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We address online linear optimization problems when the possible actions of the decision maker are represented by binary
vectors. The regret of the decision maker is the difference between her realized loss and the minimal loss she would have
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case we show that the standard exponentially weighted average forecaster is a provably suboptimal strategy. For the semi-
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1. Introduction. In this paper we consider the framework of online linear optimization. The setup may be
described as a repeated game between a “decision maker” (or simply “player” or “forecaster”) and an “adversary”
as follows: at each time instance t = 11 : : : 1 n, the player chooses, possibly in a randomized way, an action from
a given finite action set A⊂�d. The action chosen by the player at time t is denoted by at ∈A. Simultaneously
to the player, the adversary chooses a loss vector zt ∈ Z ⊂ �d, and the loss incurred by the forecaster is aT

t zt .
The goal of the player is to minimize the expected cumulative loss Ɛ

∑n
t=1 a

T
t zt , where the expectation is taken

with respect to the player’s internal randomization (and eventually the adversary’s randomization).
In the basic “full-information” version of this problem, the player observes the adversary’s move, zt , at the

end of round t. Another important model for feedback is the so-called bandit problem, in which the player only
observes the incurred loss aT

t zt . As a measure of performance we define the regret1 of the player as

Rn = Ɛ
n
∑

t=1

aT
t zt − min

a∈A
Ɛ

n
∑

t=1

aT zt0

In this paper we address a specific example of online linear optimization: we assume that the action set A is
a subset of the d-dimensional hypercube 80119d such that ∀a ∈A1�a�1 =m, and the adversary has a bounded
loss per coordinate; that is2 Z= 60117d. We call this setting online combinatorial optimization. As we will see
below, this restriction of the general framework contains a rich class of problems. Indeed, in many interesting
cases, actions are naturally represented by Boolean vectors.

In addition to the full information and bandit versions of online combinatorial optimization, we also consider
another type of feedback which makes sense only in this combinatorial setting. In the semi-bandit version, we
assume that the player observes only the coordinates of zt that were played in at; that is, the player observes
the vector 4at415zt4151 : : : 1 at4d5zt4d55. All three variants of online combinatorial optimization are sketched
in Figure 1.

1 In the full information version, it is straightforward to obtain upper bounds for the stronger notion of regret Ɛ
∑n

t=1 a
T
t zt −Ɛmina∈A

∑n
t=1 a

T zt ,
which is always at least as large as Rn. However, for partial information games, this requires more work. In this paper we only consider Rn

as a measure of the regret.
2 Note that since all actions have the same size, i.e., �a�1 =m1 ∀a ∈A, one can reduce the case of Z= 6�1�7d to Z= 60117d via a simple
renormalization.
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Parameters: set of actions A⊂ 80119d; number of rounds n ∈�.
For each round t = 1121 : : : 1 n;

(1) the player chooses a probability distribution pt over A and draws a random action at ∈A according to pt ;
(2) simultaneously, the adversary selects a loss vector zt ∈ 60117d (without revealing it);
(3) the player incurs the loss aT

t zt . She observes
—the loss vector zt in the full information setting,
—the coordinates zt4i5at4i5 in the semi-bandit setting,
—the instantaneous loss aT

t zt in the bandit setting.

Goal: The player tries to minimize her cumulative loss
∑n

t=1 a
T
t zt .

Figure 1. Online combinatorial optimization.

More rigorously, online combinatorial optimization is defined as a repeated game between a “player” and an
“adversary.” At each round t = 11 : : : 1 n of the game, the player chooses a probability distribution pt over the
set of actions A ⊂ 80119d and draws a random action at ∈ A according to pt . Simultaneously, the adversary
chooses a vector zt ∈ 60117d. More formally, zt is a measurable function of the “past” 4ps1 as1 zs5s=11 : : : 1t−1. In
the full information case, pt is a measurable function of 4ps1 as1 zs5s=11 : : : 1t−1. In the semi-bandit case, pt is
a measurable function of 4ps1 as1 4as4i5zs4i55i=11 : : : 1d5s=11 : : : 1t−1, and in the bandit problem it is a measurable
function of 4ps1 as1 4a

T
s zs55s=11 : : : 1t−1.

1.1. Motivating examples. Many problems can be tackled under the online combinatorial optimization
framework. We give here three simple examples:

• m-sets. In this example we consider the set A of all
(

d

m

)

Boolean vectors in dimension d with exactly
m ones. In other words, at every time step, the player selects m actions out of d possibilities. When m = 1,
the semi-bandit and bandit versions coincide and correspond to the standard (adversarial) multi-armed bandit
problem.

• Online shortest path problem. Consider a communication network represented by a graph in which one has
to send a sequence of packets from one fixed vertex to another. For each packet one chooses a path through
the graph and suffers a certain delay which is the sum of the delays on the edges of the path. Depending on
the traffic, the delays on the edges may change, and, at the end of each round, according to the assumed level
of feedback, the player observes either the delays of all edges, the delays of each edge on the chosen path, or
only the total delay of the chosen path. The player’s objective is to minimize the total delay for the sequence of
packets.

One can represent the set of valid paths from the starting vertex to the end vertex as a set A⊂ 80119d, where
d is the number of edges. If at time t, zt ∈ 60117d is the vector of delays on the edges, then the delay of a path
a ∈ A is zTt a. Thus this problem is an instance of online combinatorial optimization in dimension d, where d
is the number of edges in the graph. In this paper we assume, for simplicity, that all valid paths have the same
length m.

• Ranking. Consider the problem of selecting a ranking of m items out of M possible items. For example a
website could have a set of M ads, and it has to select a ranked list of m of these ads to appear on the web page.
One can rephrase this problem as selecting a matching of size m on the complete bipartite graph Km1M (with
d =m×M edges). In the online learning version of this problem, each day the website chooses one such list,
and gains one dollar for each click on the ads. This problem can easily be formulated as an online combinatorial
optimization problem.

Our theory applies to many more examples, such as spanning trees (which can be useful in certain commu-
nication problems), or m-intervals.

1.2. Previous work.
• Full information. The full-information setting is now fairly well understood, and an optimal regret bound

(in terms of m1d1n) was obtained by Koolen et al. [26]. Previous papers under full information feedback also
include Gentile and Warmuth [14], Kivinen and Warmuth [25], Grove et al. [15], Takimoto and Warmuth [34],
Kalai and Vempala [22], Warmuth and Kuzmin [36], Herbster and Warmuth [20], and Hazan et al. [18].

