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Abstract—In consumer video conferencing, lighting conditions
are usually not ideal thus the image qualities are poor. Lighting
affects image quality on two aspects: brightness and skin tone.
While there has been much research on improving the brightness
of the captured images including contrast enhancement and
noise removal (which can be thought of as components for
brightness improvement), little attention has been paid to the
skin tone aspect. In contrast, it is a common knowledge for
professional stage lighting designers that lighting affects not only
the brightness but also the color tone which plays a critical
role in the perceived look of the host and the mood of the
stage scene. Inspired by stage lighting design, we propose an
active lighting system which automatically adjusts the lighting
so that the image looks visually appealing. The system consists
of computer controllable LED light sources of different colors so
that it improves not only the brightness but also the skin tone
of the face. Given that there is no quantitative formula on what
makes a good skin tone, we use a data driven approach to learn
a good skin tone model from a collection of photographs taken
by professional photographers. We have developed a working
system and conducted user studies to validate our approach.

Index Terms—Active lighting, image quality, video conference,
visual perception, skin tone

I. INTRODUCTION

Online video conferencing is becoming increasingly popular
thanks to the improvement in network bandwidth, computation
power, and the availability of affordable video cameras. In the
past few years, we have witnessed the rapid growth of webcam
market. Recently, we are seeing the trend of laptops with built-
in video cameras and microphones. Some of the laptops even
provide easy-to-use interfaces for people to sign up and use
video conference service providers. These devices and services
allow home users to easily have video chat with families and
friends through internet with little cost.

The experience of video conferencing depends on the image
quality which is affected by a number of factors: video camera,
lighting condition, network bandwidth, compression software,
etc. In this paper, we address the lighting issue. The lighting
in an average home environment or an office is usually not
designed for video conferencing. Poor lighting conditions
result in low quality images. The lighting affects image quality
in two aspects. The first is the brightness which is related to
the signal to noise ratio (SNR). When there is not enough
light, the captured image is dark. If one tries to brighten the
image in software, it will be very noisy because of the low
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SNR of the captured image. Recently some video camera
manufactures allow their cameras to automatically increase
the camera exposure time when there is not enough light.
Increasing camera exposure does improve SNR, but it degrades
frame rate and causes motion blur.

In addition to brightness, lighting also affects the color tone
which is important for human perception. The importance of
color tone has long been recognized by TV show filming
professionals. In TV show filming, the lighting designers
carefully select the positions as well as the colors of the lights
so that the host and the stage scene look visually appealing.
They recognize that color tone plays a critical role in the
perceived look of the host and the mood of the stage [1],
[2].

Inspired by stage lighting design, we propose an active
lighting system to automatically adjust the lighting so that
the image looks visually appealing. Our hardware prototype
consists of computer controllable LED lights with different
colors. Since there is no quantitative formula on what makes
a face image look visually appealing, we use a data driven
approach to learn a good skin tone model. In particular, we
collected a set of celebrity images from the web. These images
are typically taken by professional photographers under good
lighting conditions, and it is reasonable to assume that the
skin tones on these images look visually appealing. So we use
these images to train our good skin tone model. The lighting
control is then formulated as an optimization problem where
the unknowns are the voltages of the LED lights while the
objective function is the distance between the face region color
statistics of the captured image to the good skin tone model.

II. RELATED WORK

In the past several years, there has been a lot of progress
from webcam hardware manufactures on the gain and white
balance control of the cameras. Some webcams have built-
in face tracking functionalities and the detected face area is
used to automatically determine the exposure and gain control
parameters. As we mentioned earlier, automatic exposure
control does not solve the brightness problem because in dark
lighting conditions, increasing exposure results in low frame
rate and motion blur.

Most webcams have built-in auto white balance function-
ality. The objective of white balance is to make sure that the
color of an object on the captured image matches the color that
is reflected from the object in the real scene. Given that the
color of the captured image depends on both the reflected color
in the scene and the camera’s color response, a camera’s white
balance is an important factor affecting the image quality.
However, white balance alone does not guarantee that the face



images have good skin tone. For example, in an environment
with fluorescent lamps, the face skin color typically looks pale.
The image captured by a camera with perfect white balance
will show a pale-looking skin. We would like to note that one
could potentially use the webcam’s white balance control API
to implement the tone mapping function of the virtual lighting
system [3]. The results will be similar to those obtained from
the virtual lighting technique, but it saves the computational
cost of the tone mapping operation.

