protocol to ensure a
malicious party’s output randomness still maintains sufficient entropy in
the auxiliary information setting. However, approaches of this kind seem to
inherently necessitate an a priori bound on how much auxiliary information
can be handled: if honest parties cannot hold onto any secret entropy during
the protocol, this path appears hopeless.

We provide a different approach. We construct a non-interactive random-
ness generation procedure that achieves the desired properties by use of
lossy trapdoor functions (LTDF), together with a CRS. Namely, each party
Pi is assigned an LTDF seed σi in the CRS; each time the party must sam-
ple randomness in the protocol, he first chooses a random value r in the
LTDF domain, and then uses the LTDF evaluation F (σi, r) as his proto-
col randomness. Loosely speaking, in the simulation, honest parties will be
assigned seeds for injective functions, whereas corrupted parties will be as-
signed (computationally indistinguishable) seeds for lossy functions. This
allows the simulator to efficiently “explain” any possible output for honest
parties, while simultaneously restricting malicious parties to a small set of
attainable output values that does not “hit” the small set of bad values. We
refer the reader to Section 4.3 for more details.

Final Touches. While the above ideas essentially handle the issue of “bad”
randomness, we still need to find a way to answer the auxiliary information
queries of the adversary correctly. Our starting point for this is the observation
of [20, 3] that adaptive security (without erasures) provides simulators that can
simulate random tapes for honest parties, which can be used to answer auxiliary
information queries. However, this is possible if the simulator is able to decide
its random tape after viewing the random tape of the adversary. Unfortunately,
depending upon the “structure” of the protocol, this may not always be possible.
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To address this problem, we somewhat “soften” this asymmetry: instead of gen-
erating the entire random tapes of each party a priori, we generate them in an
“online” fashion. In part because the GMW protocol provides perfect security
in the OT-hybrid model, it turns out that this essentially suffices for simulation.

1.3 Related Work and Organization

The notion of security considered in this paper is somewhat analogous to that
considered by Bitansky et al. [3] and Garg et al. [20], in the context of leakage-
resilience. Garg et. al. [20] consider the case of zero-knowledge proof systems
where a malicious verifier can adaptively leak arbitrary information on the state
of the honest prover during the execution of the protocol. Bitansky et. al. [3]
put forth a general definition of leakage tolerance in the setting of two-party
interactive protocols, extending the notion of universally composable security.
They show how to realize specific tasks (such as oblivious transfer) in such a
scenario against semi-honest adversaries as well as zero knowledge proofs in the
CRS model. In addition, they prove a composition theorem for leakage-tolerant
protocols that we use in our work. Indeed, our work is greatly inspired by theirs.

A concurrent and independent work of Damg̊ard et al. [12] considers the
problem of two-party computation protocol in the leakage setting. They formalize
a security definition along the lines of entropic leakage as in [32, 27] and show
how to realize it for NC1 functionalities against semi-honest adversaries. (In
contrast, we consider malicious adversaries, as well as the multiparty setting.)
We note that our results, cast in the leakage context, also satisfy their definition
(for the case of 2-party protocols).

Guide to the Paper. Section 2 contains partial preliminaries. In Section 3,
we present our model and security definition. Section 4 contains the technical
core of our work: an oblivious transfer protocol secure against adaptive auxiliary
information in the semi-malicious model. Due to space limitations, we defer
remaining preliminaries, proofs of security, and formal analysis to the full version.

2 Preliminaries

Non-committing Encryption. Informally, a non-committing (bit) encryption
scheme [8] is a semantically secure, possibly interactive encryption scheme, with
the additional property that a simulator can generate special ciphertexts that
can be “opened” to (i.e. demonstrated to be the encryption of) both 0 and 1.

Definition 1. [8, 10] A non-committing (bit) encryption scheme consists of a
tuple (Gen,Enc,Dec,NCSim), where (Gen,Enc,Dec) is a semantically secure en-
cryption scheme, and NCSim is a PPT simulation algorithm that on input 1k

outputs a tuple (e, c, r0G, r
0
E , r

1
G, r

1
E) such that for every b ∈ {0, 1} the following

distributions are computationally indistinguishable:

1. The joint view of an honest sender and an honest receiver in a normal en-
cryption of b: {(e, c, rG, rE) : (e, d)← Gen(1k; rG), c← Ence(b; rE)} .
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2. A simulated view of an encryption of b: {(e, c, rbG, rbE) : (e, c, r0G, r0E , r1G, r1E)←
NCSim(1k)} .