• Semi-bandit. The first paper on the adversarial multi-armed bandit problem (i.e., the special case of m-sets
with m = 1) is by Auer et al. [4] who derived a regret bound of order

√

dn logd. This result was improved
to

√
dn by Audibert and Bubeck [2, 3]. György et al. [16] consider the online shortest path problem and

derive suboptimal regret bounds (in terms of the dependency on m and d). Uchiya et al. [35] (respectively,
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Table 1. Bounds on the minimax regret (up to constant factors). The new results are set in boldface.
In this paper we also show that exp2 in the full information case has a regret bounded below by d3/2

√
n

(when m is of order d).

Full information Semi-bandit Bandit

Lower bound m

√

n log
d

m

√
mdn m

√
dn

Upper bound m

√

n log
d

m

√
mdn m3/2

√

dn log
d

m

Kale et al. [23]) derived optimal regret bounds for the case of m-sets (respectively, for the problem of ranking
selection) up to logarithmic factors.

• Bandit. McMahan and Blum [27], and Awerbuch and Kleinberg [5] were the first to consider this setting,
and obtained suboptimal regret bounds (in terms of n). The first paper with optimal dependency in n was by
Dani et al. [12]. The dependency on m and d was then improved in various ways by Abernethy et al. [1],
Cesa-Bianchi and Lugosi [11], and Bubeck et al. [9]. We discuss these bounds in detail in §4. In particular, we
argue that the optimal regret bound in terms of d (and m) is still an open problem.

We also refer the interested reader to the recent survey by Bubeck and Cesa-Bianchi [8] for an overview of
bandit problems in various other settings.

1.3. Contribution and contents of the paper. In this paper we are primarily interested in the optimal
minimax regret in terms of m1d, and n. More precisely, our aim is to determine the order of magnitude of the
following quantity: For a given feedback assumption, write sup for the supremum over all adversaries and inf
for the infimum over all allowed strategies for the player under the feedback assumption. (Recall the definition
of “adversary” and “player” from the introduction.) Then we are interested in

max
A⊂80119d 2∀a∈A1�a�1=m

inf supRn0

Our contribution to the study of this quantity is threefold. First, we unify the algorithms used in Abernethy
et al. [1], Koolen et al. [26], Uchiya et al. [35], and Kale et al. [23] under the umbrella of mirror descent.
The idea of mirror descent goes back to Nemirovski [28], and Nemirovski and Yudin [29]. A somewhat similar
concept was re-discovered in online learning by Herbster and Warmuth [20], Grove et al. [15],and Kivinen and
Warmuth [25] under the name of potential-based gradient descent; see Cesa-Bianchi and Lugosi [10, Chapter 11].
Recently, these ideas have been flourishing; see, for instance, Shalev-Schwartz [33], Rakhlin [30], Hazan [17],
and Bubeck [7]. Our main theorem (Theorem 2.2) allows one to recover almost all known regret bounds for
online combinatorial optimization. This first contribution leads to our second main result, the improvement of the
known upper bounds for the semi-bandit game. In particular, we propose a different proof of the minimax regret
bound of the order of

√
nd in the standard d-armed bandit game that is much simpler than the one provided

in Audibert and Bubeck [3] (which also improves the constant factor). In addition to these upper bounds we
prove two new lower bounds. First we answer a question of Koolen et al. [26] by showing that the exponentially
weighted average forecaster is provably suboptimal for online combinatorial optimization. Our second lower
bound is a minimax lower bound in the bandit setting which improves known results by an order of magnitude.
A summary of known bounds and the new bounds proved in this paper can be found in Table 1.

The paper is organized as follows. In §2 we introduce the two algorithms discussed in this paper. In particular
in §2.1 we discuss the popular exponentially weighted average forecaster and we show that it is a provably
suboptimal strategy. Then in §2.2 we describe our main algorithm, osmd (online stochastic mirror descent), and
prove a general regret bound in terms of the Bregman divergence of the Fenchel-Legendre dual of the Legendre
function defining the strategy. In §3 we derive upper bounds for the regret in the semi-bandit case for osmd with
appropriately chosen Legendre functions. Finally in §4 we prove a new lower bound for the bandit setting, and
we formulate a conjecture on the correct order of magnitude of the regret for that problem based on this new
result and the regret bounds obtained in Abernethy et al. [1] and Bubeck et al. [9].

2. Algorithms. In this section we discuss two classes of algorithms that have been proposed for online
combinatorial optimization.
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exp2:
Parameter: Learning rate �.
Let p1 = 41/�A�1 : : : 11/�A�5 ∈��A�.
For each round t = 1121 : : : 1 n;

(a) Play at ∼ pt and observe
—the loss vector zt in the full information game,
—the coordinates zt4i5�at 4i5=1 in the semi-bandit game,
—the instantaneous loss aT

t zt in the bandit game.
(b) Estimate the loss vector zt by z̃t . For instance, one may take

—z̃t = zt in the full information game,
—z̃t4i5= 4zt4i5/

∑

a∈A2 a4i5=1 pt4a55at4i5 in the semi-bandit game,
—z̃t = P+

t ata
T
t zt , with Pt = Ɛa∼pt

4aaT 5 in the bandit game.
(c) Update the probabilities, for all a ∈A,

pt+14a5=
exp4−�aT z̃t5pt4a5

∑

b∈A exp4−�bT z̃Tt 5pt4b5
0

Figure 2. The exp2 strategy. The notation Ɛa∼pt
denotes expected value with respect to the random choice of a when it is distributed

according to pt .

2.1. Expanded Exponential weights (exp2). The simplest approach to online combinatorial optimization
is to consider each action of A as an independent “expert,” and then apply a generic regret minimizing strategy.
Perhaps the most popular such strategy is the exponentially weighted average forecaster (see, e.g., Cesa-Bianchi
and Lugosi [10]). (This strategy is sometimes called Hedge; see Freund and Schapire [13].) We call the resulting
strategy for the online combinatorial optimization problem exp2; see Figure 2. In the full information setting,
exp2 corresponds to “Expanded Hedge,” as defined in Koolen et al. [26]. In the semi-bandit case, exp2 was
studied by György et al. [16] while in the bandit case in Dani et al. [12], Cesa-Bianchi and Lugosi [11], and
Bubeck et al. [9]. Note that in the bandit case, exp2 is mixed with an exploration distribution; see §4 for
more details.

