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Zero-One Laws

Quisani: I heard you talking on �nite model theory the other day. It is interesting
indeed that all those famous theorems about �rst-order logic fail in the case when
only �nite structures are allowed. I can understand that for those, like you, educated
in the tradition of mathematical logic it seems very important to �nd out which of
the classical theorems can be rescued. But �nite structures are too important all by
themselves. There's got to be deep �nite model theory that has nothing to do with
in�nite structures.

Author: \Nothing to do" sounds a little extremist to me. Sometimes in�nite objects
are good approximations of �nite objects.

Q: I do not understand this. Usually, �nite objects approximate in�nite ones.

A: It may happen that the in�nite case is cleaner and easier to deal with. For example,
a long �nite summay be replaced with a simpler integral. Returning to your question,
there is indeed meaningful, inherently �nite, model theory. One exciting issue is zero-
one laws. Consider, say, undirected graphs and let � be a property of such graphs. For
example, � may be connectivity. What fraction of n-vertex graphs have the property
�? It turns out that, for many natural properties �, this fraction converges to 0 or
1 as n grows to in�nity. If the fraction converges to 1, the property is called almost
sure. In that sense, almost all graphs are connected, hamiltonian, not 3-colorable,
rigid, etc. [BH, Co2, and references there].
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Q: What is exactly the fraction of n-vertex graphs with property �? What does it
mean that a graph is rigid?

A: A graph G is called rigid if the identity map is the only automorphism of G
(i.e. the only isomorphism from G to G). Now, about that fraction. There are two
di�erent de�nitions in the literature:

Labeled Case: ln(�) is the number Ln(�) of � graphs on f1; : : : ; ng divided by
2n(n�1)=2, the total number of graphs on f1; : : : ; ng. In other words, ln(�) =
Ln(�)=Ln(� ) where � is the trivial property that every graph has.

Unlabeled Case: un(�) is the number Un(�) of isomorphism types of n-vertex �
graphs divided by the total number Un(� ) of isomorphism types of n-vertex
graphs.

Of course, the property � in question is supposed to be preserved by isomorphisms.
Somewhat loosely, people say that � obeys the labeled (resp. unlabeled) zero-one law
if ln(�) (resp. un(�)) converges to 0 or 1. Let me say that two numerical sequences
�n and �n are asymptotically equivalent if they converge to the same number or else
they both diverge. I will use the sign � to denote asymptotic equivalence. Notice
that the asymptotic equivalence �n � �n is weaker than the asymptotic equality
�n � �n; the latter means that the fraction �n=�n converges to 1. For example, 1=n
is asymptotically equivalent but not asymptotically equal to 1=n2. It turns out that
ln(�) � un(�). The reason for the asymptotic equivalence is that almost all graphs
are rigid.

Q: In what sense are most graphs rigid?

A: Rigidity, which I will denote by �, obeys either of the two zero-one laws: ln(�) �
un(�)! 1. Notice that each rigid n-vertex graph has exactly n! distinct labelings, so
that Ln(� ^ �) = Un(� ^ �) � n!. The desired asymptotic equivalence ln(�) � un(�)
follows easily. Do you see how to derive it?

Q: I think I do. Since ln(�)! 1,

Ln(�)

Ln(� )
=
Ln(� ^ �) + Ln(� ^ :�)

Ln(� )
�
Ln(� ^ �)

Ln(� )
�
Ln(� ^ �)

Ln(�)
:

Similarly,
Un(�)

Un(� )
�
Un(� ^ �)

Un(�)
because un(�)! 1. But

Un(� ^ �)

Un(�)
=
Ln(� ^ �)

Ln(�)
.

A: Very good.

Q: Let me verify for myself that rigid graph has n! distinct labelings.
There are n! one-to-one functions f from the universe V of an n-vertex graph

G onto f1; : : : ; ng. Each such f gives a graph Gf on f1; : : : ; ng, so that f is an
isomorphism from G onto Gf . If Gf = Gh then h�1 � f is an automorphism of G.
Thus, all n! graphs Gf are distinct if G is rigid. Hence Ln(�) = Un(�).

2



I think we are getting somewhere. If G is not rigid and � is a nontrivial automor-
phism of G, then each graph Gf equals Gh��. Thus, a nonrigid n-vertex graph has at
most n!=2 distinct labelings, so that Ln(:�) � Un(:�) � n!=2 < Un(:�) � n!. We have

un(�) =
Un(�)

Un(�) + Un(:�)
=

Un(�) � n!

