Efficient Object BSP Trees

Navendu Jain, Sorav Bansal, Sanjiv Kapoor
Computer Science and Engineering Department,
Block VI, Indian Institute of Technology,
Hauz Khas, New Delhi 110016, India.
Email: skapoor@cse.iitd.ernet.in

Abstract

In this paper we investigate Object Oriented Binary
Space Partitioning. The Binary Space Partition Tree
(BSP-Trees) is a widely used and effective data struc-
ture for solid modeling and hidden surface removal.
We present algorithms for efficiently constructing Ob-
ject BSP Trees(OBSP) in 2-Dimensions. The term
object used arises since the construction of our tree
utilizes the property of hierarchical ellipsoid covers.
Besides being object-oriented, the major advantage of
the OBSP trees is the reduction in the fragmentation
of the scene. This paper formulates algorithms and
data-structures for representing polyhedral objects and
operations such as composition, deletion and motion
of objects based on Object Hierarchy using the modi-
fied version of the traditional BSP tree. We improve
on the design presented in [11]. Implementation de-
tails are presented which show increased efficiency re-
sulting through our approach.

Keywords : BSP Trees, Object Hierarchy, Frag-
ments, Ellipsoidal cover, Separating Plane.

1 Introduction

Solid Modeling and Hidden Surface Removal are fun-
damental problems in both Computer Graphics and
Computational Geometry. Recent years have seen a
rapid increase in Graphics applications. Various al-
gorithms are available which can efficiently do Hidden
Surface Removal [5], [9] for a static scene, mostly based
on Open GL. However, when changes to the scene are
done dynamically, maintenance of the scene becomes
inefficient.

A data structure that is often used for scene
representation is the Binary Space Partition Tree
[5], [6], [7], [8]- For dynamic scenes, the basic problem
of Hidden Surface Removal poses even a greater chal-
lenge than ever before. Faster animation is the goal
for many applications, most especially games. The in-
herent classical BSP(Binary Space Partitioning tree)
proves to be inefficient both in terms of deletions and

insertions of Objects.

In this paper we propose modifications to improve
the BSP. We restrict our attention to 2-D scenes.

The Dynamic Hidden Surface Removal problem is:
Given a set of Polyhedral Objects Py, P ... P, in 2-D
and a viewing point v, determine and maintain visible
surfaces under changes to the scene allowing for inser-
tions and deletions dynamically. In the original imple-
mentation of the standard separating plane BSP tree,
the separating planes are identified from the planes
corresponding to the polygons comprising the scene.
This data structure enables us to develop an algorithm
for determining the back to front ordering of the poly-
gons by performing an in-order traversal of the tree de-
pendent upon the viewpoint. Though good for static
environments, such a structure loses its advantages in
a dynamic environment. A dynamic environment in-
volves simulation of motion which is essentially dele-
tions and reinsertions. Any deletion may result in a
number of re-computations of subtrees of the BSP [2].
Hence, this will be a very expensive operation.

In a previous approach [10], the polygons are main-
tained in a space partitioning structure called the Sep-
arating Plane Partition Tree which is a variation of
the traditional BSP tree. In this variation, separating
planes are the fundamental objects which are used to
partition the space. The polygons may be fragmented
but each of the fragments is stored at the leaves. This
allows for easy access of polygon fragments for efficient
insertion and constant time deletion per fragment. Ef-
ficient hidden surface removal of the polygons is then
achieved by painting the fragments in an order ob-
tained from the space partitioning tree.

The structure described in [10] allows us to move
from the domain of polygons to the domain of objects
i.e. polyhedra. Objects are defined and constructed
recursively as a polygon or a merge of two objects.
Such an approach was suggested in [11]. Objects are
represented as Binary Space Partition trees. These ob-
jects can be defined, added and moved independently.

The BSP tree identifying the object has all the con-
stituent polygons at the leaf nodes. We use the variant
BSP described above [11]. The Binary Space Partition
tree corresponding to the entire space is obtained by
merging the objects or in other words merging the cor-
responding BSP trees.