Augmented NCE. In our MPC protocol, we will use an “augmented” NCE
scheme, satisfying three additional properties.

Oblivious key generation: It should be possible to sample an encryption key
without “knowing” a corresponding secret key via a procedure OGen.

Invertible samplability: The key generation and the oblivious key generation al-
gorithms Gen and OGen should be “invertible.” That is, given an output that lies
in the range of Gen (resp., OGen) that was potentially generated via a different
algorithm (e.g., NCSim), we can efficiently generate randomness that “explains”
the output as being generated via Gen (resp., OGen).

Alternative simulation: In the standard NCE definition, NCSim generates a sim-
ulated ciphertext (and randomness values) together with an encryption key e.
For our purposes, we require a stronger simulation property, where we can gen-
erate a simulated ciphertext for a fixed encryption key – namely, one that is
obliviously sampled by another party.

In this work, we build upon the NCE construction of Choi et. al [10] to
construct an augmented NCE scheme with additional desired properties. See
Section 4 for more details.

Lossy Trapdoor Functions (LTDF). A lossy trapdoor function (LTDF) fam-
ily [33] consists of two computationally indistinguishable families of functions.
Functions in one family are injective and can be efficiently inverted using a trap-
door; functions in the other family are “lossy,” in that the size of their image is
significantly smaller than the size of their domain. We refer the reader to [33,
19] for a complete definition of an (m, ℓ)-LTDF family9 (GLoss, GInj, S, F, F

−1),
with function sampling algorithms GLoss, GInj, domain sampling algorithm S,
evaluation algorithm F , and inversion algorithm F−1.

For our purposes, we require a strengthened LTDF family, in which the in-
jective functions are bijections (i.e., surjective onto their target space), the lossy
branches are sufficiently lossy, and the size parameters satisfy certain relations.

Definition 2. A collection of (m, ℓ)-lossy trapdoor functions (GLoss, GInj, S, F, F
−1)

is bijective and (D,α)-admissible if it satisfies the following properties:

– Bijective: For every seed σ produced by GInj, the algorithm F (σ, ·) computes
a bijective function fσ : Dσ → Rσ (where Rσ is the output space of fσ).

– (D,α)-Admissible: The following hold, corresponding to target output size
D, where α fraction of the D values are “bad”:
1. Efficiently invertible domain sampling: There exists a PPT algorithm

S−1 such that for each x ∈ Dσ, {S−1(x)} s≈ {r : S(r) = x}.
2. Sufficiently large output space: For each seed σ produced by either GLoss(1

k)
or GInj(1

k), the size of the output space Rσ satisfies |Rσ| ≥ D.

9 The parameters (m, ℓ): Each function fσ in the family has domain size |Dσ| ≥ 2m−1,
and each lossy function fσ has image size at most |Dσ| · 2−ℓ.
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3. Sufficiently small image of lossy functions: There exists a negligible func-
tion µ(k) such that for every seed σ produced by GLoss, α·

(
|Dσ| · 2−ℓ(k)

)
<

µ(k). Recall that |Dσ| · 2−ℓ(k) is an upper bound for the image size of a
lossy function with seed σ.

In the full version, we show that the composite residuosity-based LTDF fam-
ily construction (with seed-dependent domains) of Freeman et. al. [19] satisfies
our required properties (with parameters tailored to our NCE construction):

Theorem 1. [19] Under the decisional composite residuosity assumption, there
exists a bijective, (D,α)-admissible collection of LTDFs (GLoss, GInj, S, F, F

−1)
with seed-dependent domains, for the following two choices of (D,α):
(1) D =

(
4k
k

)
. α =

(
3k
k

)/(
4k
k

)
. (2) D = 2k. α = 2−k/3.