Despite strong interest in this strategy, no optimal regret bound has been derived for it in the combinatorial
setting. More precisely, the best bound (which can be derived from a standard argument; see for example Dani
et al. [12] or Koolen et al. [26]) is of order m3/2

√

n log4d/m5. On the other hand, in Koolen et al. [26] the
authors showed that by using mirror descent (see next section) with the negative entropy, one obtains a regret
bounded by m

√

n log4d/m5. Furthermore, this latter bound is clearly optimal (up to a numerical constant), as
one can see from the standard lower bound in prediction with expert advice (consider the set A that corresponds
to playing m expert problems in parallel with d/m experts in each problem). In Koolen et al. [26] the authors
leave as an open question the problem of whether it would be possible to improve the bound for exp2 to obtain
the optimal order of magnitude. The following theorem shows that this is impossible, and that, in fact, exp2 is
a provably suboptimal strategy.

Theorem 2.1. Let n ≥ d. There exists a subset A ⊂ 80119d such that in the full information setting, the
regret of the exp2 strategy ( for any learning rate �), satisfies

sup
adversary

Rn ≥ 0001d3/2√n0

The proof is deferred to the appendix.

2.2. Online Stochastic Mirror Descent. In this section we describe the main algorithm studied in this
paper. We call it online stochastic mirror descent (osmd). Each term in this name refers to a part of the algorithm:
Mirror descent originates in the work of Nemirovski and Yudin [29]. The idea of mirror descent is to perform a
gradient descent, where the update with the gradient is performed in the dual space (defined by some Legendre
function F ) rather than in the primal (see below for a precise formulation). The stochastic part takes its origin
from Robbins and Monro [31] and from Kiefer and Wolfowitz [24]. The key idea is that it is enough to observe
an unbiased estimate of the gradient rather than the true gradient to perform a gradient descent. Finally the
online part comes from Zinkevich [37]. Zinkevich derived the online gradient descent (ogd) algorithm, which
is a version of gradient descent tailored to online optimization.

To properly describe the osmd strategy, we recall a few concepts from convex analysis; see Hiriart-Urruty and
Lemaréchal [21] for a thorough treatment of this subject. Let D⊂�d be an open convex set, and let D̄ be the
closure of D.
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Definition 2.1. We call Legendre any continuous function F 2 D̄→� such that
(i) F is strictly convex continuously differentiable on D,

(ii) limx→D̄\D �ïF 4x5� = +�03

The Bregman divergence DF 2 D̄×D associated to a Legendre function F is defined by

DF 4x1 y5= F 4x5− F 4y5− 4x− y5TïF 4y50

Moreover, we say that D∗ = ïF 4D5 is the dual space of D under F . We also denote by F ∗ the Legendre-Fenchel
transform of F defined by

F ∗4u5= sup
x∈D̄

(

xT u− F 4x5
)

0

Lemma 2.1. Let F be a Legendre function. Then F ∗∗ = F and ïF ∗ = 4ïF 5−1 on the set D∗. Moreover,
∀x1 y ∈D,

DF 4x1 y5=DF ∗

(

ïF 4y51ïF 4x5
)

0 (1)

The lemma above is the key to understanding how a Legendre function acts on the space. The gradient ïF
maps D to the dual space D∗, and ïF ∗ is the inverse mapping from the dual space to the original (primal)
space. Moreover, (1) shows that the Bregman divergence in the primal space corresponds exactly to the Bregman
divergence of the Legendre-Fenchel transform in the dual space. A proof of this result can be found, for example,
in Cesa-Bianchi and Lugosi [10, Chapter 11].

We now have all ingredients to describe the osmd strategy; see Figure 3 for the precise formulation. Note that
step (d) is well defined if the following consistency condition is satisfied:

ïF 4x5−�z̃t ∈D∗1 ∀x ∈ Conv4A5∩D0 (2)

In the full information setting, algorithms of this type were studied by Abernethy et al. [1], Rakhlin [30], and
Hazan [17]. In these papers the authors adopted the presentation suggested by Beck and Teboulle [6], which
corresponds to a follow-the-regularized-leader (ftrl)-type strategy. There the focus was on F being strongly
convex with respect to some norm. Moreover, in Abernethy et al. [1] the authors also consider the bandit case,
and switch to F being a self-concordant barrier for the convex hull of A (see §4 for more details). Another line
of work studied this type of algorithm with F being the negative entropy; see Koolen et al. [26] for the full
information case and Uchiya et al. [35], and Kale et al. [23] for specific instances of the semi-bandit case. All
these results are unified and described in detail in Bubeck [7]. In this paper we consider a new type of Legendre
functions F inspired by Audibert and Bubeck [3]; see §3.

Regarding computational complexity, osmd is efficient as soon as the polytope Conv4A5 can be described by
a polynomial (in d) number of constraints. Indeed in that case steps (a)–(b) can be performed efficiently jointly
(one can get an algorithm by looking at the proof of Carathéodory’s theorem), and step (d) is a convex program
with a polynomial number of constraints. In many interesting examples (such as m-sets, selection of rankings,
spanning trees, paths in acyclic graphs) one can describe the convex hull of A by a polynomial number of
constraints; see Schrijver [32]. On the other hand, there also exist important examples where this is not the case
(such as paths on general graphs). Also note that for some specific examples it is possible to implement osmd
with improved computational complexity; see Koolen et al. [26].

In this paper we restrict our attention to the combinatorial learning setting in which A is a subset of 80119d,
and the loss is linear. However, one should note that this specific form of A plays no role in the definition of
osmd. Moreover, if the loss is not linear, then one can modify osmd by performing a gradient update with a
gradient of the loss (rather than the loss vector zt). See Bubeck [7] for more details on this approach.

The following result is at the basis of our improved regret bounds for osmd in the semi-bandit setting; see §3.

Theorem 2.2. Suppose that (2) is satisfied and the loss estimates are unbiased in the sense that Ɛat∼pt
z̃t = zt .

Then the regret of the osmd strategy satisfies

Rn ≤
supa∈A F 4a5− F 4x15

�
+

1
�

n
∑

t=1

ƐDF ∗4ïF 4xt5−�z̃t1ïF 4xt550

3 By the equivalence of norms in �d , this definition does not depend on the choice of the norm.
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osmd:
Parameters:

• learning rate � > 0,
• Legendre function F defined on D̄⊃ Conv4A5.

Let x1 ∈ arg minx∈Conv4A5 F 4x5.
For each round t = 1121 : : : 1 n;

(a) Let pt be a distribution on the set A such that xt = Ɛa∼pt
a.

(b) Draw a random action at according to the distribution pt and observe the feedback.
(c) Based on the observed feedback, estimate the loss vector zt by z̃t .
(d) Let wt+1 ∈D satisfy

ïF 4wt+15= ïF 4xt5−�z̃t 0 (3)

(e) Project the weight vector wt+1 defined by (3) on the convex hull of A:

xt+1 ∈ arg min
x∈Conv4A5

DF 4x1wt+150 (4)

Figure 3. Online stochastic mirror descent (OSMD).