Many image processing techniques have been developed
to improve the brightness and contrast of the captured im-
ages [4],[5],[6],[7]. The main limitation is that it is difficult to
significantly improve SNR for the images captured under dark
lighting conditions. In addition, none of these work addresses
the skin tone issue.

Recently, Liu et. al [3] developed a virtual lighting technique
to improve the skin tone by learning a good skin tone model
from training images. Since it is a software based solution,
it again cannot significantly improve image SNR. Our active
lighting system can be thought of an extension of [3]. Similar
to [3], we also use a skin tone model learned from training
data as our target. Instead of relying on image processing, we
use a hardware-based solution by controlling physical lights
automatically. We envision that such a lighting system can
be built into a laptop. Together with built-in microphones
and cameras, it will be very easy for people to have video
conferencing without worrying about video quality.

LED lighting system has been used to collect images under
various illuminations and obtain the reflectance of faces or
other types of objects [8], [9], [10], [11]. The recovered re-
flectance can then be used for synthesizing images under novel
illumination conditions. In addition, Park et. al [11] proposed
to use the recovered reflectance for image segmentation.

Wang et. al [12] used infrared (IR) lights to improve the
uneven lighting on the face region. Since IR lighting results
in images with unnatural color, it cannot improve the skin
tone.

There has been a lot of research on estimating lighting and
albedo from a single image of a face [13], [14], [15], [16],
[17], [18]. The face image can then be relit under a different
lighting environment. These techniques are computationally
expensive and currently they are not practical for real time
video conferencing.

III. SYSTEM OVERVIEW

As shown in Figure 1, our hardware prototype consists of
two light stands one on each side of the laptop so that both
sides of the face are lit equally. Each light stand contains 20
LED lights in 4 different colors: red, green, blue, and white.
The LEDs are mounted on a circuit board covered with a
diffuser which softens the lighting and makes it less intrusive.
The LEDs of the same color are connected to an LED driver.
The four LED drivers are connected to a data acquisition
controller which is plugged into a laptop’s USB port. The
data acquisition controller provides a programmable interface
allowing applications to adjust the voltages of the LED drivers.
Each LED driver is a voltage to current converter which adjusts

SUBMISSION TO TCSVT: ACTIVE LIGHTING

Fig. 1. Hardware setup.
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Fig. 2. Circuit design.

the brightness of the LED lights. Figure 2 shows the circuit
design of the hardware system.

Since there is no quantitative formula on what makes a face
image look visually appealing, we use a data driven approach
to learn a good skin tone model as what was described in
[3]. For completeness, we briefly summarize the learning
procedure below.

We collected 400 celebrity images from the web as the
training data set and built a Gaussian mixture model for the
color distribution in the face region. Let n denote the number
of training images. The face region of each training image is
identified using automatic face detection [19]. The mean and
standard deviation of the pixels in the face region per color
channel are computed. In this paper, we use YUV color space
because the default output formats of most of the webcams
are in YUV space. For each training image i, let x; =
(mi,,mi,m, o}, 04,0,)" denote the vector that consists of
the mean and standard deviation of the three color channels in
the face region. The distribution of the vectors {Xi}lgign are
modeled as a mixture of Gaussians. Let g denote the number of
mixture and z; = (/m), mJ,, m}, &7 ,57,5)) denote the mean
vector of the j*" Gaussian mixture component, j = 1,..., g.
In our training process, we use an EM algorithm to construct
a Gaussian mixture model with ¢ = 5 mixture components.
The reason that we choose g = 5 is because we empirically
tried various values of g to train Gaussian mixture models
and found that when g = b5, the resulting classes have the
best balance (i.e. they have similar sizes). Figure 3 shows a
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sample image of the five classes and Figure 4 shows the mean
colors z; of each class. Please note that these images are not
necessarily the most representative images in their classes. In
addition, each class may contain people of different skin types.