3 Our Model

To define security against adaptive auxiliary information, we turn to the real/ideal
paradigm. We consider a real-world execution where an adversary, in addition
to corrupting a number of parties, can adaptively learn arbitrary auxiliary infor-
mation on the joint secret states of the honest parties, throughout the protocol
execution. Following the works on leakage-resilient cryptography, we model this
by allowing the adversary to make auxiliary information queries of the form L,
where L is the circuit representation of an efficiently computable function. On
making such a query, the adversary learns L(state), where state represents the
joint secret state of the honest parties. In the ideal world experiment, the ideal
world adversary, i.e., the simulator is allowed to request auxiliary information on
the inputs of all the parties from the trusted party. Note that this is similar to
those considered in [20, 3], although these works focused only on the two-party
case, whereas we deal with both two-party case and multi-party case. Below, we
describe a standalone security definition. (See full version for the UC setting.)

Ideal World. We first define the ideal world experiment, where n parties
P1, . . . , Pn interact with a trusted party for computing a function f .

• Inputs: Each party Pi obtains an input xi. The adversary is given (initial)
auxiliary input z, selects a subset of parties M ⊂ P to corrupt, and receives
xi for every Pi ∈M .

• Sending inputs to trusted party: Each honest party Pi sends its input
xi to the trusted party. For each corrupted party Pi ∈M , the adversary may
select any value x′

i and send it to the trusted party.

• Trusted party computes output: Let x′
1, . . . , x

′
n be the inputs that were

sent to the trusted party. The trusted party computes f(x′
1, . . . , x

′
n).

• Adversary learns output: The trusted party first sends f(x′
1, ..., x

′
n) to

the adversary. The adversary replies with either continue or abort.
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• Honest parties learn output: If the message is abort, the trusted party
sends ⊥ to all honest parties. If the adversary’s message was continue, then
the trusted party sends the evaluation f(x′

1, . . . , x
′
n) to all honest parties.10

• Auxiliary information queries on inputs: The adversary may send
(adaptively chosen) auxiliary information queries in the form of efficiently
computable functions Lj (described as a circuit). On receiving such a query,
the trusted party computes Lj(x

′
1, . . . , x

′
n) and returns the output to the ad-

versary. (We in fact, place further restriction on the communication between
the adversary and the trusted party w.r.t. the auxiliary information queries;
we discuss this in more detail below.)

• Outputs: Honest parties each output the message they obtained from the
trusted party. Malicious parties may output an arbitrary PPT function of
their initial inputs, auxiliary input, and the interaction with trusted party.

Real World. The real-world execution begins by an adversary A selecting any
arbitrary subset M ⊂ P of the parties to corrupt. On being corrupted, each
party Pi ∈ M hands over its input to A. The parties P1, . . . , Pn now engage
in an execution of a real n-party protocol Π (without any trusted third party).
The adversary A sends all messages on behalf of the corrupted parties, and
may follow an arbitrary PPT strategy. In contrast, the honest parties follow
the instructions of Π. Furthermore, at any point during the protocol execution,
the adversary may make auxiliary information queries of the form L and learn
L(stateP\M ), where stateP\M denotes the concatenation of the protocol states
statei of each honest party Pi. We allow the adversary to choose the auxiliary
information queries adaptively based on all the information that A received up
to that point (including responses to previous such queries). Honest parties have
the ability to toss fresh coins at any point in the protocol; these coins are added
to the state of that party at the time they are generated. At the conclusion of
the protocol execution, each honest party Pi generates its output according to
Π. Malicious parties may output an arbitrary PPT function of the view of A.

Security Definition. We now give our formal definition of MPC secure against
adaptive auxiliary information. Our definition crucially relies on the notion of
leakage-oblivious simulation as defined in [20, 3]. We recall it below.

Leakage-Oblivious Simulation. Loosely speaking, an ideal world adversary, i.e., a
simulator S, is said to be leakage-oblivious if the auxiliary information obtained
by the simulator is used only for the purposes of simulating answers to the
auxiliary information queries of the real adversary. More formally, we require that
the simulator S has a special subroutine S̃ for handling auxiliary information
queries. Whenever S receives an auxiliary information query L from the real

10 We can also define a more general case, where f may output a different value
fi(x

′
1, ..., x

′
n) to each party Pi. In this setting, the adversary first learns the set

of outputs {fi(x′
1, ..., x

′
n)}i∈M corresponding to corrupted parties, and then decides

whether to abort or to allow the honest parties to receive their respective outputs.
We do not dwell on this detail for simplicity of exposition; however, our construction
also handles this more general case.
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world adversary, S̃ is invoked to produce a “state translation circuit” T that
takes as input the inputs of the honest parties and produces their joint states.
Once T is produced, the ideal functionality is queried on the composed circuit
L◦T . When the auxiliary information is returned, it is forwarded directly to the
real adversary and S returns to its state prior to the event. Such a simulator is
referred to as a leakage-oblivious simulator.