Proof. Let a ∈A. Using that at and z̃t are unbiased estimates of xt and zt , we have

Ɛ
n
∑

t=1

4at − a5T zt = Ɛ
n
∑

t=1

4xt − a5T z̃t0

Using (3), and applying the definition of the Bregman divergences, one obtains

�z̃Tt 4xt − a5 = 4a− xt5
T 4ïF 4wt+15−ïF 4xt55

= DF 4a1 xt5+DF 4xt1wt+15−DF 4a1wt+150

By the Pythagorean theorem for Bregman divergences (see, e.g., Cesa-Bianchi and Lugosi [10, Lemma 11.3]),
we have DF 4a1wt+15≥DF 4a1 xt+15+DF 4xt+11wt+15; hence

�z̃Tt 4xt − a5≤DF 4a1 xt5+DF 4xt1wt+15−DF 4a1 xt+15−DF 4xt+11wt+150

Summing over t gives
n
∑

t=1

�z̃Tt 4xt − a5≤DF 4a1a15−DF 4a1an+15+

n
∑

t=1

(

DF 4xt1wt+15−DF 4xt+11wt+15
)

0

By the nonnegativity of the Bregman divergences, we get
n
∑

t=1

�z̃Tt 4xt − a5≤DF 4a1a15+

n
∑

t=1

DF 4xt1wt+150

From (1), one has DF 4xt1wt+15 = DF ∗4ïF 4xt5− �z̃t1ïF 4xt55. Moreover, by writing the first-order optimality
condition for x1, one directly obtains DF 4a1 x15≤ F 4a5− F 4x15 which concludes the proof. �

Note that, if F admits a Hessian, denoted ï 2F , that is always invertible, then one can prove that, up to a
third-order term (in z̃t), the regret bound can be written as

Rn ¯
supa∈A F 4a5− F 4x15

�
+

�

2

n
∑

t=1

z̃Tt
(

ï 2F 4xt5
)−1

z̃t0 (5)

The main technical difficulty is to control the third-order error term in this inequality.

3. Semi-bandit feedback. In this section we consider online combinatorial optimization with semi-bandit
feedback. As we already discussed, in the full information case Koolen et al. [26] proved that osmd with the
negative entropy is a minimax optimal strategy. We first prove a regret bound when one uses this strategy with
the following estimate for the loss vector:

z̃t4i5=
zt4i5at4i5

xt4i5
0 (6)

Note that this is a valid estimate since it only makes use of 4zt415at4151 : : : 1 zt4d5at4d55. Moreover, it is
unbiased with respect to the random draw of at from pt , since by definition, Ɛat∼pt

at4i5= xt4i5. In other words,
Ɛat∼pt

z̃t4i5= zt4i5.
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Theorem 3.1. The regret of OSMD with F 4x5=
∑d

i=1 xi logxi −
∑d

i=1 xi (and D= 401+�5d) and any non-
negative unbiased loss estimate z̃t4i5≥ 0 satisfies

Rn ≤
m log4d/m5

�
+

�

2

n
∑

t=1

d
∑

i=1

xt4i5z̃t4i5
20

In particular, with the estimate (6) and � =
√

244m logdm5/4nd55,

Rn ≤

√

2mdn log
d

m
0

Proof. One can easily see that for the negative entropy the dual space is D∗ =�d. Thus, (2) is verified and
osmd is well defined. Moreover, again by straightforward computations, one can also see that

DF ∗

(

ïF 4x51ïF 4y5
)

=

d
∑

i=1

y4i5ä
(

4ïF 4x5−ïF 4y554i5
)

1 (7)

where ä4x5 = exp4x5 − 1 − x. Thus, using Theorem 2.2 and the facts that ä4x5 ≤ x2/2 for x ≤ 0 and
∑d

i=1 xt4i5≤m, one obtains

Rn ≤
supa∈A F 4a5− F 4x15

�
+

1
�

n
∑

t=1

ƐDF ∗

(

ïF 4xt5−�z̃t1ïF 4xt5
)

≤
supa∈A F 4a5− F 4x15

�
+

�

2

n
∑

t=1

d
∑

i=1

xt4i5z̃t4i5
2

. The proof of the first inequality is concluded by noting that:

F 4a5− F 4x15≤

d
∑

i=1

x14i5 log
1

x14i5
≤m log

( d
∑

i=1

x14i5

m

1
x14i5

)

=m log
d

m
0

The second inequality follows from

Ɛxt4i5z̃t4i5
2
≤ Ɛ

at4i5

xt4i5
= 10 �

Using the standard
√
dn lower bound for the multi-armed bandit (which corresponds to the case where A is

the canonical basis; see, e.g., Audibert and Bubeck [3, Theorem 30]), one can directly obtain a lower bound of
order

√
mdn for our setting. Thus the upper bound derived in Theorem 3.1 has an extraneous logarithmic factor

compared to the lower bound. This phenomenon already appeared in the basic multi-armed bandit setting. In
that case, the extra logarithmic factor was removed in Audibert and Bubeck [2] by resorting to a new class of
strategies for the expert problem, called INF (implicitely normalized forecaster). Next we generalize this class
of algorithms to the combinatorial setting, and thus remove the extra logarithmic factor. First we introduce the
notion of a potential and the associated Legendre function.

Definition 3.1. Let �≥ 0. A function �2 4−�1 a5→�∗
+

for some a ∈�∪ 8+�9 is called an �-potential
if it is convex, continuously differentiable, and satisfies

lim
x→−�

�4x5=�1 lim
x→a

�4x5= +�1

�′ > 01
∫ �+1

�
��−14s5�ds <+�0

For every potential � we associate the function F� defined on D= 4�1+�5d by:

F�4x5=

d
∑

i=1

∫ xi

�
�−14s5ds0
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In this paper we restrict our attention to 0-potentials which we will simply call potentials. A nonzero value
of � may be used to derive regret bounds that hold with high probability (instead of pseudo-regret bounds; see
footnote 1).

The first order optimality condition for (4) implies that osmd with F� is a direct generalization of INF with
potential �, in the sense that the two algorithms coincide when A is the canonical basis. Note, in particular,
that with �4x5 = exp4x5 we recover the negative entropy for F� . In Audibert and Bubeck [3], the choice of
�4x5 = 4−x5q with q > 1 was recommended. We show in Theorem 3.2 that here, again, this choice gives a
minimax optimal strategy.

