

Sequence assembly from corrupted shotgun reads

Shirshendu Ganguly
U. Washington

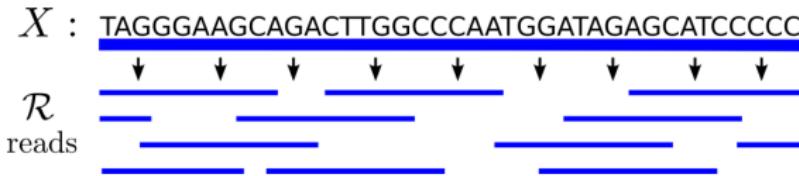
Elchanan Mossel
UC Berkeley & U. Penn

Miklós Z. Rácz
Microsoft Research

ISIT
2016

DNA sequencing:

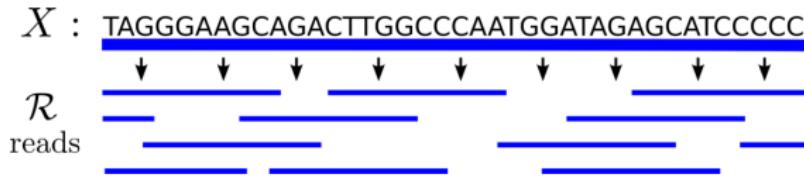
- Prevalent technique: **shotgun sequencing**



- Goal of **de novo assembly** :
reconstruct X from reads \mathcal{R}

DNA sequencing: robust algorithms?

- Prevalent technique: shotgun sequencing



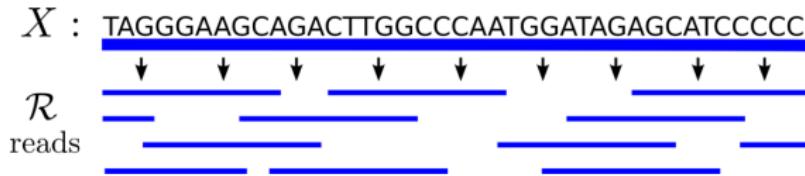
- Goal of de novo assembly:
reconstruct X from reads \mathcal{R}

-
- Many sequencing technologies
w/ different error profiles

Q: Are there robust assembly algorithms?

DNA sequencing: robust algorithms

- Prevalent technique: **shotgun sequencing**



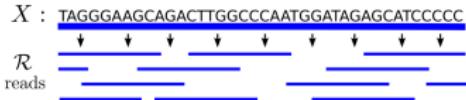
- Goal of **de novo assembly**:
reconstruct X from reads R

- Many sequencing technologies
w/ different error profiles

Q: Are there robust assembly algorithms?

A: Yes, and a simple sequential algorithm works well.

Sequencing technologies



- Sanger sequencing
 - 300-1000 bp reads, <1% error
 - very expensive
- Next gen (2^{nd} gen) sequencing
 - high throughput, cheap
 - short reads (100-200 bp)
 - low error rate (1-3%)
- Emerging (3^{rd} gen) technologies
 - long reads ($>10\,000$ bp)
 - high error rate (10-22%)

Example :
Illumina

Examples :
• PacBio's SMRT
• Oxford Nanopore

Sequencing technologies

X : TAGGGAAGCAGACTTGGCCCAATGGATAGAGCATCCCC
 $\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$
 \mathcal{R} reads

- Sanger sequencing
 - 300-1000 bp reads, <1% error
 - very expensive
- Next gen (2^{nd} gen) sequencing
 - high throughput, cheap
 - short reads (100-200 bp)
 - low error rate (1-3%)
- Emerging (3^{rd} gen) technologies
 - long reads ($>10\,000$ bp)
 - high error rate (10-22%)

Example :
Illumina

Examples :

- PacBio's SMRT
- Oxford Nanopore

Q: how robust are reconstruction algorithms
w.r.t. different sequencing technologies?

Adversarial corruption/error model

- Instead of getting true reads R ,
get corrupted reads \tilde{R}

R_i :	<u>CAATGGATAG</u>	deletions, insertions, substitutions
	↓ ↓	
\tilde{R}_i :	<u>CATAGCAGT</u>	

- Assume only that

$$\text{ed}(R_i, \tilde{R}_i) \leq \epsilon L$$

where ed = edit distance,
and L = length of R_i .