Un(�) � n! + Un(:�) � n!
<

Ln(�)

Ln(�) + Ln(:�)
= ln(�)

and therefore ln(�)! 1 if un(�)! 1. However, I do not see why the latter is true.

A: There is a good reason for the di�culty. Until now, we worked in great generality.
We could speak as well about directed graphs or groups, etc. But now we need
information speci�c to graphs. The following simple formula of P�olya [HP, Section
9.1] is worth remembering:

Un(� ) �
Ln(� )

n!
:

By P�olya's formula,

Un(�) + Un(:�)=2

Un(� )
=
Un(�)n! + Un(:�)n!=2

Un(� )n!
�
Ln(�) + Ln(:�)

Un(� )n!
=

Ln(� )

Un(� )n!
! 1:

Thus, 1 � un(:�)=2 =
Un(�) + Un(:�)

Un(� )
�
Un(:�)=2

Un(� )
=
Un(�) + Un(:�)=2

Un(� )
! 1 and

therefore un(:�)! 0.
It is often easier to deal with labeled graphs. The fraction ln(�) can be seen as

the probability of � in the sample space of graphs with universe f1; : : : ; ng and the
uniform probability distribution.

Q: Similarly, the fraction un(�) can be interpreted as the probability of � in an
appropriate sample space.

A: True, but the sample space of labeled graphs is easier to deal with. In the case
of labeled graphs, for example, the probability of an event \fi; jg is an edge" is 1/2
whenever i 6= j. Further, any two such events are pairwise independent. The sample
space can be viewed as the set of outcomes of the following experiment: for each pair
fi; jg of distinct elements of f1; : : : ; ng, toss a fair coin to decide whether the pair is
an edge.

Q: How does logic come in?

A: It turns out that every �rst-order property � satis�es the zero-one law [GKLT,
and independently Fa1].

Q: Wow!

A: We may say that �rst-order logic obeys the zero-one law.

Q: Do you mean the labeled or unlabeled law? Maybe you are talking about proper-
ties of graphs only. We know that ln(�) � un(�) for any graph property � preserved
by isomorphisms.
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A: I am talking about �rst-order logic with equality and unary, binary, ternary, etc.
predicate symbols, but without function symbols or individual constants.

Q: Sure. If c is an individual constant then the probability of a sentence P (c) is 1/2
in the case of labeled structures.

A: Right. It turns out that ln(�) � un(�) for every property � of structures of
a given signature �. Let me say this more carefully. First of all, I consider only
�nite signatures. Given a �nite collection � of predicate symbols of speci�ed arities,
consider a class K of �nite structures of signature �. A property � of K structures
can be viewed as a function on K that assigns true or false to each structure A in K.
We will consider only those properties which are preserved under isomorphisms.

Q: You got me worried. Do you mean that K is a class and not necessarily a set?

A: No, no. I do not intend to involve us in set theory. We are only interested in
isomorphism types of structures and their labelings. Generalize the de�nitions of ln
and un from graphs to structures in K and consider the case when K is the class of
all � structures. For every property � of � structures, ln(�) � un(�).

Q: It is clear that ln(�) � un(�) if unlabeled �-structures are almost surely rigid.
Are they?

A: Not if � comprises only unary predicates. But the case of unary predicates is
easily analyzable directly and we may ignore it. If � contains at least one predicate
of arity > 1 then the unlabeled zero-one law for the rigidity of � structures follows
from the unlabeled zero-one law for graph rigidity.

Q: How does it follow?

A: For simplicity, I suppose that � contains a binary predicate P . Given a � structure
A, construct a graph G on the universe of A such that any pair fa; bg of distinct
elements of A is an edge if and only if either both P (a; b) and P (b; a) are true in A
or else both P (a; b) and P (b; a) are false in A. Every automorphism of A is also an
automorphism of G. Hence all pre-images A of a rigid graph G are rigid. Further,
a rigid n-vertex graph has more pre-images than a nonrigid one. It follows that the
fraction of rigid n-element �-structures is larger than the fraction of rigid n-vertex
graphs.

Q: What if � contains only predicates of arity � 3?

A: May I leave this as an exercise? By the way, historical references related to rigidity
may be found in [Co2].

Q: Fair enough. I would love to see a proof of a zero-one law for �rst-order logic.

