
Cryptographically Sound Implementations
for Typed Information-Flow Security

Cédric Fournet
Microsoft Research

MSR-INRIA Joint Centre
fournet@microsoft.com

Tamara Rezk
MSR–INRIA Joint Centre
Tamara.Rezk@inria.fr

Abstract
In language-based security, confidentiality and integrity policies
conveniently specify the permitted flows of information between
different parts of a program with diverse levels of trust. These
policies enable a simple treatment of security, and they can often be
verified by typing. However, their enforcement in concrete systems
involves delicate compilation issues.

We consider cryptographic enforcement mechanisms for imper-
ative programs with untrusted components. Such programs may
represent, for instance, distributed systems connected by some
untrusted network. In source programs, security depends on an
abstract access-control policy for reading and writing the shared
memory. In their implementations, shared memory is unprotected
and security depends instead on encryption and signing.

We build a translation from well-typed source programs and
policies to cryptographic implementations. To establish its correct-
ness, we develop a type system for the target language. Our typing
rules enforce a correct usage of cryptographic primitives against ac-
tive adversaries; from an information-flow viewpoint, they capture
controlled forms of robust declassification and endorsement. We
show type soundness for a variant of the non-interference property,
then show that our translation preserves typability.

We rely on concrete primitives and hypotheses for cryptogra-
phy, stated in terms of probabilistic polynomial-time algorithms
and games. We model these primitives as commands in our tar-
get language. Thus, we develop a uniform language-based model
of security, ranging from computational non-interference for prob-
abilistic programs down to standard cryptographic hypotheses.

Categories and Subject Descriptors D.2.0 [Software Engineer-
ing]: Protection Mechanisms; F.3.1 [Specifying and Verifying and
Reasoning about Programs]: Specification techniques.

General Terms Security, Verification, Design, Languages.

Keywords Secure information flow, confidentiality, integrity, non-
interference, type systems, compilers, probabilistic programs, cryp-
tography, computational model.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL’08), pp 323–335, January 7–12, 2008, San Francisco, CA, USA.
Copyright c© 2008 ACM 978-1-59593-689-9/08/0001. . . $5.00

1. Introduction
One of the open challenges in security is to reliably protect pro-
gram implementations by compilation (Abadi 1998). To this end,
one needs languages that let the programmer specify security re-
quirements and reason about them using simple abstractions, as
well as tools that can produce code to enforce these requirements.

In particular, when considering the integrity and confidential-
ity of information, the verification of distributed programs entan-
gles different aspects of system implementations, ranging from
application-level information-flow control down to cryptographic
algorithms and communication protocols (themselves depending
on adequate integrity and confidentiality control for their crypto-
graphic keys). Our thesis is that the cryptographic aspects should
be left to the compiler.

In language-based information-flow security, confidentiality
and integrity policies are specified using security labels, equipped
with a partial order that describes permitted flows of information
(Denning 1976; Zdancewic and Myers 2001). Security labels as-
sociated to program variables specify who can read from (confi-
dentiality) and who can write to (integrity) a given variable. The
preservation of confidentiality and integrity policies is expressed as
non-interference properties, guaranteeing that the knowledge of an
attacker with limited access to variables is not augmented by any
program execution.

We consider cryptographic enforcement mechanisms for confi-
dentiality and integrity in imperative programs. Our security model
accounts for active adversaries, represented as untrusted (or un-
known) parts of the program that may change unprotected mem-
ory during execution. The resulting programs may represent, for
instance, distributed systems connected by some untrusted net-
work, or untrusted machines containing protected subsystems. Ac-
cording to the program semantics, security depends on an abstract
read/write policy for accessing shared memory. In their crypto-
graphic implementation, shared memory is unprotected, and secu-
rity depends instead on encryption and signing when accessing the
shared memory.

A first basic example Consider two parties a and b that wish
to perform some computation securely by exchanging a series of
messages over some untrusted network. Using shared memory, we
may write for instance

; (x := 1)a; ; (if x then y := 2 else y := z)b; ; (y := y+1)a;

where the parentheses ()a and ()b indicate code that runs on behalf
of a and b, respectively, and where the placeholders stand for any
untrusted code that may run in-between. Assuming that untrusted
code does not access x, y, and z, we would expect for instance that
z remains secret and y = 3 at the end of any run. To this end, a
needs to securely pass x to b, then b needs to securely pass y to a.

1

In a less abstract setting, such flows of information between
variables may involve communication over untrusted channels, e.g.
shared memory that may be read and modified by active adver-
saries, with some adequate encryption and signing. For example,
assuming the variables xe, xs and ye, ys are used to pass the en-
crypted values and signatures for x and y, respectively, the second
command (if x then y := 2 else y := z)b may be implemented as

if V(xe, xs, kv) then (

xb := D(xe, kd);

if xb then yb := 2 else yb := zb;

ye := E(yb, ke); ys := S(ye, ks))

where, in order to read x out of its wire format xe, xs, the code
first verifies (V) the signature then performs a decryption (D) to
extract a local copy of x into xb; and, conversely, for writing y, the
code first encrypts (E) its updated copy yb and then signs (S) the
encrypted value.

This implementation code does not rely on the confidentiality
or integrity of the shared variables used on the wire (variables xe,
xs, ye, ys). Instead, it relies on the adequate generation and man-
agement of the keys used for verifying, decrypting, encrypting, and
signing, as well as security assumptions on the cryptographic prim-
itives. If we rely on a public-key signature scheme, for instance, the
integrity of the verification key kv must be higher than the integrity
of x, while the confidentiality of the signing key ks must be high
enough to protect the integrity of y. Also, if the keys are used for
other purposes (and we can hardly dedicate 4 keys to every vari-
able), we need to carefully control their interaction. For instance,
in the code above, we cannot use the same keys for protecting x
and y, as an adversary may then achieve y = 2 at the end of the
computation by inserting the code ye := xe; ys := xs between
b and a. Besides, we cannot assume that the computation always
completes successfully, as indeed an adversary may insert ys := 0
before b’s code and thus cause the signature verification to fail, so
we also need to qualify our notion of integrity for this computation.

Symbolic versus computational cryptography In contrast with
most language-based approaches, we do not rely on symbolic
“black box” cryptography. Despite considerable successes for pro-
tocol verification, symbolic cryptography may be dangerously ab-
stract for protocol design, especially as regards indistinguishability
properties and information-flow. For example, cryptographic algo-
rithms do not actually guarantee the confidentiality of their keys as
values—only that not enough information is leaked to effectively
recover an encrypted payload or fake a signature (see e.g. Abadi
and Rogaway 2002). Hence, under standard assumptions, an adver-
sary may learn which keys are used by traffic analysis, potentially
opening a side channel if key selection depends on a secret guard.
Instead of symbolic cryptography, we use a concrete model with
probabilistic polynomially-bounded algorithms on bitstrings, and
standard security hypotheses (IND-CCA2, IND-CMA). Thus, we
gain a more precise and realistic information-flow result: we guar-
antee that the probability that any given polynomial-time adversary
illegally obtains (or influences) information becomes negligible as
the keys get long enough.

Our contributions

1. Starting from an imperative language with information-flow
policies for both confidentiality and integrity, we adapt a simple
type system for non-interference to accommodate a “fail-stop”
semantics for runtime checks in the presence of active attackers.

2. We develop a target language for implementations that rely on
cryptography, with a probabilistic semantics. We use it to con-
veniently express cryptographic algorithms, active adversaries,

and oracles as well as our implementation code in a precise set-
ting. We can thus recast standard cryptographic assumptions
as properties on probabilistic programs. In order to reconcile
this style of properties with classic information-flow properties
in a uniform framework, we also reformulate non-interference
more syntactically, as a game coded in our language with ex-
plicit commands for programs, active adversaries, and tests.

3. We equip this probabilistic language with a type system for
checking the usage of cryptography. From an information view-
point, we capture controlled forms of declassification (down-
grading of confidentiality levels of variables) after encryption
and endorsement (upgrading of integrity levels of variables)
after signature verification. We regard our type system as a
tool for structuring cryptographic proofs. Indeed, the game-
rewriting arguments in the main proofs are expressed as typed
program transformations. To our knowledge, this is the first
computationally sound type system for cryptographic informa-
tion flow that can handle active adversaries.

4. We give a typed translation from the simple language to the tar-
get language. We show that, if a source program is typable, then
its translation is also typable, hence it has the property of com-
putational non-interference against probabilistic polynomial-
time active adversaries. To our knowledge, this is the first cryp-
tographic translation for general information-flow security.

Limitations Our results apply to a large class of protocols and
program translations, but they still have important limitations from
a general programming viewpoint. For example, we do not model
concurrency to avoid the complications of non-determinism in
computational models (see e.g. Adão and Fournet 2006). Also, as
in prior types for computational cryptography, we separately keep
track of every key, which excludes key generations within loops.

Our theorems rely on global conditions: that programs are poly-
nomial, and that some variables are initialized before being read,
and assigned only in specific parts of the code. We do not enforce
these conditions by typing; they can be checked independently, and
sometimes achieved by preliminary program transformations.

Related work Laud (2001) pioneers work on information flow re-
lying on concrete cryptographic assumptions. He introduces com-
putational non-interference for encryption in a model with pas-
sive adversaries. Our definitions generalize this property to the ac-
tive case, with adversaries that may interfere with the normal ex-
ecution of programs, and also covers integrity properties. Backes
(2005) relates negligible information flows to computational non-
interference and shows that this property is preserved under simu-
latability in reactive systems.

Laud and Vene (2005) propose a type system to verify computa-
tional non-interference against passive adversaries in an imperative
language with symmetric encryption and dynamic key generation.
Their types are more precise than ours for tracking key dependen-
cies, but their system does not enable to type decrypted values as
keys (cf. Example 8). In a similar line of work, Smith and Alpı́zar
(2006) present a type system with encryption and decryption but no
explicit keys; they assume a single implicit key-pair for the whole
program, which leads to a clean type-system presentation.

