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ABSTRACT
We enforce information flow policies in programs that run at mul-
tiple locations, with diverse levels of security.

We build a compiler from a small imperative language with lo-
cality and security annotations down to distributed code linked to
concrete cryptographic libraries. Our compiler splits source pro-
grams into local threads; inserts checks on auxiliary variables to
enforce the source control flow; implements shared distributed vari-
ables using instead a series of local replicas with explicit updates;
and finally selects cryptographic mechanisms for securing the com-
munication of updates between locations.

We establish computational soundness for our compiler: under
standard assumptions on cryptographic primitives, all confidential-
ity and integrity properties of the source program also hold with
its distributed code, despite the presence of active adversaries that
control all communications and some of the program locations. We
also present performance results for the code obtained by compil-
ing sample programs.

Categories and Subject Descriptors
D.2.0 [Software Engineering]: Protection Mechanisms

General Terms
Security, Design, Languages

1. INTRODUCTION
The security of distributed systems usually entails the implemen-

tation of protection mechanisms based on cryptography to ensure
the confidentiality and integrity of information. This involves ex-
pert knowledge, as well as attention to many implementation de-
tails. Our goal is to let developers focus on high-level security poli-
cies and properties of their programs, and use a compiler to gen-
erate lower-level protection mechanisms that ensure that the dis-
tributed implementation is at least as secure as the source program.

We take information flow security as our specification of security
(for an abstract memory model) and also as our model for cryptog-
raphy in the implementation. In information flow security, policies
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are expressed by annotating variables with labels from a lattice [see
e.g. Myers and Liskov, 2000]. Correct information flow in a pro-
gram means that an adversary with restricted access to program
variables can neither affect the program behavior nor gain knowl-
edge above its security level by interacting with the system. Since
this notion of security depends on the semantics of programs, an
essential difficulty is to preserve security properties as programs
get compiled to concrete implementations. In a distributed imple-
mentation, for instance, a network adversary may observe messages
sent between hosts, and it may control their scheduling. Inasmuch
as these side channels are not apparent in source programs, they
must be carefully addressed in the compilation process.

We enforce information flow policies in programs that run at
multiple locations, with diverse levels of security. This involves
cryptographic protection whenever relatively secure locations (e.g.
a client and a server) interact via less secure locations (e.g. an open
network).

∙ In source programs, security depends on a global program se-
mantics, with abstract policies for reading and writing shared
memory. These policies enable a simple review of confiden-
tiality and integrity properties.

∙ In their distributed implementations, shared memory is un-
protected, the adversary controls the scheduling, and security
depends instead on cryptographic protection.

Our compiler is structured into four stages: slicing, control flow,
replication, and cryptography. The first stage slices sequential code
with locality annotations into a series of local programs, each meant
to run at a single location. After slicing, the second stage pro-
tects the control flow of the source program against a malicious
scheduler, by generating code that maintains auxiliary variables to
keep track of the program state, based on its integrity policy. The
replication stage transforms a distributed program (still relying on a
global, shared, protected memory) into a program where variables
are implemented as local replicas at each location, with explicit
updates between replicas. Finally, the cryptography stage inserts
cryptographic operations to protect these variable updates, and it
generates an initial protocol for distributing their keys.

Our target notions of security are expressed in a computational
model of cryptography. In this model, adversaries are probabilistic
programs that operate on bitstrings and have limited computational
power. This leads us to reason with polynomial-time hypotheses
and probabilistic semantics. We could have used instead a symbolic
model of cryptography, where adversaries may perform arbitrary
computations on abstract algebraic terms (not bitstrings). How-
ever, this simpler model would have hidden many cryptographic
side channels that are relevant in distributed implementations and
problematic for information security. The relation between sym-
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bolic and computational models is the subject of active research
[see e.g. Abadi and Rogaway, 2002, Backes et al., 2003, Comon-
Lundh and Cortier, 2008, Laud, 2008] but it is unlikely that they
can be reconciled at the level of details handled by our compiler.
Thus, we seek computational soundness directly for information-
flow security, rather than for symbolic cryptography.

In prior work, Fournet and Rezk [2008] design a computation-
ally sound type system for cryptography and give a typed trans-
lation from non-interferent source programs to their cryptographic
implementations. Our theory extends theirs in several directions:

Active Adversaries: Our compiled code is secure against ad-
versaries that control the scheduling between hosts. This reflects
a realistic attacker model for distributed programs, where the op-
ponent controls parts of the program (representing for instance the
corrupted parties of a protocol) and also controls all interactions
between the remaining “honest” parts of the program (representing
for instance an open network). In their work, they restrict the con-
trol flow of programs and assume that the compiled code follows
the source control flow.

Information release: Our safety conditions on source programs
are less restrictive and do not require noninterference. Hence, our
compiler accepts programs that selectively leak information, and
our theorems state that, for all safe source programs, if an adversary
can successfully attack our compiled code, then there is also an
adversary that can successfully attack the source program.

Efficient use of cryptography: They formalize only asymmetric
cryptography. In contrast, we use asymmetric cryptography only
for initial key distribution, then rely on symmetric cryptography,
which is much more efficient. We also allocate fewer keys and
perform simple cryptographic optimizations.

Main Contributions

∙ We design and implement a compiler from sequential pro-
grams with shared memory to distributed programs at least
as secure as the source. Our tool combines both symmetric
and asymmetric cryptography and yields efficient code.

∙ We account for a realistic class of active adversaries, which
control some components of the system (including the net-
work) and schedule the others.

∙ We obtain computational soundness theorems for all infor-
mation flows, both for secrecy and for integrity. (We also
show functional correctness, but only for an adversary that
implements a reliable network.)

∙ We report experimental performance results obtained for a
series of sample distributed programs.

Related Work Due to lack of space, we discuss only closely re-
lated work. We refer to Sabelfeld and Myers [2003] for a survey
of information flow security, and to Fournet and Rezk [2008] for a
more complete account of cryptographic information flows.

Computational noninterference: Laud [2001] pioneers work on
information flow relying on concrete cryptographic assumptions.
He introduces computational correctness for encryption in a model
with passive adversaries. Our notions of noninterference generalize
this property to the active case, and also cover integrity properties.

Secure program partitioning: Jif/Split [Zdancewic et al., 2002,
Zheng et al., 2003] is a compiler from information flow typed se-
quential Java programs to distributed systems with mutual distrust
between hosts. Their distributed implementation relies on secure

communications, modelled as private channels. We lift this as-
sumption, implement communications using cryptographic mech-
anisms, and prove them correct under standard cryptographic hy-
potheses. Hence, our compiler can be seen as a cryptographic
back-end for Jif/Split. Unlike Jif/Split, we do not consider code
replication but only data replication.

Robustness: A system is robust when an adversary cannot affect
the security of information flow [Zdancewic and Myers, 2001, My-
ers et al., 2006]. Decentralized robustness generalizes this notion
to configurations with mutual distrust between principals [Chong
and Myers, 2006]. In this work, we rely on similar robustness con-
ditions on source programs.

Contents Section 2 defines our source and target languages. Sec-
tion 3 defines information flow policies and security properties.
Sections 4, 5, 6, and 7 describe the slicing, control-flow, replication,
and cryptographic stages of the compiler. Section 8 reports experi-
mental results. Section 9 concludes. Additional definitions, exam-
ples, and proofs appear online at http://www.msr-inria.
inria.fr/projects/sec/cflow.