Lemma 3.1. Let � be a potential. Then F = F� is Legendre and for all u1 v ∈ D∗ = 4−�1 a5d such that
ui ≤ vi1∀i ∈ 811 : : : 1 d9,

DF ∗4u1 v5≤
1
2

d
∑

i=1

�′4vi54ui − vi5
20

Proof. A direct examination shows that F = F� is a Legendre function. Moreover, since ïF ∗4u5 =

4ïF 5−14u5= 4�4u151 0 0 0 1�4ud551 we obtain

DF ∗4u1 v5=

d
∑

i=1

(

∫ ui

vi

�4s5ds − 4ui − vi5�4vi5

)

0

From a Taylor expansion, we get

DF ∗4u1 v5≤

d
∑

i=1

max
s∈6ui1 vi7

1
2�

′4s54ui − vi5
20

Since the function � is convex, and ui ≤ vi, we have

max
s∈6ui1 vi7

�′4s5≤ �′4max4ui1 vi55≤ �′4vi51

which gives the desired result. �
Theorem 3.2. Let � be a potential. The regret of osmd with F = F� and any nonnegative unbiased loss

estimate z̃t satisfies

Rn ≤
supa∈A F 4a5− F 4x15

�
+

�

2

n
∑

t=1

d
∑

i=1

Ɛ
z̃t4i5

2

4�−15′4xt4i55
0

In particular, with the estimate (6), �4x5= 4−x5−q , q > 1, and � =
√

42/4q − 1554m1−2/q/d1−2/q541/n5,

Rn ≤ q

√

2
q − 1

mdn0

With q = 2 this gives
Rn ≤ 2

√
2mdn0

In the case m = 1, the above theorem improves the bound Rn ≤ 8
√
nd obtained in Audibert and

Bubeck [3, Theorem 11].

Proof. First note that since D∗ = 4−�1 a5d and z̃t has nonnegative coordinates, osmd is well defined (that
is, (2) is satisfied).

The first inequality follows from Theorem 2.2 and the fact that �′4�−14s55= 1/4�−15′4s5.
Let �4x5 = 4−x5−q . Then �−14x5 = −x−1/q and F 4x5 = −q/4q − 15

∑d
i=1 x

1−1/q
i . In particular, note that by

Hölder’s inequality, since
∑d

i=1 x14i5=m,

F 4a5− F 4x15≤
q

q − 1

d
∑

i=1

x14i5
1−1/q

≤
q

q − 1
m4q−15/qd1/q 0

Moreover, note that 4�−15′4x5= 41/q5x−1−1/q , and

d
∑

i=1

Ɛ
z̃t4i5

2

4�−15′4xt4i55
≤ q

d
∑

i=1

xt4i5
1/q

≤ qm1/qd1−1/q1

which concludes the proof. �
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4. Bandit feedback. In this section we consider online combinatorial optimization with bandit feedback.
This setting is much more challenging than the semi-bandit case, and to obtain sublinear regret bounds all known
strategies add an exploration component to the algorithm. For example, in exp2, instead of playing an action
at random according to the exponentially weighted average distribution pt , one draws a random action from pt

with probability 1 −� and from some fixed “exploration” distribution � with probability �. On the other hand,
in osmd, one randomly perturbs xt to some x̃t , and then plays at random a point in A such that on average one
plays x̃t .

In Bubeck et al. [9], the authors study the exp2 strategy with the exploration distribution � supported on
the contact points between the polytope Conv4A5 and the John ellipsoid of this polytope (i.e., the ellipsoid of
minimal volume enclosing the polytope). Using this method they are able to prove the best known upper bound
for online combinatorial optimization with bandit feedback. They show that the regret of exp2 mixed with John’s
exploration (and with the estimate described in Figure 2) satisfies

Rn ≤ 2m3/2

√

3dn log
ed

m
0

Our next theorem shows that no strategy can achieve a regret less than a constant times m
√
dn, leaving a gap

of a factor of
√

m log4d/m5. As we argue below, we conjecture that the lower bound is of the correct order
of magnitude. However, improving the upper bound seems to require some substantially new ideas. Note that
the following bound gives limitations that no strategy can surpass, on the contrary to Theorem 2.1 which was
dedicated to the exp2 strategy.

Theorem 4.1. Let n≥ d ≥ 2m. There exists a subset A⊂ 80119d such that �a�1 =m1 ∀a ∈A, under bandit
feedback, one has

inf
strategies

sup
adversaries

Rn ≥ 0002m
√
dn1 (8)

where the infimum and the supremum are taken over the class of strategies for the “player” and for the
“adversary” as defined in the introduction.

Note that it should not come as a surprise that exp2 (with John’s exploration) is suboptimal, since even in
the full information case the basic exp2 strategy was provably suboptimal; see Theorem 2.1. We conjecture that
the correct order of magnitude for the minimax regret in the bandit case is m

√
dn, as the above lower bound

suggests.
A promising approach to resolve this conjecture is to consider again the osmd approach. However, we believe

that in the bandit case, one has to consider Legendre functions with nondiagonal Hessian (on the contrary to
the Legendre functions considered so far in this paper). Abernethy et al. [1] propose to use a self-concordant
barrier function for the polytope Conv4A5. Then they randomly perturb the point xt given by osmd using the
eigenstructure of the Hessian. This approach leads to a regret upper bound of order md

√

�n logn for � > 0
when Conv4A5 admits a �-self-concordant barrier function. Unfortunately, even when there exists a O415-self-
concordant barrier, this bound is still larger than the conjectured optimal bound by a factor

√
d. In fact, it was

proved in Bubeck et al. [9] that in some cases there exist better choices for the Legendre function and the
perturbation than those described in Abernethy et al. [1], even when there is a O415-self-concordant function for
the action set. How to generalize this approach to the polytopes involved in online combinatorial optimization
is a challenging open problem.

Acknowledgments. G. Lugosi is supported by the Spanish Ministry of Science and Technology [Grant MTM2009-
09063] and PASCAL2 Network of Excellence [EC Grant 216886].