Using symbolic cryptography, Askarov et al. (2006) generalize
non-interference to allow flows that arise from encryption. In their
model, a type system enforces secure cryptographically masked
flows for a non-deterministic semantics of encryption. Recently,
Laud (2008) investigates conditions such that cryptographically
masked flows imply security in the computational model.

Integrity and active adversaries Several works consider the inter-
action between confidentiality and integrity policies in the presence
of active adversaries. (This interaction plays a central role in our

2

handling of cryptographic keys.) Zdancewic and Myers (2001) and
Myers et al. (2006) propose general definitions for non-interference
with active adversaries. Their definitions are close to ours, but do
not consider cryptography.

Secure implementations for information flow Jif/Split (Zdancewic
et al. 2002; Zheng et al. 2003) is a compiler that implements secure
distributed systems on mutually untrusted hosts from sequential
programs annotated with information flow types. The implemen-
tation assumes that all communications are private. Our work can
be seen as an attempt to implement (and verify) a cryptographic
back-end for Jif/Split. In principle, many of their techniques could
be applied (for instance, as type-preserving transformations) before
applying our translation, to deal with other aspects of distribution
such as global control flow.

Vaughan and Zdancewic (2007) design a typed language with
high-level dynamic “pack” and “unpack” security primitives, and
describe their implementation using authenticated encryption.
Their language also uses labels that combine confidentiality and
integrity, expressed in the decentralized label model (Myers and
Liskov 2000). The correctness of their implementation is proved
for a symbolic model of cryptography with passive attackers (who
can observe encrypted memory after execution of the program).

Cryptographic implementations for programming languages We
mention related work only within the computational model of cryp-
tography. Backes et al. (2003) provide a sound execution frame-
work for protocols that use an idealized cryptographic library. Laud
(2005) designs a typed cryptographic language and implements it
on top of their framework. His type system also keeps track of
key confidentiality and integrity, in order to meet the hypotheses
of Backes et al. (2003) and guarantee payload secrecy, which can
be interpreted as a form of computational non-interference. Abadi
et al. (2006) rely on Laud’s language to compile security-typed
variants of the pi calculus and thereby obtain payload secrecy (but
no integrity) for their distributed implementations.

Adão and Fournet (2006) design a process calculus with ab-
stractions for secure communications (but no explicit cryptogra-
phy) and establish the computational soundness of its implementa-
tion for trace and equivalence properties.

Contents Section 2 defines our source language, policies, security
properties, and type systems. Section 3 defines our target language
and security properties—computational non-interference—and ex-
plains our cryptographic assumptions. Section 4 presents our cryp-
tographic type system. Section 5 presents our type-safe translation.
Section 6 concludes and discusses future work.

Additional details appear in a companion paper at http://
www.msr-inria.inria.fr/projects/sec/cflow.

2. Security policies and non-interference
We present a simple imperative while language and equip it with
security policies. We recall standard notions of non-interference for
confidentiality and integrity, and a simple type system for checking
this property. In preparation for our cryptographic implementation,
we then extend these notions to active adversaries.

2.1 A simple imperative while language
Our source programs consist of expressions and commands, with
the following grammar:

e ::= x | v | op(e1, . . . , en)

P ::= x := e | P ;P | if e then P else P | while e do P | skip
where x ranges over variables, v ranges over literal values (for
now bitstrings, which may represent integers, strings, booleans),
and op ranges over n-ary functions (such as arithmetic, string,

and boolean operations). For completeness, we assume that these
functions include all standard bitwise operations on values.

We write if e then P1 else P2;P3 for (if e then P1 else P2);P3

and write if e then P for if e then P else skip. We let rv(P)
and wv(P) be the sets of variables that are syntactically read and
written by P : x ∈ rv(P) when x occurs in an expression of P ; and
x ∈ wv(P) when a command of the form x := e occurs in P . We
let v(P) = rv(P) ∪ wv(P).

We let µ range over memories, that is, finite functions from
variables to values plus a special term ⊥. We denote by µ(x) = ⊥
that variable x is not initialized in memory µ. We assume that ⊥
does not occur in commands. We write µ{x 7→ v} for the memory
that maps x to v and any y 6= x to µ(y). For a given memory
domain, we let µ⊥ be the memory that maps every variable to ⊥.

We use a standard semantics for programs (formally defined as
a special case in Section 3). Configurations range over pairs of a
command and a memory, written 〈P, µ〉, plus inert configurations,
written 〈

√
, µ〉 or just µ, that represent command termination with

final memory µ. We implicitly assume that all the variables of P
are in the domain of µ. We let ; represent single-step execution
of commands between configurations and let ;∗ be its reflexive
transitive closure. We denote normal termination as 〈P, µ〉 ⇓ µ′,
that is, starting with initial memory µ, command P completes with
final memory µ′ in any number of steps.

2.2 Non-interference against passive adversaries (review)
We annotate variables, expressions, and commands with security
labels. These labels specify the programmer’s security intent, but
they do not affect the operational semantics.

The labels form a lattice (L,≤), obtained as the product of
two lattices of confidentiality levels (LC ,≤C) and integrity levels
(LI ,≤I). We write ⊥L and >L for the smallest and largest ele-
ments of L, and t for the least upper bound of two elements of L.
For a given label ` = (`C , `I) of L, the confidentiality level `C
specifies a read level for variables, while the integrity level `I spec-
ifies a write level; the meaning of ` ≤ `′ is that `′ is more con-
fidential (can be read by fewer commands) and less integral (can
be written by more commands) than `. We let C(`) = `C and
I(`) = `I be the projections that yield the confidentiality and in-
tegrity parts of a label. Hence, the partial order on L is defined as
` ≤ `′ iff C(`) ≤C C(`′) and I(`) ≤I I(`′). We refer to the de-
centralized label model of Myers and Liskov (2000) and Vaughan
and Zdancewic (2007) for a concrete syntax for setting such lat-
tices.

We represent our security policies as functions Γ from variables
to security types τ of the form t(`), where t (for now) can only
be instantiated with data type Data and where ` is a security
label. Overloading our notations, we lift our confidentiality and
integrity projections C and I from labels to security types, and let
C(t(`)) = C(`) (resp. I(t(`)) = I(`)). We also let T (t(`)) = t.
We now proceed to define non-interference for confidentiality and
integrity, relative to a given policy.

DEFINITION 1 (Memory indistinguishability). Let V be a set of
variables. The memories µ0 and µ1 are indistinguishable on V ,
written µ0 ∼V µ1, when x ∈ V implies µ0(x) = µ1(x).

DEFINITION 2 (Non-interference on V). The command P is non-
interferent on V when, for all memories µ0 and µ1, if µ0 ∼V µ1

and 〈P, µb〉 ⇓ µ′b for b = 0, 1, then µ′0 ∼V µ′1.

Intuitively, as long as it terminates, a non-interferent command
does not leak any information from the hidden part of its initial
memory (outside V) to the visible part of its final memory (in-
side V). (In this work, we consider only the termination-insensitive
variant of non-interference. Indeed, in our refined cryptographic

3

model, we are going to demand that all commands always termi-
nate in polynomial time, thereby excluding any termination leak.)

Standard definitions of information-flow security against pas-
sive adversaries are obtained from Definition 2 by letting the set
of observed variables V collect either the low-confidentiality vari-
ables or the high-integrity variables:

DEFINITION 3 (Non-interference at α, passive case). Let Γ be a
memory policy and α ∈ L a security label. Let

V Cα = {x | C(Γ(x)) ≤C C(α)} V Iα = {x | I(Γ(x)) ≤I I(α)}
The command P preserves confidentiality at α when it is non-

interferent on V Cα ; it preserves integrity at α when it is non-
interferent on V Iα .

2.3 Active adversaries and runtime errors
In terms of attacker model, memory indistinguishability accounts
for adversaries that may partially observe the outcome of the com-
putation but do not interfere with it. More generally, we are inter-
ested in non-interference for programs that may include commands
representing active adversaries. Our approach largely follows ro-
bust declassification (Myers et al. 2006).

For a given α ∈ L, an α-adversary is a command, say A,
that reads variables with confidentiality level less than or equal to
C(α) and writes variables with integrity level not less than or equal
to I(α):

rv(A) ⊆ V Cα wv(A) ∩ V Iα = ∅
In the rest of the paper, we let α denote the security level of the

adversary. As usual, once α is fixed, we may restrict our attention
to the product of binary lattices L ≤C H for confidentiality and
H ≤I L for integrity, with just four labels HL, HH, LL, and LH,
and set α = LH. We use this 4-point lattice in examples. On the
other hand, we intend to develop implementations that do not a
priori depend on a fixed α.

We consider programs obtained by composing commands with
diverse levels of trust, including e.g. arbitrary α-adversaries as
well as fixed, trusted commands. To this end, we write P [] for
a command context (with a grammar obtained from that of P by
adding a hole) and P [P ′] for the command obtained by replacing
each occurrence of withP ′. We also use n-ary command contexts,
with n distinct holes, and write P [~P ′] for the command obtained
by instantiating these holes with the vector of commands ~P ′.

Although our language does not feature procedure calls, we can
use command contexts to model arbitrary commands with access to
fixed, privileged procedures, sometimes called “oracles” in cryp-
tography, using fixed variables for passing their input and output
parameters. For example, the command P0; [A[P ′]] represents a
command that first runs initialization code P0 then runs A, which
in turn may invoke command P ′ any number of times.

Handling runtime errors The integrity of a run may clearly be
affected by an active adversary that can write into low-integrity
variables. Consider for instance the command context

P [, Q]
·
= l := 4; ; if l = 4 then h := 10 else Q

where the hole stands for low-level code. After running command
P [skip, h := 5] we have h = 10, but this is not the case with
command P [l := 0, h := 5], as there is an implicit flow from l
to h. Hence, if h has high integrity and l has not, the command
P [l := 0, h := 5], and even P [skip, skip], are typically rejected by
type systems for non-interference.