Fig. 3. A sample image from each class.

Given any input image captured by the video camera,
let x = (my,My,My,0y,04,0,)T denote the means and
standard deviations of the three color channels in the face
region of the input image. Let D;(x) denote the Mahalanobis
distance from x to j’th component, that is,

Dj(x) = \/(x — )75, (x — 2,). )

The target mean color is defined as a weighted sum of the
Gaussian mixture component centers z;, j = 1,..., g, where
the weights are inversely proportional to the Mahalanobis
distances. More specifically, denoting [* = (I;‘,I;,Ijj)
the target mean color vector, we have

(I*, 15,157

_ T
e s« (m), mi, m))", )

i Mm

where

YD)
! Z?:l 1/Di(x)’

Once the target face mean color I* is determined, the system
searches for the voltages 1 of the LED lights as well as the
camera exposure k so that the mean color of the captured
face image I(k,1) is equal to the target mean color. This is
formulated as an optimization problem where the objective
function is the difference between the face region average color
of the captured image I(k,1) and the target mean color I*,

3)

Fig. 4. Mean colors of the five classes.

and the unknowns are the voltages of the LED lights 1 and the
camera exposure k. The optimization problem is

where 1 = [I, 1y, 1y, l]T and 1., 14,1y, 1, are the voltages for
red, green, blue and white LEDs, respectively.

In section IV, we will introduce the photometric model
of the system which describes the function I(k,1) in more
detail. In section V, we will describe the algorithm to solve
the optimization problem of equation 4.

IV. PHOTOMETRIC MODEL

Based on our hardware setting, the captured image [ is a
funtion of camera exposure k£ and voltages 1 of LED lights.
Following [20], we model the image intensity I.(x,y) as:

L(z,y) = /. (k / p(z,y,)\)E(z,y,)\)sc(A)d)\> fen 6)

where (z,y) is the pixel location, ¢ indicates the color channel,
the integration on the wavelength X is over visible spectrum,
p(x,y, \) is the spectral reflectance of the surface (albedo),
E(x,y, A) is the irradiance on the scene due to the LED lights
and environmental illuminant, s.()\) is the camera spectral
response for channel ¢, k is the camera exposure, and f. is
the camera response function, which maps irradiance to pixel
intensity for each channel c. In addition, €. is the additive
noise including sensor noise, quantization noise, etc.

We assume that the surface reflectance p and the illuminant
irradiance F in the face area are constant, and the noise €. can
be ignored. Denote 1. = |F| > wyer le(z,y) as the average
intensity in the face region where F' is the set of pixels in
the face region and |F'| denotes the cardinality of F. From
equation 5, we have

1= £ (k[ B ) ®)

Further more, the irradiance incident on the surface F/(\) is
the sum of all LED light sources and environment illuminant.
Assuming the irradiance due to each LED light is a linear
function of the voltage 1 , the illumination E(\) can be
decomposed into

E\) = E°(\) + LE"(\) + 1,BY(N) + LEY(\) + L, BV (N),
(N
where EY()\) is the environment illuminant, E"()),

E9(\),E*(\) and EY(\) are the irradiance per unit
voltage due to the red, green, blue and white LED lights,
respectively, and 1= [, 14, [}, l,] are the input voltages.

Under the assumption that the surface reflectance p is
effectively constant for each color channel, which is reasonable
for many ordinary surfaces [21], we have

fe (kpc / E()\)sc()\)d)\>

fe (kpc / (EO(A) Y 1LET(N)

LY + BEY () + LB (V) sc@)dA) ®

I



The algorithm presented in this paper works with any color
format. In our implementation, we choose to use YUV format
because the video output in most webcam applications are in
YUV format. We denote the three color channels as y,u, v,
and denote I = (I, I,,, I,]*. Denote f(x) as a vector function
f(X) = [fy(xy)a fu(xu)a fv(Xv)]T7 where fy’ fu, and f, are
the camera response function for each channel. From equation
8, we have

I = f(kP(e" + Al)), )
py 0 0
where P = 0 pu 0 |, = [e9,e),el]7, 1 =
0 0 py
Ary Agy Aby A’wy
[lr,lg,lb,lw}T, and A = Ay Agy Ay Ay |- In
Arv Agv Abv va

addition, € = [ E9(\)s.(A)d\, and Ay = [ E1(N)sc(A)dA,
where ¢ € {r,g,b,w} indicates the type of LED lights, and
¢ € {y,u,v} is the color channel index.