2. LANGUAGES
In this section, we present a core probabilistic imperative lan-

guage and its extension to express distribution. We also define con-
crete distributed programs with explicit scheduling.

Core Language We use a while-language based on transparent
shared memory, with the following grammar:

e ::= x ∣ op(e1, ..., en)
S, P,A ::= x := e ∣ x := f(x1, . . . , xn) ∣ skip ∣ S;S

∣ if e then S else S ∣ while e do S
∣ x := declassify(e, ℓ)

where op and f range over deterministic and probabilistic n-ary
functions, respectively, with n ≥ 0. Expressions e consist of vari-
ables and operations, including standard boolean and arithmetic
constants and operators. Programs and commands S consist of
variable assignments, using deterministic expressions and proba-
bilistic functions, composed into sequences, tests, and loops. (The
assignment x := declassify(e, ℓ) behaves as x := e; it is explained
in Section 3.) We use curly brackets {S} for parenthesizing com-
mands. We let wv(S) be the set of variables written by S, let rv(S)
be the set of variables read by S, and let v(S) be wv(S) ∪ rv(S).

Although our language does not feature procedure calls, we can
use command contexts to range over programs with access to fixed,
privileged procedures (sometimes called “oracles” in cryptogra-
phy) using shared variables for passing their input and output pa-
rameters. An n-ary command context, written P [_0, . . . , _n−1],
is a term obtained from the grammar of commands extended with
placeholders for commands _i (and, more generally, for command
contexts _i[P1, . . . Pki ]). For instance, P0; _[P ′] represents a com-
mand, parameterized by a command contextA[_], that first runs P0

then runs A, which may in turn call P ′ any number of times.

Probabilistic Semantics The semantics of each probabilistic func-
tion is given by a discrete parametric probability distribution. We
write {0, 1} for the fair “coin-tossing” function that returns either
0 or 1 with probability 1

2
. We use probabilistic functions mainly to

model cryptographic algorithms as commands.
Program configurations are of the form ⟨P, �⟩ where P is a pro-

gram and � is a memory, that is, a function from variables to values.
The special program

√
represents termination. The operational se-

mantics of commands is given as Markov chains between program
configurations, with probabilistic steps s ↝p s′ induced by the
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probabilistic functions (see the full paper). We lift these reduction
steps to configuration distributions, and write d↝ d′ when, for all
configurations s′, d′(s′) =

∑
s↝ps′

p×d(s). We write ↝∗ for the
transitive closure of ↝. We define the semantics of a program P
with initial memory � as follows: d0 is the configuration distribu-
tion such that d0(⟨P, �⟩) = 1; di ↝ di+1 for i ≥ 0; and Pr[P ;']
is the probability that P completes with a final memory that meets
condition ': Pr[P ;'] = limn→∞

∑
s=⟨
√
,�⟩∣' dn(s). (The limit

exists because the sum increases with n and is bounded by 1.)

Source Language, with Locations Let a, b, . . . ∈ ℋ be a finite
set of hosts, intended to represent units of trust (principals) and of
locality (runtime environments). We extend the grammar of the
core language (S) with locality annotations:

S+, P+ ::= . . . ∣ a : S+

The locality command a : S+ states that command S+ should run
at host a. This programming abstraction hides the implementation
details for transferring control between the current host and a be-
fore and after running command S+. Locality commands can be
nested, as in a : {P0; b : P1; c : P2}. We assume that every source
program has a locality command at top level, setting an initial host.

Since memory is transparently shared between hosts, locality an-
notations do not affect our command semantics.

Target Language, with Explicit Scheduling A distributed pro-
gram is just a series of commands in the core language, each com-
mand intuitively running at a single host. We refer to these com-
mands as threads. (Pragmatically, our compiler groups threads run-
ning at the same host into a single host command that locally sched-
ules its threads.)

To model the intended behavior of a distributed program with n
threads, in particular to state its correctness in the absence of an ad-
versary, we define an n-ary command context Nn that implements
a round-robin scheduler. This command context uses a global pro-
gram counter variable next that indicates which thread should run
next, with a special value stop to indicate the end of the execution.

DEFINITION 1 (n-ARY SCHEDULER).

Nn[_1, . . . , _n]
⋅
= while next ∕= stop do {_1; . . . ; _n}

This context may represent a public network, for instance, with
communications between hosts using messages in shared memory.

Finally, we model a compiler C as a function from source pro-
grams P+ to series of commands Q0, Q1, . . . Qn = C(P+) where
Q0 is a distinguished initialization command and Qi>0 are com-
mands representing threads, meant to be executed as

next := start;Q0;Nn[Q1, . . . , Qn]

To study the security properties of this compiled program, we will
replace Nn with some unknown command context A representing
an active adversary that controls the scheduler.

3. COMPUTATIONAL NONINTERFERENCE
We briefly recall standard notions of information flow policies,

then define our main security properties.

Security Labels We annotate every variable with a security label.
These labels specify the programmer’s security intent, but they do
not affect the operational semantics.

The security labels form a lattice (ℒ,≤) obtained as the product
of two lattices, for confidentiality levels (ℒC ,≤C) and for integrity
levels (ℒI ,≤I). We write ⊥ℒ and ⊤ℒ for the smallest and largest
elements of ℒ, and ⊔ and ⊓ for the least upper bound and greatest

lower bound of two elements of ℒ, respectively. We write ⊥C ,
⊥I , ⊤C , ⊤I for the smallest and largest elements of ℒC and ℒI ,
respectively.

For a given label ℓ = (ℓC , ℓI) of ℒ, the confidentiality label ℓC
specifies a read level for variables, while the integrity label ℓI spec-
ifies a write level; the meaning of ℓ ≤ ℓ′ is that ℓ′ is more confiden-
tial (can be read by fewer entities) and less trusted (can be written
by more entities) than ℓ [Myers et al., 2006]. We let C(ℓ) = ℓC
and I(ℓ) = ℓI be the projections that yield the confidentiality and
integrity parts of a label. Hence, the partial order on ℒ is defined as
ℓ ≤ ℓ′ iff C(ℓ) ≤C C(ℓ′) and I(ℓ) ≤I I(ℓ′).

Memory and Host Policies We represent our memory policy as a
function Γ from variables to security labels. For brevity, we some-
times write I(x) (resp. C(x)) instead of I(Γ(x)) (resp. C(Γ(x))).

We extend Γ to represent host policies as a map from host names
to security labels. Host policies are used to establish a control flow
protocol (see Section 5) and to select cryptographic protection. Our
intent is that host a may read the variables V Ca and write the vari-
ables V Ia , defined as

V Ca
⋅
= {x ∣ C(x) ≤C C(a)} V Ia

⋅
= {x ∣ I(a) ≤I I(x)}

Adversaries Our security properties are parameterized by the
power of the adversary, defined as a pairA = (AC ,AI) of subsets
of the security lattices:

∙ AC ⊂ ℒC , the public labels, is a non-empty downward-
closed subset of the confidentiality lattice;

∙ AI ⊂ ℒI , the tainted labels, is a non-empty upward-closed
subset of the integrity lattice.