This approach is too restrictive in our case, as we expect the ad-
versary to be able to modify signed or encrypted values, as long as
our cryptographic implementation can catch the attack as a runtime
error—typically, any signature verification is a low-integrity guard.

Accordingly, we relax our security definitions to accept command
contexts such as P [, skip], even if l is less integral than h, on the
following ground: if h is ever assigned, its value will be 10, so its
integrity is preserved.

In the following, we interpret any read of an uninitialized vari-
able as a runtime error. In the example above, a run of com-
mand P [l := 0, skip] (starting with memory l 7→ ⊥, h 7→ ⊥)
leaves h uninitialized. Further, we assume that programs never read
variables that are uninitialized and not writable by the adversary
(I(x) ≤I I(α)). This property can be enforced independently, for
instance by relying on static analyses (as discussed by Laud and
Vene 2005).

We relax our notion of indistinguishability (Definition 1) to
disregard the observation of uninitialized variables:

DEFINITION 4 (Weak memory indistinguishability). Let V be a
set of variables. The memories µ0 and µ1 are weakly indistin-
guishable on V , written µ0 ∼⊥V µ1, when x ∈ V implies either
µ0(x) = µ1(x), or µ0(x) = ⊥, or µ1(x) = ⊥.

We also adapt non-interference (Definition 2) to account for
weak indistinguishability. To this end, we further distinguish a
setU of variables that must be left uninitialized in initial memories.
We intend this set to gather high-integrity variables exclusively
written by P .

DEFINITION 5 (Weak non-interference on V,U). Let V and U be
two sets of variables. The command P is weakly non-interferent
on V,U when, for all memories µ0 and µ1, if

1. µ0(x) = µ1(x) = ⊥ for every x ∈ U ,
2. µ0 ∼⊥V µ1, and
3. 〈P, µb〉 ⇓ µ′b for b = 0, 1,

then µ′0 ∼⊥V µ′1.

DEFINITION 6 (Weak non-interference at α). Let Γ be a memory
policy and α ∈ L a security label. The command P is weakly non-
interferent at α when P is weakly non-interferent on both V Cα , ∅
and V Iα , V

I
α ∩ wv(P).

Intuitively, the security property for active adversaries reflects
that, even if an adversary may prevent the normal completion of a
command (leaving more uninitialized variables in the final mem-
ories), he will neither learn more than by eavesdropping complete
runs of the command, nor be able to affect the final value of de-
fined high-integrity variables. In preparation for cryptographic re-
finements, we express this security property for command contexts
P with holes for active adversaries in a style close to the one used
for cryptographic games (see e.g. Bellare and Rogaway 2004) with
subcommands that explicitly code initial memories, adversaries,
and observations.

DEFINITION 7 (Non-interference against active adversaries). Let
Γ be a memory policy and α ∈ L a security label.

The command contextP is non-interferent againstα-adversaries
when, for both V,U = V Cα , ∅ and V,U = V Iα , V

I
α ∩ wv(P), and

for all commands

• J writing V \ U : wv(J) ⊆ V \ U ;
• Bb for b = 0, 1 writing outside V : wv(Bb) ∩ V = ∅;
• ~A α-adversaries;
• T reading V , writing g: rv(T) ⊆ V ; g /∈ wv(J,B0, B1, ~A);

the value of g after running J ;Bb;P [~A];T does not depend on b: if
〈J ;Bb;P [~A], µ⊥〉 ⇓ µ′b,

∧
x∈rv(T) µ

′
b(x) 6= ⊥, and 〈T, µ′b〉 ⇓ µ′′b

for b = 0, 1 then we have µ′′0 (g) = µ′′1 (g).

4

The command Gb = J ;Bb;P [~A];T represents a game, pa-
rameterized by a meta-variable b that is either 0 or 1; its first part
J ;Bb initializes variables and, depending on b, yields two indistin-
guishable memories (µ0 and µ1 in Definition 2); the second part
P [~A] runs the command context P in combination with active ad-
versaries ~A; this yields two memories (µ′0 and µ′1 in Definition 2);
the final part of the command, T , represents an observer that at-
tempts to guess the value of b from memory µ′b. Intuitively, an op-
ponent player that chooses the commands J , B0, B1, ~A, and T
wins when g = 0 after running G0 and g = 1 after running G1.

EXAMPLE 1 (Non-interference for a simple lattice). Let L be the
4-point lattice with labels HL, HH, LL, and LH. Let α = LH.

Let P be a command context that writes wv(P) = {xHH, xHL,
xLL, x

′
LH} and reads rv(P) = wv(P) ∪ {xLH}, with a single hole.

To show that P is non-interferent against α-adversaries, we check
that g does not depend on the choice between B0 and B1 for any
commands that operate on the variables of P as follows:

• for the confidentiality game:
J sets xLH, xLL, and x′LH;
Bb set xHL and xHH depending on xLH, xLL, and x′LH;
A sets xHL and xLL depending on xLL, xLH, and x′LH;
T sets g depending on xLH, x′LH, and xLL;

• for the integrity game:
J sets xLH;
Bb set xHL and xLL depending on xLH;
A sets xHL and xLL depending on xLL, xLH, and x′LH;
T sets g depending on xLH and, only when they are initialized,

on x′LH and xHH.

EXAMPLE 2. According to Definition 7, the command context
yLH := xHH; yLH := 0 is secure, but yLH := xHH; ; yLH := 0
(with an intermediate adversary) is not secure, since for instance

J
·
= skip A

·
= zLL := yLH

Bb
·
=xHH := b T

·
= g := zLL

break the confidentiality game, leaving g = b.

The following lemma relates non-interference for passive and
active adversaries, in case the command P has no holes:

LEMMA 1. A command P is weakly non-interferent at α if and
only if P (as a command context P with no) is non-interferent
against active adversaries.

In the general case, whenP has at least one hole, non-interferen-
ce against active adversaries implies that P [~skip] is weakly non-
interferent, but the converse may not hold, as can be seen on Ex-
amples 2 (due to an explicit confidentiality flow) and 3 (due to an
implicit integrity flow):

EXAMPLE 3. For the lattice of Example 1, consider the context

P = xLL := 0; ; if xLL = 4 then yLH := 1 else yLH := 0

P [skip] is weakly non-interferent, but P [] is interferent against
active adversaries for the integrity game, since we can define

J
·
= skip A

·
= if zLL = 1 then xLL := 4

Bb
·
= zLL := b T

·
= g := yLH

2.4 A simple type system for non-interference
Type systems for controlling information flows have been widely
studied in the literature (see Sabelfeld and Myers 2003 for a
survey). We recall a standard type system for establishing non-
interference (Definition 2) and then adapt it for establishing non-
interference against active adversaries (Definition 7). The resulting

VAR
` x : Γ(x)

VAL

` v : Data (⊥L)

OP
` ei : Data (`) for i = 1..n

` op(e1, . . . , en) : Data (`)

SUBE
` e : τ τ ≤ τ ′

` e : τ ′

Figure 1. Typing rules for source expressions with policy Γ.

ASSIGN
` e : Γ(x)

` x := e : L(x)

SEQ

` P : ` ` P ′ : `

` P ; P ′ : `

COND
` e : Data (`) ` P : ` ` P ′ : `

` if e then P else P ′ : `

SKIP

` skip : >L

WHILE
` e : Data (`) ` P : `

` while e do P : `

SUBC
` P : ` `′ ≤ `
` P : `′

Figure 2. Typing rules for source commands with policy Γ.

CHECK
` e : Data (`′) C(`′) ≤C C(`) ` P : `

` if e then P : `

HOLE

` : >L

Figure 3. Additional typing rules for source command contexts.

type system is further extended in Section 4 to account for crypto-
graphic primitives.

Recall that security types are of the form t(`), where t is just
Data for now and ` ∈ L is a security label. We use L as the projec-
tion from types to security labels, that is L(t(`)) = `. For brevity,
in the typing rules we sometimes abbreviate type parameters Γ(x)
to x. We lift the security preorder ≤ from labels to types, and let
t(`) ≤ t′(`′) iff t = t′ and ` ≤ `′.

For a given security policy Γ, typing judgments for expressions,
written Γ ` e : t(`), mean that e reads variables of level at most `.
Typing judgments for commands, written Γ ` P : `, mean that P
is secure and writes variables of level at least `. In the following,
we often omit the fixed policy Γ in typing judgments. The typing
rules appear in Figures 1 and 2, respectively. We also write Γ ` P
to denote typability of P with policy Γ, that is, there exists ` such
that ` P : `.

The theorem below states that this simple type system is sound
with regard to non-interference (Definition 2); its proof is a simple
induction on the number of reduction steps.

THEOREM 2. Let Γ be a security policy and α ∈ L a security
label. If Γ ` P , then P is non-interferent at α.

We extend our type system to account for active adversaries.
We type command contexts with placeholders that stand for α-
adversaries by supplementing the rules of Figure 2 with those given
in Figure 3. (The rules implicitly apply for some fixed policy Γ.)

Rule HOLE types placeholders for α-adversaries with >L. Al-
though the rule does not enforce any restriction, Definition 7 allows
only α-adversaries to be placed in holes.

Rule CHECK allows some implicit integrity flows from condi-
tional expressions to the then branch P when there is no else
branch. The rule usefully applies to error handling, as discussed in
Section 2.3, when the adversary controls the conditional execution
of P ; it is sound only together with an additional property, given

5

below, that restricts the high-integrity variables that P may write.
This global, syntactic property demands that any variable x ∈ V be
written by at most one of a series of subcommands, thereby guar-
anteeing that x = ⊥ if this subcommand is not executed.

DEFINITION 8 (Exclusive assignments). Let V be a set of vari-
ables. Let P1, . . . , Pn be subcommands of P , that is, P = Qi[Pi]
for some command context Qi for i = 1..n.
P1,. . . , Pn exclusively assign V in P when the hole of Qi is not

within any while loop and V ∩wv(Pi)∩wv(Qi) = ∅ for i = 1..n.