Approximate reconstruction problem

1. Choose $X \in \Sigma^n$ uniformly at random, $\Sigma = \{A, C, G, T\}$

2. Draw reads

$\mathcal{R} = \{R_1, R_2, \dots, R_N\}$ of length L

from uniformly random positions

3. Get corrupted reads

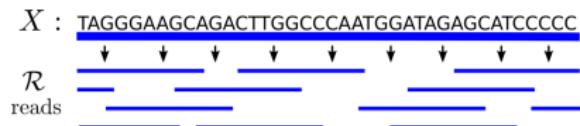
$\tilde{\mathcal{R}} = \{\tilde{R}_1, \tilde{R}_2, \dots, \tilde{R}_N\}$

satisfying

$$\text{ed}(R_i, \tilde{R}_i) \leq \varepsilon L$$

$X : \text{TAGGGAAAGCAGACTTGGCCCAATGGATAGAGCATCCCCC}$

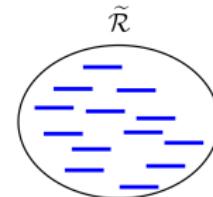
\mathcal{R} reads



$R_i : \text{CAATGGATAG}$

$\tilde{R}_i : \text{CATAGCAGT}$

deletions, insertions, substitutions



collection of corrupted reads

Approximate reconstruction problem

1. Choose $X \in \Sigma^n$ uniformly at random, $\Sigma = \{A, C, G, T\}$

2. Draw reads

$\mathcal{R} = \{R_1, R_2, \dots, R_N\}$ of length L
from uniformly random positions

3. Get corrupted reads

$\tilde{\mathcal{R}} = \{\tilde{R}_1, \tilde{R}_2, \dots, \tilde{R}_N\}$

satisfying

$$\text{ed}(R_i, \tilde{R}_i) \leq \varepsilon L$$

Goal: approximate reconstruction

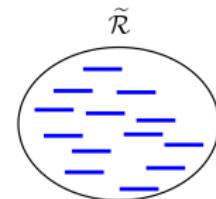
Output: $\hat{X} = \hat{X}(\tilde{\mathcal{R}}) \in \Sigma^*$ s.t.

$$\text{ed}(\hat{X}, X) \leq C\varepsilon n$$

w/prob. $\geq 1 - \delta$.

$X : \text{TAGGAAAGCAGACTTGGCCCAATGGATAGAGCATCCCCC}$
 \mathcal{R} reads
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

$R_i : \text{CAATGGATAG}$
deletions, insertions, substitutions
 $\tilde{R}_i : \text{CATAGCATG}$



collection of corrupted reads

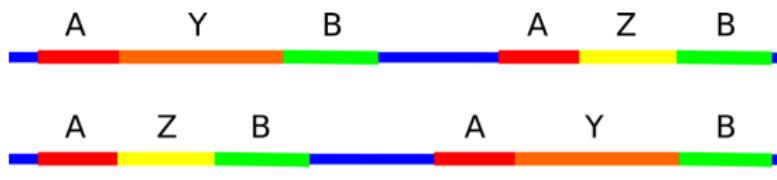
$X : \text{TAGGAAAGCAGACTTGGCCCAATGGATAGAGCATCCCCC}$

$\hat{X} : \text{TAGGAGCAGACTTGGCCCGGAGGAAAGAGCATCCTCCA}$

approximate reconstruction

Main obstructions to reconstruction

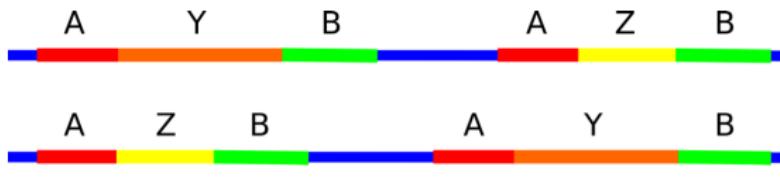
1. Short reads lead to repeats (Ukkonen '92)



repeat -
limited
regime

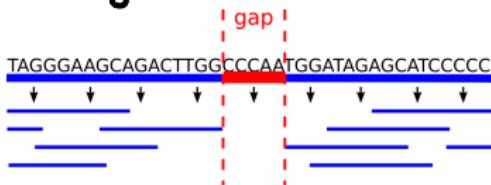
Main obstructions to reconstruction

1. Short reads lead to repeats (Ukkonen '92)



repeat -
limited
regime

2. Need enough reads to cover X



Coverage -
limited
regime

Lander, Waterman (1988):

$$N_{cov} = N_{cov}(n, L, \delta) \approx \frac{n}{L} \ln \left(\frac{n}{L\delta} \right)$$

Exact reconstruction ($\varepsilon=0$)

Then (A. Motahari, G. Bresler, D. Tse, 2013)

These are the only obstructions.