A: We may forget about the unlabeled law and concentrate on the labeled one. The
original proof of Glebsky et al. is somewhat involved. A nice sketch of the proof is
in [Co2].
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Q: Did you know the four coauthors?

A: Yes. Kogan, Liogonky and Talanov were students of Glebsky at Gorky (now
Nijny Novgorod) University in Russia. I visited Gorky to participate, as an o�cial
\opponent", in the ceremony of the public \defense" by Liogonky of his Ph.D. thesis
[Li] where he proved the unlabeled law for �rst-order logic.

Fagin rediscovered the zero-one law for �rst-order logic in [Fa1]. His proof is very
instructive. Imagine the following in�nite experiment: For each pair fi; jg of distinct
positive positive integers, toss a fair coin to decide if fi; jg is an edge. Outcomes of
the experiment are graphs on positive integers. What do you think is the probability
that two outcomes are isomorphic?

Q: I would say zero, but I feel a trap. Would you give me a hint?

A: Try to build an isomorphism piecemeal. Suppose that f is a partial isomorphism
from one outcome graph to another such that the domain of f is �nite. Let i be an
integer outside the domain of f . Can f be extended to i?

Q: For every j outside the range of f , the probability p that the extension of f by
f(i) = j is a partial isomorphism equals 2�k where k is the cardinality of the domain
of f . The probability that at least one of m such j's is appropriate is (1� (1� p)m),
which tends to 1 as m grows. Thus, the probability that f can be extended to include
i into its domain is 1. I see it now. Start with the empty partial isomorphism and
keep extending it to include the smallest integer outside the domain, the smallest
integer outside the range, the smallest integer outside the domain, etc. I presume
that the union of countably many events of probability zero has probability zero in
our sample space.

A: Yes, it is easy to check that the probability measure is countably additive.

Q: Then the intersection of countably many events of probability 1 has probability 1.
Hence, with probability 1, the back-and-forth construction results in an isomorphism
between two random outcomes. This is amazing.

A: I think so too. The prevalent outcome (if we identify isomorphic graphs) is called
the in�nite random graph. Can you de�ne an in�nite random directed graph ?

Q: Yes. Modify the experiment to toss a coin for every ordered pair (i; j) of positive
integers which are not necessarily distinct. The same back-and-forth argument shows
that, with probability 1, two outcomes are isomorphic.

A: Right. We can de�ne the in�nite random structure of an arbitrary (�nite) sig-
nature � in a similar way. For every predicate symbol P in � and for every tuple
(i1; : : : ; ir) of (not necessarily distinct) positive integers, toss a fair coin to decide
whether P (i1; : : : ; ir) is true. Here r is of course the arity of P . With probability 1,
two outcomes of the in�nite experiment are isomorphic.

Q: How is this related to the zero-one law for �rst-order logic?

A: For each positive integer k, consider an extension axiom
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which I will denote "k. Here Ak comprises all atomic formulas � = P (w1; : : : ; wr)
such that P 2 � and v 2 fw1; : : : ; wrg � fu1; : : : ; uk; vg. For example, if � comprises
one binary predicate P then

Ak = fP (v; v); P (u1; v); : : : ; P (uk; v); P (v; u1); : : : ; P (v; uk)g:

The axiom "k says that there exist at least k distinct elements and every k-element
substructure can be extended by one additional element in every possible way. Notice
that each "k+1 implies "k. It is easy to see that the in�nite random �-structure satis�es
all extension axioms and that every two countably in�nite �-structures satisfying all
extension axioms are isomorphic.

Further, using a couple of classical theorems about �rst-order logic, one can infer
that, for every �rst-order sentence �, either � or :� follows from some extension
axiom. Indeed, suppose by contradiction that neither of the two formulas is implied
by any extension axiom and therefore by any �nite set of extension axioms. By the
Compactness Theorem, there is a graph G1 satisfying � and all extension axioms
and there is a graph G2 satisfying :� and all extension axioms. Obviously, the two
graphs are in�nite. By the L�owenheim-Skolem Theorem, every in�nite structure has
a countable substructure with the same �rst-order properties. Thus, we may assume
without loss of generality that the two graphs are countable. But then G1 and G2

are isomorphic which is impossible.
All these facts were known before Fagin's paper. To make this long story shorter,

let me refer again to Compton's comprehensive survey [Co2] for the history of the
subject. But Fagin connected all this with �nite structures. Every extension axiom
is almost sure. Hence either � or :� is almost sure.

