Cohort Modeling for Enhanced Personalized Search

Jinyun Yan
Rutgers University

Wei Chu
Microsoft Bing

Ryen White
Microsoft Research
Personalized Search

• Many queries have multiple intents
 – e.g., [H2O] can be a beauty product, wireless, water, movie, band, etc.

• Personalized search
 – Combines relevance and the searcher’s intent
 – Relevant to the user’s interpretation of query
Challenge

• Existing personalized search
 – Relies on the access to personal history
 • Queries, clicked URLs, locations, etc.

• Re-finding common, but not common enough
 – Approx. 1/3 of queries are repeats from same user [Teevan et al 2007, Dou et al 2007]
 – Similar statistics for <user, q, doc> [Shen et al 2012]

2/3 queries new in 2 mo. - ‘cold start’ problem
Motivation for Cohorts

• When encountering new query by a user
 – Turn to other people who submitted the query
 – e.g., Utilize global clicks

• Drawback
 – No personalization

• Cohorts
 – A group of users similar along 1+ dimensions, likely to share search interests or intent
 – Provide useful cohort search history
Situating Cohorts

Global

Cohort

Individual

Not personalized

Conjoint Analysis
Learning across Users
Collaborative
Grouping/Clustering
Cohorts ...

Hard to Handle New Queries
Hard to Handle New Documents
Sparseness (Low Coverage)
Related Work

• Explicit groups/cohorts
 – Company employees [Smyth 2007]
 – Collaborative search tools [Morris & Horvitz 2007]

• Implicit cohorts
 – Behavior based, k-nearest neighbors [Dou et al. 2007]
 – Task-based / trait-based groups [Teevan et al. 2009]

• Drawbacks
 – Costly to collect or small n
 – Uses information unavailable to search engines
 – Some offer little relevance gain
Problem

• Given search logs with <user, query, clicks>, can we design a cohort model that can improve the relevance of personalized search results?
Concepts

• **Cohort**: A cohort is a group of users with shared characteristics
 – E.g., a sports fan

• **Cohort cohesion**: A cohort has cohesive search and click preferences
 – E.g., search [fifa] → click fifa.com

• **Cohort membership**: A user may belong to multiple cohorts
 – Both a sports fan and a video game fan
Our Solution

- **Cohort Generation**: Identify particular cohorts of interest
- **Cohort Membership**: Find people who are part of this cohort
- **Cohort Behavior**: Mine cohort search behavior (clicks for queries)
- **Cohort Preference**: Identify cohort click preferences
- **Cohort Model**: Build models of cohort click preferences
- **User Preference**: Apply that cohort model to build richer representation of searchers’ individual preferences
Cohort Generation

• Proxies
 – **Location** (U.S. state)
 – **Topical interests**
 (Top-level categories in Open Directory Project)
 – **Domain preference**
 (Top-level domain, e.g., .edu, .com, .gov)
 – Inferred from search engine logs
 • Reverse IP address to estimate location
 • Queries and clicked URLs to estimate search topic interest and domain preference for each user
Cohort Membership

- Multinomial distribution
 - Smoothed

\[
p(C_j|u) = w(u, C_j) = \frac{SATClips(u, C_j) + 1}{\sum_j SATClips(u, C_j) + K}
\]

- Example:

\[
C = [\text{Arts, Business, Computers, Games}]
\]
\[
SATClips = [0, 1, 2, 5] \text{ (clicks w/ dwell \geq 30s)}
\]
\[
w(u, C) = [0.083, 0.167, 0.25, 0.5]
\]
Cohort Preference

• Cohort click preference
 – Cohort CTR:
 \[
 CTR(d, q, C_j) = \frac{\sum_u SATClicks(d, q, u) \cdot w(u, C_j)}{\sum_u Impressions(d, q, u) \cdot w(u, C_j)}
 \]
 – Global CTR:
 \[
 CTR(d, q) = \frac{\sum_u SATClicks(d, q)}{\sum_u Impressions(d, q)}
 \]
 – Simplified example:
 • Global preference:
 \[
 [CTR(d1, q), CTR(d2, q)] = \left[\frac{4}{100}, \frac{3}{100} \right]
 \]
 • Cohort preference
 – Cohort 1: \([CTR_C(c1, d1, q), CTR_C(c1, d2, q)] = \left[\frac{4}{100}, 0 \right]\)
 – Cohort 2: \([CTR_C(c2, d1, q), CTR_C(c2, d2, q)] = \left[0, \frac{3}{100} \right]\)
Cohort Model