Exact reconstruction ($\varepsilon=0$)

Then (A. Motahari, G. Bresler, D. Tse, 2013)

These are the only obstructions.

More precisely: let X be random, $L = \lceil \ln(n) \rceil$, $\Sigma < \frac{1}{2}$.

Then:

- if $L < \frac{2}{\ln|\Sigma|}$ then exact reconstruction is impossible;
- if $L > \frac{2}{\ln|\Sigma|}$ then $\lim_{n \rightarrow \infty} \frac{N_{\min}}{N_{\text{cov}}} = 1$.

repeat-
limited
coverage-
limited

Exact reconstruction ($\varepsilon=0$)

Then (A. Motahari, G. Bresler, D. Tse, 2013)

These are the only obstructions.

More precisely: let X be random, $L = \lceil \ln(n) \rceil$, $\Sigma < \frac{1}{2}$.

Then:

- if $\lceil L \rceil < \frac{2}{\ln|\Sigma|}$ then exact reconstruction is impossible;
- if $\lceil L \rceil > \frac{2}{\ln|\Sigma|}$ then $\lim_{n \rightarrow \infty} \frac{N_{\min}}{N_{\text{cov}}} = 1$.

repeat-
limited
coverage-
limited

For arbitrary sequences:

G. Bresler, M. Bresler, D. Tse (2013)

thresholds based on repeat statistics of genome

Approximate reconstruction

Thus Approximate reconstruction is possible,
if L and N are large enough.

Approximate reconstruction

Then Approximate reconstruction is possible,
if L and N are large enough.

More precisely: Let X be random, and $L = \lceil \ln(n) \rceil$.

For every $C > 3$ there exist constants $\bar{C} = \bar{C}(\Sigma)$, $\varepsilon_0 = \varepsilon_0(\Sigma, C)$, $C' = C'(\Sigma, C)$
s.t. for every $\varepsilon \in (0, \varepsilon_0)$ if $L \geq \bar{C}/\varepsilon$, $N \geq C' N_{\text{cov}}/\varepsilon$
then there exists an approximate reconstruction algorithm
for error rate ε with approximation factor C .

Approximate reconstruction

Then Approximate reconstruction is possible,
if L and N are large enough.

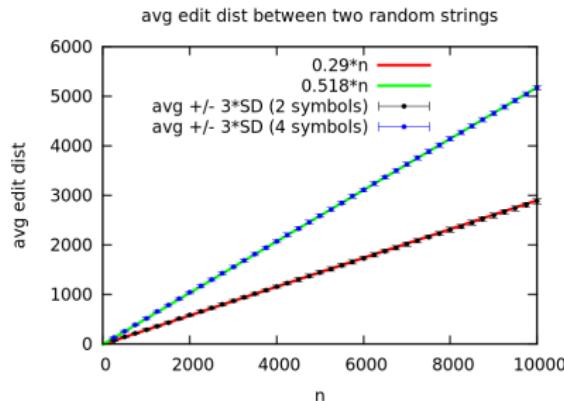
More precisely: Let X be random, and $L = \lceil \ln(n) \rceil$.

For every $C > 3$ there exist constants $\bar{C} = \bar{C}(\Sigma)$, $\varepsilon_0 = \varepsilon_0(\Sigma, C)$, $C' = C'(\Sigma, C)$
s.t. for every $\varepsilon \in (0, \varepsilon_0)$ if $L \geq \bar{C}/\varepsilon$, $N \geq C' N_{\text{cov}}/\varepsilon$
then there exists an approximate reconstruction algorithm
for error rate ε with approximation factor C .

Comments

- Simple sequential algorithm works
- dependence of L and N on ε not necessary
(but get worse C)
- best achievable C might depend on L and N
- related work:
Motahari, Ramchandran, Tse, Ma (2013); Shomorony, Courtade, Tse (2015)

Edit distance between random strings



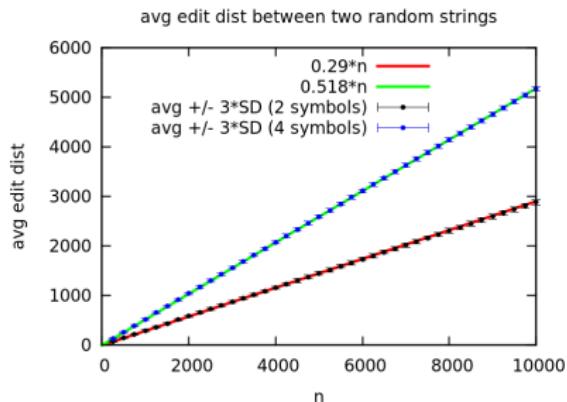
Lemma $X_m, Y_m \in \Sigma^m$ independent,
Uniformly random. Then

$$\lim \frac{1}{m} \text{ed}(X_m, Y_m) = c_{\text{ind}} > 0.$$

For $|\Sigma|=4$:

- empirically $c_{\text{ind}} \approx 0.51$.
- volume argument: $c_{\text{ind}} > 0.33$.