We now define security w.r.t. the real and ideal world experiments as dis-
cussed above, except that we consider leakage-oblivious simulators in the ideal
world experiment. The output of the ideal-world experiment consists of the in-
puts and outputs of all parties, and the answers of all the auxiliary information
queries. It is denoted by IDEALfS,M (1k,x, z). The overall output of the real-world
experiment consists of the inputs and outputs of all parties at the conclusion of
the protocol, and all the auxiliary information learnt by the adversary (including
the protocol transcript). It is denoted by REALΠA,M (1k,x, z).

Definition 3 (MPC Secure Against Adaptive Auxiliary Information).
A protocol Π evaluating a functionality f is said to be secure against adaptive
auxiliary information if for every PPT real adversary A, there exists a PPT
leakage-oblivious simulator S such that for every input vector x, z ∈ {0, 1}∗,
and M ⊂ P, it holds that,{

IDEALfS,M (1k,x, z)
}
k∈N

≈c

{
REALΠA,M (1k,x, z)

}
k∈N

.

3.1 Security Against Semi-Malicious Adversaries

As a stepping stone toward realizing our definition of MPC secure against adap-
tive auxiliary information in the presence of malicious adversaries, we define the
notion of a semi-malicious adversary. Intuitively, a semi-malicious adversary is
similar to a “standard” (real-world) semi-honest adversary, in that it follows the
protocol specification. However, it differs from semi-honest adversaries in that it
may choose its input and its “random” coins for any protocol step in an online
fashion, adaptively, following any arbitrary PPT strategy. Once it has chosen
these values, however, it must follow the protocol as specified, given the chosen
input, and using the chosen coins in place of the random coins.11 Furthermore,
in our setting, a semi-malicious adversary is allowed to learn arbitrary auxiliary
information on the (joint) secret states of the honest parties.

More formally, a semi-malicious adversary A is modeled as an interactive
Turing machine (ITM) which, in addition to the standard tapes, has a special
auxiliary tape. At the start of the protocol, A selects for each corrupted party
Pk an input xk (which may depend on the original inputs of corrupted parties),
and writes xk to its special input auxiliary tape. Then in each round of the
protocol, whenever A produces a new protocol message m on behalf of some
party Pk, it must also append to its special auxiliary tape some randomness

11 This is reminiscent of the notion of defensible adversaries, introduced by Haitner
et. al. [25]. We refer the reader to the full version for a detailed comparison.
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that explains its behavior. More specifically, all of the protocol messages sent by
the adversary on behalf of Pk up to that point, including the new message m,
must exactly match the honest protocol specification for Pk when executed with
input xk and randomness rk written in the special auxiliary tape. We allow A
to make auxiliary information queries on the joint states of the honest parties in
the same manner as discussed earlier. We further assume that the adversary is
rushing and hence may choose the randomness r in each round adaptively, after
seeing the protocol messages of the honest parties in that round (and all prior
rounds), as well as all the auxiliary information that it may have obtained so
far. Lastly, the adversary may choose to abort the execution on behalf of Pk in
any step of the interaction.

Definition 4 (MPC Secure Against Adaptive Auxiliary Information in
the Semi-Malicious Model). We say that protocol Π evaluating a function f
is secure against adaptive auxiliary information in the semi-malicious model if
it satisfies Def. 3 when we only quantify over all semi-malicious adversaries A.

4 Semi-Malicious OT

In this section, we construct an oblivious transfer (OT) protocol that is secure
against adaptive auxiliary information in the presence of semi-malicious adver-
saries. This protocol is the technical heart of our MPC protocol.

Recall that our OT protocol construction builds on the adaptively secure
protocol of [9] (which is resilient to adaptive auxiliary information in the semi-
honestmodel [3]), with two primary new components: (1) A new non-committing
encryption scheme with strong security properties (guaranteeing security in the
OT of [9] as long as the adversary’s randomness does not fall in a very small
“bad” set), and (2) A new randomness generation procedure that prevents the
adversary from selecting randomness within this small “bad” set, in light of adap-
tive auxiliary information. We construct these new tools in Section 4.1 and 4.2,
and present our OT construction itself in Section 4.3.