In the rest of the paper, we often assume a fixed policy and adver-
sary A, and let

V CA = {x ∣ C(x) ∈ AC} V IA = {x ∣ I(x) /∈ AI}

An active adversary command, ranged over by A, is a core com-
mand that reads only public variables (rv(A) ⊆ V CA ) and writes
only tainted variables (wv(A) ∩ V IA = ∅). In particular, A can al-
ways read variables with confidentiality label⊥C and always write
variables with integrity label ⊤I .

For example, let ℒ4 be the 4-point security lattice defined by the
product of the confidentiality lattice {L ≤C H} and the integrity
lattice {H ≤I L}. In this lattice, the adversary A = ({L}, {L})
yields adversary commands that can read low-confidentiality vari-
ables and write low-integrity variables. For brevity, elements of ℒ4

are written HL, HH, LL, and LH in the rest of the paper.
In the general case, one can define the adversary by indicating

the subset of hosts that may have been compromised and letting
AC and AI be the closures of their confidentiality and integrity
labels. This ensures that any commands at these hosts become valid
adversary commands.

Our implementation depends both on the security policy and on
the structure of the lattices, but it does not depend on the choice of
a particular adversary.

Indistinguishability Games In computational models of cryptog-
raphy, security properties are often expressed as games, coded as
commands that sample a secret boolean b := {0, 1} then implement
a protocol that interacts with an adversary, also modelled as com-
mands. The goal of the adversary is to write into some variable g
its guess as to the value of b: the adversary wins when b =0 g
(where the boolean equality operator =0 is true iff both or none of
its operands equal 0). The trivial adversary g := {0, 1} wins with
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probability 1
2

, so we are interested in a bound on the advantage
of an adversary, defined as the probability that b =0 g minus 1

2
.

The protocol is deemed secure when, for a game that involves only
commands that run in polynomial time, this advantage is negligible
in the security parameter (usually the length of the keys used in the
protocol).

Confidentiality and Integrity We define security properties for
probabilistic command contexts as computational variants of non-
interference, expressed as games.

For confidentiality, our property is parameterized by active ad-
versaries plus three commands that initialize variables that the ad-
versary can read (set by J) or not (set by either B0 or B1).

DEFINITION 2 (COMPUTATIONAL CONFIDENTIALITY).
Let Γ be a policy, A an adversary, and P a command context.

Let J , B0, and B1 range over polynomial commands such that
wv(Bb) ∩ V CA = ∅ for b = 0, 1. Let A⃗ range over tuples of adver-
sary contexts such that P [A⃗] is a polynomial command. Consider
the command

CNIC
⋅
= b := {0, 1}; J; if b = 0 then B0 else B1;P [A⃗]

where g /∈ v(J,B0, B1, P ) and b /∈ v(J,B0, B1, P, A⃗).
P is computationally confidential (CNIC ) for J , B0, B1, and A⃗

when ∣Pr[CNIC ; b =0 g]− 1
2
∣ is negligible.

P is CNIC for J , B0, B1 when this holds for all A⃗.
P is CNIC when this holds for all J , B0, B1, and A⃗.

In the definition, the command contexts A⃗ represent the code of
an active adversary that interacts with P and tries to infer the value
of b. The adversary “knows” P , J , B0, and B1, inasmuch as the
definition of A⃗may depend on them. Implicitly, the last adversarial
piece of code in P [A⃗] is supposed to write into g its guess for b.

By definition of the command CNIC , the value of b affects the
initial state of the memory when P [A⃗] runs, by running either B0

or B1, but only for high-confidentiality variables, which A⃗ cannot
directly read, so A⃗ can win the game with some advantage only
if P somehow leaks information from high-confidentiality to low-
confidentiality variables.

The three statements at the end of the definition differ only in
their generality. The first statement is for two specific distributions
of initial memories, set by J;B0 and J;B1 respectively, and for
a specific adversary. The second statement expresses that no such
adversary may effectively distinguish between these two specific
distributions of initial memories; it may be used to characterize the
security of commands that leak some confidentiality information.
The third statement expresses that this holds for any such distribu-
tions of initial memories, and is a computational variant of nonin-
terference (CNIC ). If we omit the computational hypotheses, run
P [A⃗] with arbitrary initial low-equivalent memory distributions �b
rather than those initialized by J;Bb, and compare (exactly) the
distributions of low-confidentiality variables after running P [A⃗]
rather than just the values of g, we retrieve a formulation of proba-
bilistic noninterference.

Let us consider special cases for P and A⃗:

∙ If the command context P is of the form Q0; _ with a single
adversary command that runs after Q0, then computational
confidentiality reduces to a notion of noninterference against
passive adversaries that observe low-confidentiality memory
only after Q0 completes, but do not interact with Q0.

∙ If P is of the form Q0; _;Q1; _; . . . ;Qn; _, the adversary
A⃗ consists of a tuple of n + 1 commands that run between

each of the commands Qi and represents an active adversary
whose execution is interleaved with that of P , but which can-
not change the order in which the commands Qi run.

∙ If P is of the form Q0; _[Q1, . . . , Qn], then the adversary
A⃗ consists of a single n-ary command context that repre-
sents an untrusted network or scheduler that can run the com-
mands Qi any number of times, in any order. This adversary
is strictly more powerful than the one above.

We use an, almost dual, security definition for integrity. The def-
inition uses an auxiliary polynomial command T that reads high-
integrity variables and writes g after running the interactive com-
putation between our command and the active adversary.

DEFINITION 3 (COMPUTATIONAL INTEGRITY).
Let Γ be a policy, A an adversary, and P a command context.
Let J , B0, B1, T range over polynomial commands such that

wv(J) ⊆ V IA ∖ wv(P ) and wv(Bb) ∩ V IA = ∅ and rv(T ) ⊆ V IA .
Let A⃗ range over adversary contexts such thatP [A⃗] is a polynomial
command. Consider the command

CNII
⋅
= b := {0, 1}; J; if b = 0 then B0 else B1;P [A⃗]

where b /∈ v(J,B0, B1, P, A⃗, T ) and g /∈ v(J,B0, B1, P, A⃗). A
run of CNII is valid when every variable x in wv(CNII) ∩ rv(T )
is written exactly once.
P is computationally integral (CNII ) for J , B0, B1, A⃗, and T

when Pr[CNII valid] = 1 implies that ∣Pr[CNII ;T ; b =0 g] − 1
2
∣

is negligible.
P is CNII for J , B0, B1 when this holds for all A⃗, and T .
P is CNII when this holds for all J , B0, B1, A⃗, and T .

In the definition, the initialization command J sets variables that
are not writable by A⃗ but that are readable by T . The game consists
of letting A⃗ interact with the system and try to force the program
behavior to depend on the low-integrity bit b, thus yielding different
value assignments to high integrity variables.

Since the adversary A⃗may prevent the execution of certain high-
integrity threads, the definition imposes an additional condition that
excludes this means of communication with T : the variables writ-
ten by CNII and read by T must have been written exactly once.
This condition enables us to consider as secure programs that per-
form checks on low-integrity variables (for instance a signature ver-
ification), then assign high-integrity variables only if the checks
succeed. Hence, our definition let A⃗ and T range over commands
such that A⃗makes a check fail, or T reads those high-integrity vari-
ables, but not in the same game. For example, the command con-
text _[x := 0] is CNII , but _[x := 0, x := 1] is not. As a drawback,
the definition accounts for the integrity only of the first assignment
to each variable, but this weakness can be mitigated by rewriting P
in single-assignment style, as explained in Section 6. (See also the
discussion of weak integrity and runtime failures in Fournet and
Rezk 2008.)

