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Abstract. The Asymmetric Traveling Salesperson Path (ATSPP) prob-
lem is one where, given an asymmetric metric space (V, d) with specified
vertices s and t, the goal is to find an s-t path of minimum length that
visits all the vertices in V .

This problem is closely related to the Asymmetric TSP (ATSP) prob-
lem, which seeks to find a tour (instead of an s-t path) visiting all the nodes:
for ATSP, a ρ-approximation guarantee implies an O(ρ)-approximation
for ATSPP. However, no such connection is known for the integrality gaps
of the linear programming relxations for these problems: the current-best
approximation algorithm for ATSPP is O(log n/ log log n), whereas the
best bound on the integrality gap of the natural LP relaxation (the subtour
elmination LP) for ATSPP is O(log n).

In this paper, we close this gap, and improve the current best bound
on the integrality gap from O(log n) to O(log n/ log log n). The resulting
algorithm uses the structure of narrow s-t cuts in the LP solution to
construct a (random) tree witnessing this integrality gap. We also give
a simpler family of instances showing the integrality gap of this LP is at
least 2.

1 Introduction

In the Asymmetric Traveling Salesperson Path (ATSPP) problem, we are given
an asymmetric metric space (V, d) (i.e., one where the distances satisfy the tri-
angle inequality, but potentially not the symmetry condition), and also specified
source and sink vertices s and t, and the goal is to find an s-t Hamilton path of
minimum length.

This ATSPP problem is a close relative of the Asymmetric TSP problem
(ATSP), where the goal is to find a Hamilton tour instead of an s-t path. For
this ATSP problem, the log2 n-approximation of Frieze, Galbiati, and Maffioli [9]
from 1982 was improved by constant factors in [4,11,8]. A remarkable break-
through on this problem was an O( logn

log logn )-approximation result due to Asad-
pour, Goemans, M

‘
adry, Oveis Gharan, and Saberi [2] where they also bounded

the integrality gap of the subtour elimination linear programming relaxation for
ATSP by the same factor.
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Surprisingly the study of ATSPP has been of a more recent vintage: the
first approximations appeared around 2005 [12,6,8]. It is easily seen that the
ATSP reduces to ATSPP in an approximation preserving fashion (by guess-
ing two consecutive nodes on the tour). In the other direction, [8] showed that
a ρ-approximation to the ATSP problem implies an O(ρ)-approximation to
the ATSPP problem. Using the above-mentioned O( logn

log logn )-approximation for
ATSP [2], this implies an O( log n

log logn )-approximation for ATSPP as well.
The subtour elimination linear program generalizes simply to the ATSPP

problem and is given in Section 2. However, the best previous integrality gap for
this LP for ATSPP was O(log n) [10]. In this paper we show the following result.

Theorem 1. The integrality gap of the subtour elimination linear program for
the ATSPP problem is at most O( logn

log logn ).

We also give a simple construction showing that the integrality gap of this LP is
at least 2; this example is simpler than previous known integrality gap instance
showing the same lower bound, due to Charikar, Goemans, and Karloff [5].

Given the central nature of linear programs in approximation algorithms, it is
useful to understand the integrality gaps for linear programming relaxations of
optimization problems. Not only does this study give us a deeper understanding
into the underlying problems, but also upper bounds on the integrality gap of
LPs are often required for some reductions to go through. For example, the poly-
logarithmic approximation guarantees in the work of Nagarajan and Ravi [13]
for Directed Orienteering and Minimum Ratio Rooted Cycle, and those in the
work of Bateni and Chuzhoy [3] for Directed k-Stroll and Directed k-Tour were
all improved by a factor of log logn following the improved bound of O( logn

log logn )
on the integrality gap of the subtour LP relaxation for ATSP. Note that these
improvements do not follow merely from improved approximation guarantees.

1.1 Our Approach

Our approach to bound the integrality gap for ATSPP is similar to that for
ATSP [2], but with some crucial differences. We sample a random spanning tree
whose marginals are close to the optimal LP solution x∗ and then augment the
directed version of this tree to an integral circulation using Hoffman’s circulation
theorem while ensuring the t-s edge is only used once. Following the correspond-
ing Eulerian circuit and deleting the t-s edge results in a spanning s-t walk.

