
On Semantics-to-Syntax Analyses of Algorithms
Yuri Gurevich

Microsoft Research
Redmond, WA, USA

gurevich@microsoft.com

Give me a fulcrum, and I will move the world.

Archimedes

Abstract: Alan Turing pioneered semantics-to-syntax analysis of algorithms. It is a kind of analysis where you start with a
large semantically defined species of algorithms, and you finish up with a syntactic artifact, typically a computation model,
that characterizes the species. The task of analyzing a large species of algorithms seems daunting if not impossible. As in
quicksand, one needs a support, a rescue point, a fulcrum. In computation analysis, a fulcrum is a particular viewpoint on
computation that clarifies and simplifies things to the point that analysis become possible.

We review from that point of view Turing’s analysis of human-executable computation, Kolmogorov’s analysis of sequential
bit-level computation, Gandy’s analysis of a species of machine computation, and our own analysis of sequential computation.

Keywords: algorithm, computation, semantics-to-syntax analysis, sequential algorithm, Turing, Kolmogorov, Gandy

1. Introduction
This paper is was conceived as an extended abstract, an appetizer of a kind, for a much longer
article (Gurevich, to appear). But the paper is written after the fact and contains a number of
observations not present in the longer article.

For brevity, classes of algorithms given by semantical constraints will be called species of
algorithms. For example, the species of sequential-time algorithms consists of algorithms that
execute step after step, and the species of sequential algorithms consists of sequential-time
algorithms with steps of bounded complexity.

Semantics-to-syntax analysis of a species of algorithms seeks to find a syntactic definition
of the species, typically a particular kind of machines that execute all and only the algorithms
of the species. A classical example is analysis of human computation in (Turing, 1936-37).
Often the original definition of the species is vague. Explicating it is a part of the analysis. In
the process, the original species may be narrowed. For example, Turing stipulated that human
computing is done by “writing certain symbols on paper” ruling out e.g. ruler-and-compass
computations.

Discussion

Q1: In one place you speak about analysis of algorithms, in another about analysis of computa-
tion. Which is it?

A2: For our purposes, the analysis of algorithms and the analysis of computation are one and
the same. We consider only algorithmic computations, and of course algorithms specify com-
putations.

Q: In mathematical logic, theory of algorithms is the theory of computable functions.

A: Yes, but there may be much more to an algorithm than its input-output behavior. Algorithms
perform tasks, and computing functions is a rather special class of tasks. By the way, for some

1Quisani, an inquisitive friend of ours.
2The author.



useful algorithms, non-termination is a blessing, rather than a curse; think for example of an
algorithm that opens and closes the gates of a railroad crossing.

Acknowledgments
Many thanks to Andreas Blass for useful comments.

2. Alan Turing
Alan Turing analyzed human computing, even though the variety of human computations is
mind boggling. What fulcrum supported the lever of Turing’s analysis? We believe that his
fulcrum was this:

Ignore what a human computer has in mind and concentrate on what the computer does.

In other words, Turing treated the idealized human computer as an operating system of sorts.

Discussion

Q: But Turing did not ignore the human computer’s mind. He spoke about the state of mind of
the human computer explicitly and repeatedly. Here is but one example. “The behaviour of the
computer at any moment is determined by the symbols which he is observing, and his ‘state of
mind’ at that moment.”

A: Turing postulated that there are only finitely many states of mind which need be taken into
account. They can be labeled, so that the computer needs to remember only the label of the
current state of mind.

3. Andrei Nikolayevich Kolmogorov
Contrary to Turing, Andrei Nikolayevich Kolmogorov did not publish a detailed analysis of
computation. His analysis is reflected in the proceedings of a 1953 talk to the Moscow Mathe-
matical Society (Kolmogorov, 1953) and in a paper (Kolmogorov & Uspensky, 1958) with his
student Vladimir Uspensky.