In the following, we are interested in both confidentiality and
integrity, and we say that a command context is computationally
non-interferent (CNI) when it is both CNIC and CNII .

Source Program Safety Our compilation process makes assump-
tions on source programs, which we define next. (Compilation may
still fail on some inputs, as explained in Section 6; we ruled out
safety conditions that would guarantee that the compilation always
succeeds as unduly restrictive.)

Figure 1 presents a type system that captures our safety hypothe-
ses on programs with localities. The typing judgments for source
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TSUBC
⊢ P+ : ℓ ℓ′ ≤ ℓ
⊢ P+ : ℓ′

TASSIGN
⊢ e : Γ(x)

⊢ x := e : Γ(x)

TDECLASSIFY
⊢ e : ℓ I(ℓ) = I(x)

⊢ x := declassify(e, ℓ) : Γ(x)

TFUN
⊢ y⃗ : Γ(x)

⊢ x := f(y⃗) : Γ(x)

TSEQ

⊢ P+
0 : ℓ ⊢ P+

1 : ℓ

⊢ P+
0 ;P+

1 : ℓ

TCOND LOCAL
⊢ e : ℓ ⊢ P1 : ℓ ⊢ P0 : ℓ

⊢ if e then P1 else P0 : ℓ

TCOND
⊢ e : ℓ ⊢ P+

1 : ℓ ⊢ P+
0 : ℓ C(ℓ) = ⊥C

⊢ if e then P+
1 else P+

0 : ℓ

TWHILE LOCAL
⊢ e : ℓ ⊢ P1 : ℓ

⊢ while e do P1 : ℓ

TWHILE
⊢ e : ℓ ⊢ P+

1 : ℓ C(ℓ) = ⊥C
⊢ while e do P+

1 : ℓ

TLOCALITY
⊢ P+ : ℓ I(b) ≤I I(ℓ) rv(P ) ⊆ V Cb

⊢ (b : P+) : ℓ

TSKIP
⊢ skip : ⊤ℒ

Figure 1: Typing rules (for a given policy Γ)

commands are of the form ⊢ P : ℓ where ℓ is a security label. We
omit the standard rules for typing expressions, such that ⊢ e : ℓ
when Γ(x) ≤ ℓ for each variable x read in e. This type system is
similar but more permissive than those typically used for noninter-
ference [see e.g. Sabelfeld and Myers, 2003] as it accepts programs
with explicit declassifications. We discuss some specific rules:

TDECLASSIFY does not prevent explicit confidentiality flows, but
enforces that the command be typed with the integrity level of the
label that appears in the declassify annotation. Those labels will be
subject to robustness conditions.

TCOND LOCAL and TWHILE LOCAL are adapted from standard
rules to prevent implicit flows. Their guarded branches (P1 and P0)
range over core commands, which do not contain occurrences of
localities. Otherwise, distributed execution may leak information
about the guard e: for instance, in the program if sHH then a :
skip else b : skip, the guarded commands are not local, hence it
would be hard to hide whether a or b executes next. Conversely,
TCOND and TWHILE allow guarded code with locality commands,
but only when the guard e is public.

TLOCALITY excludes trusted code in untrusted localities. This
is needed to prevent an adversary that controls the scheduling to
trigger an execution of P+ at b that is not enabled by the control
flow of the source program.

DEFINITION 4 (SOURCE PROGRAM SAFETY). A label ℓ ∈
ℒ is robust against A when I(ℓ) ∈ AI implies C(ℓ) ∈ AC .

A source program P+ is safe for Γ and A when P+ is typable,
polynomial, and all its declassification labels are robust againstA.

Typability implies that, in a source program, no untrusted host
is allowed to modify trusted variables, neither by modifying them
directly, nor by calling a trusted host that modifies high integrity
variables. That is, for every locality a : S+ within P+, we must
have rv(S+) ⊆ V Ca and wv(S+) ⊆ V Ia .

In the absence of declassification, typability guarantees CNI [see
e.g. Fournet and Rezk, 2008]. Otherwise, the robustness condition
ensures that, if the adversary can influence a declassification, then
it can also directly access the declassified information [Zdancewic
and Myers, 2001]. Thus, depending on the lattice, a program with
some declassification (hence not necessarily CNI) may still be com-
piled, with an implementation that provides the same security guar-

antees as for the source program against the restricted class of ad-
versaries that make it safe [see also Chong and Myers, 2006].

We illustrate each stage of our compilation process with the sam-
ple program listed below. Section 8 discusses other examples.

EXAMPLE 1. For the 4-points lattice ℒ4 (with two levels of
confidentiality and integrity), let S+ be the source program

a:{
xHL := 1; yLH := 2;
while yLH < 3 do {
yLH := yLH + 4;
b:{
if (yLH mod 2) = 1
then {xHL := xHL + 9}
else {skip}

};
c:{zLH := 5} } }

and Γ a policy such that Γ(a) = Γ(b) = Γ(c) = HH for hosts,
and Γ(x) = HL, Γ(y) = Γ(z) = LH for variables. S+ is typable,
polynomial, and has no declassify, so it is safe and CNI.

Correctness and Security for Compiled Code We are now ready
to specify the intended properties of our compiler, beginning with
functional correctness.

For a given command P , we write �⊥ for the memory that maps
every variable of P to⊥. We let � range over distributions of mem-
ories, and write �⊥ for the memory distribution that gives proba-
bility 1 to �⊥. To any distribution � of memories whose domain
includesX , we associate the distribution �∣X of memories with do-
main X defined by �∣X(�) =

∑
�′ ∣�′

∣X=� �(�′) where �′∣X is �′

restricted to X . Intuitively, �∣X ignores the variables outside X ,
such as auxiliary variables introduced by the compilation. We write
⟨P, �⟩ for the configuration distribution d defined by d(⟨P, �⟩) =
�(�) and d(⟨Q,�⟩) = 0 for Q ∕= P .

DEFINITION 5. A compiler C is correct when, for any typable
polynomial source program P , for Q0, Q⃗ = C(P ), and for any
polynomial core command P0, we have

⟨P0;P, �⊥⟩↝∗ ⟨
√
, �⟩

⟨next := start;P0;Q0;Nn[Q⃗], �′⊥⟩↝∗ ⟨
√
, �′⟩

for memory distributions � and �′ such that �′∣v(P0;P ) = �.

In the definition, P0 initializes the source memory (much like
J ;B0 or J ;B1) whereas Q0 initializes auxiliary variables for the
distributed code. Correctness states that, at least when the compiled
code is scheduled using the correct scheduler Nn, our distributed
implementation probabilistically simulates the source code on any
input. (We believe that our correctness results would extend to any
fair scheduler instead of Nn.)

To specify our security property, we need to define what is an
active adversary against source commands. If P is a source pro-
gram, let P̂ be the command context obtained from P by replacing
every locality command of the form b : P ′ with the command con-
text _;P ′; _. Intuitively, the additional holes in P̂ are placeholders
for interleaving the code of an active adversary each time the im-
plementation of P may yield as the result of distribution. (This is
reminiscent of models of noninterference for concurrent programs,
where the adversary may run between any two program steps.)