However, the non-Eulerian nature of the ATSPP problem makes it difficult to
satisfy the cut requirements in Hoffman’s circulation theorem if we sample the
spanning tree directly from the distribution given by the LP solution. It turns
out that the problems come from the s-t cuts U that are nearly-tight: i.e., which
satisfy 1 < x∗(∂+(U)) < 1 + τ for some small constant τ — these give rise to
problems when the sampled spanning tree includes more than one edge across
this cut. Such problems also arise in the symmetric TSP paths case (studied in
a recent paper of An, Kleinberg, and Shmoys [1]): their approach is again to take
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a random tree directly from the distribution given by the optimal LP solution,
but in some cases they need to boost the narrow cuts, and they show that the
loss due to this boosting is small.

In our case, the asymmetry in the problem means that boosting the narrow
cuts might be prohibitively expensive. Hence, our idea is to preprocess the dis-
tribution given by the LP solution to tighten the narrow cuts, so that we never
pick two edges from a narrow cut. Since the original LP solution lies in the span-
ning tree polytope, lowering the solution on some edges means we need to raise
the fractional value on other edges, which may cause the cost to increase, and
technical heart of the paper is to ensure this can be done with little extra loss.

1.2 Other Related Work

The first non-trivial approximation for ATSPP was an O(
√
n)-approximation by

Lam and Newman [12]. This was improved to O(log n) by Chekuri and Pál [6],
and the constant was further improved in [8]. The paper [8] also showed that
ATSP and ATSPP had approximability within a constant factor of each other.
All these results are combinatorial and do not bound integrality gap of ATSPP.
A bound of O(

√
n) on the integrality gap of ATSPP was given by Nagarajan

and Ravi [14], and was improved to O(log n) by Friggstad, Salavatipour and
Svitkina [10]. Note that there is no known result relating the integrality gaps of
the ATSP and ATSPP problems in a black-box fashion.

In the symmetric case (where the problems become TSPP and TSP respec-
tively), constant factor approximations and integrality gaps have long been
known. We do not survey the rich body of literature on TSP here, instead
pointing the reader to, e.g., the recent paper on graphical TSP by Sebő and Vy-
gen [17]. It is, however, important to mention the the recent 1.618-approximation
for TSPP in a beautiful new result by An, Kleinberg, and Shmoys [1] which has
recently improved to a 1.6-approximation by Sebő [16]. They proceed via bound-
ing the integrality gap of the LP relaxation, and their algorithm also proceeds
via studying the narrow s-t cuts; the connections to their work are discussed in
Section 1.1.

1.3 Notation and Preliminaries

Given a directed graphG=(V,A), and two disjoint sets U,U ′ ⊆ V , let ∂(U ;U ′) =
A ∩ (U × U ′). We use the standard shorthand that ∂+(U) := ∂(U ;V \ U), and
∂−(U) := ∂(V \U ;U). When the set U is a singleton (say U = {u}), we use ∂+(u)
or ∂−(u) instead of ∂+({u}) or ∂−({u}). For undirected graph H = (V,E), we
use ∂(U ;U ′) to denote edges crossing between U and U ′, and ∂(U) to denote
the edges with exactly one endpoint in U (which is the same as ∂(V \ U)).

For a digraph G = (V,A), a set of arcs B ⊆ A is weakly connected if the
undirected version of B forms a connected graph that spans all vertices in A.

For values xa ∈ R for all a ∈ A, and a set of arcs B ⊆ A, we let x(B) denote
the sum

∑
a∈B xa.
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Given an undirected graph H = (V,E), we let χT ∈ {0, 1}|E| denote the char-
acteristic vector of a spanning tree T , then the spanning tree polytope is the
convex hull of {χT | T spanning tree of H}. See, e.g., [15, Chapter 50] for sev-
eral equivalent linear programming formulations of this polytope. We sometimes
abuse notation and call a set of directed arcs T a tree if the undirected version
of T is a tree in the usual sense.