V. OPTIMIZATION

Given the optimization problem in equation 4, we write the
objective function of exposure k and voltage vector 1 as:
G =)~ P = S~ 1) (T~ 1),  (10)
where 1 = (I, 1y, 1y, l])7 and I, 14,1y, 1, are the voltages for
red, green, blue and white LEDs, respectively.

For most of the webcams, the exposure can be adjusted only
as a discrete number in a limited range. Each voltage ranges
from O to 10. Based on the characteristic of the two types
of variables, we adopt an alternating optimization scheme
which consists of two main steps: (1) Adjusting lighting 1
using gradient descent while keeping exposure k fixed; and (2)
Adjusting the exposure k in a discrete manner while keeping
lighting 1 fixed.

In the step of lighting adjustment, we optimize the objective
function (equation 10) with respect to the light voltages 1 while
k is fixed. We use a gradient descent approach in our current
implementation, though other approaches such as Levenberg-
Marquardt method [22] are also applicable. The gradient of

the objective function %—Cl; = %)(I — I*) can be written as:
6G * * *
va:a:ﬂ[ IL,—I; I,—I; I,—I;]", (1

where J is the 3 % 4 Jacobian matrix representing the local
changes of the image I relative to the light voltages 1, and
y,u,v are the three channels of the image. By using the
gradient descent approach, the update of 1 is computed as:

Ly gy oy L) = (I, Uy, Iy L)' — YVG. (12)

We do not use line search because we would like to reduce the
number of objective function evaluations (each objective func-
tion evaluation requires changing the voltages thus causing the
LED lights to change. Frequent lighting changes are disturbing
to the user). Specifically, we adopt v = m in the
experiments, which guarantee that the maximum change of the
voltage of LED lights in each iteration is 1.0.
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Note that, it is possible to compute Jacobian J analytically
if one could obtain f and the parameters in equation 9. It
would require complicated calibration of light, surface albedo
and camera response which is not feasible for consumer video
conferencing application.

In our system, we choose to estimate Jacobian matrix J
numerically. Initially, we estimate the Jacobian matrix through
finite differencing by explicitly sampling around the initial
voltages 1°. Let us denote the image captured under the initial
voltages 1° = (12,19,17,19,)" as I°. We then increase 19 by a
small amount A, and let I' denote the captured image. Denote
AI' = T1'—1° and Al' = (A,0,0,0)”. We have the equation

JAI = AT (13)
We use the same procedure for the other three voltages
19,13,19,, and obtain equations

JAY = AT% i =2,3,4. (14)

where A12 = (0,4,0,0)7, AI® = (0,0,A,0)T, and Al* =
(0,0,0, A)T.

Denote Ly, = , and B3,y =

A 0 0 0
0 A 0 O
0 0 A 0
0 0

[AIl A7 AP AL
written in matrix form as

|. Equations 13 and 14 can be

JLyw4 = B3ya. (15)
Therefore, the Jacobian J can be computed as
J = Bsz.Lg). (16)

The computed Jacobian J is locally accurate around light
voltages 1°. As the LED light voltages change in the optimiza-
tion procedure, re-evaluating Jacobian J is necessary since the
gradient is not globally constant. One way to re-evaluating .J
is to follow the same finite differencing procedure as described
before. But it takes too much time and it is disturbing to
the user. Referring to our photometric model in equation 9,
the irradiance reaching into the camera is linear with respect
to the voltages 1, and the camera response f, which maps
the irradiance to image intensity, is monotonically increasing
and locally close to being linear. Thus the Jacobian J, even
though not globally constant, does not vary significantly. Based
on this observation, we keep using the information obtained
from the initial Jacobian estimate, and update the Jacobian as
we obtain new samples. More specifically, suppose we obtain
a number of new images I’ under voltages 1), i = 5,...,n.
Denote AT? = I* — "1 and Al* =1t — 1", We have new
equations