Kolmogorov might have intended to analyze all algorithms but the analysis in (Kolmogorov &
Uspensky, 1958) is restricted to digital algorithms and does not apply to e.g. ruler-and-compass
algorithms. Besides, the algorithms of his time still were sequential.

In the 1953 talk, Kolmogorov stipulated the following three principles.

K1. Sequentiality An algorithmic process splits into steps whose complexity is bounded in
advance.

K2. Elementary steps Each step consists of a direct and unmediated transformation of the
current state S to the next state S∗.

K3. Locality Each state S has an active part of bounded size. The bound does not depend
on the state or the input size, only on the algorithm itself. The direct and unmediated
transformation of S to S∗ is based only on information about the active part of S and
changes only the active part.

Kolmogorov and Uspensky analyzed sequential algorithms on the level of single bits. The
syntactic definition of sequential algorithms is given by means of Kolmogorov-Uspensky ma-
chines. Kolmogorov’s fulcrum seems to be this:

Computation is a physical process evolving in space and time.



Discussion

Q: The three principles say nothing about an algorithmic process being digital.

A: That is right. But the states of Kolmogorov-Uspensky machines are digital.

Q: Principle K2 does not look convincing. In one step, a sequential algorithm may perform
state transformations — e.g. multiplications, divisions — that aren’t so direct and immediate.

A: Kolmogorov and Uspensky do not allow such complicated transformations. Recall that
they analyze sequential algorithms on the level of single bits where multiplication and division
would have to be broken into a sequence of bitwise operations.

Q: Are the principles K1–K3 independent?

A: Not if you take into account that Kolmogorov and Uspensky analyzed computation on the
level of single bits. (Of course our reply is bound to have a degree of informality: the principles
K1–K3 aren’t formal mathematical statements.) Since the active part of states is bounded, each
such active part may be encoded with a binary string of a bounded length. Taking into account
the elementary character of a single step of the algorithmic process in question, this implies a
bound on the step complexity.

4. Robin Gandy
Gandy analyzed computation in his 1980 paper “Church’s Thesis and Principles for Mecha-
nisms” (Gandy, 1980). The computers of Gandy’s time were machines, or “mechanical de-
vices”, not only humans, and that is Gandy’s departure point.

“Turing’s analysis of computation by a human being does not apply directly to mechan-
ical devices . . . Our chief purpose is to analyze mechanical processes and so to provide
arguments for . . .

Thesis M. What can be calculated by a machine is computable.”

Mechanical devices can perform parallel actions, and so Thesis M “must take parallel working
into account.” But the species of all mechanical devices is too hard to analyze, and Gandy
narrows it quite substantially.

“Thesis P. A discrete deterministic mechanical device satisfies principles I–IV below.”

Principle I asserts in particular that the states of any mechanical device can be adequately rep-
resented by hereditarily finite sets3 and that there is a transition function F on hereditary finite
sets such that, if x represents an initial state, then Fx, F (Fx), . . . represent the subsequent
states. Gandy wants his analysis “to be sufficiently abstract to apply uniformly to mechanical,
electrical or merely notional devices,” so the term mechanical device is treated liberally.

Principles II are III are technical restrictions on states and the transition function. Principle IV
generalizes Kolmogorov’s locality constraint to parallel computations.

It seems to us that Gandy’s fulcrum is the part of his Principle I described above:

The states of any mechanical device can be adequately represented by hereditarily finite
sets, and there is a transition function F on hereditary finite sets such that, if x represents
an initial state, then Fx, F (Fx), . . . represent the subsequent states.

The fulcrum allowed Gandy to translate the bewildering world of mechanical devices into the
familiar set-theoretic framework. Gandy’s analysis led him to a synchronous parallel computa-
tion model.

3A set may contain other sets as elements. A set x is hereditarily finite if its transitive closure TC(x) is finite. Here TC(x)
is the least set t such that (i) x ∈ t and (ii) if z ∈ y ∈ t then z ∈ t.



Discussion

Q: Machine parallelism does not have to be synchronous. It may be asynchronous. Isn’t
Thesis P too narrow.