2 The Rounding Algorithm

In this section, we give the linear programming relaxation for the Asymmetric
TSP Path problem, and show how to round it to get a path of cost at most
O( log n

log logn ) times the cost of the optimal LP solution. We then give the proof,
with some of the details being deferred to the following sections.

Given a directed metric graph G = (V,A) with arc costs {ca}a∈A, we use
the following standard linear programming relaxation for ATSPP which is also
known as the subtour elimination linear program.

minimize :
∑

a∈E

caxa (ATSPP)

s.t. : x(∂+(s)) = x(∂−(t)) = 1 (1)

x(∂−(s)) = x(∂+(t)) = 0 (2)

x(∂+(v)) = x(∂−(v)) = 1 ∀ v ∈ V \ {s, t} (3)

x(∂+(U)) ≥ 1 ∀ {s} ⊆ U � V (4)

xa ≥ 0 ∀ a ∈ E

We begin by solving the above LP to obtain an optimal solution x∗. Consider the
undirected (multi)graph H = (V,E) obtained by removing the orientation of the
arcs of G. That is, create precisely two edges between every two nodes u, v ∈ V
in H , one having cost cuv and the other having cost cvu. (Hence, |E| = |A|.) For
a point w ∈ R

A
+, let κ(w) denote the corresponding point in R

E
+, and view κ(w)

as the “undirected” version of w.
We will use the following definition: An s-t cut is a subset U ⊂ V such that

{s} ⊆ U ⊆ V \ {t}. The LP constraints imply that x∗(∂+(U))− x∗(∂−(U)) = 1
for every s-t cut U . Also, x∗(∂+(U)) = x∗(∂−(U)) ≥ 1 for every nonempty
U ⊆ V \ {s, t}.
Definition 1 (Narrow cuts). Let τ≥0. An s-t cutU is τ -narrow if x∗(∂+(U))<
1 + τ (or equivalently, x∗(∂−(U)) < τ).

The main technical lemma is the following:

Lemma 1. For any τ ∈ [0, 1/4], one can find, in polynomial-time, a vector
z ∈ [0, 1]A (over the directed arcs) such that:

(a) its undirected version κ(z) lies in the spanning tree polytope for H,
(b) z ≤ 1

1−3τ x∗ (where the inequality denotes component-wise dominance), and

(c) z(∂+(U)) = 1 and z(∂−(U)) = 0 for every τ-narrow s-t cut U .
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Before we prove the lemma (in Section 2.1), let us sketch how it will be useful
to get a cheap solution to the ATSPP. Since z (or more correctly, its undirected
version κ(z)) lies in the spanning tree polytope, it can be represented as a convex
combination of spanning trees. Using some recently-developed algorithms (e.g.,
those due to [2,7]) one can choose a spanning tree that crosses each cut only
O( log n

log logn ) times more than the LP solution. Finally, we can use O( logn
log logn )

times the LP solution to patch this tree to get an s-t path. Since the LP solution
is “weak” on the narrow cuts and may contribute very little to this patching (at
most τ), it is crucial that by property (c) above, this tree will cross the narrow
cuts only once, and that too, it crosses in the “right” direction, so we never need
to use the LP when verifying the cut conditions of Hoffman’s circulation theorem
on narrow cuts. The details of these operations appear in Section 3.

2.1 The Structure of Narrow Cuts

We now prove Lemma 1: it says that we can take the LP solution x∗ and find
another vector z such that if a s-t cut is narrow in x∗ (i.e., the total x∗ value
crossing the cut lies in [1, 1 + τ), then z crosses it to an extent precisely 1.
Moreover, the undirected version of z can be written as a convex combination
of spanning trees, and za is not much larger than x∗

a for any arc a.
Note that the undirected version of x∗ itself can be written as a convex com-

bination of spanning trees. Thus if we force z to cross the narrow cuts to an
extent less than x∗ (loosely, this reduces the connectivity), we must increase the
fractional value on other arcs. To show we can perform this operation without
changing any of the coordinates by very much, we need to study the structure
of narrow cuts more closely. (Such a study is done in the symmetric TSP path
paper of An et al. [1], but our goals and theorems are somewhat different.)