The next theorem states the soundness of the extended type
system for command contexts with holes representing adversaries.

THEOREM 3. Let Γ be a policy andα ∈ L a security label. Assume
Γ ` P and all commands P ′ that occur in commands if e then P ′

typed by CHECK exclusively assign V Iα in P .
Then P is non-interferent against active α-adversaries.

3. Target cryptographic language and
computational non-interference

Next, we add probabilistic primitives, define our target security
property as a refinement of Definition 7, and specify cryptographic
primitives and hypotheses.

3.1 A probabilistic language
The target language extends our imperative language with proba-
bilistic functions, ranged over by f .

P ::= . . . | x1, . . . , xm := f(y1, . . . , yn)

For simplicity, these probabilistic functions may occur only at top
level in commands (so that expressions remain deterministic). We
let rv(~x := f(~y)) = {~y} and wv(~x := f(~y)) = {~x}.

Every function f is equipped with an associated parametric
probability distribution [[f]]. (Hence, in the special case f is a
deterministic function, the distribution [[f]](~v) gives probability 1
to f(~v) and 0 to any other output.) We write {0, 1} for the “coin-
tossing” function that returns either 0 or 1 with probability 1

2
.

Instead of single configurations 〈P, µ〉, we now consider dis-
tributions of configurations, ranged over by d. The operational
semantics for commands is given in Figure 4, as a Markov chain
(Hermanns 2002) on the set of all configurations, written S, with
probabilistic steps induced by the function distributions. (Formally,
rule STABLE guarantees that all states have leaving transitions
whose probabilities sum to 1.) We omit the usual semantics for
expressions [[e]](µ).

An initial distribution for P is a distribution of configurations
that has all its weight on configurations of the form 〈P, µ〉. Hence,
we can lift initial memories to distributions and define the transition
system as a transition system from input distributions to output
distributions (see e.g. Monniaux 2001).

DEFINITION 9. Let prob : S×S 7→ [0, 1] such that s ;prob(s,s′) s
′

in Figure 4 and T be the distribution transformer such that

T (d)(s′) =
∑
s∈S prob(s, s′)d(s)

The semantics of a probabilistic program is given by a sequence
of distribution transformations, starting from an initial distribu-
tion d0. We let di ; di+1 when di+1 = T (di) and let ;∗ be
the transitive clausure of ;. The probability that a program P ter-
minates after n steps starting with initial distribution d0 is pn =∑
s=〈
√
,µ〉 dn(s).

We let Pr[P ;ϕ] be the probability that, starting from a given ini-
tial distribution d0, commandP completes with a final memory that
meets condition ϕ, that is, Pr[P ;ϕ] = limn≥0

∑
s=〈
√
,µ〉|ϕ dn(s).

(The limit exists as the sum increases with n and is bounded by 1.)

3.2 Polynomial-time assumptions
Our commands capture exactly the algorithms that can be coded on
probabilistic Turing machines, using shared memory as input and
output tapes. Further, polynomial runs of commands correspond to
polynomial runs of these machines. Thus, we can recast standard
cryptographic assumptions and games in the formal setting of this
language, quantifying for instance over all polynomial-time com-
mands to represent all polynomial adversaries.

In the following definitions, we assume that the initial distribu-
tion for a given command P is d⊥0 , which gives all its weight to the
uninitialized state 〈P, µ⊥〉.

We assume that all algorithms are probabilistic and computable
in time bounded by some polynomials in η, the security parameter.
Intuitively, η represents the lengths of the keys. In order to avoid
passing η explicitly, we assume that xη is a read-only variable
initialized with the security parameter.

We assume that all primitive operations are polynomial in their
parameters and that the distribution for all our probabilistic primi-
tive functions are polynomial-time samplable (so that any polyno-
mial program that calls these primitives could also be written as a
polynomial program that includes its own implementation of these
primitives as subcommands).

In the rest of the paper, rather than distributions, we consider
families of distributions parameterized by η (written d(η)), also
known as ensembles. Thus, for a fixed domain of variables, the
initial distribution d⊥0 becomes the family of distributions d⊥0 (η)
where all the weight is given to 〈P, µ⊥{xη 7→ η}〉. We overload
Pr[P ;ϕ] to denote the probability function parameterized by η.

Security properties are often expressed in terms of games, coded
as commands that sample a secret boolean b := {0, 1} then interact
with adversary commands. The goal of the adversary commands is
to write into some variable g its guess as to the value of b: the
adversary wins when b = g. The trivial adversary g := {0, 1}
wins with probability 1

2
, so we are interested in the advantage of

an adversary, defined as the probability that b = g minus 1
2

.
For any given η, the adversary may guess any secret vari-

ables with a non-zero probability, including variables that store
cryptographic keys. Thus, in contrast with our definitions of non-
interference so far, we cannot expect the advantage to be 0 as we
start relying on cryptography. Rather, we expect this advantage to
be a negligible function of η. We recall the definition of negligible
functions:

DEFINITION 10 (Negligible function). A function f : N → R is
negligible when, for all c > 0 there exists nc such that, for all
n ≥ nc, we have f(n) ≤ n−c.

3.3 Computational non-interference
We refine our notions of non-interference to account for probabil-
ities, and in particular for the possibility that some information
is leaked (or corrupted) with a negligible probability. Instead of
running two commands for b = 0, 1, we run a single probabilis-
tic command that first picks b uniformally at random. We begin
with a probabilistic, code-based variant of non-interference against
passive adversaries (Definition 2) similar to the one introduced by
Laud (2001).

DEFINITION 11 (Computational non-interference on V , U). The
polynomial command P is computationally non-interferent on V ,
U when for all polynomial commands

• J writing V \ U : wv(J) ⊆ V \ U ;
• Bb for b = 0, 1 writing outside V : wv(Bb) ∩ (V ∪ U) = ∅;
• T reading V , writing g: rv(T) ⊆ V ; g /∈ wv(J,B0, B1, ~A);

6

ASSIGNS
[[e]](µ) = v

〈x := e, µ〉;1 〈
√
, µ{x 7→ v}〉

SEQS
〈P, µ〉;p 〈P1, µ1〉 P1 6=

√

〈P ;P ′, µ〉;p 〈P1;P ′, µ1〉

SEQT
〈P, µ〉;p 〈

√
, µ1〉

〈P ;P ′, µ〉;p 〈P ′, µ1〉

SKIPS
〈skip, µ〉;1 〈

√
, µ〉

STABLE
〈
√
, µ〉;1 〈

√
, µ〉

CONDTRUE
[[e]](µ) = true

〈if e then P else P ′, µ〉;1 〈P, µ〉

CONDFALSE
[[e]](µ) 6= true

〈if e then P else P ′, µ〉;1 〈P ′, µ〉
WHILETRUE

[[e]](µ) = true

〈while e do P, µ〉;1 〈P ; while e do P, µ〉

WHILEFALSE
[[e]](µ) 6= true

〈while e do P, µ〉;1 〈
√
, µ〉

FUN
p = [[f]](µ(y1), . . . , µ(yn))(~v) p > 0

〈~x := f(y1, . . . , yn), µ〉;p 〈
√
, µ{~x 7→ ~v}〉

Figure 4. Probabilistic operational semantics

and some variable b /∈ v(J,B0, B1, T) in the command

CNI ·= b := {0, 1};
J ; if b = 0 then B0 else B1;

P

the advantage |Pr[CNI;T ; b = g]− 1
2
| is negligible.

In the game of the definition, J ; if b = 0 then B0 else B1 prob-
abilistically initialize variables. Then P runs. Finally, T attempts
to guess the value of b and sets g accordingly. Hence, the property
states that the two memory distributions for b = 0 and b = 1 af-
ter running P cannot be separated by an adversary that reads V .
Semantically, this property can also be stated as indistinguisha-
bility (Mao 2003) of the ensembles db for b = 0, 1 defined by
〈J ;Bb;P, d0(η)〉 ⇓ db(η) for the same range of commands for
J and Bb. In case the program P is deterministic, this property
is equivalent to non-interference (Definition 2): the adversary T
guesses b correctly with probability 1

2
.

We finally generalize the property to account for active adver-
saries, as in Definition 7.

DEFINITION 12. (Computational non-interference against active
adversaries). Let P be a polynomial command context, Γ a policy
for its variables, and α ∈ L.
P is computationally non-interferent against α-adversaries

when, for both V,U = V Cα , ∅ and V,U = V Iα , V
I
α ∩ wv(P),

and for all polynomial commands

• J writing V \ U : wv(J) ⊆ V \ U ;
• Bb for b = 0, 1 writing outside V : wv(Bb) ∩ V = ∅;
• ~A α-adversaries;
• T reading V , writing g: rv(T) ⊆ V ; g /∈ wv(J,B0, B1, ~A);

and some variable b /∈ v(J,B0, B1, P, ~A, T) in the command

CNI ·= b := {0, 1};
J ; if b = 0 then B0 else B1;

P [~A]

if we have Pr[CNI;
∧
x∈rv(T) x 6= ⊥] = 1, then the advantage

|Pr[CNI;T ; b = g]− 1
2
| is negligible.

The game of this definition performs initialization as in Defi-
nition 11, then runs P [~A], and finally tests the resulting memory,
as in Definition 7. The condition

∧
x∈rv(T) x 6= ⊥ prevents that

T reads possibly-undefined memory. As can be expected, Defini-
tion 12 definition coincides with Definition 7 in the deterministic
case.

3.4 Encryption
Our first cryptographic algorithms provide confidentiality by asym-
metric (public-key) encryption. We represent them in our target lan-
guage as three probabilistic functions Ge, E , and D that meet the
functional and security properties given below.

DEFINITION 13 (Encryption scheme). Let plaintexts, ciphertexts,
publickeys, and secretkeys be sets of polynomially-bounded bit-
strings indexed by η.