DEFINITION 6. A compiler C is computationally sound when,
for any adversary A, for any safe source program P , for Q0, Q⃗ =
C(P ), for any polynomial commands J , B0, B1, for X = C or I ,
if P̂ is CNIX for J , B0, B1 then Q0; _[Q⃗] is CNIX for J , B0, B1.
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This security definition states that our implementation is at least
as secure as the source program against active adversaries (P̂ ).
Hence, if an adversary succeeds against our implementation, there
must be an adversary that also succeeds against the source program.

4. CODE SLICING
The first stage of our compiler recursively slices a source com-

mand into a set of (core command) threads.
We distinguish between static threads (produced by slicing) and

dynamic threads (their runtime instances). Threads in loops may
be instantiated several times, so we need to distinguish between
these instances to secure the control flow and prevent replay at-
tacks. Hence, threads are parameterized by a tuple of loop indexes,
treated as formal parameters for static threads and as distinct actual
parameters for each of their runtime instances. We let t range over
thread names and t range over dynamic thread identifiers, that is,
pairs t {̃ of a thread name and its tuple of loop indexes.

Threads outside of any loop are intended to run at most once in
any execution of the program. Anticipating on the next section, this
will be dynamically enforced by an anti-replay mechanism based
on loop indexes, so for uniformity our identifiers always include
a top-level index followed by an additional index for each nested
loop. (In this paper, we formally consider a single execution of
the program, so the top-level index is always 1, but more gener-
ally this index would be used to separate multiple executions of the
program.) For instance, the identifier of a thread called from within
two nested loops is of the form t i j k, indicating the ith execu-
tion of the program, the j th execution of the outer loop and the kth

execution of the inner loop.
By convention, the initial thread is named start, and the final

thread is named end. Thus, the static call graph is a finite di-
rected graph between thread names, and the dynamic call graph is a
(possibly infinite) directed acyclic graph between thread identifiers,
with unique root start 1 and a unique leaf end 1.

From Source Programs to Local Threads Figure 2 specifies our
slicing function C−1 from source commands to thread definitions
and core commands. Thread definitions are of the form

thread t {̃ (ℎ, �) = Ṡ

where t is a fresh thread name, {̃ is a tuple of loop indexes (with
an index for every enclosing loop in source code), ℎ is the local
host to which the thread belongs, and � is a fixed integrity level.
For brevity, we sometimes write t : Ṡ to refer to such a thread
definition, and write ℎ(t) to access its host ℎ.

The grammar for thread bodies after slicing (Ṡ) is given below;
S ranges over core commands (without localities).

E ::= call t ∣ goto t ∣ if e then E else E
Ṡ ::= S; Ṡ ∣ E

Syntactically, a thread is a program for which execution ends with
an auxiliary command call t or goto t. Command call t indicates
that the next thread to execute belongs to another host, whereas
goto t indicates that the next thread is local. We say that a thread t0
remotely (resp. locally) calls t1 when the body of t0 includes a
command of the form call t1 {̃ (resp. goto t1 {̃), and that t0 is
reachable from t1 when there is a possibly-empty series of calls (a
path) from one to the other. A path is local when it contains only
local calls.

Slicing helps ensure that every thread that is remotely called can
locally compute the expected identifier of its caller. To this end,
whenever a thread can call more than one thread (a branch) or can
be called by more than one thread (a join), slicing ensures that the

C−1 (ℎ : S+)
⋅
=

thread start i (ℎ, I(S+)) = C′1(i (ℎ, I(S+)), S+) [call end i]

C′1({̃ (ℎ, �), S) [_]
⋅
= S; _ when local(S); otherwise:

C′1({̃ (ℎ, �), ℎ′ : S+) [_]
⋅
=

thread t {̃ (ℎ, �) = _
thread t′ {̃ (ℎ′, I(S+)) = C′1({̃ (ℎ′, I(S+)), S+) [call t {̃]
call t′ {̃

C′1({̃ (ℎ, �), if e then S+
0 else S+

1) [_]
⋅
=

thread t {̃ (ℎ, �) = _
thread t0 {̃ (ℎ, �) = C′1({̃ (ℎ, �), S+

0) [goto t {̃]
thread t1 {̃ (ℎ, �) = C′1({̃ (ℎ, �), S+

1) [goto t {̃]
if e then goto t0 {̃ else goto t1 {̃

C′1({̃ (ℎ, �),while e do S+) [_]
⋅
=

thread t {̃ (ℎ, �) = _
thread tt {̃ j (ℎ, �) = if e then goto tb {̃ j else goto t {̃
thread tb {̃ j (ℎ, �) = C′1({̃ j (ℎ, �), S+) [goto tt {̃ (j + 1)]
goto tt {̃ 1

C′1({̃ (ℎ, �), S+
1 ;S+

2 ) [_]
⋅
= C′1({̃ (ℎ, �), S+

1 )
[
C′1({̃ (ℎ, �), S+

2 ) [_]
]

Figure 2: Slicing algorithm

call is a goto, the callers and callees are all on the same host and,
moreover, the matching branches and joins are on the same host.

Every thread is associated with an integrity level (used in the
control flow protocol of Section 5). This level is computed by an
overloaded function I , depending on the enclosing source locality
a : S+; it is defined as the greatest lower bound of the integrity
levels of the written variables and declassifications of S+.

EXAMPLE 2. Example 1 yields 8 threads after slicing: 6 for a
and 1 for b and c, with the following call graph

a4

c3

start

a1

a7

a8

enda2

b5

The code of thread a1 i j is

if yLH < 3 then {goto(a8 i j)} else {goto(a7 i)}

and the code of thread b5 i j is

if (yLH mod 2) = 1
then {xHL := xHL + 9}
else {skip};
call(a4 i j)

Grouping Threads into Host Commands The commands call t
and goto t are introduced only to keep track of the control flow
during compilation; they are implemented as assignments to the
variable next that holds the identifier of the next thread to execute:

call t ⋅
= goto t

⋅
= next := t

Accordingly, to every thread definition thread t {̃ (ℎ, �) = Ṡ, we
associate the command context

Case t[_]
⋅
= if fst(next) = t then Ṡ{snd(next)/{̃} else _

and, for every series of threads named t0, t̃, we define

Case (t0, t̃)[_]
⋅
= Case t0[Case t̃[_]]

After slicing, we regroup each remotely-callable thread together
with all its locally-called threads and a local scheduler, as follows.
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DEFINITION 7 (SCHEDULING). The scheduling transforma-
tion C+ maps a series of thread definitions to a series of core com-
mands Qt, one for each definition thread t {̃ (ℎ, �) = Ṡ such that
t is remotely called (starting with t = start), defined by

Qt
⋅
= if fst(next) = t then {

Ṡ{snd(next)/{̃};
while fst(next) ∈ t̃ do Case t̃[skip]}

where t̃ collect the names of all threads locally reachable from t.

Finally, the compiler C1 produces Q⃗ by applying C−1 followed
by C+ and sets an empty initialization command (Q0 = skip); the
resulting code can be scheduled using next := start 1;Nn[Q⃗] with
stop

⋅
= end 1. As can be expected at this stage of the compila-

tion, we have correctness but not security, since the adversary may
schedule our thread commands at will.

THEOREM 1 (SLICING). C1 is correct.