In order to compute the separating planes(lines in
2D) efficiently we suggest the use of the ellipse hierar-
chy which enclose the objects. An object is composed
from sub-objects. Consequently the ellipse enclosing
the object encloses the ellipses corresponding to the
constituent objects. Thus a representation of the ob-
ject is as a union of ellipses at any level of the object
hierarchy. In this paper we exploit the hierarchy of
ellipses to construct the separating plane(line) and re-
duce fragmentation. If a separating line between two
objects is not determined from the two union of el-
lipses at some level i then determination of a separat-
ing line is attempted at the next level ¢+1. On failure,
subsequent levels are considered upto some predefined
level number based on efficiency tradeoffs. The pro-
cedure starts at level 1. We show experimentally that
this reduces fragmentation. The important thing to
note here is that throughout we deal with an object
as the basic unit of operation. From here on, we will
describe our modified BSP as the Object Ellipse BSP
Tree.

We note that the concept of approximating objects
by a union of spheres has also been used in [1] and
collision detection[3]. Naturally, in our approach, we
expect the use of ellipsoids to lead to better approxi-
mations of the shape of polyhedron and increased ef-
ficiency.

The paper is organized as follows. Section 2
presents an overview of the standard BSP tree. Sec-
tion 3 describes our algorithm and underlying data
structure. Section 4 presents the implementation de-
tails and results. Section 5 describes the conclusions
of our work.

2 BSP Trees

A Binary Space Partitioning (BSP) tree is a stan-
dard binary tree used to sort and search for polytopes
in n-dimensional space. The tree taken as a whole
represents the entire space, and each node in the tree
represents a convex subspace. Each node stores a hy-
perplane which divides the space it represents into
two halves, and has as children two nodes which rep-
resent each half. In addition, each node may store one
or more polytopes.

The BSP tree construction is a process which takes
a subspace and partitions it by any hyperplane that
intersects the interior of that subspace. The result is

two new subspaces that can be further partitioned by
recursive application of the method. A hyperplane
in n-dimensional space is a n — 1 dimensional object
which can be used to divide the space into two half-
spaces. For example, in three dimensional space, the
hyperplane is a plane. In two dimensional space, a
line is used.
Construction of BSP Trees

Given a set of polygons in three dimensional space,
we want to build a BSP tree which contains all of the
polygons.

The algorithm to build a BSP tree is very simple:

1. Select a partition plane.
2. Partition the set of polygons with the plane.
3. Recurse with each of the two new sets.

Choosing the partition plane

The choice of partition plane depends on how the
tree will be used, and what sort of efficiency criteria
we have for the construction. For some purposes, it
is appropriate to choose the partition plane from the
input set of polygons. Other applications may bene-
fit from axis aligned orthogonal partitions. Choosing
planes which separate two objects can also be useful.
It is also desirable to have a balanced tree, where each
child contains roughly the same number of polygons.
However, there is some cost in achieving this. If a
polygon happens to span the partition plane, it will
be split into two or more pieces. A poor choice of the
partition plane can result in many such splits, and a
marked increase in the number of polygons.
Partitioning polygons

Partitioning a set of polygons with a plane is done
by classifying each member of the set with respect to
the plane. If a polygon lies entirely on one side or
the other of the plane, then it is not modified, and is
added to the partition set for the side that it is on. If a
polygon spans the plane, it is split into two pieces and
the resulting parts are added to the sets associated
with either side as appropriate.

Partitioning a polygon with a plane is a matter of
determining which side of the plane the polygon is
on. This is referred to as a front/back test, and is
performed by testing each point in the polygon against
the plane. If all of the points lie to one side of the
plane, then the entire polygon is on that side and does
not need to be split. If some points lie on both sides of
the plane, then the polygon is split into two or more
pieces. The basic algorithm is to consider all the edges
of the polygon and find those for which one vertex is
on each side of the partition plane. The intersection

points of these edges and the plane are computed, and
those points are used as new vertices for the resulting
pieces.

Hidden Surface Removal

Probably the most common application of BSP
trees is hidden surface removal in three dimensions.
BSP trees provide an elegant, efficient method for sort-
ing polygons via a depth first tree walk. This fact can
be exploited in a back to front painter’s algorithm
approach to the visible surface problem, or a front to
back scan-line approach.