Q: And the almost sure theory of �nite structures is exactly the theory of the in�-
nite random structure. A nice illustration of the thesis that an in�nite object may
approximate �nite ones. But was it necessary to use in�nite graphs?

A: No. One can prove directly that every �rst-order sentence is decided by some
extension axiom. One way is to use Ehrenfeucht games. You can check easily that
if two graphs G1 and G2 satisfy "k, then Player II has a winning strategy in the
k-step Ehrenfeucht game �k(G1; G2) and thus, by Ehrenfeucht's Theorem [Eh], no
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prenex (with quanti�ers up front) �rst-order sentence with k quanti�ers distinguishes
between G1 and G2.

Q: So what?

A: Oh, consider an arbitrary �rst-order sentence �. A standard algorithm transforms
� into a logically equivalent prenex �rst-order sentence �0. Let k be the number of
quanti�ers in �0. By the argument above, �0 does not distinguish between any two
models of "k. Hence � does not distinguish between any two models of "k. Either all
models of "k satisfy �, or else all models of "k satisfy :�. In the �rst case, � is almost
surely true, and in the second case, � is almost surely false.

Q: Would you remind me what exactly Ehrenfeucht games are?

A: That is not necessary. Let me explain to you how to prove the zero-one law for
�rst-order logic by quanti�er elimination. This even more direct method is due to
Etienne Grandjean [Gr]. By induction on (the logical depth of the) �rst-order formula
�(�u), we will prove that there exists k such that �(�u) is equivalent to some quanti�er-
free formula �(�u) on structures satisfying "k. Here �u is a tuple of free variables. If �
has no free variables, then � is true or false. Thus every sentence � is almost surely
true or almost surely false.

The atomic case is trivial and the case when � is a boolean combination of
proper subformulas is obvious. It remains to consider the case �(u1; : : : ; ur) =
(9v) (u1; : : : ; ur; v). By induction hypothesis, there exists j such that  is equiv-
alent to a quanti�er-free formula on structures satisfying "j. Let k = max(j; r). We
check that � is equivalent to a quanti�er-free formula on structures satisfying "k.
Since k � j, we may assume without loss of generality that  itself is quanti�er-free.
Since (9v)(� _ �) is logically equivalent to [(9v)�]_ [(9v)�], we may suppose that  
is a conjunction of atomic formulas and negated atomic formulas. Moreover, we may
suppose that, for every pair (up; uq) with 1 � p < q � r, � contains the conjunct
up = uq or the conjunct up 6= uq, and that  contains conjuncts u1 6= v; : : : ; ur 6= v. If
 is not satis�able at all, choose � to be logically false. Otherwise, the desired �(�u)
is obtained from  (�u; v) by deleting all (negated or non-negated) atomic formulas
that mention v. Obviously �(�u) logically implies �(�u). It is easy to see that the
implication �(�u)! �(�u) follows from "r and therefore from "k.

Q: It looks like the desired k is less than largest number of free variables in subformulas
of �. One can actually compute the desired � and, in the case � has no free variables,
decide whether it is almost surely true or almost surely false. Did somebody look into
the complexity of this decision problem?

A: Grandjean did. The decision problem is PSPACE complete [Gr].

Q: So it may be hard to tell whether a given �rst-order sentence is almost sure.

A: To put things into proper perspective, let me quote two facts. The problem
whether a given sentence in the �rst-order language of equality (without any other
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predicate symbols) is true in every �nite structure (and therefore logically true) is
PSPACE complete [St]. The problem whether a given �rst-order sentence is true in
every �nite structure is undecidable [Tr].

Q: It popped up in my mind that the zero-one law for �rst-order graph properties
does not follow from the zero-one law for �rst-order logic because the properties of
symmetry and irre
exivity, which characterize undirected graphs, are almost surely
false.

A: That is true, but the same proofs establish the zero-one law for graph properties.

Q: It is interesting that that the zero-one law survives the restriction to graphs. I
wonder if this is a special case of a general phenomenon. Maybe, the restricting
axioms should be universal like the axioms of re
exivity and symmetry.

A: Here is a trivial counterexample. Consider the class of structures with two unary
predicates P and Q satisfying the axiom 8u8v[(P (u)^P (v))! u = v]. The sentence
� = (9u)(P (u) ^Q(u)) is neither almost surely true nor almost surely false.