Appendix A. Proof of Theorem 2.1. For the sake of simplicity, we assume that d is a multiple of 4 and that n is even.
We consider the following subset of the hypercube:

A=

{

a ∈ 80119d2
d/2
∑

i=1

ai = d/4 and
(

ai = 11 ∀ i ∈ 8d/2 + 13 : : : 1 d/2 +d/49
)

or

(

ai = 11 ∀ i ∈ 8d/2 +d/4 + 11 : : : 1 d9
)

}

0

That is, choosing a point in A corresponds to choosing a subset of d/4 elements among the first half of the coordinates, and
choosing one of the two first disjoint intervals of size d/4 in the second half of the coordinates.
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We prove that for any parameter �, there exists an adversary such that exp2 (with parameter �) has a regret of at least
nd/16 tanh4�d/85, and that there exists another adversary such that its regret is at least min44d log 25/12�1nd/125. As a
consequence, we have

supRn ≥ max
(

nd

16
tanh

(

�d

8

)

1min
(

d log 2
12�

1
nd

12

))

≥ min
(

max
(

nd

16
tanh

(

�d

8

)

1
d log 2

12�

)

1
nd

12

)

≥ min
(

A1
nd

12

)

1

with

A = min max
�∈601+�5

(

nd

16
tanh

(

�d

8

)

1
d log 2

12�

)

≥ min
(

min
�d≥8

nd

16
tanh

(

�d

8

)

1min max
�d<8

(

nd

16
tanh

(

�d

8

)

1
d log 2

12�

))

≥ min
(

nd

16
tanh4151min max

�d<8

(

nd

16
�d

8
tanh4151

d log 2
12�

))

≥ min
(

nd

16
tanh4151

√

nd3 log 2 · tanh415
128 · 12

)

≥ min
(

0004 nd10001d3/2√n
)

1

where we used the fact that tanh is concave and increasing on �+. As n≥ d, this implies the stated lower bound.
First we prove the lower bound nd/16 tanh4�d/85. Define the following adversary:

zt4i5=











1 if i ∈ 8d/2 + 13 : : : 1 d/2 +d/49 and t odd1

1 if i ∈ 8d/2 +d/4 + 11 : : : 1 d9 and t even1

0 otherwise0

This adversary always puts a zero loss on the first half of the coordinates, and alternates between a loss of d/4 for choosing
the first interval (in the second half of the coordinates) and the second interval. At the beginning of odd rounds, any vertex
a ∈A has the same cumulative loss and thus exp2 picks its expert uniformly at random, which yields an expected cumulative
loss equal to nd/16. On the other hand, at even rounds the probability distribution to select the vertex a ∈ A is always
the same. More precisely, the probability of selecting a vertex which contains the interval 8d/2 + d/4 + 11 : : : 1 d9 (i.e.,
the interval with a d/4 loss at this round) is exactly 1/41 + exp4−�d/455. This adds an expected cumulative loss equal to
nd/841/41 + exp4−�d/4555. Finally, note that the loss of any fixed vertex is nd/8. Thus, we obtain

Rn =
nd

16
+

nd

8
1

1 + exp4−�d/45
−

nd

8
=

nd

16
tanh

(

�d

8

)

0

It remains to show a lower bound proportional to 1/�. To this end, we consider a different adversary defined by

zt4i5=











1 − � if i ≤ d/41

1 if i ∈ 8d/4 + 11 : : : 1 d/291

0 otherwise1

for some fixed �> 0.
Note that against this adversary the choice of the interval (in the second half of the components) does not matter. Moreover,

by symmetry, the weight of any coordinate in 8d/4 + 11 : : : 1 d/29 is the same (at any round). Finally, note that this weight
is decreasing with t. Thus, we have the following identities (in the big sums i represents the number of components selected
in the first d/4 components):

Rn =
n�d

4

∑

a∈A2 ad/2=1 exp4−�nzT1 a5
∑

a∈A exp4−�nzT1 a5

=
n�d

4

∑d/4−1
i=0

(

d/4
i

)(

d/4−1
d/4−i−1

)

exp4−�4nd/4 − in�55
∑d/4

i=0

(

d/4
i

)(

d/4
d/4−i

)

exp4−�4nd/4 − in�55

=
n�d

4

∑d/4−1
i=0

(

d/4
i

)(

d/4−1
d/4−i−1

)

exp4�in�5
∑d/4

i=0

(

d/4
i

)(

d/4
d/4−i

)

exp4�in�5

=
n�d

4

∑d/4−1
i=0 41 − 44i5/d5

(

d/4
i

)(

d/4
d/4−i

)

exp4�in�5
∑d/4

i=0

(

d/4
i

)(

d/4
d/4−i

)

exp4�in�5
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where we used
(

d/4−1
d/4−i−1

)

= 41 − 44i5/d5
(

d/4
d/4−i

)

in the last equality. Thus, taking �= min4log 2/4�n5115 yields

Rn ≥ min
(

d log 2
4�

1
nd

4

)

∑d/4−1
i=0 41 − 44i5/d5

(

d/4
i

)2
min421 exp4�n55i

∑d/4
i=0

(

d/4
i

)2
min421 exp4�n55i

≥ min
(

d log 2
12�

1
nd

12

)

1

where the last inequality follows from Lemma C.1 in the appendix. This concludes the proof of the lower bound.

Appendix B. Proof of Theorem 4.1. The structure of the proof is similar to that of Audibert and Bubeck
[3, Theorem 30], which deals with the simple case where m= 1. The main important conceptual difference is contained in
Lemma C.2, which is at the heart of this new proof. The main argument follows the line of standard lower bounds for bandit
problems; see, e.g., Cesa-Bianchi and Lugosi [10]: The worst-case regret is bounded from below by taking an average over a
conveniently chosen class of strategies of the adversary. Then, by Pinsker’s inequality, the problem is reduced to computing
the Kullback-Leibler divergence of certain distributions. The main technical argument, given in Lemma C.2, is for proving
manageable bounds for the relevant Kullback-Leibler divergence.

For the sake of simplifying notation, we assume that d is a multiple of m, and we identify 80119d with the set of
m× 4d/m5 binary matrices 80119m×d/m. We consider the following set of actions:

A=

{

a ∈ 80119m×4d/m52 ∀ i ∈ 811 : : : 1m91
d/m
∑

j=1

a4i1 j5= 1
}

0

In other words, the player is playing in parallel m finite games with d/m actions.
From Steps 1 to 3 we restrict our attention to the case of deterministic strategies for the player, and we show how to

extend the results to arbitrary strategies in Step 4.