An asymmetric encryption scheme is a triple of algorithms
(Ge, E ,D) such that

• Ge, used for key generation, ranges over publickeys×secretkeys;
• E , used for encryption, ranges over ciphertexts;
• D, used for decryption, ranges over plaintexts and is such

that, for all ke, kd := Ge() and m ∈ plaintexts, we have
D(E(m, ke), kd) = m.

The definition abstracts some details, such as input validation,
or the possibility that decryption visibly fails on ill-formed inputs
for instance. On the other hand, we need to specify (or at least
bound) the set plaintexts, as we are going to require that encryption
hides the length of plaintexts. (With our definition, the decryption
of an encryption of an input outside plaintexts may fail, for instance
when the input is too long, but at least the confidentiality of this
input is still preserved.)

There are many different notions of security for encryption. The
one we use is introduced by Rackoff and Simon (1991) and is the
strongest usually considered; it can be realized under the Decisional
Diffie-Hellman assumption. To code the definition in our target
language, we rely on auxiliary primitive operations on lists: nil for
the empty list, + for concatenation, and ∈ for membership test.

DEFINITION 14 (IND-CCA2 security). Consider the commands

E
·
= if b = 0 thenm := E(x0, ke) elsem := E(x1, ke);

log := log +m

D
·
= ifm ∈ log then x := 0 else x := D(m, kd)

CCA ·
= b := {0, 1}; log := nil; ke, kd := Ge();A[E,D]

The encryption scheme (Ge, E ,D) provides indistinguishability
under adaptive chosen-ciphertext attacks when the advantage
|Pr[CCA; b = g]− 1

2
| is negligible for any polynomial command

context A with b, kd /∈ rv(A) and b, kd, ke, η, log /∈ wv(A).

In this definition of security, CCA is a probabilistic command that
represents a cryptographic game where the adversary is challenged
to guess the secret bit b by interacting with an instance of the
encryption scheme. The command A models an adversary that
attempts to guess b as follows:

• A can perform arbitrary polynomial-time computation using
any variables not excluded in the definition. For instance, A

7

may include commands that run the algorithms Ge, E , and D
on any values that A can obtain or compute, including the
encryption key ke.

• A can also invoke encryption and decryption oracles, modelled
as commands E and D, for any values of the parameters x0,
x1, m, x, at any point in its code.
(In the usual presentation of IND-CCA2, the adversary calls the
encryption oracleE only once; however, the two definitions are
equivalent, see Bellare et al. 2000.)

• A can set the variable g and terminate to report its guess of the
value of the bit b.

In contrast with A, the commands E and D have access to the
challenge bit b, the decryption key d, and the log. The encryption
oracle E selects which of the two values stored in x0 and x1 to
encrypt depending on b; it also maintains a log of encrypted values.
The decryption oracle D provides decryption of any value except
those produced by E.

For any run of the game, the adversary wins when b = g. The
adversaryA ·

= g := {0, 1}wins with probability 1
2

, so the security
property states that any adversary that meets our hypothesis cannot
do (much) better, despite its control on the usage of the key.

The security definition we use assumes that the adversary pro-
vides all plaintexts to the encryption oracle. Hence, in particular, it
does not cover more complex usages of encryptions, such as those
where encrypted plaintexts may themselves depend on decryption
keys. Said otherwise, IND-CCA2 says nothing about confidential-
ity in case the plaintexts may depend on the decryption key (see
e.g. Abadi and Rogaway 2002). This situation is referred to as a
key cycle, and will need to be excluded by typing.

For simplicity, we do not introduce primitives for symmetric
(shared-key) encryption; their definition is similar, except that the
adversary is not given access to the encryption key.

EXAMPLE 4. Assume the adversary reads only xLH, x′LH, and ke.
The command

ke, kd := Ge();xLH := E(yHH, ke);x
′
LH := E(0, ke)

is computationally non-interferent (CNI). In particular, we have
xLH = x′LH with negligible probability, even if yHH = 0, so any
IND-CCA2 encryption function must be probabilistic.

Conversely, none of the three commands

P1
·
= xLH := E(0, yHH)

P2
·
= ke, kd := Ge();xLH := E(yHH, ke);x

′
LH := E(kd, ke)

P3
·
= ke, kd := Ge(); k′e, k′d := Ge();

(if yHH then k′e := ke);xLH := E(zHH, k
′
e)

is CNI for some IND-CCA2-secure encryption schemes: in the first
case the encryption function is not properly used since yHH is not a
key; in the second command, there is a key cycle (ke encrypts kd)
and IND-CCA2 does not give any assurance for encryptions of the
decryption key; in the third command, key selection depends on a
secret value, and IND-CCA2 does not prevent extracting k′e from
xLH and comparing it with ke.

EXAMPLE 5 (Confidentiality despite active adversaries). Consider
two commands mixing local secrets and adversary data, with
shared access to keys ke and kd and low confidentiality variables
x0 and x1.

(Pu)u=0,1 = if eu = u then hu := D(xu, kd);

su := hu + lu;

x1−u := E(su, ke)

The command ke, kd := Ge(); while e′ do (P0; ;P1) does not leak
any information on xu, even if the adversary controls the values of

e′, eu, lu, xu for u = 0, 1. (The command clearly does not protect
the integrity on xu.)

3.5 Cryptographic signatures
Our second cryptographic scheme provides integrity protection by
asymmetric (public-key) signatures.

DEFINITION 15 (Signature scheme). Let sigkeys, verifykeys, sign-
edtexts, and plaintexts be sets of polynomially-bound bitstrings
indexed by η.

A signature scheme is a triple of algorithms (Gs,S,V) such that

• Gs, used for key generation, ranges over sigkeys× verifykeys;
• S, used for signing, ranges over signedtexts;
• V , used for signature verification, ranges over {0, 1} and is

such that, for all ks, kv := Gs() and m ∈ plaintexts, we have
V(m,S(m, ks), kv) = 1.

For convenience, we assume that V is deterministic, so that we can
use test expressions V(e, e′, e′′) in conditional commands.

There are also many notions of security for signature schemes.
We use a standard notion introduced by Goldwasser et al. (1988):

DEFINITION 16 (CMA security). Consider the commands

S
·
= x := S(m, ks); log := log +m;

CMA ·
= ks, kv := Gs(); log := nil;A[S];

ifm ∈ log then b := 0 else b := V(m,x, kv)

The signature scheme (Gs,S,V) is secure against forgery under
adaptive chosen-message attack when Pr[CMA; b = 1] is negligi-
ble for any polynomial command contextA that cannot read ks and
cannot write ks, kv , log, η.

In the definition, command A represents an adversary that can

• invoke (as oracle) the command S for obtaining the signature x
of any message m;

• read and write variables m, x; A may also run the verification
algorithm, since it can access the verification key kv;

• read but not write variables kv , log, and η.

Conversely,A has no direct access to the signing key ks. This game
intuitively says that, after requesting as many signatures as he wants
from the signing oracle S, the adversary still cannot produce a pair
(m,x) such that x is the signature for a messagem not signed by S,
as recorded in log.

4. A type system for cryptography
We extend the type system of Section 2 to probabilistic programs,
with special rules for typing the usage of cryptography.

In the rest of the paper, we assume given two fixed schemes for
encryption and signing that meet Definitions 13, 14, 15 and 16, and
such that, for each η, the sets plaintexts include all encrypted and
signed values.

4.1 Types
We supplement the data type Data of Section 2 with types for
cryptographic values. Data type safety is important for computa-
tional soundness inasmuch as the security of its primitives holds
only when they are called with properly-generated keys, used only
as keys. They also help prevent key cycles.

We use the following grammar for security types:

τ ::= t(`) Security types
t ::= Data Data types for payloads
| Enc τ K | Ke τ K | Kd τ K Data types for encryption
| Sig τ | KsFK | Kv FK Data types for signing

8

GENE
Γ(ke) = Ke τK(`e) Γ(kd) = Kd τK(`d) C(τ) ≤C C(`d)

` ke, kd := Ge() : `e u `d

GENS
Γ(ks) = KsFK(`s) Γ(kv) = Kv FK(`v)

` ks, kv := Gs() : `s u `v
ENCRYPT
` ke : Ke τK(`x) ` y : τ

Γ(x) = Enc τK(`x) I(τ) ≤I I(x)

` x := E(y, ke) : `x

SIGN
Γ(ks) = KsFK(`s) F(t) = τ Γ(x) = Sig τ(`x)

` y : τ L(τ) ≤ `x I(`s) ≤I I(x)

` x := S(t + y, ks) : `x

DECRYPT
Γ(x) = τ ` y : Enc τK(L(x))

` kd : Kd τK(L(x))

` x := D(y, kd) : L(x)

PROBFUN
` y : Data (`) for y ∈ ~y

Data (`) ≤ Γ(x) for x ∈ ~x
Γ ` ~x := f(~y) : `

VERIFY
Γ(kv) = Kv FK(`v) F(t) ≤ Γ(x)

` V(t + y,m, kv) : Data (`′) ` P : `P
C(`′) ≤C C(x) u C(`P) I(`v) ≤I I(x)

` if V(t + y,m, kv) then (x := y;P) : L(x) u `P

Figure 5. Typing rules for probabilistic commands with policy Γ.

where ` ∈ L is a security label, K is a key label, and F is a map
from tags to security types, as explained below.

Static key labels The labels K are used to keep track of keys,
grouped by their key-generation commands. These labels are at-
tached to the types of the generated key pairs, and propagated to
the types of any derived cryptographic materials. They are used to
match the usage of key pairs, to prevent key cycles, and to prevent
generating multiple signatures with the same key and tag.

Tagged signatures Cryptographic signatures are often computed
on (hashed) texts prefixed by a tag or some other descriptor that
specializes the usage of the signing key. Accordingly, in order to
precisely type expressions of the form S(t + m, s) where t is a
constant tag, our types for signing embed a partial map, F, from
the tags usable with the key to the security type of the correspond-
ing signed values. Otherwise, we would essentially have to use a
distinct key for every signature.