JAY = ATt i =5,...,n. (17)
Combining with equation 15, we have
JL =B, (18)

where L = [Lasa, AL, ..., Al"],  and B =
[33*4, AP, ..., AI”]. Therefore the new Jacobian is
estimated as

J=BLT@LLT)". (19)
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Fig. 5. The state graph of the optimization procedure.

As we sample more points near the final solution, the updated
Jacobian matrix will get closer to the true value.

In summary, we initially use finite differencing to compute
the Jacobian once. After that, we update the Jacobian as we
obtain more samples during the optimization procedure.

In the second step of exposure adjustment, we optimize
equation 10 with respect to k. Given that the number of
exposure levels is quite small, we simply increase or decrease
the exposure one level at a time. To avoid over-exposure and
under-exposure, we keep the exposure in a certain safe range.

The optimization procedure is shown as a state graph in
Figure 5. The exposure adjustment step is contained in the state
“Exposure and White Light Init” and “Exposure Adjust”. The
lighting adjustment step is contained in the state “VG Init”
and “VG Update”. We will describe each state in more detail
in the following subsections.

A. Exposure and White Light Initialization

When the system is started, it goes to the state of “Exposure
and White Light Init”. The system first checks the overall
intensity of the image (no face detection yet). If it is too dark,
the system sets the voltage of the white LED light to be an
initial voltage value. Then the camera exposure is adjusted
to ensure a reasonable face brightness. Denote Y,,;, as the
minimal intensity value and Y,,,, as the maximal intensity
value, which are set to be 70 and 170 respectively in our
implementation. If the average intensity in the face region
is less than Y,,;, or larger than Y,,,,, we will increase or
decrease the exposure level one level at a time until the average
intensity in the face region I, falls in between Y., and Yi,qz.

B. Setting up the Target Face Color

After adjusting camera exposure, the system enters the state
of “Target 1*” . In this state, we use the average face color of
the current frame to compute the target face color I* based
on our learned good skin tone model as described in Section
III.

_Init i=0 voltage !’

Incoming frame

ValidFrame?

yes

Fast Face Detection
I’ = average color
of the face region

Evaluate gradient VG
P=0I-yWG
Set voltage to I°

VG Update

Fig. 6. Flow chart of the gradient initialization state “V G Init”.

Set voltage to 1"
i++

C. Adjusting Voltages Using Gradient Descent

Lighting adjustment contains two states: “VG Init” and
“VG Update”. The goal is to search for an optimal voltage
vector 1 through a gradient descent procedure as described in
equation 12.

1) Gradient Initialization: The state “V G Init” is the first
state of the lighting adjustment step. Figure 6 shows the
algorithm flow in this state. We use a finite differencing
approach to compute the Jacobian thus obtaining the gradient
as described in equations 11 and 16. This state consists of 5
iterations. At iteration 4 = 0, it captures the image I° at the
initial voltage 1°. For each subsequent iteration i = 1,...,4,
it sets the voltage 1° = 1° + Al’ and captures image I?. Due
to the delay of the LED light control device, there is a few
frames of delay between the time when the LED light changes
and the time when a new voltage is set. As a result, each time
when we change the voltage, we have to wait for a few frames
before we capture the image. As shown in Figure 6, we only
capture the image I* when the current frame becomes valid,
that is, several frames after the voltage is modified.

After obtaining I?, i = 0,...,4, we use equation 16 to
evaluate the Jacobian and use equation 11 to evaluate the
gradient. Finally we set the new voltage to be 1° =10 — VG
to get ready for entering the next state “VG Update”.