4.1 Non-Committing Encryption with Lossy Keys

We construct an augmented NCE scheme (see Section 2) with the property that
public keys generated using the oblivious key generation algorithm are almost
always lossy. The specific NCE we use is a slight variant of the one due to Choi
et. al. [10], which makes use of an underlying encryption scheme with oblivious
sampling and inverting algorithms (both for generating keys and ciphertexts).
For our construction, we use an underlying encryption scheme that is also lossy.

Our Underlying Lossy Encryption Scheme E = (Gen,Enc,Dec,OGen,OEnc,
IGen, IEnc). Let G be a group of prime order p. The algorithm Gen samples
g1, g2 ← G, u ← Zp, and outputs pk = (g1, g2, g

u
1 , g

u
2 ) and sk = u. To encrypt a

message m ∈ G under pk = (g1, g2, g3, g4), Enc samples β1, β2 ← Zp and outputs

(gβ1

1 , gβ2

2 , gβ1

3 , gβ2

4 ·m). To decrypt a ciphertext (c1, c2) with sk = u, Dec outputs



14 E. Boyle, S. Garg, A. Jain, Y. T. Kalai, A. Sahai

m = c1
cu2
. The oblivious sampling algorithms OGen, OEnc simply output ran-

dom values in the appropriate spaces, and the inversion algorithms IGen, IEnc to
“explain” a given key pair / ciphertext as being obliviously sampled are trivial.

The Augmented NCE scheme ENCE.

• NCGen(1k): Generate 4k public keys pk1, . . . , pk4k for the underlying scheme,
sampling k normally and 3k obliviously. Explicitly, choose a random subset
I ⊂ [4k] of size k. For every i ∈ I, sample (pki, ski)← Gen(1k), and for every
i ∈ [4k] \ I, sample pki ← OGen(1k). Also choose two random messages
M0,M1 ← G from the message space of the underlying scheme. Output
pkNCE = (pk1, . . . , pk4k,M0,M1), and skNCE = (I, {ski}i∈I).

• NCEncpkNCE(b): Generate 4k ciphertexts c1, . . . , c4k, where k are encryptions
of Mb and 3k are obliviously sampled. Explicitly, choose a random subset
J ⊂ [4k] of size k. For every j ∈ [J ] compute cj ← Encpkj (Mb), and for every

j ∈ [4k] \ [J ] compute cj ← OEnc(1k). Output c = (c1, . . . , c4k).

• NCDecskNCE(c1, . . . , c4k): Decrypt the k ciphertexts for which it knows the
secret key. Namely, decrypt {ci}i∈I . If ∃ci decrypting to Mb, and no another
cj decrypts to M1−b then output Mb. Otherwise, output ⊥.
• We refer the reader to [10] for the simulator algorithm NCSim.

• Augmented NCE algorithms: A straightforward modification to NCSim yields
the required alternative simulator algorithm NCSim′. Oblivious key genera-
tion ONCGen is achieved by running the oblivious key sampler OGen for the
underlying scheme 4k times and sampling two random messages M0,M1.
The corresponding inversion algorithm is immediate.

We remark that for our OT application, the choice of M0,M1 will be made
once overall for all encryptions, and will be contained in the CRS. In the full
version, we prove that ENCE is an augmented NCE scheme with two additional
properties: first, correctness of decryption holds for all but a tiny fraction of en-
cryption randomness; and second, the NCE scheme inherits certain lossy prop-
erties of the underlying encryption scheme. These properties are used in the
security proof of our MPC protocol.

4.2 Randomness Generation Procedure

In this section, we present a non-interactive procedure for generating private
randomness in the CRS model. Intuitively, we need the following two properties:

Semi-malicious Pj cannot force “bad” output: If party Pj is semi-malicious, then
he cannot force the output randomness to lie inside a “special” exponentially
small subset of the total space {0, 1}t.
Simulator can retroactively force any output for honest Pj: Given a trapdoor to
the CRS, the simulator can retroactively “explain” any desired outcome within
the “special” subset of {0, 1}t on behalf of an honest Pj .