EXAMPLE 6 (Tagged signatures). The command context

P []
·
= ks, kv := Gs();
yLL := S(t0 + xLH, ks); zLL := xLH;

y′LL := S(t1 + x′LH, ks); z
′
LL := x′LH;

;

if V(t0 + zLL, yLL, kv) then hLH := zLL

is CNI (and typable) against an adversary that can read and write
yLL, y′LL, zLL, z′LL. On the other hand, for the same class of adver-
saries, the command context obtained by erasing the two tags t0
and t1 is not CNI for integrity, as can be seen for an adversary that
overwrites the first value and signature with the second ones:

J
·
=xLH := 0;x′LH := 1

Bb
·
= zLL := b

A
·
= if zLL then (yLL := y′LL; zLL := z′LL)

T
·
= if xLH = x′LH then g := 0 else g := 1

Subtyping We rely on the two subtyping rules of the source type
system, so subtyping between data types is just syntactic equality—
we leave more interesting subtyping for future work. Note that
subtyping from Kd τ K to Data would not be sound in general,
as it may hide some key dependencies and encryption cycles.

4.2 Typing rules
Our type system extends the source type system (Figures 1, 2,
and 3) with the rules of Figure 5 for commands that call probabilis-
tic functions, as explained below. It also has an additional rule for
expressions, for typing signature verifications; this rule is identical
to rule OP except for its cryptographic data types:

OPVER
` y : t(`) ` m : Sig t(`s)(`)
` kv : Kv FK(`) F(t) = t(`s)

` V(t + y,m, kv) : Data (`)

Rule PROBFUN is the generic rule for typing probabilistic func-
tions; it requires that all variables have Data types and prevents
explicit flows from the parameters ~y to the results ~x. In particular,
PROBFUN applies to the functions S, E , and D in case we do not
rely on cryptographic assumptions. (The soundness of PROBFUN

depends on the fact that f is a probabilistic function; side-effects
in the evaluation of f would create correlation between successive
calls to f .)

The rest of the rules are for cryptography; they permit some
forms of declassification for encryptions (flows from higher to
lower confidentiality levels) and endorsement for signature checks
(flows from lower to higher integrity levels). The soundness of
these rules depends both on cryptographic assumptions and on ad-
ditional conditions on policies and programs, stated in Section 4.3.

GENS The two hypotheses bind key types to variables ks and kv ,
with the same map F from tags to payload types. The process
label `s u `v is the meet of the labels of all assigned variables.

SIGN Hypotheses 1, 3, and 4 bind types to the variables ks, x, and y
involved in signing; these types are related by τ , which sets
the typing guarantees associated with signatures that use any
signing key with key-label K and tag t.
Intuitively, we care mostly about the integrity of y (so that we
only sign correct values) and the confidentiality of ks (so that
the adversary cannot sign incorrect values).
L(τ) ≤ `x records the flow from y to x, as in rule ASSIGN.
I(`s) ≤I I(x) records the integrity flow from the signing
key to the signature value. (Conversely, the confidentiality flow
from ks to x is ignored; this is sound only inasmuch as ks is
used only for signing.)

VERIFY The rule has a structure similar to rule CHECK. (Indeed, in
the soundness proof, we use game rewritings to replace com-
mands typable by VERIFY with commands typable by CHECK.)
It also permits a limited form of endorsement: a lower integrity
variable v can be assigned to a higher integrity variable x only
if the guard performs a specific signature verification.
Hypotheses 1 and 2 check the verification-key type and relate
the type F(t) for the tag used in the verification to the type of x.
The typing of the verification expression relies on rule OPVER;
it records in `′ the ordinary flows from y, m, and kv to the
condition guard; it also enforces that y and F(t) (and thus x)

9

have identical data types. The typing of P records in `P the
level of the guarded command.
The constraint on confidentiality levels records the implicit con-
fidentiality flow from the guard to both the assignment and the
guarded command. In contrast to normal assignment (ASSIGN),
there is no constraint relating the integrity of `′ and x, as in-
tegrity follows from dynamic verification. Instead, an integrity
constraint records a flow from the verification key to x.

GENE The hypotheses bind types to variables ke and kd with the
same key-label and payload type τ—the type of plaintexts that
can be encrypted and decrypted.
The constraint C(τ) ≤C C(`d) imposes the condition that
confidentiality of the decryption key is greater or equal than
the confidentiality of the plaintext.

ENCRYPT The first three hypotheses bind types to the variables ke,
y, and x involved in encryption; these types are related by τ
and K, which describe the typing assumptions for encryption
with key ke.
The label `x in the typing of ke records the flow from ke to x
(by subtyping, we have L(ke) ≤ `x). The hypothesis I(τ) ≤I
I(x) records the integrity flow from y to x. Conversely, there
is no constraint on the confidentiality flow from y to x, as
encryption is a form of declassification: the rule is sound only
with cryptographic assumptions.

DECRYPT The hypotheses bind types to the variables x, y, and kd
involved in decryption; these types are related by τ and K.
The label L(x) records flows from y and kd to x, as in normal
assignment.

Before stating our soundness result, we illustrate the type sys-
tem on a few commands.

EXAMPLE 7 (Bad decrypted key). Consider the command

ke, kd := Ge(); k′e, k′d := Ge();
xLL := E(k′e, ke);

kd := k′d;

k := D(xLL, kd);

y := E(s, k)

For the payload types τ ′ = Data (`′) and τ = Ke τ ′K′(LH),
we define Γ as follows:

Γ(ke) = Ke τ K(LH) Γ(kd) = Kd τ K(HH)
Γ(k′e) = τ Γ(k′d) = Kd τ ′K′(HH)
Γ(xLL) = Enc τ K(LL) Γ(k) = τ
Γ(s) = τ ′ Γ(y) = Enc τ ′K′(`)

In case C(`) ≤ L and C(`′) 6≤ L, this command is insecure
because the key kd used for decryption does not match the key ke
used for encryption. Hence, the decrypted value k is unspecified—
it is unlikely to be a valid encryption key—and encryption using k
is also unspecified—one can easily construct algorithms Ge, D, E
that are IND-CCA2 and such that the final encryption leaks both its
parameters s and k.

This command is not typable, since the data types of kd and k′d
are not compatible.

This problem is not apparent in the work of Laud and Vene
(2005) because, in their system, decryption never yield key types—
the decrypted value k is just ordinary data that must remain secret
irrespective of its distribution, so the final encryption is not typable.
In our setting, we must address the problem in order to guarantee
integrity as well as confidentiality after decryption. Although the
program above is not typable either, we are able to type similar
programs that rely on decrypted keys:

EXAMPLE 8 (Encrypt-then-sign an encryption key). Consider the
command context

ke, kd := Ge(); k′e, k′d := Ge();
ks, kv := Gs();xLH := E(k′e, ke);

zLL := S(t + xLH, ks);xLL := xLH;

;

if V(t + xLL, zLL, kv) then

(x′LH := xLL; k := D(x′LH, kd); y := E(s, k))

In this example, thanks to the signature verification, k is a valid
decrypted key. If the adversary changes the signature stored in x,
then signature verification fails, leaving m′, k, and y uninitialized.
The program is typable using the same Γ of Example 7 extended
with types Sig (Enc τ K(LL))(LL) for zLL, KsFKs(LH) for ks,
Kv FKs(HH) for kv , Enc τ K(LH) for x′LH, and Enc τ K(LH) for
xLH, with F(t) = Enc τ K(LH).

4.3 Computational soundness
We give additional conditions on policies and programs, then state
our main soundness theorem. We require that the integrity of en-
cryption keys is high enough for protecting confidentiality of plain-
texts, and that the confidentiality of decryption keys is high enough
for protecting integrity of signed values. These constraints relate
integrity and confidentiality levels, depending on the capabilities
of the adversary.

DEFINITION 17 (Robust policy). Let Γ be a policy and α ∈ L.
The encryption key type Ke τK(`) is robust at α when either

C(τ) ≤C C(α) or I(`) ≤I I(α).
The signing key type KsFK(`) is robust at α when either

I(F(t)) 6≤I I(α) for all t ∈ dom(F) or C(`) 6≤C C(α).
The security-type policy Γ is robust at α when all its encryption

and signing key types are robust at α.

In the two statements of robustness for key types, the first alter-
natives state that the protection provided by the key is irrelevant
against an adversary at α, who could read plaintexts before encryp-
tion and write signed values before signing; the second alternatives
demand that otherwise the key itself be sufficiently protected.

Besides the cryptographic assumptions, we state additional
safety conditions for soundness.

DEFINITION 18. A command context P is safe when Γ ` P and

1. All commands guarded either by a signature verification or by
a test typed by CHECK exclusively assign V Iα in P ; and P never
reads uninitialized variables in V Iα .

2. Each signing-key label/tag pair is used for signing at most once.
3. Each key label is used in at most one (dynamic) key generation.
4. Each key variable read in P is first initialized by P .

These conditions are needed to apply the cryptographic games in
the soundness proof of the target type system, for instance to guar-
antee the integrity of decrypted values. They can be enforced by
static analysis, for instance by collecting all relevant static occur-
rences of variables and forbidding signing and encryption-key gen-
eration within loops.

Condition 1 helps deal with runtime errors, as discussed in Sec-
tion 2. Condition 2 prevents signature replay attacks, as illustrated
in Example 6. (We rely on a static key label so that the unique-
signing constraint is shared between all aliases of any given sign-
ing key.) Condition 3 prevents decryption-key mismatches, as illus-
trated in Example 7. Condition 4 recalls our assumption on unini-
tialized variables for keys.

Relying on these conditions, we obtain that well-typed pro-
grams are computationally non-interferent (Definition 12).

10

THEOREM 4. Let α ∈ L be a security label. Let Γ be a policy that
is robust at α. Let P be a safe polynomial-time command context.
P satisfies computational non-interference againstα-adversaries.