2) Gradient Update: After gradient initialization, we enter
the state “V(G Update”. In this state, we use a gradient
descent scheme to search for the optimal voltages to minimize
the objective function in equation 10. The algorithm flow is
illustrated in Figure 7. It first checks whether the average color
of the face region is close to the target color. Again, due to the
delay of the LED light control device, each time when we set
a new voltage, we cannot capture the image until the frame
becomes valid, that is, several frames after the new voltage is
set.

If the target color is not reached within a pre-specified
threshold, that is, |I* — T *| > A, the system updates the
gradient by using the newly captured image according to




|.Incoming frame

EGUpa)

Fast Face Detection
I' = average color
of the face region

no

I' = Current Voltage
"' = Previous Voltage

[~ = Previous Color Under [~
Update gradient VG

"' = - yVG

yes
Set voltage to ™'

Exposure Adjust In Target
xception 9

Fig. 7. Flow chart of the gradient update state “V G update”.

equations 11 and 19. After that, the desired new voltage is
computed as I'T! = 1! — yV@. If the desired new voltage is
out of the range of the hardware device, the system goes to
either the state “Exposure Adjust” or the state “Exception”
depending on whether the exposure is adjustable or not.
Otherwise, the system sets the new voltage and goes to the
next iteration.

D. Exposure Adjust

If the desired voltages are out of the valid voltage range
while the objective function value is still relatively large, it
is an indication that we need to change the camera exposure.
Therefore, the system switches to the state “Exposure Adjust”.

If the desired voltages are larger than the maximum allowed
value, we set the camera exposure one step higher. In the
opposite case, we set the camera exposure one step smaller.
After changing the camera exposure, the state will automat-
ically transit to “V(G Init” and a new iteration of lighting
adjustment begins.

E. Exception

The state “VG Update” will transit to the state “Exception”
if neither the lights nor the camera exposure can be adjusted
any further. The exception case rarely happens in our experi-
ments.

F. Converging at Target and Global Illumination Detection

When there are environment illumination changes after the
system enters the state “In Target”, the system needs to adjust
the camera exposure and voltages accordingly. We have imple-
mented a simple environment illumination change detector in
our system. After the system enters the state “In Target”, the
system invokes the environment illumination change detector.
At each frame, the detector computes the average intensity
of the entire image including the non-face area. The detector
maintains a mean value and standard deviation over time and
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use the accumulated statistics to determine whether there is
an environment illumination change in the new frame. If the
environment illumination change is detected, the system goes
back to the beginning state “Exposure and White Light Init”
and starts the optimization loop.

VI. RESULTS

We have built a working system and tested the system
on different people under a variety of environment lighting
conditions including dark environment, normal lighting envi-
ronment and back lighting environment. In general, the system
takes 3 — 10 iterations to converge. The video, which is avail-
able publicly at “ftp://ftp.research.microsoft.com/users/zliu/
TCSVT/activeLightPaper.wmv”, is a screen capture of the
system in action where the black rectangles are the face
detection results.

Fig. 8. (a): Image captured by a webcam with the auto exposure enabled. (b):
The result of virtual lighting enhancement on image (a). (c): Image captured
when the table lamp is turned on. Again the camera auto exposure is enabled.
(d): Image captured with the active lighting system.

Fig 8 (a) is an image captured by a webcam in a regular
meeting room. The webcam’s auto exposure and auto white
balancing are turned on. Image (b) is the result of virtual
lighting enhancement. We can see that (b) looks better than
(a) thanks to its improvement on brightness and skin tone. But
it looks blurry because its signal to noise ratio is low. Image
(c) is captured when a table lamp is turned on. Even though
there is enough light on the face, the image does not look
appealing because the light is too harsh and not uniform. In
contrast, image (d) is captured with our active lighting system.
We can see that (d) looks significantly better than both (b) and
(©).

In the rest of the section, we show a series of experiments
with different people and different room lighting environment.
The results will be used for our user study as reported at
the end of this section. In order to be able to easily switch
between three different room lighting configuration: normal,
dark, and back lighting, we chose a room which has direct
lighting sources aimed at the wall. Since the wall is white,
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Fig. 9. Captured video frames in three different room lighting environment:
dark room lighting for the top row, normal room lighting for the middle
row, and back lighting for the bottom row. The left column are video frames
captured without active lighting and the camera auto exposure is turned on.
The right columns are video frames captured with the active lighting.

when the direct lighting sources are on, the wall is brightened
thus creating the back lighting effects.