First, say two s-t cuts U and W cross if U \W and W \ U are non-empty.

Lemma 2. For τ ≤ 1/4, no two τ-narrow s-t cuts cross.

Lemma 2 says that the τ -narrow cuts form a chain {s} = U1 ⊂ U2 ⊂ . . . ⊂ Uk =
V \ {t} with k ≥ 2. For 1 < i ≤ k. let Li := Ui \ Ui−1. We also define L1 = {s}
and Lk+1 = {t}. Let L≤i :=

⋃i
j=1 Li and L≥i :=

⋃k+1
j=i Li. For the rest of this

paper, we will use τ to denote a value in the range [0, 1/4]. Ultimately, we will
set τ := 1/4 for the final bound but we state the lemmas in their full generality
for τ ≤ 1/4.

Next, we show that out of the (at most) 1+τ mass of x∗ across each τ -narrow
cut Ui, most of it comes from the “local” arcs in ∂(Li;Li+1).

Lemma 3. For each 1 ≤ i ≤ k; x∗(∂(Li, Li+1)) ≥ 1− 3τ .

Now, recall that κ(x∗) denotes the assignment of arc weights to the graph H =
(V,E) from the previous section obtained by “removing” the directions from
arcs in A. We prove that the restriction of κ(x∗) to any Li almost satisfies the
partition inequalities that characterize the convex hull of connected graphs. For a
partition π = {W1, . . . ,W�}, we let ∂(π) denote the set of edges whose endpoints
lie in two different sets in the partition.
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Lemma 4. For any 1 ≤ i ≤ k + 1 and any partition π = {W1, . . . ,W�} of Li,
we have κ(x∗)(∂(π)) ≥ �− 1− 2τ .

The following corollary will be useful.

Corollary 1. For any partition π of Li, we have κ(x∗)(∂(π))
1−2τ ≥ |π| − 1.

Finally, to efficiently implement the arguments in the proof of Lemma 1, we need
to be able to efficiently find all τ -narrow cuts Ui. This is done by a standard
recursive algorithm that exploits the fact that the cuts are nested.

Lemma 5. There is a polynomial-time algorithm to find all τ-narrow s− t cuts.

We are now in a position to prove Lemma 1, the main result of this section.

Proof (Proof of Lemma 1). The claimed vector z can be described by linear
constraints: indeed, consider the following LP on the variables z where con-
straints (5) imply that κ(z) is in the convex hull of spanning connected graphs [15,
Corollary 50.8a].1

κ(z)(∂(π)) ≥ |π| − 1 ∀ partitions π of V (5)

za ≤ 1
1−3τ x∗

a ∀ a ∈ A (6)

z(∂+(Ui)) = 1 ∀ τ -narrow s-t cuts Ui (7)

z(∂−(Ui)) = 0 ∀ τ -narrow s-t cuts Ui (8)

za ≥ 0 ∀ a ∈ A (9)

We demonstrate a feasible z as follows.

za =

⎧
⎪⎨

⎪⎩

x∗
a

x∗(∂(Li;Li+1))
if a ∈ ∂(Li;Li+1) for some i;

x∗
a

1−2τ if a ∈ E[Li] for some i;

0 otherwise.

(10)

We claim that this solution z satisfies the above constraints. Constraints (8) and
(9) are satisfied by construction. Constraint (6) follows from Lemma 3 for edges
in ∂(Li;Li+1) and by construction for rest of the edges. For constraint (7), note
that

z(∂+(Ui)) = z(∂(Li;Li+1))+ z(∂+(Ui)\∂(Li;Li+1)) =
x∗(∂(Li;Li+1))

x∗(∂(Li;Li+1))
+0 = 1.