• Estimate individual click preference by cohort preference

\[z(d, q, u, C_j) = p(d, q, C_j) \cdot p(C_j | u) = CTR(d, q, C_j) \cdot w(u, C_j) \]
Experiments

• Setup
 – Randomly sampled 3% of users
 – 2-month search history for cohort profiling: cohort membership, cohort CTR
 – 1 week for evaluation:
 3 days training, 2 days validation, 2 days testing
 – 5,352,460 query impressions in testing

• Baseline
 – Personalized ranker used in production on Bing
 – With global CTR, and personal model
Experiments

• Evaluation metric:
 – Mean Reciprocal Rank of first SAT click (MRR)*
 \[\Delta \text{MRR} = \text{MRR(cohort model)} - \text{MRR(baseline)} \]

• Labels: Implicit, users’ satisfied clicks
 – Clicks w/ dwell ≥ 30 secs or last click in session
 – 1 if SAT click, 0 otherwise

* \(\Delta \text{MAP} \) was also tried. Similar patterns to MRR.
Results

• Cohort-enhanced model beats baseline

<table>
<thead>
<tr>
<th>Group Type</th>
<th>ΔMRR ±SEM</th>
<th>Re-Ranked@1</th>
</tr>
</thead>
<tbody>
<tr>
<td>ODP (Topic interest)</td>
<td>0.0187 ±0.00143</td>
<td>0.91%</td>
</tr>
<tr>
<td>TLD (Top level domain)</td>
<td>0.0229 ±0.00145</td>
<td>0.96%</td>
</tr>
<tr>
<td>Location (State)</td>
<td>0.0113 ±0.00142</td>
<td>0.90%</td>
</tr>
<tr>
<td>ALL (ODP + TLD + Location)</td>
<td>0.0211 ±0.00146</td>
<td>0.98%</td>
</tr>
</tbody>
</table>

– Positive MRR gain over personalized baseline
 • Average over many queries, with many ΔMRR = 0
 • Gains are highly significant (p < 0.001)

– ALL has lower performance, could be noisier:
 • Re-ranks more often, Combining different signals
Performance on Query Sets

• **New queries**
 – Unseen queries in training/validation
 \[\uparrow 2 \times \text{MRR gain vs. all queries}\]

• **Queries with high click-entropy**
 \[\text{ClickEntropy}(q) = - \sum_{d} CTR(d, q) \cdot \log(CTR(d, q))\]
 \[\uparrow 5 \times \text{MRR gain vs. all queries}\]

• **Ambiguous queries**
 – 10k acronym queries, all w/ multiple meanings
 \[\uparrow 10 \times \text{MRR gain vs. all queries}\]
Cohort Generation: *Learned* Cohorts

- **Thus far:** Pre-defined cohorts
 - Manual control of cohort granularity
- **Next:** Automatically learn cohorts
 - User profile
 <location, search interests, domain preference>
 - Cluster users into cohorts: *K*-means
 - Cohort membership:
 - Soft cluster membership
 \[w(u, C_j) = p(C_j | u) = \frac{\exp\left(-\frac{d(x_u, \mu_j)^2}{\sigma^2}\right)}{\sum_{i=1}^{K} \exp\left(-\frac{d(x_u, \mu_i)^2}{\sigma^2}\right)} \]
 - Simplified version of Gaussian mixture model w/ identity covariance
 \[w(u, C_j) = \frac{1}{\sqrt{(2\pi)^k \sigma^k}} \exp\left(-\frac{1}{2} \sum_{i=1}^{K} (x_u - \mu_i)^2 \right) \]
Finding Best K

- **Baseline**: Predefined cohorts (from earlier)
- Focus on different query sets
 - e.g., those with higher click entropy
- Probed $K = 5, 10, 30, 50, 70$
- **Learned** (for one set)
 - Top gain at $K=10$, sig
- Future work:
 - Need more exploration of results at $5 < K < 30$
Summary

• Cohort model enhanced personalized search
 – Enrich models of individual intent using cohorts
 – Automatically learn cohorts from user behavior

• Future work:
 – More experiments, e.g., parameter sweeps
 – More cohorts: Age, gender, domain expertise, political affiliation, etc.
 – More queries: Long-tail queries, task-based and fuzzy matching rather than exact match
Thanks

• Questions?