BSP trees are well suited to interactive display of
static(not moving) geometry because the tree can be
constructed as a pre-process. Then the display from
any arbitrary viewpoint can be done in linear time.
Adding dynamic(moving) objects to the scene effi-
ciently is a significant contribution of our work.
Minimizing splitting

An obvious problem with BSP trees is that poly-
gons get split during the construction phase, which
results in a larger number of polygons. Larger number
of polygons translate into larger storage requirements
and longer tree traversal times. This is undesirable in
all applications of BSP trees, so schemes for minimiz-
ing splitting become extremely important.

3 Object Ellipse BSP Tree

In this section we describe algorithms to efficiently
construct and maintain Object Ellipse BSP Trees. An
Object is defined to be a polygon or recursively a com-
position of two objects. The main emphasis has been
to focus on the notion of Objects so that individual
motions, compositions and deletions of a set of poly-
hedra can be done effectively. Also when a tree like
structure is maintained, the effort has been to reduce
the number the splits i.e. minimum number of frag-
ments of the polygons inserted in the tree.

3.1 Data Structure for Object Ellipse
BSP Tree

The description of the data structure used to store

the polygons in our algorithm is :-

e It is a binary tree which partitions the entire 2D
space into regions. We denote this tree as B.

e All the nodes of B either contain lines or poly-
gons.

e Only leaf nodes of B contain polygons.

e All other nodes of B contain lines which partition
the 2D space.

e All non-leaf nodes have an ellipse cover of the
underlying object ellipse tree.

e All non-leaf nodes are root nodes of the Object
Ellipse trees rooted at them. Each non-leaf node
has an ellipse cover found by merging the ellipse
covers of its two children.

e Any node T has a particular region, say R in
space associated with it.

e If T contains a line, then this line again divides
R into two regions, with which the left and the
right child of T are associated.

e If T contains a polygon then T should be a leaf
node and the polygon contained in T should lie
completely within the region associated with T
and no other polygon should lie in this region.

e The root of B node is associated with the entire
2-D space.

Furthermore, we let H;(O) (the representation of
the object O at level 7 in the object hierarchy) denote
the union of all ellipses at level i. At the top level is
the complete object O with a single ellipse cover.

. BSPafPL2

e
7 .rf\\ PL2=FL UF
|"I.f'"\ I |

‘BSPofF2 BSFof 3 —
B c_u:c; Fl Oy - _ _P_gf P4
o F P2 ,-’q Pl./'\.? B4
El | ."'J.| I| IIIC’ I|I {'Il Iln'f :‘ 'I
||l'§,| . I| |I <,|| ||I "'I .ll
-/ Ly | Y N
oy e e ~

Figure 1: Object Ellipse Tree

3.2 Construction of the Object Ellipse
Tree

We will describe the construction of our Binary

Space Partitioning tree in two parts. The first one

concentrates on finding the ellipse covers of the objects
and merging them so as to construct the hierarchical
tree. The second part describes how to compute the
separating line between two objects O; and Os.

3.2.1 Merging algorithm for objects

Each object has its own OBSP tree. When two ob-
jects are to be merged, then a new tree representing
the combined object needs to be constructed. In our
strategy the efficiency of tree construction is depen-
dent on the ability to determine a separating line be-
tween the two objects. A separating line P1is defined,
which divides the space into two semi-spaces such that
each object lies on either side of the line.

In this section, we describe the algorithm for merg-
ing two BSP trees By and Ba, representing O; and
O3, to generate a new BSP tree B such that the root
node of B contains the separating line of the objects
07 and O rooted at B; and By respectively as well
as the ellipse cover found by merging the ellipse covers
of O; and Os. We discuss here how to merge the two
objects by combining their ellipse covers.

Let us denote the ellipse covers of O; and O, by E
and Fs respectively and the ellipse cover of F; and FEs
to be found by E.

Step 0) Take the center C' of E to be the mid-
point of the line segment joining the centers of E
and FEs.