5. ENFORCING THE CONTROL FLOW
Next, we introduce program counters to keep track of the source

control flow. For each integrity level � associated with (at least)
a thread, the variable pc� holds a thread identifier (t {̃). At the
beginning of each thread execution, for each integrity level �, pc�
identifies the last executed thread with integrity �. We let Γ(pc�) =
(⊥C , �), Γ(lastt) = (⊥C , I(t)), and Γ(next) = (⊥C ,⊤I).

The body of each thread t {̃ produced by the slicing algorithm is
transformed by adding an assignment of the thread identifier to the
corresponding program counter, by applying the command context

SPC(t {̃)[_]
⋅
= pcI(t) := t {̃ ; _

We extend the definition of Case t[_] accordingly.
To protect each remotely callable thread t, we then guard its

code using the command context TPC(t) below. (We use the com-
mand check e then S as syntactic sugar for if e then S else skip,
to emphasize that a test failure should be interpreted as a global,
silent runtime failure; see also Fournet and Rezk 2008.)

TPC(start i)[_]
⋅
= check laststart = 0 then {laststart := 1; _}

TPC(t {̃)[_]
⋅
= check

⋀
t′ {̃′∈VA(t {̃)(pcI(t′) = t′ {̃′) then

check lastt < {̃ then {lastt := {̃; _}

where I(t) is the integrity level associated to thread t and VA(t) is
the set of thread identifiers t0 such that there exists a (non-empty)
path from t0 to t for which all intermediate threads t′ are such that:

I(t′) ≰I I(t0) ∧ I(t′) ≰I
d

s locally reachable from t I(s)

In a trusted environment, the predicate checked by TPC(t) holds
only when t is the next thread to execute. This predicate verifies
the program counters for all predecessor threads, unless they have
already been verified by a trusted predecessor. The test and the
conditional assignment on variable lastt guarantee that the thread
runs at most once for each tuple of loop indexes.

DEFINITION 8 (CONTROL FLOW). The transformation C+2
maps a series of thread definitions to a series of core commandsQt,
one for each definition thread t {̃ (ℎ, �) = Ṡ such that t is remotely
called (starting with t = start), defined by

Qt
⋅
= TPC(t {̃)[SPC(t {̃)[Q′t]]{snd(next)/{̃}

where

Q′t
⋅
= Ṡ; while fst(next) ∈ t̃ do Case t̃[skip]

and t̃ collect the names of all threads locally reachable from t.

We define C2, the two first stages of the compilation, as the trans-
formation obtained by applying C−1 ; C+2 and initializing all last-
index variables with lists of zeros:

Q0
⋅
= (lastt := 0; )t remotely callable

EXAMPLE 3. After enforcing the control flow, the code for the
thread b5 i j given in Example 2 becomes

check pc1LH = ("a8", [i; j]) then {
check last_b5LL < [i; j] then {
last_b5LL := [i; j]; pc2LL := ("b5", [i; j]);
if (yLH mod 2) = 1
then {xHL := xHL + 9}
else {skip};
call(a4 i j) } }

THEOREM 2 (CONTROL FLOW INTEGRITY).
C2 is correct and computationally sound.

6. FROM SHARED VARIABLES
TO LOCAL REPLICAS

So far, the security of our compiled code relies on the sharing of
protected variables between hosts, with an abstract policy that lim-
its the access rights of the adversary. To eliminate this assumption,
we must ensure that all variables shared between hosts are unpro-
tected (formally, that they have security label (⊥C ,⊤I), to enable
any adversary to read and write them), and instead dynamically
protect their content using cryptography.

To do so, we first implement each shared variable (x) using a se-
ries of local variables (t.x, t′.x, . . . ), which we name replicas, and
we insert explicit transfers between these replicas (t′.x := t.x) de-
pending on the data flow. This stage of the compilation is much like
a single-static-assignment transform [Alpern et al., 1988, Rosen
et al., 1988]. It syntactically guarantees that, whenever a variable is
read, we know which thread last assigned a value to that variable.
We leave the cryptographic protection of transfers between differ-
ent hosts to Section 7, where we will use the name of each replica
as a unique tag for authenticating remote transfers.

Local Replicas and Policies We write t.x for the replica of x
“owned” by t. Our intent is that only t assigns t.x, so we refer to t
as the last writer for x. The only exception arises when a thread t
locally calls a thread t′ that has other callers. In that case, for each
variable x whose last writer at t′ would depend on the caller, each
caller pushes its replica into t′.x before the local call.

We extend our security policy for replicas, as follows. Assume t
is a thread at host a. We set

C(t.x)
⋅
= C(x) ⊓ C(a) I(t.x)

⋅
= I(x) ⊔ I(a)

In case t reads x but does not write it, t.xmay still be locally written
(for instance, after verifying a MAC), but with reduced integrity. In
case t writes x but does not read it, t.x may still be locally read
(for instance as a temporary variable prior to encryption), but with
reduced confidentiality.

Static Single Remote Assignments The translation for expres-
sions and commands within a given thread is given in Figure 3. The
translation for expressions annotates each read variable with its last
writer. We let � range over assignment maps, that is, functions
from source variables to one of their replicas. We write _ for inter-
mediate, unused maps. We define �′ ⊆ � as dom(�′) ⊆ dom(�)
and ∀x ∈ dom(�′). �′(x) = �(x). The translation for com-
mands takes as input an assignment map � and returns an updated
assignment map; �t is the initial map used to translate thread t.
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[[x]]�
⋅
= �(x)

[[op(e0, . . . , en−1)]]�
⋅
= op([[e0]]�, . . . , [[en−1]]�)

[[skip]]�
⋅
= skip, �

[[x := e]]� ⋅
= t.x := [[e]]� , �[x 7→ t.x]

[[if e then S0 else S1]]�
⋅
=

let S′0, �
′
0 = [[S0(;x :=x)x∈wv(S1)∖wv(S0)]]� in

let S′1, �
′
1 = [[S1(;x :=x)x∈wv(S0)∖wv(S1)]]� in

if [[e]]� then S′0 else S′1, �
′
0

[[while e do S]]�
⋅
=

let Sℎ, �ℎ = [[(x :=x; )x∈wv(S)]]� in
let S′, �′ = [[S]]�ℎ in
Sℎ; while [[e]]�ℎ do S′, �′

[[S0; Ṡ1]]�
⋅
=

let S′0, �0 = [[S0]]� in let Ṡ′1, _ = [[Ṡ1]]�0 in S′0; Ṡ′1, _

[[if e then Ṡ0 else Ṡ1]]�
⋅
=

let Ṡ′0, _ = [[Ṡ0]]� in let Ṡ′1, _ = [[Ṡ1]]� in
if [[e]]� then S′0 else Ṡ′1, _

[[check e then Ṡ]]�
⋅
= let Ṡ′, _ = [[Ṡ]]� in check [[e]]� then Ṡ′, _

[[call t′ {̃′]]� ⋅
= call t′ {̃′, _ and check �t′ ⊆ �

[[goto t′ {̃′]]�
⋅
=

let X = {x ∈ dom(�t′ ) ∣ �(x) ∕= �t′ (x)} in
(�t′ (x) :=�(x); )x∈X ; goto t′ {̃′, _
and check �t′ ⊆ �[x 7→ �t′ (x)]x∈X

Figure 3: Replication algorithm (within thread t)

The first four cases concern local subcommands. Assignments
reset the last writer to the current thread. Branches insert extra
assignments for the variables written only in one branch; this en-
sures that �′0 = �′1. Similarly, loops insert extra assignments so
that �′ after the loop does not depend on the number of iterations.
The remaining cases concern thread commands. Calls record con-
straints on the translation of their target threads (�t′ only needs to
keep the live variables of �). Local calls are more complex, as
the callee t′ may merge several caller threads; hence, each caller
propagates writes to the callee’s replicas.