Step 1. Definitions.
We denote by Ii1 t ∈ 811 : : : 1m9 the random variable such that at4i1 Ii1 t5= 1. That is, Ii1 t is the action chosen at time t in

the ith game. Moreover, let � be drawn uniformly at random from 811 : : : 1 n9.
In this proof we consider random adversaries indexed by A. More precisely, for � ∈ A, we define the �-adversary

as follows: For any t ∈ 811 : : : 1 n9, zt4i1 j5 is drawn from a Bernoulli distribution with parameter 1
2 − ��4i1 j5. In other

words, against adversary �, in the ith game, the action j such that �4i1 j5 = 1 has a loss slightly smaller (in expectation)
than the other actions. We denote by Ɛ� integration with respect to the loss generation process of the �-adversary. We
write �i1� for the probability distribution of �4i1 Ii1 �5 when the player faces the �-adversary. Note that we have �i1�415 =

Ɛ�41/n5
∑n

t=1 ��4i1 Ii1 t 5=1; hence, against the �-adversary, we have

R̄n = Ɛ�
n
∑

t=1

m
∑

i=1

���4i1 Ii1 t 56=1 = n�
m
∑

i=1

41 −�i1�41551

which implies (since the maximum is larger than the mean)

max
�∈A

R̄n ≥ n�
m
∑

i=1

(

1 −
1

4d/m5m

∑

�∈A

�i1�415
)

0 (B1)

Step 2. Information inequality.
Let �−i1� be the probability distribution of �4i1 Ii1 �5 against the adversary which plays like the �-adversary except that

in the ith game, the losses of all coordinates are drawn from a Bernoulli distribution of parameter 1/2. We call it the
4−i1�5-adversary and we denote by Ɛ4−i1�5 integration with respect to its loss generation process. By Pinsker’s inequality,

�i1�415≤�−i1�415+

√

1
2 KL4�−i1�1�i1�51

where KL denotes the Kullback-Leibler divergence. Moreover, note that by symmetry of the adversaries 4−i1�5,

1
4d/m5m

∑

�∈A

�−i1�415 =
1

4d/m5m

∑

�∈A

Ɛ4−i1�5 �4i1 Ii1 �5

=
1

4d/m5m

∑

�∈A

1
d/m

∑

�2 4−i1�5=4−i1�5

Ɛ4−i1�5 �4i1 Ii1 �5

=
1

4d/m5m

∑

�∈A

1
d/m

Ɛ4−i1�5

∑

�2 4−i1�5=4−i1�5

�4i1 Ii1 �5

=
1

4d/m5m

∑

�∈A

1
d/m

=
m

d
1 (B2)
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and thus, thanks to the concavity of the square root,

1
4d/m5m

∑

�∈A

�i1�415≤
m

d
+

√

1
24d/m5m

∑

�∈A

KL4�−i1�1�i1�50 (B3)

Step 3. Computation of KL4�−i1�1�i1�5 with the chain rule.
Note that since the forecaster is deterministic, the sequence of observed losses (up to time n) Wn ∈ 801 : : : 1m9n uniquely

determines the empirical distribution of plays, and, in particular, the probability distribution of �4i1 Ii1 �5 conditionally to Wn

is the same for any adversary. Thus, if we denote by �n
� (respectively, �n

−i1�) the probability distribution of Wn when the fore-
caster plays against the �-adversary (respectively, the 4−i1�5-adversary), then one can easily prove that KL4�−i1�1�i1�5≤

KL4�n
−i1�1�

n
�5. Now we use the chain rule for Kullback-Leibler divergence iteratively to introduce the probability distribu-

tions �t
� of the observed losses Wt up to time t. More precisely, we have,

KL4�n
−i1�1�

n
�5

= KL4�1
−i1�1�

1
�5+

n
∑

t=2

∑

wt−1∈801 : : : 1m9t−1

�t−1
−i1�4wt−15KL4�t

−i1�4· �wt−151�
t
�4· �wt−155

= KL4B�1B
′

�5��4i1 Ii115=1 +

n
∑

t=2

∑

wt−1 2 �4i1 Ii115=1

�t−1
−i1�4wt−15KL4Bwt−1

1B′

wt−1
51

where Bwt−1
and B′

wt−1
are sums of m Bernoulli distributions with parameters in 81/211/2 − �9 and such that the number

of Bernoullis with parameter 1/2 in Bwt−1
is equal to the number of Bernoullis with parameter 1/2 in B′

wt−1
plus one. Now

using Lemma C.2 (see below) we obtain,

KL4Bwt−1
1B′

wt−1
5≤

8�2

41 − 4�25m
0

In particular, this gives

KL4�n
−i1�1�

n
�5≤

8�2

41 − 4�25m
Ɛ−i1�

n
∑

t=1

��4i1 Ii1 t 5=1 =
8�2n

41 − 4�25m
�−i1�4150

Summing and plugging this into (B3) we obtain (again thanks to (B2)), for �≤ 1/
√

8,

1
4d/m5m

∑

�∈A

�i1�415≤
m

d
+ �

√

8n
d
0

To conclude the proof of (8) for deterministic players one needs to plug this last equation in (B1) along with straightforward
computations.
Step 4. Fubini’s theorem to handle nondeterministic players.

Consider now a randomized player, and let Ɛrand denote the expectation with respect to the randomization of the player.
Then one has (thanks to Fubini’s theorem),

1
4d/m5m

∑

�∈A

Ɛ
n
∑

t=1

4aT
t zt −�T z5= Ɛrand

1
4d/m5m

∑

�∈A

Ɛ�
n
∑

t=1

4aT
t zt −�T z50

Now note that if we fix the realization of the forecaster’s randomization, then the results of the previous steps apply and,
in particular, one can lower bound 41/4d/m5m5

∑

�∈A Ɛ�
∑n

t=14a
T
t zt − �T z5 as before (note that � is the optimal action in

expectation against the �-adversary).

Appendix C. Technical lemmas.

Lemma C.1. For any k ∈�∗1 for any 1 ≤ c ≤ 2, we have

∑k
i=041 − i/k5

(

k
i

)2
ci

∑k
i=0

(

k
i

)2
ci

≥ 1/30

Proof. Let f 4c5 denote the expression on the left-hand side of the inequality. Introduce the random variable X, which
is equal to i ∈ 801 : : : 1 k9 with probability

(

k
i

)2
ci/
∑k

j=0

(

k
j

)2
cj . We have

f ′4c5=
1
c
Ɛ

[

X
1 −X

k

]

−
1
c
Ɛ4X5Ɛ

(

1 −X

k

)

= −
1
ck

VarX ≤ 00

So the function f is decreasing on 61127, and therefore it suffices to consider c = 2. The numerator and denominator on the
left-hand side differ only by the factor 1 − i/k. A lower bound for the left-hand side can thus be obtained by showing that
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the terms for i close to k are not essential to the value of the denominator. To prove this, we may use Stirling’s formula
which implies that for any k ≥ 2 and i ∈ 611 k− 17,

(

k

i

)i(
k

k− i

)k−i
√
k

√

2�i4k− i5
e−1/6 <

(

k

i

)