Step 1) Find out the maximal distant point
from center of E to both F;, E,. This is achieved
by maximizing the distance from C to a point
P with the constraint that P lies on one of the
ellipses. We do it separately for E; and E» and
take the maximum of the two. We describe
the case of Fy. The case of Es will be exactly
similar. Given Ej; in an arbitrary orientation, we
apply translation and rotation transformations
to align it with the axes and apply the same
transformation on C to get C’ in this new space.
The equations become :

Magzimize (Cj, —z)* + (Cy —y)*

subject to the constraint
az® + by’ =1

This is solved by Langrange’s Method. Suppose
the inverse transformation applied to P maps to
P', then the line C' P’ will define the semi-major
axis of the ellipse E.

Step 2(a)) Since we want our tree construction
to be efficient, we would ideally like to compute
the minimum area spanning ellipse £. We deter-
mine the minor axis of E keeping in mind this
goal. We give two approaches to determine the
minor axis of the ellipse. We first present the
simpler approach, which we implemented. The
other approach is described in the Step 2(b).
Here without loss of generality, assume that the
maximal distant point from C' to the two ellipses
lies on E; denoted by Pg,. Denote the farthest
point from C to E» by Pg, and the distance of
Pg, from C to be M.. Take the projection of the
vector CPg, on the unit vector perpendicular to
the major axis CPg,. Taking this projection as
the lower bound and M, as the upper bound, we
do a binary search to determine the minor axis.
For a value of the minor axis within this range,
the binary search checks for intersection of E with
both E; and E> and modify the range until the
interval becomes very small. Determining the in-
tersection of two ellipses is described at the end
of this Procedure. Go to Step 3.

Step 2(b)) In this approach, we have two sub-
cases. Without loss of generality, assume that the
farthest point found in previous step was on Ej.
Then in the first case, ellipse E» touches E and
is contained in F and FE includes E; also. The
other case is similar being that E; itself guides
the cover so that Fsy lies wholly inside E and E;
touches E.

We consider the former sub-case described above.
First, we do a transformation such that E be-
comes aligned with the coordinate axes and FEs
becomes a circle. At the point of contact of Es
and F, both % and ‘;—f of E5 should be related by
a constant factor to tﬁose of E. Also, the contact
point should lie on both the circle Es as well as
the ellipse E so that the equations become :
for E fi:ax®> +by? -1

for Bo fo:(z—m0)*+ (W —w)?—R

The conditions give the following equations :

1. 2az = 2A(x — z0)

2. 2by = 2A(y — ¥o)

3. az? +by? =1

4 (@ -0l + (W —p)? = R
where X is a constant to be determined. These
equations can be solved numerically to calculate

z,9,b, A. Then from the calculated values of b,we
take the maximum one to be the length of the

minor axis. Call this Mj.

Follow exactly the same procedure for E; and E.
Denote the calculated value as M5. Take the max-
imum of M; and M, as the length of minor axis.
Go to Step 3.

Step 3)We have determined the ellipse cover.
Exit.

To determine the intersection between two ellipses Fj,
FE5 in arbitrary orientation, we transform one of the
ellipses, say Ej, into a circle by compression of the
axes. This is achieved by first bringing it to the origin
and rotating the axis for aligning. The other ellipse
FE, is altered using the same transformation matrix.
Now, we bring E» to the origin and align it with the
coordinate axis. Consequently both of them are in the
form of :

az? +by? =1
(z—20)*+(y—w) =R

which can be solved in constant time (in parametrized
form) to calculate the intersection points so as to de-
termine whether E; & FE5 intersect or not.

3.2.2 The Separating Line Algorithm

We attempt to find the separating line between
the ellipse covers F; and E5 of objects O; and O
respectively. If a separating line is not determined
from the ellipses of H;(01) & H;(O2) (to compose
object O), the separating line is constructed from
H;11(0;1) and H;y1(02). We present the algorithms
for determining the separating line between two
ellipse covers and m, n ellipse covers subsequently.
Separating line between two ellipses

We compute the midpoint P of the line segment
joining the centers of the two ellipse covers F; and
E,. From P, we construct tangents to the two ellipses.
So in all, we have a maximum of four tangents. We
search for the separating line by moving the point
P left or right by a binary search procedure which
reduces the range of the search by moving the point
away from the ellipse to which we can’t find a tangent.
We take the mid-point of centers of the ellipses as
the starting point of our binary search and initialize
lower and upper bounds for the binary search as the
centers of left and right ellipse respectively.