However, sometimes the zero-one law survives. Andreas Blass and Frank Harary
proved the zero-one law for simplicial complexes proved by [BH]. Kevin Compton
proved the zero-one law for partial orders [Co1]. He used a theorem of Kleitman and
Rothschild according to which a typical random partial order of size n has, somewhat
surprisingly, no chains of length more than 3. Such partial orders can be seen as
graphs with three layers of vertices where each edge connects a vertex of the middle
layer with a vertex of the lower or the upper level. The appropriate in�nite random
partial order also has this form, and Compton's proof proceeds along the lines of
Fagin's proof. Kolaitis, Pr�omel and Rothschild proved that, for each l � 2, the class
of Kl+1-free graphs obeys the zero-one law [KPR]. HereKl+1 is the complete graph on
l+1 vertices; a graph is called Kl+1-free if it does not have any subgraph isomorphic
to Kl+1.

Q: Your counterexample is not very satisfactory because ln(�) converges to 1/2. The
formula � satis�es the \convergence law", which is weaker than the zero-one law but
still very meaningful.

A: You may want to look at some papers of Jim Lynch. He proves, for example,
the convergence law for the �rst-order logic of unary functions [Ly2]. But here is
another counterexample for your hypothesis [Bl]. Use universal axioms to say that
P is a linear order, and if Q(u; v; w) holds then v is the successor of u with respect
to P and R(u) $ :R(v). Let K be the class of (�nite) structures satisfying the
universal axioms. The relation Q0(u; v) = 9wQ(u; v; w) is a partial successor relation
appropriate to linear order P on K structures.

Q: Why do you need w?

A: How do you assert, using only universal axioms, that every element, except for
the last one, has a successor? The additional argument allow us to assert a statistical
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version of this statement. Almost surely, Q0 is the complete successor relation. Hence,
almost surely, R marks either all even or all odd elements in the linear order. Write
a sentence � saying that the �rst (with respect to P ) element satis�es R if and only
if the last (with respect to P ) element does. It is easy to see that l2n(�) ! 0 and
l2n+1(�)! 1. Thus � violates the convergence law.

By the way, some weaker but nontrivial forms of the convergence law may survive
even if the parity of the universe is expressible. For example, enrich each universe
f1; : : : ; ng with the successor relation S(x; y)  ! y = x + 1 and modular addition
P (x; y; z) ! x+y = z mod n. It easy to see that the sentence 8u9vP (v; v; u) holds
if and only if n is odd. Nevertheless, for every �rst-order sentence � in this language,
there exists a positive integer m such that, for each i < m, the fraction of enriched
structures of cardinality i + km that satisfy � converges when k grows to in�nity
[Ly1]. However, our second counterexample can be modi�ed to violate the weak form
of the convergence law.

Q: I suspect that the zero-one law for �rst-order logic inspired attempts to generalize
it.

A: Yes, a whole new area of research has been created. You may want to read a nicely
written comprehensive survey of the area by Kevin Compton [Co2]. One generaliza-
tion of the (labeled) zero-one law for �rst-order logic is related to the probability
distribution on the set of graphs with universe f1; : : : ; ng. Above, we tossed a fair
coin to determine whether a pair fi; jg of distinct vertices is an edge. Alter the ex-
periment by using a biased coin, so that the probability that a pair fi; jg of distinct
vertices is an edge is some positive number p < 1. It is easy to see that all the results
survive. The situation changes drastically if p is allowed to vary as n grows [SS, Sp,
Ly3].

Q: I wonder if attempts were made to �nd logics with a zero-one law which are more
expressive than �rst-order logic and which express properties like connectivity and
hamiltonicity.

A: Yes, you bet. It is easy to see that second-order logic violates the zero-one law
and the convergence law. You can write a formula saying that the cardinality of the
universe is even. Matt Kaufmann and Saharon Shelah proved that the convergence
law fails miserably in the case of monadic second-order logic [KS]. Kaufmann went
on to show that even existential monadic second-order logic violates the convergence
law [Ka].

Apparently, the �rst positive result in this direction has been proved by Talanov,
who established the zero-one law for �rst-order logic extended with a transitive closure
operator [Ta]. His logic is able to express graph connectivity. Unfortunately, his paper
was published in an obscure place and went unnoticed. Blass, Gurevich and Kozen
proved the zero-one law for �xed-point logic [BGK], which is more expressive (cf.
[TK]). Recently Kolaitis and Vardi proved the zero-one law for the in�nitary logic
L!
1;! which is even more expressive.