To complete the proof, we now show constraints (5) holds. It suffices to show
that κ(z) can be decomposed as a convex combination of characteristic vectors of

1 The statement of Lemma 1 makes a claim about κ(z) being in the convex hull of
spanning trees and not spanning connected graphs. However, the equivalent state-
ment for spanning trees will follow by dropping some edges from the connected
subgraphs in the decomposition of z to get spanning trees. Constraints (7) and (8)
will still be satisfied by y since we retain connectivity.
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connected graphs. For 1 ≤ i ≤ k+1, let zi denote the restriction of κ(z) to edges
whose both endpoints are contained in Li. Then Corollary 1, constraints (9), and
[15, Corollary 50.8a] imply that zi can be decomposed as a convex combination
of integral vectors, each of which corresponds to an edge set that is connected
on Li. Next, let z

′ denote the restriction of κ(z) to edges whose both endpoints
are contained in some common Li for some i. Since the sets E(L1), . . . , E(Lk+1)
are disjoint, we have that z′ =

∑
i z

i (where the addition is component-wise).
Furthermore, z′, being the sum of the zi vectors, can be decomposed as a convex
combination of integral vectors corresponding to edge sets E′ such that the
connected components of the graph H ′ = (V,E′) are precisely the sets {Li}k+1

i=1 .
Next, let z′′ denote the restriction of κ(z) to edges contained in one such

∂(Li;Li+1). We also note that the sets ∂(L1;L2), . . . , ∂(Lk;Lk+1) are disjoint.
By construction, we have z′′(∂(Li;Li+1)) = 1 for each 1 ≤ i ≤ k so we may
decompose z′′ as a convex-combination of integral vectors, each of which includes
precisely one edge across each ∂(Li;Li+1).

Now, adding any integral point y′ in the decomposition of z′ to any integral
point y′′ in the decomposition of z′′ results in an integral vector that corresponds
to a connected graph: each Li is connected by y′ and consecutive Li are connected
by y′′. By construction of z, we have κ(z) = z′+z′′ so we may write z as a convex
combination of characteristic vectors of connected graphs, each of which satisfies
constraints (5).

To see why z can be found efficiently, we first compute all τ -narrow cuts using
Lemma 5. Then z is easy to compute in equation 10. Finally, [15, Corollary 51.6a]
implies the decomposition of κ(z) into a convex combination of connected graphs
can be done efficiently. Thus the arguments in the footnote to reduce z such that
κ(z) is in the spanning tree polytope can be implemented efficiently.

3 Obtaining an s-t Path

Having transformed the optimal LP solution x∗ into the new vector z (as in
Lemma 1) without increasing it too much in any coordinate, we now sample a
random tree such that it has a small total cost, and that the tree does not cross
any cut much more than prescribed by x∗. Finally we add some arcs to this tree
(without increasing its cost much) so that it is Eulerian at all nodes except {s, t},
and hence gives us an Eulerian s-t walk. By the triangle inequality, shortcutting
this walk past repeated nodes yields a Hamiltonian s− t path of no greater cost.
While this general approach is similar to that used in [2], some new ideas are
required because we are working with the LP for ATSPP—in particular, only
one unit of flow is guaranteed to cross s-t cuts, which is why we needed to deal
with narrow cuts in the first place. The details appear in the rest of this section.

3.1 Sampling a Tree

For a collection of arcs A ⊂ A, we say A is α-thin with respect to x∗ if |A ∩
∂+(U)| ≤ αx∗(∂+(U)) for every ∅ � U � V . The set A is also β-approximate
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with respect to x∗ if the total cost of all arcs in A is at most β times the cost
of x∗—i.e.,

∑
a∈A ca ≤ β

∑
a∈A cax

∗
a. The reason we are deviating from the

undirected to the directed setting is that the orientation of the arcs across each
τ -narrow cut will be important when we sample a random “tree”.

Lemma 6. Let τ ∈ [0, 1/4]. Let β = 3
1−3τ and α = Θ( logn

τ log logn ). There is a

randomized, polynomial time algorithm that, with probability at least 1/2, finds
an α-thin and β-approximate (with respect to x∗) collection of arcs A that is
weakly connected and satisfies |A∩ (∂+(U))| = 1 and |A∩ (∂−(U))| = 0 for each
τ-narrow s-t cut U .