Fig 9 shows image samples captured under three different
lighting environment. The left column are images captured
without active lighting while the camera auto exposure is
enabled. The right column are images captured when the active
lighting system is turned on. We can see that the images on the
right are more appealing because the faces are lit uniformly
and have a better skin tone.

Fig 10 compares the results of adjusting white lights only
with those of adjusting color lights under normal room lighting
environment. The images on the left column are captured when
the white LED lights are turned on to maximum brightness,
and both the camera auto exposure and auto white balance
are turned on. The images on the right are obtained with our
active lighting system. We can see that the bluish color tone
on the face, which is caused by the blue background of the
computer monitor, is “removed” by our active lighting system.

Fig 11 compares the results of active lighting with the
results obtained by using face-tracking based auto exposure
control. The environment lighting is a back lighting condition
which is regarded as the most difficult lighting condition for
video conferencing. The face-tracking based auto exposure
control system tracks the face region and uses the intensity
of the face region to control the camera exposure. Thanks
to this feature, the images on the left column are reasonably
good considering the tough lighting condition. But the results
obtained from our active lighting system, which are shown in
the right column, are much better.

We have also conducted user studies, where the users are

Fig. 10. Comparison of white LED lights vs. active lighting. All the images
are captured in a normal room lighting environment. The images on the left
are captured when the white LED lights are turned on and set to maximum
brightness and the camera auto exposure is enabled. The images on the right
are captured with our active lighting system.

s N
a

Fig. 11. Comparison of face-tracking based auto exposure vs. active lighting.
The environment lighting is back-lighting where the wall is well lit while the
face is dark. The images on the left column are obtained by using face-tracking
based auto exposure control. The images on the right are captured with our
active lighting system.

asked to view the videos with/without active lighting side by
side (as shown in Fig 9, Fig 10 and Fig 11). After viewing
the video, the users give a score to each video, within the
range of 1 (very poor quality) to 5 (very good quality). A
total of 15 users responded in the experiment. The average
score corresponding to each image sequence are showed in
Table I, Table II and Table III respectively. According to the
response of all users, the video quality resulted from adjusting
color lighting significantly outperforms the one without color
lighting in all the sequences.

Finally we use SNR values in R, G, and B color channels
for quantitative evaluation. The image resolution is 320x240
which is the most commonly used image resolution for
webcam-based video conferencing. Fig 12, Fig 13 and Fig 14
show two data sets captured in three difference environments:
dark, normal and back-lighting. Their corresponding SNR
results of each color channel are shown in Table IV, Table V



[ Sequences [ Auto-exposure | Active lighting ]

1 1.58 3.83

2 2.67 4.33

3 1.17 3.92
TABLE I

USER STUDY RESULTS FOR IMAGES CAPTURED IN THREE DIFFERENT
LIGHTING ENVIRONMENT. THE IMAGES ARE SHOWN IN FIG 9.

[ Sequences [ White LED lights | Active lighting ]

1 2.58 4.16
2 2.58 3.83
TABLE I

USER STUDY RESULTS FOR COMPARISON OF WHITE LED LIGHTS VS.
ACTIVE LIGHTING SYSTEM. THE IMAGES ARE SHOWN IN FIG 10.

[ Sequences [ Face-tracking-based auto exposure | Active lighting ]

1 1.58 4.00
2 1.67 3.83
TABLE III

USER STUDY RESULTS FOR COMPARISON OF FACE-TRACKING BASED
AUTO EXPOSURE CONTROL VS. ACTIVE LIGHTING. THE IMAGES ARE
SHOWN IN FIG 11.