Edit distance between random strings

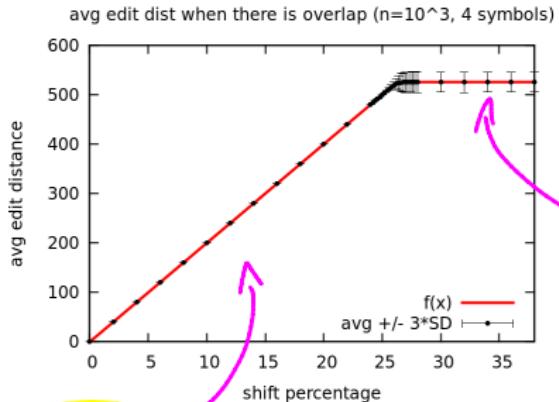


Lemma $X_m, Y_m \in \Sigma^m$ independent, uniformly random. Then

$$\lim \frac{1}{m} \text{ed}(X_m, Y_m) = c_{\text{ind}} > 0.$$

For $|\Sigma|=4$:

- empirically $c_{\text{ind}} \approx 0.51$.
- volume argument: $c_{\text{ind}} > 0.33$.

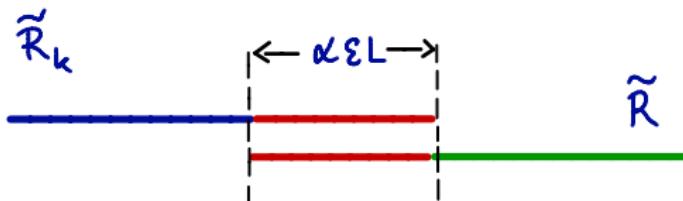


Lemma $X \in \Sigma^{2m}$ uniformly random. Then:

$$\text{ed}(X[1, m], X[1+k, m+k]) = 2k$$

for all $k \leq cm$ with prob. $\geq 1 - e^{-c'm}$.

Sequential reconstruction algorithm



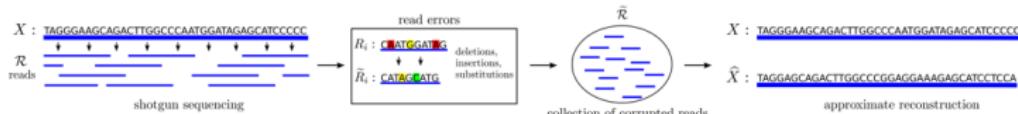
- Fix α appropriately.
- Given \tilde{R}_k , find \tilde{R} s.t.

$$\text{ed}(\tilde{R}_k^{\text{suffix}}, \tilde{R}^{\text{prefix}}) \leq (2 + 2/c) \epsilon L$$

- concatenate \tilde{R}_k and $\tilde{R}^{\text{suffix}}$.
- at each step, gain $\approx (1 - \alpha \epsilon) L$, make error $\lesssim 3 \epsilon L$

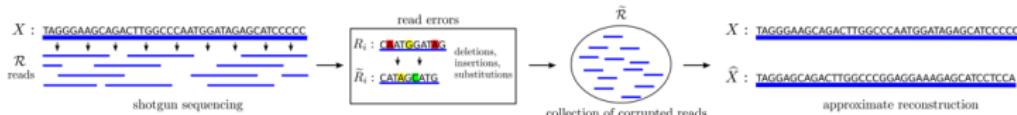
Summary

- introduced adversarial read error model
- approximate reconstruction is possible
- simple sequential algorithm works
- edit distance results key to analysis



Summary

- introduced adversarial read error model
- approximate reconstruction is possible
- simple sequential algorithm works
- edit distance results key to analysis



Challenges

- determine fundamental limits of approximate reconstruction
- results for arbitrary sequences
- bridge gap between models

Summary

- introduced adversarial read error model
- approximate reconstruction is possible
- simple sequential algorithm works
- edit distance results key to analysis

Challenges

- determine fundamental limits of approximate reconstruction
- results for arbitrary sequences
- bridge gap between models

Thank you!