The “bad” sets arise as follows. To guarantee security of the OT, we must
ensure: (1) a corrupted receiver must sample lossy public keys in the oblivious
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sampling procedure, to ensure an honest sender’s second message is information-
theoretically hidden; (2) a corrupted sender cannot generate malformed cipher-
texts, which could cause an honest receiver to abort depending on his secret
input bit; and (3) a corrupted sender-receiver pair cannot jointly select key gen-
eration and encryption randomness yielding an incorrect message decryption,
which would compromise the correctness of the OT output.

We now incorporate the specifics of our NCE construction (from the previous
section), and describe the corresponding randomness generation procedures.

Forcing Obliviously Sampled Public Keys to be Lossy. A corrupted re-
ceiver must be restricted to generate only public keys (g1, g2, g3, g4) ∈ G4 in the
underlying encryption scheme that are non-DDH tuples (yielding lossy keys),
whereas the simulator should be able to choose DDH tuples on behalf of honest
parties (allowing him to “obliviously sample” keys for which he can decrypt)

To achieve this, we append an additional 4-tuple of random elements g =
(g1, g2, g3, g4) ∈ G4 to the CRS of each party. Each time a party Pj must obliv-
iously sample public keys, he does so by rerandomizing his tuple gj : namely, he

samples random exponents α, β, γ ← Z∗
p and outputs the tuple (gα1 , g

β
2 , g

α·γ
3 , gβ·γ4 )

as the desired randomness. Denote this procedure by DDH-Rerand(g1, g2, g3, g4).

Note that if the original tuple (g1, g2, g3, g4) is a DDH tuple (as will be the
case for honest parties in the simulation), then the output of this procedure will
be a random DDH tuple; however, if the original tuple is not a DDH tuple (as
will be the case for corrupted parties), then for no value of α, β, γ ̸= 0 will the
resulting tuple become DDH.

Preventing Malformed Ciphertexts. When encrypting a bit m under the
NCE scheme, the sender must select a random subset of positions J ⊂ [4k] of
size k in which to embed encryptions of the appropriate Mm in the underlying
scheme. If J is disjoint from an honest receiver’s set I ⊂ [4k] of positions for
which he knows the secret keys, then the resulting ciphertext will fail to de-
crypt. A corrupted sender must then be restricted so that with overwhelming
probability over (honestly) chosen random I ⊂ [4k] with |I| = k, it holds that
I∩J ̸= ∅, even if he knows I completely. However, on behalf of an honest sender,
the simulator should be able to retroactively “explain” arbitrary J values.

To achieve this, our second procedure makes use of a bijective, (D,α)-admissible
lossy trapdoor function (LTDF) family (GLoss, GInj, S, F, F

−1),12 for D =
(
4k
k

)
and α =

(
3k
k

)/(
4k
k

)
, as in Theorem 1(1). Suppose within the CRS each party Pj

is associated with a LTDF seed σj . At each point when Pj must generate ran-
domness for sampling the set J ⊂ [4k], he samples a random value r ← S(σj)
from the domain Dσj of the LTDF function corresponding to seed σj and out-
puts the evaluation F (σj , r) as the desired randomness. Denote this procedure
by LTDF-Sample-J(σj).

12 Such an LTDF family has the additional properties that injective branches are each
bijective, the output space has size approximately D, and the lossy branches are very
lossy (to avoid a “bad” set of fractional size α). See Definition 2.
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Loosely speaking, the simulation works as follows. For each honest party, the
simulator will sample an injective seed σj together with an inversion trapdoor,
allowing him to “explain” any desired randomness output value. In contrast,
each corrupted party will be given a lossy seed σj , whose corresponding function
image will be sufficiently small that with high probability it will not hit the small
“special” subset of J values which do not intersect the (random) set I.

Preventing Ciphertexts that Decrypt to Wrong Messages. When both
sender and receiver are corrupted, we must ensure they cannot collaboratively
sample a secret key u ∈ Zp and “obliviously” sampled ciphertext (x, y) ∈ G2 for
the underlying scheme for which y

xu = M1−m. Such a pair may allow an honest
encryption of message bit m to (honestly) decrypt to the wrong message (1−m).