9



Q: In what sense is that last logic in�nitary?

A: Formulas can be in�nitely long. Actually, the syntax of L!
1;! is very easy to de-

scribe. Formulas are built from atomic formulas by means of connectives :;^;_ and
quanti�ers 8 and 9. The novelty, in comparison to �rst-order logic, is that you are
allowed to form the conjunction and disjunction of an arbitrary set of formulas pro-
vided that the total number of predicate symbols and the total number of individual
variables in these formulas is �nite. The semantics is obvious.

Q: It's a joke. Formulas are supposed to be writable on a sheet of paper.

A: Be broader-minded. Fragments of L!
1;! allow succinct presentations, and certainly

there is nothing wrong in proving a zero-one law for in�nite formulas.

Q: I do not see what do in�nite conjunctions and disjunctions buy you if you keep
the number of individual variables bounded.

A: The trick is to reuse variables. Here is an example in the language of graphs with
edge relation E. Consider the �rst-order formulas

�1(u; v) = E(u; v); �n+1(u; v) = (9w)[E(u;w) ^ (9u)(u = w ^ �n(u; v))]:

Each of them has (the same) two free variables, and only three variables altogether.
Of course, the meaning of �n is that there exists a path of length n from u to v. Thus,
the in�nite formula

8u8v
1_
n=1

�n

expresses connectivity.
The quanti�er elimination proof of the zero-one law for �rst-order logic can be

modi�ed to establish the zero-one law for L!
1;! [KV4]. Would you like to try? It

should be instructive.

Q: Sure. By induction on a formula �, we prove that that there is k such that � is
equivalent to some quanti�er-free formula � (with the same predicate symbols) on
models of "k. I can require that � is �nite, but this does not matter. An in�nitary
quanti�er-free formula with �nite many predicate symbols and individual variables is
logically equivalent to a �nite quanti�er-free formula.

Since
_
i2I

�i  ! :
^
i2I

:�i, we need only to consider one new case � =
^
i2I

�i

in the induction step. Without loss of generality, all formulas �i have the same free
variables. By induction hypothesis, for each i, there exists ki such that �i is equivalent
to a quanti�er-free formula �i on models of "ki. Now I am in trouble. If there is a
�nite bound k for all ki then � is equivalent to the conjunction of formulas �i on
models of "k. How do I ensure the existence of such a bound?

A: You did not take full advantage of the restriction on the number of variables.
Strengthen the induction claim by requiring that the desired k does not exceed the
number of variables (all variables, bound and free) in �.
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Q: OK, let me give another try. The basis of induction is trivial, the case of negation
is obvious, and the treatment of the existential quanti�er above seems to be �ne. In
the case of in�nite conjunction, I can continue the argument above. By the induction
hypothesis, each ki is bounded by the number of variables in �i and therefore by the
number of variables in �. This gives the desired bound and �nishes the argument.
Nice.

By the way, I remember seeing another Kolaitis-Vardi paper on zero-one laws.
It was somehow related to that classi�cation of pre�x classes that you were talking
about a year ago [Gu2].

A: Oh, yes. This is also an interesting story. You may want to read the survey
[KV2] of Kolaitis and Vardi. They notice that every universal second-order sentence
(8P )�(P ) satis�ed by the in�nite random structure (of the appropriate signature)
follows from some extension axiom and thus is almost sure. Here � is �rst-order.

Q: That seems quite mysterious.

A: The proof is simple. The crucial observation is that an extension axiom is con-
sistent with (9P ):�(P ) if and only if it is consistent with the �rst-order formula :�.
This observation allows us to use the usual theorems about �rst-order logic. Suppose
that every extension axiom is consistent with :�. By the compactness theorem, :� is
consistent with the whole collection of extension axioms; let A be a model of all these
sentences. By the L�owenheim-Skolem Theorem, A has a countable substructure B
satisfying all these sentences. Since B satis�es all extension axioms, it is the in�nite
random structure with an additional relation P . Since B satis�es :�, the in�nite
random structure fails to satisfy (8P )�(P ). That's it. Instead of (8P )�(P ), we could
speak about (8 �P )�( �P ) where �P is a tuple of predicate symbols.