The proof relies on a series of typability-preserving program
transformations that match the structure of the games used in the
cryptographic security assumptions (Definitions 14 and 16). These
transformations eliminate the cryptographic primitives, one static
key label at a time. Hence, after eliminating a (static) keypair for
signing and verification, the values that were signed and verified
are now passed on auxiliary shared high-integrity variables, and we
are left with conditionals typable by CHECK instead of VERIFY.

4.4 A memory-protection protocol
In preparation for our program translation, we define a protocol for
sharing encrypted-then-signed memory. (Its typing assumptions are
detailed in Section 5.)

Inits(ks, kv)
·
= ks, kv := Gs()

Inite(ke, kd)
·
= ke, kd := Ge()

Read(x← xe, xs, x
′
e, kd, kv, t)[P]

·
=

if V(t + xe, xs, kv) then (x′e := xe;x := D(x′e, kd);P)

Write(xs, xe ← x, x′e, ke, ks, t)
·
=

x′e := E(x, ke);xs := S(t + x′e, ks);xe := x′e

Command Inits generates keys for signing and verification. Com-
mand Inite generates keys for encryption and decryption. Com-
mand context Read attempts to read x from xe and xs. It verifies
x’s presumed signature xs, specifically for the tag t; if the verifica-
tion succeeds, the ciphertext is copied to a temporary variable x′e
then decrypted to x, and finally command P runs. Otherwise the
command silently fails. Conversely, command Write writes x to xe
and xs, by first encrypting then signing x’s value. (The temporary
variables x′e matter only for typing; they enable us to label x′e with
integrity higher than xe.)

Depending on the relative levels of x and α, similar but simpler
protocols may be used instead for protecting only confidentiality,
or only integrity.

EXAMPLE 9 (Key Establishment). Relying on the protocol above,
we show how two hosts H and H ′ may dynamically establish new
session keys using their long-term keys.

We assume that variables with prefixH are local toH (readable
and writable only in H) and variables with prefix H ′ local to H ′,
respectively. We use the command context

Inite(kH
′

e , H ′.k
H′

d); Inits(H.kHs , k
H
v);

;

Inite(H.ke, H.kd); Inits(H.ks, H.kv);

H.k := H.ke +H.kd +H.ks +H.kv;

Write(xs, xe ← H.k,H.xe, k
H′
e , H.kHs , tk);

;

Read(H ′.k ← xe, xs, H
′.xe, H

′.kH
′

d , kHv , tk)[P ′]

The first command line models our hypothesis thatH andH ′ share
correctly-generated long-term keys (kH

′
e and kHv), with a private

signing key for H (H.kHs) and a private decryption key for H ′

(H ′.kH
′

d). The third line represents session-key generation by H:
four local keys are generated. These keys are then concatenated (in
H.k) and sent (via shared memory xe and xs) towards H ′ using a
Write command. The final line represents the reception of session
keys by H ′.

To type this command, we need a slight extension of our typing
rules for concatenation. Alternatively, we can type a variant of this
command where four runs of the Read/Write protocol are executed,

one for each of the keysH.ke,H.kd,H.ks, andH.kv . On the other
hand, one can optimize the protocol by avoiding encryption for the
public keys ke and kv .

5. A cryptographic translation
We are now ready to describe and verify general cryptographic
protection mechanisms for shared memory. To illustrate our type-
based approach, we provide a simple translation from programs that
rely on shared-memory security policies to programs that rely on
cryptography.

Modelling distributed systems We model distributed systems as
series of commands from the source language located at different
hosts that communicate through shared memory. Untrusted shared
memory may conservatively represent a public network, or a pro-
tocol stack for example.

We consider source systems of the form P1; . . . ;Pn, such that
the control flow between threads is statically known. We let ~h be
the set of all host names. Each host may have several successive
threads, which may share private state using the host’s local mem-
ory. Thus, we define (source) systems as sequences of threads

S ::= (P)i | S;S

where each thread (P)i is annotated with a unique thread iden-
tifier i. We let γ be a mapping from thread identifiers to hosts.
(Holes do not appear in source systems; the translation insert them
between translated threads.)

We assume given a set of variables, X , shared between some
of these hosts, that require cryptographic protection. To obtain a
realistic distributed implementation, this set X should contain all
variables shared between any two hosts, except possibly for some
initialization variables.

We also assume that every occurrence of every variable x ∈ X
in an expression of S is correctly annotated by its last-writer-thread:
we write xi when i is (always) the last thread to have written x
when the expression gets evaluated. If there is no such thread (in
particular, if a variable ofX may be read before being written in S),
the program cannot be correctly annotated. These annotations can
be inferred (or checked) using conservative static analyses. In the
translation, they help us meet the requirements on signatures, and
thus prevent replay attacks, as we always know which verification
key and tag should be used when x is read.

In summary, the source inputs of the translation consist of a
policy Γ, a subset X of its domain indicating the variables to
protect, and a well-typed, correctly annotated system S.

Although our translation takes as input systems, i.e. annotated
commands, the annotations do not affect source command typing:
after erasing thread- and writer-annotations, we use the simple type
system of Section 2.4, Figures 1 and 2.

Public-key infrastructure We assume given a public-key infras-
tructure for signature verification keys: every host h has a signing
key khs and knows every other host’s verification key khv . We ini-
tialize these keys by running the command

Init ~h = (khs , k
h
v := Gs();)h∈~h

Auxiliary variables The translation uses the following naming
conventions and types for variables. We assume that the variables
introduced by the translation do not occur in the source system and
are pairwise distinct.

To every source variable x ∈ X , the translation associates two
shared variables, xe containing the encrypted value of x, and xs
containing the signature for xe. In addition, for every thread i that
accesses x in the source program, the translation uses a series of
local variables: i.x is a local copy of x; i.xe and i.x′e are local

11

buffers for the encrypted value of x; i.xv is a local buffer for x
after verification.

Finally, the translation uses two functions from x ∈ X to vari-
ables holding encryption and decryption keys: ke(x) is the encryp-
tion key for writing x; kd(x) is the decryption key for reading x.
We do not assume that these functions are injective: on the con-
trary, subject to typing constraints, the same keys should be used
to protect many shared variables. We initialize all variables in the
range of these functions by running the command

InitX = (kd(x), ke(x) := Ge();)x∈X

where each key pair ke(x), kd(x) for x ∈ X is initialized just once.

Translating security policies We now translate Γ, thereby giving
types to all target variables: we let [[Γ]] be the security policy that
coincides with Γ on dom(Γ)\X and maps the translation variables
to the types given below.

For simplicity, we use a single security label for all unprotected
shared memory (after encryption and signing): we let `′ be a secu-
rity level such that I(`′) = I(>L) and C(`′) = C(⊥L). (Alter-
natively, we could parameterize the translation with target security
labels, and write a set of constraints to be satisfied in order to pre-
serve typability.)

For every host h ∈ ~h, we let

[[Γ]](khs) = Ks FKh(`hs) [[Γ]](khv) = Kv FKh(`hv)

where Kh is a unique static key label (no other host will have the
same label), F is a mapping from tags to security types, and `hs , `hv
are security labels, subject to the constraints given below.

For every x ∈ X , let τ = Γ(x). Since source types do not use
cryptography, we have τ = Data (`) for some `. Let `e ∈ L such
that I(`e) = I(`) and C(`e) = ⊥C . We let

[[Γ]](xe) = Enc τ Kx (`′)
[[Γ]](xs) = Sig Enc τ Kx(`e) (`′)
[[Γ]](ke(x)) = Ke τ Kx(`e)
[[Γ]](kd(x)) = Kd τ Kx(`d) | C(`) = C(`d) ∧ I(`d) ≤I I(`)

whereKx is the static, unique key label for the keypair ke(x), kd(x)
(no other key will have the same label).

For every thread i that accesses x, we let

[[Γ]](i.x) = τ [[Γ]](i.xe) = Enc τ Kx(`e)
[[Γ]](i.xv) = τ [[Γ]](i.x′e) = Enc τ Kx(`e)

Moreover, if i writes x at host h = γ(i), we have three constraints

`hv ≤ `e I(`hs) ≤I I(`e) F(‘x’ + i) = Enc τ Kx(`e)

Translating systems and threads We now translate commands,
relying on the command definitions and notations of the memory
protocol of Section 4.4. Our translation protects every thread (Pi)

i

by first decoding every shared variable of X (syntactically) read
by Pi into local memory then, if all verifications succeed, run-
ning (a variant of) Pi on local memory and, finally, committing ev-
ery (syntactically) written variable of X back to shared encrypted
memory.

For every thread (Pi)
i of S, we let Ri[] be the composition of

command contexts

Read(i.xv ← xe, xs, i.xe, kd(x), kγ(w)
v , ‘x’ + w)[]

for all annotated variables xw in rv(Pi) ∩ X with w 6= i, let
P ′i be the sequence of assignments i.x := i.xv for the variables
i.xv assigned in Ri, and let W i be the sequential composition of
commands

Write(xs, xe ← i.x, i.x′e, ke(x), kγ(i)s , ‘x’ + i)

for all x ∈ wv(Pi) ∩X . We arrive at the top-level translation:

[[Pi]]
i = Ri

[
P ′i ;Pi{i.x/x for x ∈ X};W i]

[[(P0)0; . . . ; (Pn)n]] = Init ~h; InitX ; ; [[P0]]0; ; . . . ; ; [[Pn]]n;

For each translated thread, each variable in X is written at most
once. This ensures that each tag pair (composed by a unique thread
identifier and a variable name) is used at most once. Moreover,
the auxiliary assignments P ′i ensure that the local variables i.x are
assigned only if all verifications succeed; they guarantee exclusive
assignments for these variables.