To prevent this event, the secret key u ∈ Zp and each element of the obliv-
iously generated ciphertext (x, y) ∈ G2 will be sampled using the same LTDF-
based procedure as above (but with a different choice of parameters (D,α)).
Here, the target output space size D will be set to p = |G| = 2k, and α will
be selected so that the total collection of possible values of y

xu , over all possible
combinations of u, x, y chosen from the range of the the sender and receiver’s
(lossy) LTDF functions, form a negligible fraction of the entire space of possible
values (i.e., the full message space of the underlying encryption scheme). Thus,
when the “special” messages M0,M1 are chosen randomly as part of the initial
CRS, the probability that they will fall into this small set of “bad” attainable
messages is negligible. This holds when α is set to 2−k/3.

More formally, let (GLoss, GInj, S, F, F
−1) be a bijective, (D,α)-admissible

LTDF family for D = 2k and α = 2−k/3, as given in Theorem 1(2). Sup-
pose each party Pj is associated with a LTDF seed σj contained in the CRS.
Each time party Pj must generate randomness for (1) sampling a secret key
u (when acting as receiver in the OT), or (2) selecting each of the two com-
ponents in an obliviously sampled ciphertext (x, y), he executes the following
procedure LTDF-Sample-G(σj): first, sample a random value r ← S(σj) from
the domain Dσj of the LTDF function corresponding to seed σj , output the
evaluation F (σj , r) as the desired randomness.

Combining the Pieces. In Figure 1 we explicitly define the procedures for gen-
erating randomness for each relevant application in the OT protocol. The CRS
contains a value of σ(1), σ(2), and (g1, g2, g3, g4) for each party, corresponding to
LTDF seeds and group elements as described above. Denote by Ak the set of
all subsets of [4k] of size k. We refer the reader to the full version for a formal
treatment and analysis of these procedures.

4.3 Our OT Protocol

We now use the augmented NCE scheme from Section 4.1 and the randomness
generation procedures from Section 4.2 to construct a 1-out-of-4 OT protocol
secure against adaptive auxiliary information in the semi-malicious setting.
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Rand-KeyGen(σ(2), (g1, g2, g3, g4)): Sample I ← Ak. For each i ∈ I, sample randomness
to be used for Gen, by executing ui ← LTDF-Sample-G(σ(2)). For each j ∈ [4k] \ I,
sample randomness to be used for obliviously sampling a public key, by executing
rj ← DDH-Rerand(g1, g2, g3, g4). Output (I, {ui}i∈I , {rj}j∈[4k]\I).

Rand-OblivKeyGen(g1, g2, g3, g4): For each i ∈ [4k], sample randomness to be used for
obliviously sampling a public key, by executing ri ← DDH-Rerand(g1, g2, g3, g4).
Output {ri}i∈[4k].

Rand-Enc(σ(1), σ(2)): Select J ∈ Ak, by executing J ← LTDF-Sample-J(σ(1)). For
each j ∈ J , sample encryption randomness randj ← {0, 1}∗. For each i /∈ J , sam-
ple randomness for obliviously sampling a ciphertext, by running two executions
xi, yi ← LTDF-Sample-G(σ(2)). Output (J, {randj}j∈J , {(xi, yi)}i∈[4k]\J).

Fig. 1: Randomness generation procedures for the semi-malicious OT protocol.

Our 1-out-of-4 OT protocol for semi-malicious parties.
CRS: Uniformly random message M0,M1 ← G. For each party Pi: (injective)

LTDF seeds σ
(1)
i , σ

(2)
i , and (non-DDH) tuple gi = (gi1, g

i
2, g

i
3, g

i
4).

1. The receiver Pi, on input b ∈ [4], does the following:
1. For b ∈ [4], sample a standard NCE key pair (eb, db) via Rand-KeyGen(σ

(2)
i , gi).

For each b′ ∈ [4] \ {b}, obliviously sample an NCE public key eb′ via the
algorithm Rand-OblivKeyGen(gi).

2. The receiver sends (e1, . . . , e4) to the sender.

3. The sender Pj , on input m1, . . . ,m4, where each mi ∈ G, and upon receiving
the message (e1, . . . , e4) from the receiver, does the following:

1. For each b′ ∈ [4], encrypt the message mb′ under public key eb′ . This is
done by executing the encryption algorithm NCEnc with message mb′ ,

key eb′ , and randomness rb′ ← Rand-Enc(σ
(1)
j , σ

(2)
j ).

2. Send (c1, . . . , c4).

3. The receiver decrypts cb using the secret key db.
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