Fig. 12. Images for SNR evaluation where the room lighting environment
is dark lighting. The images on the left column are obtained without active
lighting but the camera auto exposure is turned on. The right column are
images captured with active lighting.

and Table VI. Since we do not have the ground truth for the
noises, we use the high frequency component in a selected
smooth skin region as the noise estimate. We can see that
the SNR in all color channels is improved significantly by
using the full color lighting enhancement in our active lighting
system. We also tested on images of resolution 640x480 and
found that the higher the image resolution is, the larger the
SNR improvement we gain from our system.

VII. CONCLUSION AND FUTURE WORK

We presented a novel active lighting system to improve the
perceptual image quality for video conferencing. The system
consists of computer controllable LED light sources of differ-
ent colors. We have developed an algorithm to automatically
determine the voltages of the LED lights so that the captured
face images look visually appealing. The system has been

SUBMISSION TO TCSVT: ACTIVE LIGHTING

Fig. 13. Images for SNR evaluation where the room lighting environment is
normal lighting. The images on the left column are obtained without active
lighting but the camera auto exposure is turned on. The right column are
images captured with active lighting.

Fig. 14. Images for SNR evaluation where the room lighting environment
is back-lighting. The images on the left column are obtained without active
lighting but the camera auto exposure is turned on. The right column are
images captured with active lighting.

tested on people of different skin types in different lighting
environments. We conducted a user study, and the result
shows that our active lighting system significantly improves
the perceived image quality. In addition, we have measured
the SNRs with and without active lighting, and demonstrated
that our active lighting system results in significant SNR
improvement.

One main limitation of the current system is that the target
face color may not be reachable if the voltages of LED drivers
are out of physical range to adjust. This occurs, for example,
when the user moves too far from the LED lights. One remedy
is to learn the user’s face appearance model when the user is
close to the LED lights and use the learned appearance model
to enhance the face image when the user moves away from
the light sources. This is one of the future directions that we
would like to pursue.

In our current implementation, we assume the input image
is in YUV color format. In case the input image is not in YUV
color format, we need to perform a color format conversion



MANUSCRIPT

[ Sequences [ Auto-exposure | Active lighting ]

66.84 91.18
1 72.92 87.80
78.33 80.88
66.48 79.11
2 64.86 73.95
56.61 64.80
TABLE IV

SNR RESULTS FOR IMAGES CAPTURED IN DARK-LIGHTING
ENVIRONMENT, SEE FIG 12.

[ Sequences [ Auto-exposure | Active lighting ]

85.88 93.27
1 87.15 89.23
73.70 79.70
55.68 81.51
2 47.91 72.08
45.47 62.90
TABLE V

SNR RESULTS FOR IMAGES CAPTURED IN NORMAL-LIGHTING
ENVIRONMENT, SEE FIG 13.

[ Sequences [ Auto-exposure | Active lighting ]

72.39 95.14
1 72.07 87.46
55.86 72.42
50.60 86.84
2 34.35 78.60
35.62 61.89
TABLE VI

SNR RESULTS FOR IMAGES CAPTURED IN BACK-LIGHTING
ENVIRONMENT, SEE FIG 14.

for each frame which increases computational overhead. One
remedy is to train a skin tone model for every color space.
At run time, the system automatically chooses the appropriate
skin tone model corresponding to the input image format.

From the usability point of view, the most convenient way
to deploy such an active lighting system is to have the LED
lights built into computer monitors. Currently, many computer
monitors already have built-in microphones and cameras. It
is conceivable that computer monitors will also have built-in
LED lights. We would like to design an active lighting system
which is integrated with a computer monitor in the future. In
our current hardware prototype, there is a delay between the
time when a new voltage is set and the time when the lighting
changes. This delay is caused by the LED control device. We
would like to eliminate the delay by using a better device or
building a customized hardware device.

While making images visually appealing is in general im-
portant for improving video conferencing experience, there are
situations where aesthetics might not be the most appropriate
objective. For example, in remote medical diagnosis, the
doctor may need to see the remote patient under a calibrated
lighting condition so that the doctor’s diagnosis is affected by
the lighting. In such a situation, computer controllable LED
lighting system is still useful, but the objective function will
be different. The system would need to compensate or correct
the environment lighting so that the overall lighting matches
the doctor’s specification.
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