Q: This does not prove the zero-one law for universal second-order sentences, does
it? It leaves the possibility that some existential second-order sentence holds on the
in�nite random structure but is not almost sure. Does this really happen?

A: What do you think? This question is not di�cult.

Q: Then there has to be a counterexample, I feel. Right. I got it. There exists an
order without a last element on the in�nite graph, but of course there is no such thing
on any �nite graph.

A: Good. Kolaitis and Vardi investigated fragments E(�) of existential second-order
logic. Here � is a pre�x type and E(�) is the collection of existential second-order
sentences (9 �P )�( �P ) where � is a prenex �rst-order sentence with pre�x of type �.
They proved for example that E(9�8�) obeys the zero-one law. That particular proof
is easy and I can explain it.

Q: I am listening.

A: Let �( �P ) = (9u1 : : :9um)(8�v)�( �P ; u1; : : : ; um; �v) where � is quanti�er-free, and
suppose that the existential second-order formula �� = (9 �P )�( �P ) holds on the in�-
nite random structure S of the appropriate signature, namely the signature � that
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comprises free predicate symbols of ��. We will show that, on �nite (and countable)
structures, �� follows from the extension axiom "m (in signature �). For simplicity, I
suppose that �P is just one predicate variable P .

Fix a particular value P0 of P and particular elements a1; : : : ; am of S such that
S j= (8�v)�(P0; a1; : : : ; am; �v). Let A be the substructure with elements a0; : : : ; am.
Notice that every substructure A0 of S containing A satis�es �� (with P equal to the
restriction of P0 to A

0 and with u1 = a1; : : : ; um = am). Now let B be an arbitrary
�nite model of "m. Obviously, B has a substructure isomorphic to A. In other words,
there exists a partial isomorphism f fromB to S whose range isA. Since S satis�es all
extension axioms, f can be extended to an isomorphism from B onto a substructure
A0 of S that contains A. Since �� holds on A0, it holds on B as well.

Q: You told me that pre�x types, ordered by inclusion, form a well partially ordered
set [Gu2]. I would like to see how this applies to the situation at hand. Let F+ (resp.
F�) be the collection of fragments E(�) that obey (resp. violate) the zero-one law.
Because of the well partial ordering, the collection of minimal members of F� is �nite
and every member of F� includes some minimal member.

A: We can say more about F+ and F�. Notice that the union of fragments satisfying
the zero-one law satis�es the zero-one law. It follows that every minimal member of
F� has the form E(fsg) where s is a particular pre�x. Further, do you remember
special pre�x types?

Q: Yes. A type is special if it contains all pre�xes or is represented by a string in
the 4-letter alphabet f8;9;8�;9�g. I remember also that the union of any ascending
chain of special types is special.

A: Right. In particular, let � be the collection of pre�xes s such that E(fsg) obeys
the zero-one law. Obviously, E(�) is the greatest element of F+. It is easy to see
that � is the union a �nite collection of special types �i, namely the maximal special
subtypes of �. Let me say that a fragment E(�0) is special if the pre�x type �0 is
special. Then the fragments E(�i) are the maximal special members of F+.

Q: Are the maximal special members of F+ known? Are the minimal members of
F� known?

A: The maximal special members of F+ are E(9�8�) and E(9�89�), and the minimal
members of F� are E(898) and E(829). The two zero-one laws and the failure of the
zero-one law for E(898) were proved by Kolaitis and Vardi; the proofs are found in
their survey [KV2]. Pacholski and Szwast proved that E(829) violates the zero-one
law [PS1, PS2]; they used a technique developed by Goldfarb in order to prove the
undecidability of the satis�ability problem for 829 sentences with equality [Go].

Q: At the beginning of this conversation, you told me that the zero-one phenomenon
is common in combinatorics. Do you see zero-one laws for various logics as sort of
an \explanation" of the combinatorial phenomenon? If yes, how successful was the
explanation?
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A: I do not think that either of the discoveries [GKLT, Fa1] was driven by the enthu-
siasm to \explain" the combinatorial phenomenon, but the paper [BH] of Blass and
Harary projects this contagious enthusiasm. This enthusiasm drove us to generalize
the zero-one law to �xed-point logic and, I believe, it was an important motivation
for Kolaitis and Vardi.