Proof. Let z be a vector as promised by Lemma 1. From κ(z), randomly sample
a set of arcs A whose undirected version T is a spanning tree on V . This should
be done from any distribution with the following two properties:

(i) (Correct Marginals) Pr[e ∈ T ] = κ(z)e
(ii) (Negative Correlation) For any subset of edges F ⊆ E, Pr[F ⊆ T ] ≤∏

e∈F Pr[e ∈ T ]

This can be obtained using, for example, the swap rounding approach for the
spanning tree polytope given by Chekuri et al. [7]. As in [2], the negative corre-
lation property implies the following theorem.

Theorem 2. The tree T is α-thin with high probability.

By Lemma 1(b), property (i) of the random sampling, and Markov’s inequality,
we get that A (from Lemma 6) is 3

1−3τ -approximate with respect to x∗ with
probability at least 2/3. By a trivial union bound, for large enough n we have
with probability at least 1/2 that A is both α-thin and β-approximate with
respect to x∗. It is also weakly connected—i.e., the undirected version of A
(namely, T ) connects all vertices in V .

The statement for τ -narrow s-t cuts follows from the fact that z satisfies
Lemma 1(c). That is, A contains no arcs of ∂−(U), since z(∂−(U)) = 0 (for U
being a τ -narrow s-t cut). But since T is a spanning tree, Amust contain at least
one arc from ∂+(U). Finally, since z(∂+(U)) is exactly 1, then any set of arcs
supported by this distribution we use must have precisely one arc from ∂+(U).

3.2 Augmenting to an Eulerian s-t Walk

Finally, we wrap up by augmenting the set of arcs A to an Eulerian s-t walk.
For this, we use Hoffman’s circulation theorem, as in [2], which we recall here
for convenience (see, e.g, [15, Theorem 11.2]):

Theorem 3. Given a directed flow network D = (V,A), with each arc having
a lower bound �a and an upper bound ua (and 0 ≤ �a ≤ ua), there exists a
circulation f : A → R+ satisfying �a ≤ f(a) ≤ ua for all arcs a if and only if
�(∂+(U)) ≤ u(∂−(U)) for all U ⊆ V . Moreover, if the � and u are integral, then
the circulation f can be taken to be integral.
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Set lower bounds � : A → {0, 1} on the arcs by:

�a =

{
1 if a ∈ A or a = ts
0 otherwise

For now, we set an upper bound of 1 on arc ts and leave all other arc upper
bounds at ∞. We compute the minimum cost circulation satisfying these bounds
(we will soon see why one must exist). Since the bounds are integral and since A
is weakly connected, this circulation gives us a directed Eulerian graph. Further-
more, since uta = �ta = 1, the ts arc must appear exactly once in this Eulerian
graph. Our final Hamiltonian s-t path is obtained by following an Eulerian cir-
cuit, removing the single ts arc from this circuit to get an Eulerian s-t walk, and
finally shortcutting this walk past repeated nodes. The cost of this Hamiltonian
path will be, by the triangle inequality, at most the cost of the circulation minus
the cost of the ts arc.

Finally, we need to bound the cost of the circulation (and also to prove one
exists). To this end, we will impose further upper bounds u : A → R≥0 as follows:

ua =

⎧
⎨

⎩

1 if a = ts
1 + (1 + τ−1)αx∗

a if a ∈ A
(1 + τ−1)αx∗

a otherwise

We use Hoffman’s circulation theorem to show that a circulation f exists sat-
isfying these bounds � and u (The calculations appear in the next paragraph.)
Since u is no longer integral, the circulation f might not be integral, but it does
demonstrate that a circulation exists where each arc a 
= ts is assigned at most
(1 + τ−1)αx∗a more flow in the circulation than the number of times it appears
in A. Consequently, it shows that the minimum cost circulation g in the setting
where we only had a non-trivial upper bound of 1 on the arc ts can be no more
expensive (since there are fewer constraints), and that circulation g can be cho-
sen to be integral. The cost of circulation g is at most the cost of f , which is at
most ∑

a∈A

caua =
∑

a∈A
ca + (1 + τ−1)α

∑

a∈A

cax
∗
a + cts.