<

(

k

i

)i(
k

k− i

)k−i
√
k

√

2�i4k− i5
e1/121

hence
(

k

i

)2i(
k

k− i

)24k−i5
ke−1/3

2�i4k− i5
<

(

k

i

)2

<

(

k

i

)2i(
k

k− i

)24k−i5
ke1/6

2�i
0

Introduce �= i/k and �4�5= 2�/4�2�41 −�5241−�55. We have

6�4�57k
2e−1/3

�k
<

(

k

i

)2

2i < 6�4�57k
e1/6

2��
0 (C1)

Lemma C.1 can be numerically verified for k ≤ 106. We now consider k > 106. For � ≥ 00666, since the function �

can be shown to be decreasing on 600666117, the inequality
(

k
i

)2
2i < 6�40066657k4e1/6/2 × 00666 ×�5 holds. We have

�4006575/�4006665 > 100002. Consequently, for k > 106, we have 6�40066657k < 00001 × 6�40065757k/k2. So, for �≥ 00666
and k > 106, we have

(

k

i

)2

2i < 00001 × 6�40065757k
e1/6

2� × 00666 × k2
< 6�40065757k

2e−1/3

11000�k2

= min
�∈6006561006577

6�4�57k
2e−1/3

11000�k2

<
1

11000k
max

i∈8110001k−19∩60100666k5

(

k

i

)2

2i1 (C2)

where the last inequality comes from (C1) and the fact that there exists i ∈ 811 0 0 0 1 k − 19 such that i/k ∈ 6006561006577.
Inequality (C2) implies that for any i ∈ 811 0 0 0 1 k9, we have

∑

00666k≤i≤k

(

k

i

)2

2i <
1

11000
max

i∈8110001k−19∩60100666k5

(

k

i

)2

2i <
1

11000

∑

0≤i<00666k

(

k

i

)2

2i0

To conclude, introducing A=
∑

0≤i<00666k

(

k
i

)2
2i, we have

∑k
i=041 − i/k5

(

k
i

)2
2i

∑k
i=0

(

k
i

)(

k
k−i

)

2i
>

41 − 006665A
A+ 00001A

≥
1
3
0 �

Lemma C.2. Let l and n be integers with 1
2 ≤ n/2 ≤ l ≤ n. Let p1p′1 q1p11 0 0 0 1 pn be real numbers in 40115 with

q ∈ 8p1p′9, p1 = · · · = pl = q and pl+1 = · · · = pn. Let B (resp. B′) be the sum of n+ 1 independent Bernoulli distributions
with parameters p1p11 0 0 0 1 pn (resp. p′1 p11 0 0 0 1 pn). We have

KL4B1B′5≤
24p′ −p52

41 −p′54n+ 25q
0

Proof. Let Z1Z′1Z11 0 0 0 1Zn be independent Bernoulli distributions with parameters p1p′1 p11 0 0 0 1 pn. Define S =
∑l

i=1 Zi, T =
∑n

i=l+1 Zi, and V = Z + S. By a slight and usual abuse of notation, we use KL to denote Kullback-Leibler
divergence of both probability distributions and random variables. Then we may write (the inequality is an easy consequence
of the chain rule for Kullback-Leibler divergence):

KL4B1B′5 = KL
(

4Z+ S5+ T 1 4Z′
+ S5+ T

)

≤ KL
(

4Z+ S1T 51 4Z′
+ S1T 5

)

= KL4Z+ S1Z′
+ S50

Let sk =�4S = k5 for k = −1101 0 0 0 1 l+ 1. Using the equalities

sk =

(

l

k

)

qk41 − q5l−k
=

q

1 − q

l− k+ 1
k

(

l

k− 1

)

qk−141 − q5l−k+1
=

q

1 − q

l− k+ 1
k

sk−11
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which hold for 1 ≤ k ≤ l+ 1, we obtain

KL4Z+ S1Z′
+ S5 =

l+1
∑

k=0

�4V = k5 log
(

�4Z+ S = k5

�4Z′ + S = k5

)

=

l+1
∑

k=0

�4V = k5 log
(

psk−1 + 41 −p5sk
p′sk−1 + 41 −p′5sk

)

=

l+1
∑

k=0

�4V = k5 log
(

p441 − q5/q5k+ 41 −p54l− k+ 15
p′441 − q5/q5k+ 41 −p′54l− k+ 15

)

= Ɛ log
(

4p− q5V + 41 −p5q4l+ 15
4p′ − q5V + 41 −p′5q4l+ 15

)

0 (C3)

Case 1. q = p′.
By Jensen’s inequality, using that ƐV = p′4l+ 15+p−p′ in this case, we get

KL4Z+ S1Z′
+ S5 ≤ log

(

4p−p′5Ɛ4V 5+ 41 −p5p′4l+ 15
41 −p′5p′4l+ 15

)

= log
(

4p−p′52 + 41 −p′5p′4l+ 15
41 −p′5p′4l+ 15

)

= log
(

1 +
4p−p′52

41 −p′5p′4l+ 15

)

≤
4p−p′52

41 −p′5p′4l+ 15
0

Case 2. q = p.
In this case, V is a binomial distribution with parameters l+ 1 and p. From (C3), we have

KL4Z+ S1Z′
+ S5 ≤ −Ɛ log

(

4p′ −p5V + 41 −p′5p4l+ 15
41 −p5p4l+ 15

)

≤ −Ɛ log
(

1 +
4p′ −p54V − ƐV 5

41 −p5p4l+ 15

)

0 (C4)

To conclude, we will use the following lemma.

Lemma C.3. The following inequality holds for any x ≥ x0 with x0 ∈ 40115:

− log4x5≤ −4x− 15+
4x− 152

2x0
0

Proof. Introduce f 4x5 = −4x − 15 + 4x− 152/42x05 + log4x5. We have f ′4x5 = −1 + 4x− 15/x0 + 1/x, and f ′′4x5 =

1/x0 − 1/x2. From f ′4x05 = 0, we get that f ′ is negative on 4x0115 and positive on 411+�5. This leads to f nonnegative
on 6x01+�5. �

Finally, from Lemma C.3 and (C4), using x0 = 41 −p′5/41 −p5, we obtain

KL4Z+ S1Z′
+ S5 ≤

(

p′ −p

41 −p5p4l+ 15

)2 Ɛ64V − ƐV 527

2x0

=

(

p′ −p

41 −p5p4l+ 15

)2
4l+ 15p41 −p52

241 −p′5

=
4p′ −p52

241 −p′54l+ 15p
0 �
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