The success of the explanation is partial. Blass and Harary list numerous natural
properties of graphs expressible in �rst-order logic and thus obeying the zero-one
law. For example, almost surely, the diameter of a graph is 2. However, it is easier
to check directly that all those properties obey the zero-one law. More interesting
graph properties, like connectivity, 3-colorability, hamiltonicity or rigidity, are not
expressible in �rst-order logic.

Q: But almost sure connectivity follows from the almost sure property that the
diameter equals 2, which is �rst-order.

A: That is true. Also, the negation of 3-colorability follows from the almost sure
�rst-order property that there exists a complete 4-vertex subgraph. Still, neither
connectivity nor 3-colorability is expressible in �rst-order logic. Connectivity is ex-
pressible in Talanov's logic though, and 3-colorability (as well as any k-colorability
with k � 2) is expressible by a sentence in E(82) � E(9�8�) [KV2]. But none of
the zero-one laws above \explains" hamiltonicity or rigidity: Blass and Harary prove
that neither hamiltonicity nor rigidity follow from any extension axiom [BH].

Q: How can you prove that?

A: Here is a sketch of the proof that graph rigidity does not follow from "k. Pick a
graph G with vertices �l;�l+ 1; : : : ; l� 1; l randomly subject to the constraint that
the function f(i) = �i be an automorphism of G. It is not too di�cult to check that
with high probability G satis�es "k provided l is su�ciently large. Thus there exists
a nonrigid graph that satis�es "k.

Blass and Harary pose a problem to �nd \a natural class of properties, broader
than the class of �rst-order properties", that includes \properties like hamiltonicity
and rigidity" and obeys the zero-one law. This problem is still wide open.

Q: On the other hand, there are probably many interesting properties expressible in
�xed-point logic or L!

1;! that combinatorialists did not consider.

A: That is true. Many problems complete for polynomial time are expressible in
�xed-point logic. Many problems complete for polynomial space are expressible in
partial �xed-point logic, which is sandwiched between �xed-point logic and L!

1;! from
the point of view of expressive power [KV2].

Q: What is the relevance of zero-one laws to computer science? Let me play devil's
advocate. Was there any direct application of zero-one laws to computer science?

A: In a similar vein you can claim that modern group theory or graph theory is ir-
relevant to physics. It is conceivable that even if all pure mathematical research were
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stopped, physics would develop without impediments for a while. But eventually
physics would su�er greatly. In addition to being used directly in physics, mathemat-
ical education creates an atmosphere of rigor necessary to raise good physicists.

Q: This may justify theoretical computer science at large, but maybe zero-one laws
do not belong there.

A: Actually, I was thinking about an analogy for logic vs. computer science rather
than for theoretical computer science vs. applied computer science.

Q: I do not doubt the relevance of zero-one laws to logic. But why is this kind of
logic relevant to computer science? Do you think it is relevant?

A: Yes, I do. By the way, relevance is not by itself a zero-one notion. It can be
quanti�ed. I do not know any direct applications of zero-one laws to, say, complexity
theory, but such applications are certainly possible especially in the context of prob-
abilistic algorithms that usually run fast or the average case analysis of deterministic
algorithms [Va]. The case of decreasing edge probability [SS, Sp, Ly3] may be espe-
cially relevant because that probabilistic model is very popular in complexity theory.
Even the uniform distribution is not irrelevant. If you have to deal with a database
about which you do not know anything, you may as well suppose that it is drawn
randomly.

Q: No, this does not sound convincing. Natural databases satisfy all kind of depen-
dencies.

A:Maybe, it is worth checking whether the zero-one law (I am assuming that database
queries are �rst-order and I am talking about the zero-one law for �rst-order logic)
survives the imposition of dependencies.

It is important, however, to see zero-one laws in the context of �nite model theory.
Logic changed many mathematical �elds; set theory is a good example. Its in
uence
in computer science is even greater. The development of �nite model theory re
ects
the desire to take the new applications seriously.

Q: You mean, it would be expensive to maintain an in�nite database?

A: Exactly. Well, I spoke enough of the importance of �nite model theory [Gu1].
Zero-one laws are integral part of inherently-�nite model theory and are very impor-
tant in this context. Am I succeeding in my propaganda?

Q: Let me think about it.

Acknowledgment. Many thanks to Andreas Blass for very bene�cial and en-
joyable discussions and to Ron Fagin, Warren Goldfarb, Jim Lynch, Leszek Pacholski
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