A: It is, but asynchronous computations, as well as distributed, quantum, real-time computa-
tions, had not been developed at the time when Gandy wrote his paper. On the other hand,
analog computing devices did play an important role at the time.

Q: Was Gandy the first to analyse synchronous parallel computation.

A: As far as we know, Gandy’s analysis was the first semantics-to-syntax analysis of a large
class of machine computations.

Q: Was Gandy’s computation model the first parallel computation model?

A: No, certainly the circuit model had been used earlier. Complexity of circuits was studied
already in (Shannon, 1949). Uniform families of circuits were introduced in (Borodin, 1977).
But the logician Gandy most probably did not know the computer engineering literature.

5. Sequential algorithms
By the 1980s, there were plenty of computers and software. A problem arose how to specify
software. Specifications can be thought of as higher-level algorithms. Accordingly, the analysis
of algorithms on the level of single bits wasn’t good enough anymore.

A semantics-to-syntax analysis of sequential algorithms was performed in (Gurevich, 2000).
We mention extensions of that analysis below, in the next section, but this section is restricted to
sequential algorithms. The analysis resulted in an axiomatic definition of sequential algorithms.
A machine model for executing sequential algorithms on their natural levels of abstraction was
given earlier; see e.g. (Gurevich, 1995). The machines became known as abstract state ma-
chines or ASMs.

Intuitively, as Kolmogorov pointed out, sequential algorithms compute in steps of bounded
complexity. The formal definition of sequential algorithms consists of three axioms. It is in-
structive to compare them with Kolmogorov’s principles K1–K3.

Axiom 1, the Sequential Time Axiom, is a part of principle K1. It asserts that an algorithm is
a deterministic transition system given by a set of (some objects that we call) states, a subset of
initial states and a state transition map.

Kolmogorov’s principle K2 restricts the abstraction level of algorithms, and we go beyond it.
We do not require that algorithms are digital; ruler-and-compass algorithms can be legitimate
sequential algorithms. Also, the Gauss Elimination Procedure, operating on genuine real num-
bers, is a legitimate algorithm. Our axiom 2, the Abstract State Axiom, is closely related to the
fulcrum that allowed us to pull off a semantics-to-syntax analysis of sequential algorithms. The
fulcrum is this:

On the native level of abstraction of a sequential algorithm, its states can be faithfully
represented by first-order structures of a fixed vocabulary in such a way that state tran-
sitions can be expressed naturally in the language of the fixed vocabulary.

Axiom 2 itself goes a little beyond the fulcrum. Axiom 3, the Bounded Exploration Axiom, is
the most technical of the three axioms. It generalizes Kolmogorov’s principle K3 to algorithms
on arbitrary abstraction levels.

The axiomatization allows us to prove the sequential ASM thesis of (Gurevich, 1995): every
sequential algorithm can be step-by-step simulated by an appropriate sequential abstract state
machine.



Discussion

Q: Your analysis cannot be sufficiently general because you restrict it to deterministic sequential
algorithms. There are also nondeterministic sequential algorithms, e.g. nondeterministic finite
automata.

A: The notion of nondeterministic sequential algorithm is a useful abstraction but it hides in-
teraction (Gurevich, 2000, §9). An external intervention is needed to resolve nondeterminism.
Recall Yogi Berra’s famous nondeterministic sequential algorithm: “When you come to a fork
in the road, take it!” The analysis in (Gurevich, 2000) is restricted to non-interactive sequential
algorithms. More exactly, inter-step interaction with environment is allowed; it is intra-step
interaction that is forbidden. Of course, intra-step interactive sequential algorithms are of much
interest, and we analyzed them elsewhere (Blass & Gurevich, 2006-07; Blass, Gurevich, Rosen-
zweig, & Rossman, 2007).