In the translation, we treat loop indexes symbolically, that is,
we translate t {̃ : P once for all instances of {̃. Accordingly, we
merge initial calls and iterations: if t is called both to enter the
loop (with final loop index 1) and to iterate (with final loop index
j+1), we merge the two functions �t {̃ 1 and �t {̃ (j+1) into a single
function �t for translating P .

The translation ensures that, for every reader, there is always a
unique last writer; this entails the insertion of transfers between
local variables when there is a merge; these transfers do not change
the semantics, but they may not comply with the source policy.

Finally, the translation of the threads t {̃ : Ṗ obtained at the end
of Section 5 consists of the threads t {̃ : [[Ṗ ]]�t for some global
assignment map �t that meets all the inclusion constraints checked
by the replication algorithm.

Initial and Final Values for Variables For a given program, an
input variable is a variable that may be read before being writ-
ten. Initially, �0 maps every input variable x to itself. To save the
need for an ad hoc protocol to distribute initial values to multiple
hosts, our implementation assumes that each input variable is ini-
tially read by a single host. Otherwise, for instance for a source
program a : P ; b : P ′ where both P and P ′ may read x before it
is written, one needs to manually rewrite the code, for instance into
a : {x := x;P}; b : P ′. The implementation restriction above is
met when, after replication, the initial variable x occurs at a single
host. Formally, our theorems do not rely on this assumption.

The final replica for each variable x is given by �end, the assign-
ment map computed when we reach the end of the top-level thread.
For consistency with the definitions of Section 3, we formally ap-
ply �−1

end to the host commands obtained after the replication stage,
so that the final value for x is stored in variable x after running the
implementation.

EXAMPLE 4. After replication, the command for thread b5 is

check (a8 i j.pc1) = ("a8", [i; j]) then {
check last_b5LL < [i; j] then {
last_b5LL := [i; j];
b5 i j.pc2 := ("b5", [i; j]);
if ((a8 i j.y) mod 2) = 1
then {b5 i j.x := (a1 i j.x) + 9}
else {skip; b5 i j.x := a1 i j.x};
call(a4 i j) } }

Let C3 extend the compilation function of Section 5 with repli-
cation before grouping the threads into host commands. We have

THEOREM 3 (SINGLE REMOTE ASSIGNMENTS).
C3 is correct and computationally sound.

7. CRYPTOGRAPHIC PROTECTION
We add cryptographic operations as required by the policy Γ,

first for confidentiality, then for integrity. We protect only entry
threads (called from some other host) and exit calls (calling some
other host). Let t be the thread to protect and t′ its callee. Before
call t′, we encrypt the variables Et,t′ then MAC the variables St,t′ .
As we enter t, we verify the MACs for variables Vt that may be
read or MACed in this thread, or recursively in any thread it may
locally call, then we decrypt variables Dt ⊆ Vt that may be read.

Next, we explain how to compute these sets of variables, collect-
ing constraints on the keys to use for these operations.

Encryption Transform For protecting t : P , we set

Dt
⋅
=
∪

u:Q locally reachable from t

{
s.x ∈ rv(Q) ∣ C(x) ∕= ⊥C ∧ ℎ(s) ∕= ℎ(t)

}
when t is callable, ∅ otherwise.

Et,t′
⋅
=
∪

u:Q reachable from t′

{s.x ∈ Du ∣ t locally reachable from s}

when t calls t′, ∅ otherwise.

Hence, a thread decrypts a variable whenever this variable is (1)
locally read by its code or one of its local callees, (2) not public,
and (3) potentially written by a remote host; and a thread encrypts
a variable whenever it may be decrypted later with this thread as
potential writer. The encryption transform rewrites every callable
thread t as follows:

∙ replace every call t′ in every locally reachable u : Q with
E(Eu,t′); call t′;

∙ replace every u : P with u : P{t.x/s.x}s.x∈Dt ;

∙ replace the resulting t : P with t : D(Dt);P .

The command D(Dt) assigns local replicas t.x for every s.x
in Dt after reading and decrypting new shared variables, such as
t.xe or t.x_ye, with (at least) the same integrity as t.x and no con-
fidentiality (⊥C ). Conversely, the command E(Et,t′) reads Et,t′ ,
then encrypts and writes them into these new variables.

We will define D as a series of decryptions, after grouping Dt

into tuples of variables that (1) share the same encryption key, and
(2) are always jointly decrypted.
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After the encryption transform, all remote reads occur on pub-
lic variables (except for the key variables of D and E). On the
other hand, the transform does not affect any confidential variables
assigned at the same host, or pc� variables, for instance.

Authentication Transform For protecting t : P , we set

Vt
⋅
=
∪

u:Q locally reachable from t

{s.x ∈ rv(Q) ∣ I(x) ∕= ⊤I ∧ ℎ(s) ∕= ℎ(t)}

when t is callable, ∅ otherwise

St,t′
⋅
=
∪

u:Q reachable from t′

{s.x ∈ Vu ∣ t locally reachable from s}

when t calls t′, ∅ otherwise

Hence, a thread dynamically verifies the integrity of any variable
that is (1) locally read by its code or one of its local callees, (2)
somewhat trusted, and (3) MACed by a remote host. (Vt includes
in particular the variables t.xe read in D(Dt), as well as the pc�
variables; all these variables are public.) And a thread MACs a
variable when it may be verified later with this thread as writer. The
authentication transform rewrites every callable thread t as follows:

∙ replace every call t′ in every locally reachable u : Q with
S(Su,t′); call t′;

∙ replace every u : Q with u : Q{t.x/s.x}s.x∈Vt ;

∙ replace the resulting t : P with t : V (Vt)[P ].

The command S may need to generate a tuple of MACs in case
there are mutually-distrusting verifiers.

We will define S as a serie of MAC computations and V as a
serie of nested verifications, after grouping variables that (1) share
the same MAC key, and (2) are always jointly MACed/verified. For
instance, we can always use a single MAC for all variables signed
by the caller and read only by the callee.

After the authentication transform, all remote reads occur on un-
protected variables (except for the cryptographic key variables).

Cryptographic Commands Figure 4 provides an implementation
of our cryptographic commands applied to a single variable. The
implementation relies on standard system libraries for the crypto-
graphic primitives. (Sℰ and SD are for symmetric encryption and
decryption, andℳ and Vℳ are for MAC computation and verifi-
cation, respectively.) It introduces auxiliary variables to hold cryp-
tographic values:

∙ s.xe for the encrypted value of s.x, with confidentiality ⊥C
and integrity I(s.x);

∙ s.xuH and s.xmH for the (public, tainted) values and MACs
of s.x, with label (⊥C ,⊥I).

To deal with sets of variables, we iterate these commands after
grouping variables into tuples. We also use similar, asymmetric
variants of these commands for initial key distribution.