Claim: If the ellipses can be separated, then
there exists a separating line which is (at-least) one
of the four tangents.

Proof: Suppose a separating line exists. Simply
rotate the separating line at that point of intersection

of the separating line with the line joining the centers,
until it touches an object without intersecting the
other one.

In case we are not able to find the separating
line between the two ellipses which implies that the
two ellipses intersect, we use the M-N technique
described next. Here, instead of finding the sepa-
rating line between H;(O;) and H;(Oz) themselves,
we go down the hierarchy to find the separating line
between H;(01) and H;(O2) where

1=2,.. .,min(height(Hl (01)), height(H1 (02)))

The Object Hierarchy is exploited to decompose
an ellipse cover into smaller ellipse covers of its
children to find the Separating Line when the ellipse
covers of the two Objects O;, O, intersect. The
problem essentially reduces to finding a Separating
Line between m ellipses on one side and n ellipses on
the other. These m, n ellipses are the smaller objects
in hierarchy.

Separating Line between groups of ellipses:
The coordinates of the centers of two objects are
obtained as the mean of the coordinates of the
individual ellipses comprising each object. We denote
these centers by C1, Cs.

Hypothesis: Suppose a separating line exists.
Then there exists a point on the line joining the
centers C1, Cs such that the tangent from that point
to one of the objects is a separating line.

We call this the M-N technique to find the separat-
ing line between m ellipses constituting an object and
n ellipses constituting another object. Join the centers
of the two objects. We search for the point of inter-
section of the separating line S with the line L joining
the centers by a binary search procedure. We need a
decision procedure to figure out which way to move on
the line L to find the required point P to determine
the separating line. We construct tangents to ellipses
of both the objects from this point P. Following are
the possible cases that arise:

e CASE 1: (Figure 2) If the separating line is found
out then Exit.

e CASE 2: No tangent exists from the point P to
the ellipses of an object say Oy (without loss of
generality). This implies that the point P lies
inside the object O;. So, we move away from O;
to a point bisecting the line segment PCj.

e CASE 3: (Figure 3) The tangent to an object say
O, from P intersects the object itself. In this case

SET 1) SET 2__
rd o
"'If -
f—
/ Y
5 -‘—*—""\) ; - -—I|-/
i /
(Y | /. & N,

Tangent{Separating Line)
Tangent{Intersecting other Sct)

Figure 2: Separating Line

also, we move away from O; as in Case 2.

ELLIPSOIDAIL SET

Figure 3: Self Intersecting Tangent

e CASE 4:(Figure 4) One of the four tangents is
obstructed by ellipses of an object, say a tangent
from P to O, intersects O; before the point of
tangency. In this case again, we move away from

0.

For each point on the line L, the number of
intersection-tests between the separating line and the
ellipses as well as the tangent construction operations
to ellipses are O(m + n). The required point on L
is found in log(|L|) steps where |L| is the length of
the line segment L. Thus, the time complexity of the
above procedure is O((m + n)log(|L|)).

SET 1 SET 2

Figure 4: Intersection with Object before the point of
tangency

3.3 Insertion in the Tree

For the base case of the polygon, find its ellipse
cover and make an Object Ellipse Tree with the poly-
gon at the leaf node and the ellipse cover at the par-
ent. When we merge two objects(OBSP), O; and O,
to obtain the OBSP of O, we search for the separating
line P;., upto a predefined depth using the Separat-
ing Line algorithm. If we are able to find the sepa-
rating line Ps.,, the OBSP tree of O is constructed
with Pg.p at the root node and Oq, O as its two chil-
dren. On failure, we insert one of the objects, say O
in the OBSP tree of O; taking the separating line P,
of O, as the separating line of O at the root node. In
case P, intersects O2, we partition Oy by P, inserting
the polygon fragments of O, into its children recur-
sively. The ellipse covers of subtrees of O; affected by
insertion are recomputed to obtain OBSP tree of O.
Then using the above Merging and Separating Line Al-
gorithms, we can build the tree hierarchy recursively
given a method for combining polygons into objects.
3.4 Deletion of an Object

When an object is deleted, it is also deleted from its
parent object (if any), and this modification is prop-
agated up. Deletion of an object from its parent is a
linear time operation if we maintain with each object
a pointer to the first polygon in the tree and all the
polygons of the object are linked sequentially within
the tree. Each polygon in turn has a link list of its
fragments in the OBSP tree.