EXAMPLE 10. In the 4-point lattice, consider the translation of

(yHH := 0)0; (if y0
HH = 0 then xHH := 1)1

with two threads located at hosts h0 and h1 that share a single key
pair ke, kd for all encryptions. For X = {yHH}, the two translated
threads are:

P0 = 0.yHH := 0; 0.yLH,e := E(0.yHH, ke);

yLL,s := S(‘yHH’ + 0 + 0.yLH,e, k
h0
s); yLL,e := 0.yLH,e

P1 = if V(‘yHH’ + 0 + 0.yLL,e, yLL,s, k
h0
v)

then(1.yLH,e := yLL,e; 1.yHH,v := D(1.yLH,e, kd);

1.yHH := 1.yHH,v; if 1.yHH = 0 then xHH := 1)

Discussion The translation systematically performs two crypto-
graphic operations for every access to a shared variable in X . Still,
we believe that our type system also supports a variety of other op-
tions, which would be selected by more advanced translations. As
illustrated in Example 9, the translation may reduce cryptographic
costs by clustering variables with the same level into fewer, larger
shared variables (representing messages, or pages in a distributed
file system, for instance). Besides, depending on source labels, the
translation may select simpler read and write protocol that omit en-
cryption or signing for low-integrity or low-confidentiality source
variables. Using more expressive types for cryptographic payloads,
the translation may also jointly sign several values. For instance, a
single signature suffices after executing every thread, and may be
typable by associating a constant tag to a series of authenticated
types, for a fixed series of variable writes.

When reading or writing in a high-confidentiality command,
we cannot let runs of the read or write protocols be observable.
To avoid this, the translation pre-fetches all variables potentially
read under high-confidentiality guards, and rewrite all variables
potentially written under a high-confidentiality guard. Consider for
instance the second source thread of Example 10, in case xHH is
added to X . If we directly translated the update xHH := 1 by a
run of the write protocol under the high-confidentiality guard, an
adversary would be able to compare ciphertexts xe before and after
running the thread, and thus infer the value of yHH by observing
whether the second thread updates the encrypted value or not. In
our translation (with xHH ∈ X), the local value 1.x is always re-
encrypted, irrespective of yHH, and thus always looks opaque and
different from its previous value to a polynomial adversary.

Correctness We first verify that, in the absence of an active ad-
versary, our translation is functionally correct, that is, the translated
system always terminates with the same results as the source sys-
tem. (The translated memory also includes cryptographic materials;
the domain condition in the statement below excludes their values.)

For a given source configuration 〈P, µ〉 such that µ is unini-
tialized on X , we let µd be the memory defined as follows: for
every host h ∈ ~h, and for every x ∈ X and thread i of P such
that x occurs in i, khs , khv , xe, xs, ke(x), kd(x), i.x, i.xv , i.xe,
and i.x′e are defined and uninitialized; for every x ∈ dom(µ) \X ,
µd(x) = µ(x); and we let [[〈P, µ〉]] be the distribution of configu-
rations such that [[〈P, µ〉]](P, µd) = 1.

12

THEOREM 5 (Functional Adequacy). Let S be a correctly-anno-
tated source system and µ a memory such that 〈S, µ〉;∗ 〈

√
, µ′〉.

We have [[〈S[~skip], µ〉]] ;∗ dT for a distribution dT that gives
probability 1 to configurations 〈

√
, µ′T 〉 such that µ′T coincides

with µ′ on their joint domain.

In the theorem, the distribution of final states dT may give
positive probabilities to a range of different memories µ′T , with
for instance different keys and different encrypted values, but these
memories at least coincide on source variables outside X . (We can
obtain adequacy for the final values of source variables in X by
copying them to variables outside X at the end of P .) Also, since
µ is fixed, we do not need to assume that P is polynomial: for a
given run, we can select sets plaintexts for Definitions 13 and 15
that include at least the values encrypted and signed in this run.

We now consider the security of the translation, under the as-
sumption that the source system is well-typed.

THEOREM 6 (Typability Preservation). Let S be a correctly anno-
tated source system. If Γ ` S, then [[Γ]] ` [[S]].

By computational soundness of typing (Theorem 4), we obtain:

THEOREM 7 (Computational soundness for the translation). Let
α ∈ L a security label, Γ a source security policy, X ⊆ dom(Γ),
and S = (P0)0; . . . ; (Pn)n a correctly-annotated source system
such that Γ ` S and P0,. . . ,Pn exclusively assign V Iα \X .

If [[Γ]] is a robust policy at α, then [[S]] is computationally non-
interferent against α-adversaries.

6. Conclusions and future work
We presented a cryptographic type system for verifying the cor-
rect usage of encryption and signing schemes in programs with
information-flow security policies. and used it to develop a secure
translation for imperative programs that share protected memory.
Security is defined by a computational non-interference property
against active probabilistic, polynomial adversaries.

We would like to extend both the type system and the translation
to obtain more efficient implementations for a larger class of pro-
grams (for instance by using dependent types rather than tags for
signing keys, by extending the subtyping relation, and by support-
ing symmetric-key cryptography). Independently, it would be inter-
esting to extend the class of security properties preserved by cryp-
tographic implementations, for instance to account for controlled
forms of declassifications and endorsements in source programs.

Acknowledgments
We thank Ricardo Corin, James Leifer, Jean-Jacques Lévy, Andrei
Sabelfeld, Nobuko Yoshida, and the anonymous reviewers for their
helpful comments.

References
Martı́n Abadi. Protection in programming-language translations. In 25th

International Colloquium on Automata, Languages and Programming,
volume 1443 of LNCS, pages 868–883. Springer-Verlag, 1998.

Martı́n Abadi and Phillip Rogaway. Reconciling two views of cryptography
(the computational soundness of formal encryption). Journal of Cryp-
tology, 15(2):103–127, 2002.

Martı́n Abadi, Ricardo Corin, and Cédric Fournet. Computational secrecy
by typing for the pi calculus. In APLAS’06, volume 4279 of LNCS, pages
253–269. Springer-Verlag, November 2006.

Pedro Adão and Cédric Fournet. Cryptographically sound implementations
for communicating processes (extended abstract). In 33rd International
Colloquium on Automata, Languages and Programming, volume 4052
of LNCS, pages 83–94. Springer-Verlag, July 2006.

Aslan Askarov, Daniel Hedin, and Andrei Sabelfeld. Cryptographically-
masked flows. In Proceedings of the 13th International Static Analysis
Symposium, LNCS, Seoul, Korea, 2006. Springer-Verlag.

M. Backes, B. Pfitzmann, and M. Waidner. A composable cryptographic
library with nested operations. In 10th ACM Conference on Computer
and Communications Security, pages 220–230, 2003.

Michael Backes. Quantifying probabilistic information flow in computa-
tional reactive systems. In ESORICS’05, volume 3679 of LNCS, pages
336–354. Springer-Verlag, September 2005.

Mihir Bellare and Phillip Rogaway. The game-playing technique, De-
cember 2004. At http://www.cs.ucdavis.edu/˜rogaway/
papers/games.html.

Mihir Bellare, Alexandra Boldyreva, and Silvio Micali. Public-key encryp-
tion in a multi-user setting : Security proofs and improvements. In EU-
ROCRYPT, pages 259–274, 2000.

Dorothy E. Denning. A lattice model of secure information flow. Commun.
ACM, 19(5):236–243, 1976.

Shafi Goldwasser, Silvio Micali, and Ronald Rivest. A digital signature
scheme secure against adaptive chosen-message attack. SIAM Journal
on Computing, 17(2):281–308, 1988.

Holger Hermanns. Interactive Markov Chains: The Quest for Quantified
Quality. Springer Berlin/Heidelberg, 2002.

Peeter Laud. Secrecy types for a simulatable cryptographic library. In 12th
ACM Conference on Computer and Communications Security, pages
26–35, 2005.

Peeter Laud. Semantics and program analysis of computationally secure
information flow. In 10th European Symposium on Programming (ESOP
2001), volume 2028 of LNCS. Springer-Verlag, April 2001.

Peeter Laud. On the computational soundness of cryptographically-masked
flows. In Proceedings of the 35th Symposium on Principles of Program-
ming Languages, San Francisco, USA, 2008. ACM Press.

Peeter Laud and Varmo Vene. A type system for computationally secure
information flow. In Fundamentals of Computation Theory, LNCS,
pages 365–377. Springer-Verlag, 2005.

Wenbo Mao. Modern Cryptography: Theory and Practice. Prentice Hall
Professional Technical Reference, 2003.

David Monniaux. Analyse de programmes probabilistes par interprétation
abstraite. PhD thesis, Université Paris IX Dauphine, 2001.

Andrew C. Myers and Barbara Liskov. Protecting privacy using the decen-
tralized label model. ACM Trans. Softw. Eng. Methodol., 9(4):410–442,
2000.

Andrew C. Myers, Andrei Sabelfeld, and Steve Zdancewic. Enforcing
robust declassification and qualified robustness. Journal of Computer
Security, 14(2):157–196, 2006.

Charles Rackoff and Daniel R. Simon. Non-interactive zero-knowledge
proof of knowledge and chosen ciphertext attack. In CRYPTO’91,
volume 576 of LNCS, pages 433–444. Springer-Verlag, 1991.

Andrei Sabelfeld and Andrew Myers. Language-based information-flow
security. IEEE Journal on Selected Areas in Communications, 21(1),
2003.

Geoffrey Smith and Rafael Alpı́zar. Secure information flow with random
assignment and encryption. In FMSE ’06: Proceedings of the fourth
ACM workshop on Formal methods in security, pages 33–44, 2006.

Jeffrey A. Vaughan and Steve Zdancewic. A cryptographic decentralized
label model. In IEEE Symposium on Security and Privacy, pages 192–
206, May 2007.

Steve Zdancewic and Andrew Myers. Robust declassification. In 14th IEEE
Computer Security Foundations Workshop, pages 15–23, 2001.

Steve Zdancewic, Lantian Zheng, Nathaniel Nystrom, and Andrew C. My-
ers. Secure program partitioning. ACM Trans. Comput. Syst., 20(3):
283–328, 2002.

Lantian Zheng, Steve Chong, Andrew Myers, and Steve Zdancewic. Using
replication and partitioning to build secure distributed systems. In 15th
IEEE Symposium on Security and Privacy, 2003.

13