A MAC verification V is an unsafe transfer (since t.x is trusted
but s.xu is tainted) guarded by a dynamic verification of the MAC.
The MACed value consists of the concatenation of the full thread
identifier (with its loop indexes), a unique constant for the source
variable, and the authenticated value. In the proof, the security
assumption on MACs enables us to treat it instead as a safe transfer
from s.x to t.x, with overwhelming probability.

Similarly, for encryptions and decryptions, the security assump-
tion enables us to replace encryptions of plaintexts with encryptions
of 0 and to perform a remote lookup instead of a decryption. The

V (s.x)[_]
⋅
= check Vℳ(ŝ ‘.x.’̂ s.xu, s.xmH , k

a
H) then {t.x := s.xu; _}

with key kaH shared by H ⊇ {ℎ(t), ℎ(s)}
D(s.x)

⋅
= t.x :=SD(s.xe, keH);

with key shared by H ⊇ {ℎ(w̃), ℎ(t)}
E(t.x)

⋅
= t.xe :=Sℰ(t.x, keH);

with key shared by H

S(t.x)
⋅
= t.xu := t.x;

(
t.xmH :=ℳ(t̂ ‘.x.’̂ t.x, kaH);

)
H∈H̃

with keys shared by H̃ such that
t.x ∈ Vu ⇒ ∃H ∈ H̃.H ⊇ {ℎ(t), ℎ(u)}

Figure 4: Symmetric cryptographic operations

resulting, “ideal” variant of the implementation is the formal basis
for our security proofs.

Shared-Key Selection We now briefly explain how we manage
the keys used in Figure 4. We assume some consistent selection of
hosts H sharing the keys between V and S, and between D and
E. The compiler introduces families of shared variables kaH and
keH for these keys. The level of a symmetric key kH shared by the
hosts a ∈ H is ℓH

⋅
= (

d
a∈H C(a),

⊔
a∈H I(a)). By definition,

this is the most secure label that can be both read and written by any
of these hosts. We need robustness for each label ℓH for which we
allocate a key. Intuitively, an adversary that can write (resp. read)
the key can also read (resp. write) anything protected at that level.

Figure 4 only expresses functionality and security constraints on
the keys, leaving the choice of which key to allocate and use to the
compiler. This choice has a significant impact on the runtime cost
of cryptographic protection. For instance, when a host performs
a series of encryptions, it is worth solving their constraints with a
minimal number of keys, so that we can first group the variables to
protect and perform fewer, larger encryptions. Besides, encryption
and authentication with compatible sets of hosts should clearly be
replaced with joint authenticated encryption. We leave these op-
timizations as future work. For the time being, our compiler uses
simple heuristics to minimize the overall number of keys.

LetKa andKe be the sets of subsets of hosts for which the com-
piler has allocated an authentication key or an encryption key, re-
spectively. Accordingly, we define a command that generates these
keys before running our implementation code:

Q′0
⋅
= (kaH :=Gℳ(); )H∈Ka(keH :=GSℰ(); )H∈Ke

and add this command before the initial command Q0 of the previ-
ous compilation stage.

Our main theorem relies on standard computational cryptographic
assumptions: we say that an encryption scheme (resp. MAC scheme)
is secure when it is IND-CCA2 (resp. INT-CMA).

THEOREM 4 (CRYPTOGRAPHIC PROTECTION).
If the cryptographic schemes used in C4 are correct and secure

and all labels for the security keys are robust, then C4 is correct
and computationally sound.

8. EXPERIMENTAL RESULTS
The prototype compiler consists of 11,000 lines of ML code. It

is parameterized by a module that defines the security lattice (we
have coded simple lattices and variants of the DLM [Myers and
Liskov, 1998]). It takes as input a program written in an extension
of the source language of Section 2 (S+). It applies the translations
of Sections 4, 5, 6, and 7, and produces a source ML program that
can then be compiled using the F# compiler, and executed using
the .NET runtime environment. The produced code is in a subset of
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ML similar to the core commands of Section 2; the main syntactic
difference is that we use ML references instead of shared variables,
and thus emit x := !y instead of x := y.

The compiler handles different types of data such as booleans,
integers, strings, lists and tuples. To increase expressiveness of the
source language, the programmer may use any ML function such
as printf as primitive. The replication algorithm of Section 6 as-
sumes given an initial map �t for each thread; it describes how to
check their correctness but not how to construct them. Concretely,
our compiler relies on a fixpoint computation on dominance fron-
tiers to build �t [Cytron et al., 1991]. The produced code uses stan-
dard cryptographic primitives from the .NET libraries: AES with
fresh random IVs for symmetric encryption, HMACSHA1 for sym-
metric MACs, RSA-OAEP for asymmetric encryption, and FDH-
RSA for signatures. The sharing of global, unprotected memory is
implemented by sending its updated content when calling a thread
on a remote host. Communications rely on TCP connections. For
each host, distribution information (IP addresses, ports, and public
keys) is retrieved at run-time from a trusted configuration file.

Figure 5 summarizes our experimental results. LOC gives the
number of lines of code for source and compiled programs; l/t gives
the numbers of locality commands and of threads after splitting (re-
motely callable threads plus local threads); crypto gives the number
of encryption/decryption and MAC/verification statements emitted
by the compiler; keys gives the number of symmetric encryption/-
MAC keys they use; runtime gives total execution times in seconds
(without/with cryptography).

Program empty is just a:{skip}. It gives the baseline execution
time due to the testing environment (which feeds default values to
programs using a pipe) and execution initialization (mainly reading
a configuration file). Program running is our running example
(Example 1). Program rpc corresponds to a program that loops
500 times to increment a shared protected variable at two differ-
ent locations. The cryptographic overhead is due to 2000 symmet-
ric encryptions and decryptions, and 4000 MAC computations and
verifications (for the incremented variable and the pc variable of
the the control flow protocol). Program guess implements a ba-
sic “guess a number” with three participants. Program hospital
collects information from three different principals that are then
declassified by a doctor for the patient. Program taxes considers
a scenario where a TPM (trusted platform module, with the most
trustworthy integrity) runs a tax calculation with secret information
provided by the user and a tax company.

9. CONCLUSION
We show how to compile high-level programs with information-

flow policies to distributed systems, with adequate cryptographic
protection to preserve their confidentiality and integrity properties.
We believe this approach provides a safer, more reliable alternative
to custom cryptographic protocol design. Our prototype compiler
is still a proof of concept, whose performance can be significantly
improved. Nonetheless, experimental results suggest that the cryp-
tographic overhead is on par with handwritten code.

Acknowledgments We thank Jérémy Planul, Andrei Sabelfeld,
David Sands, Eugen Zălinescu, and anonymous reviewers for their
comments.

Program LOC l/t crypto keys runtime
empty 2 102 1 (1+0) 0/0 0/0 0/0 1.59 1.63
running 18 464 3 (5+3) 2/2 4/4 1/2 1.58 1.71
rpc 11 321 2 (3+3) 2/2 4/4 1/1 1.63 2.58
guess 52 912 7 (13+3) 2/2 13/16 2/3 1.69 1.98
hospital 33 906 5 (9+0) 4/4 11/11 4/8 1.70 1.84
taxes 55 946 4 (7+2) 8/8 16/16 4/6 1.71 1.77

Figure 5: Experimental results
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