3.5 Deletion of a Polygon :

Since a polygon aimed for deletion may be frag-
mented while insertion, we maintain a thread of frag-
ments of the same polygon within the BSP.

To delete a polygon

move to the first fragment of the polygon

delete the node containing it

replace the parent of this node by the node con-
taining the sibling of this node

repeat this for all fragments of the polygon

Note that since the parent of this node contains a sep-
arating line between it and its sibling we do not re-
quire the line any more after the deletion of this node.
Hence we just leave the sibling. This leaves the tree
“dirty” which can be cleaned up at a subsequent stage.

The time for deleting a fragment is O(1) and for
deleting an entire polygon the time taken is O(f),
where f is the number of fragments of the polygon.
3.6 Simulating motion :

The algorithm which uses this BSP tree to simulate
motion of a polygon would do so by deleting the poly-
gon from the tree and then inserting a polygon corre-
sponding to the new position of the moved polygon. If
the motion is by a small distance, the separating lines
in the tree would almost remain the same as computed
initially, except for the ones which are the immediate
parents of the fragments of the moving polygon.

In the original BSP, an internal node contains a
polygon in the scene with its plane as the separating
plane. Such an approach would imply that at each
deletion, we regenerate the entire subtree lying below
the separating line formed by the moving polygon, and
do so for all fragments of the polygon. In our BSP,
since all polygons lie at the leaf nodes, deleting a frag-
ment becomes a constant time operation, and is thus
much more efficient.

When an object moves, the complete BSP tree
is updated though the structure remains almost the
same. Though, very much optimized, the motion of
an object could result in redundant nodes containing
separating lines in the parent object, after a number
of iterations. This could be checked by periodic recon-
struction of the complete structure i.e. after a fixed
number of iterations.

4 Results

The algorithm presented was implemented and
tested for the fragmentation it induced on the poly-
gons in the scene.

Random data was generated as clusters of polygons.
The polygons were combined in a hierarchy to form
objects. We generated input polygons to obtain small
sets consisting of non-intersecting polygons. A sub-
set of these polygons are attached to other polygons
belonging to the same set through a common vertex.

The idea is to model human like figures with poly-
gons where each polygon corresponds to a portion of
the body. We group these polygons into sets. These
sets become the basis of objects that form the building
blocks of the hierarchy.

The algorithm for computing the separation be-
tween two objects was tested for various cases start-
ing at the root of the hierarchy tree and proceeding
to level 4, for 4 = 1,...,6. Each level ¢ corresponds to
the maximum depth for which H;(O;) and H;(O-) are
considered to find the separating line between OBSP’s
01 & Os.

As expected, the fragments reduced as we consid-
ered increasing levels in the tree hierarchy during the
computation of the separating line, i.e. when we con-
sidered the object as a union of a number of ellipses
instead of one ellipse. However this was accompanied
by a nominal increase in the time complexity of the
procedure as measured by the time required to insert
polygons. The advantages of reduction of fragmenta-
tion are substantial since the time of construction of
the BSP is not a bottleneck in graphic modeling and
hidden surface removal.

The results are graphically presented in figure 5 and
figure 6.

Number of Polygons v/s Number of Fragments
3500 T T T

T
"level6" -
"levels" —-x--

3000

2500 |

2000

1500

Number of Fragments

1000 |

|
0 200 400 600 800 1000 1200
Number of Polygons

Figure 5: Number of Fragments generated v/s Poly-
gons Inserted

Time taken for Insertion of Polygons v/s Number of Polygons Inserted

14 T T T T T

"levell" -6~
"level2" —--4--
"level3’ 48—~
“leveld" -

w 12F ,/levels" —x--

2 , levelg" ———-

) < X

[0} .

n g

9 / X

c 10 , / B

) A /

2 y X

0 e / ’

o s ,x/ "

] ¥ .