Subtracting the cost of the ts arc (since we drop it to get the Hamilton path) and
recalling that A is 3

1−3τ -approximate with respect to x∗ (and hence
∑

a∈A ca ≤
3

1−3τ

∑
a∈A cax

∗
a, we get that the final Hamiltonian path has cost at most

(
3

1− 3τ
+ (1 + τ−1)α

)∑

a∈A

cax
∗
a,

and hence O( logn
log log n ) times the cost of the LP relaxation for τ = 1/4. This

proves the claim that the cost of the s-t path we found is O( logn
log log n ) times the

LP value, with constant probability, and completes the proof of Theorem 1.
One detail remains: we need to verify the conditions of Theorem 3 for the

bounds � and u. Firstly, it is clear by definition that �a ≤ ua for each arc a. Now
we need to check �(∂+(U)) ≤ u(∂−(U)) for each cut U . This is broken into four
cases (where saying U is a u-v cut means u ∈ U, v 
∈ U).
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1. U is a τ -narrow s-t cut. Then �(∂+(U)) = 1, since A contains only one arc
in ∂+(U). But 1 = uts ≤ u(∂−(U)).

2. U is an s-t cut, but not τ -narrow. Then by the α-thinness of A,

�(∂+(U)) ≤ αx∗(∂+(U)) = αx∗(∂−(U)) + α.

On the other hand,

u(∂−(U))≥ (1+τ−1)αx∗(∂−(U))=αx∗(∂−(U))+τ−1αx∗(∂−(U))≥αx∗(∂−(U))+α

where the last inequality used the fact that x∗(∂−(U)) ≥ τ .
3. U is a t-s cut. Then

�(∂+(U)) ≤ 1 + αx∗(∂+(U)) = 1 + αx∗(∂−(U))− α ≤ αx∗(∂−(U)),

the last inequality using that α ≥ 1. Moreover

u(∂−(U)) ≥ (1 + τ−1)αx∗(∂−(U)) ≥ αx∗(∂−(U)).

Then �(∂+(U)) ≤ u(∂−(U)).
4. U does not separate s from t. Then

�(∂+(U)) ≤ αx∗(∂+(U)) = αx∗(∂−(U)) ≤ (1+τ−1)αx∗(∂−(U)) ≤ u(∂−(U))

4 A Simple Integrality Gap Example

In this section, we show that the integrality gap of the subtour elimination
LP ATSPP is at least 2. This result can also be inferred from the integrality gap
of 2 for the ATSP tour problem [5], but our construction is relatively simpler.

For a fixed integer r ≥ 1, consider the directed graph Gr defined below (and
illustrated in Figure 1). The vertices of Gr are {s, t}∪{u1, . . . , ur}∪{v1, . . . , vr};
the edges are as follows:
• {su1, sv1, urt, vrt}, each with cost 1,
• {u1vr, v1ur}, each with cost 0,
• {ui+1ui | 1 ≤ i < r} ∪ {vi+1vi | 1 ≤ i < r}, each with cost 1,
• and {uiui+1 | 1 ≤ i < r} ∪ {vivi+1 | 1 ≤ i < r}, each with cost 0.

Let Fr denote the ATSPP instance obtained from the metric completion of Gr.

Lemma 7. The integrality gap of the LP ATSPP on the instance Fr is at least
2− o(1).

Proof (sketch). The assignment x∗
a = 1

2 for every edge a of Fr corresponding to
an edge of Gr is feasible for LP ATSPP with cost k+1. However, any spanning
s− t walk in Gr has length at least 2k−O(1), so the optimum ATSPP solution
in Fr also has cost at least 2k −O(1).
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Fig. 1. The graph Gr with r = 5. The solid edges have cost 1 and the dashed edges
have cost 0.

5 Conclusion

In this paper we showed that the integrality gap for the ATSPP problem is
O( log n

log logn ). In fact, our proof also shows an integrality gap of α for ATSPP
whenever we can construct a procedure which takes a point y ∈ R

|E| in the
spanning tree polytope of an undirected (multi)graph H = (V,E) and outputs
a tree T that is (a) α-thin, and (b) also satisfies |T ∩ ∂(U)| = 1 for any cut U
where y(∂(U)) = 1. We also showed a simpler construction achieving a lower
bound of 2 for the subtour elimination LP.
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