6. Limitations on semantics-to-syntax analyses
In (Gurevich, 2012) we argued that the notion of algorithm cannot be rigorously defined in full
generality, at least for the time being. The reason is that the notion is expanding. In addition
to sequential algorithms, in use from antiquity, we have now parallel algorithms, interactive
algorithms, distributed algorithms, real-time algorithms, analog algorithms, hybrid algorithms,
quantum algorithms, etc. New kinds of algorithms may be introduced and most probably will
be. Will the notion of algorithms ever crystallize to support rigorous definitions? We doubt that.
Similarly, the species of machine algorithms evolves and may never crystallize.

However the problem of rigorous definition of algorithms is not hopeless. Not at all. Large
and important strata of algorithms have crystallized and became amenable to rigorous defini-
tions. In particular, the axiomatic definition of sequential algorithms was extended to synchro-
nous parallel algorithms in (Blass & Gurevich, 2003) and to interactive sequential algorithms
in (Blass & Gurevich, 2006-07; Blass et al., 2007). It was also used in to derive Church’s thesis
from the three axioms plus an additional Arithmetical State Axiom which asserts that only basic
arithmetical operations are available initially (Dershowitz & Gurevich, 2008).

References
Blass, A., & Gurevich, Y. (2003). Abstract state machines capture parallel algorithms. ACM

Trans. on Computational Logic, 4:4, 578–651. (Correction and extension, same journal,
9:3 (2008), article 19)

Blass, A., & Gurevich, Y. (2006-07). Ordinary interactive small-step algorithms. ACM Trans.
on Computational Logic. (Part I in Vol. 7:2 (2006), 363–419; Parts II and III in Vol. 8:3,
articles 15 and 16 respectively)

Blass, A., Gurevich, Y., Rosenzweig, D., & Rossman, B. (2007). Interactive small-step al-
gorithms. Logical Methods in Computer Science, 3:4. (Parts I and II, papers 3 and 4
respectively)

Borodin, A. (1977). On relating time and space to size and depth. SIAM Journal on Computing,
6, 733–744.

Dershowitz, N., & Gurevich, Y. (2008). A natural axiomatization of computability and proof
of Church’s thesis. Bull. of Symbolic Logic, 14:3, 299–350.

Gandy, R. (1980). Church’s thesis and principles for mechanisms. In J. Barwise, H. Keisler, &
K. Kunen (Eds.), The Kleene Symposium (pp. 123–148). North-Holland.

Gurevich, Y. (1995). Evolving algebra 1993: Lipari guide. In E. Börger (Ed.), Specification
and Validation Methods (pp. 9–36). Oxford Univ. Press.



Gurevich, Y. (2000). Sequential abstract state machines capture sequential algorithms. ACM
Trans. on Computational Logic, 1:2, 77–111.

Gurevich, Y. (2012). What is an algorithm? In M. Bieliková, G. Friedrich, G. Gottlob,
S. Katzenbeisser, & G. Turán (Eds.), Sofsem 2012: Theory and Practice of Computer
Science (Vol. 7147, pp. 31–42). Springer. (A slight revision will appear in the proceedings
of the 2011 Studia Logica conference on “Church’s Thesis: Logic, Mind and Nature.”)

Gurevich, Y. (to appear). Semantics-to-syntax analyses of algorithms. In G. Sommaruga &
T. Strahm (Eds.), Turing’s ideas — Their Significance and Impact. Birkäuser/Springer.

Kolmogorov, A. (1953). On the concept of algorithm. Uspekhi Mat. Nauk, 8:4, 175–176
(Russian).

Kolmogorov, A., & Uspensky, V. (1958). On the definition of algorithm. Uspekhi Mat. Nauk,
13:4, 3–28 (Russian). (English translation in AMS Translations 29 (1963), 217–245.)

Shannon, C. (1949). The synthesis of two-terminal switching circuits. Bell System Technical
Journal, 28, 59–98.

Turing, A. (1936-37). On computable numbers, with an application to the Entscheidungsprob-
lem. Proc. London Math. Society, 42, 230–265.