5 o 1

£ pe

]

) .

£ /

5 P

2 6t S 4
*

5 A

X PR

g o

]

£

£ o4t .

2 |
0 1000 1200

Number of Polygons

Figure 6: Time taken for Insertions v/s Number of
Polygons

5 Conclusion

We have presented implementation results for an
algorithm for BSP construction which instead of us-
ing polygons only deals with the objects as an entity.
We have presented ways of composing objects. This
allows us to insert new polygonal objects while main-
taining properties which are beneficial in deleting ob-
jects from the scene or in simulating motion in the
scene. These properties are critically a separation of
objects and polygons and maintenance of fragments at
the leaves which enables constant time fragmentation
of the scene. When motion of an object takes place,
instead of deleting each polygon and reinserting them,
we apply the motion on the BSP Tree of the object as
a whole. Hence, we are reducing the effort of calculat-
ing the BSP structure and the fragmentation involved
in the construction of the the BSP Tree of the object
at the cost of finding separating lines between objects.

Moreover, the object based hierarchy has been used
for effectively computing separation of objects by de-
composing the ellipse cover of the object into a union
of ellipse covers as naturally generated by the object
hierarchy. This decomposition improves the probabil-
ity of finding a separating line between the polygons
in the two objects. This has been shown to reduce
the number of fragments of the polygons. The render-
ing time of a dynamic scene is greatly reduced when

we have a lesser number of fragments. In the real
world, we generally do not find objects so close to each
other that we cannot find separating planes between
them. This has important consequences in solid mod-
eling and hidden surface removal where the complexity
is determined by the number of fragments. Another
advantage as a consequence is the object-based hier-
archy. This allows us composition and decomposition
of objects in an effective manner. Since the BSP for
each object and each sub-object is constructed during
composition, decomposition is readily achieved. We
believe that as scenes grow more and more complex,
the reduction in the fragmentation advocated by our
algorithm and the consequent time complexity would
be much better. Thus, our algorithm will give better
result for most real world views.

References
[1] C. L. Bajaj, V. Pascucci, A. Shamir; R. Holt, A. Ne-
travali., Multiresolution Molecular Shapes”. TICAM
(UTexas Austin) report, 99-42 (1999).

[2] Chrysanthou, Y., and Slater, M., Computing dynamic
changes to BSP trees, Computer Graphics Forum
(EUROGRAPHICS '92 Proceedings), 11(3), 321-332,
sep 1992.

[3] Hubbard, P.M. Approximating polyhedra with
spheres for time critical collision detection, ACM
Transactions on Graphics 15, 3 (1996).

[4] Naylor, B., Amanatides, J., and Thibault, W., Merg-
ing BSP Trees Yields Polyhedral Set Operations,
Computer Graphics (SIGGRAPH 90 Proceedings),
24(4), 115-124, aug 1990.

[5] Naylor, B., Interactive solid geometry via partitioning
trees, Proceedings of Graphics Interface ’92, 11-18,
may 1992.

[6] Naylor, B., Partitioning tree image representation and
generation from 3D geometric models, Proceedings of
Graphics Interface '92, 201-212, may 1992.

[7] Naylor, B., SCULPT An Interactive Solid Modeling
Tool, Proceedings of Graphics Interface '90, 138—148,
may 1990.

[8] Paterson, M., and Yao, F., Efficient Binary Space Par-
titions for Hidden-Surface Removal and Solid Mod-
eling, Discrete and Computational Geometry, 5(5),
485-503, 1990.

[9] Sharir, M., and Overmars M., A Simple Output-

Sensitive Algorithm for Hidden Surface Removal,Dec

’89

A Kumar V. Kwatra, B. Singh, S. Kapoor , Sep-

arating Plane BSP for Hidden Surface Removal,,

ICVGIP‘98.

A Kumar ,V. Kwatra, B. Singh, S. Kapoor , Using

Separating Planes between Objects for Efficient Dy-

namic Space Partitioning,, ICVC‘99.

[10]

[11]

