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Ad Hoc and Sensor Networks
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Increasingly wide range of applications
— Monitoring

— Surveillance

— Data-Gathering

I::> Position-awareness is key-issue

In sensor networks, positioning is indispensable
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Positioning

 Attach GPS to each sensor node

— Oftern undesirable or impossible
— GPS receivers clumsy, expensive, and energy-inefficient

* Equip only a few designated nodes with a GPS
— Anchor (landmark) nodes have GPS
— Non-anchors derive their position through communication
(e.g., count number of hops to different anchors)
—> Typical positioning approach
[Niculescu, Nath, Globecom 2001]....
[Nagpal, Shrobe, Bachrach, IPSN 2003],...

! Anchor density determines

A quality of solution
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How about no anchors at all...?
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In absence of anchors...

- ...nodes are clueless about real coordinates.

For many applications, real coordinates are not necessary
- Virtual coordinates are sufficient

- Geometric Routing requires only virtual coordinates

* Require no routing tables

» Resource-frugal and scalable

« GFG/GPSR [Bose et al., DIALM 1999][Karp, Kung, MOBICOM 2000]
 GOAFR[Kuhn, Wattenhofer, Zhang, Zollinger, PODC 2003]
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Virtual Coordinates
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|dea:
Close-by nodes have similar coordinates
Distant nodes have very different coordinates

—> Similar coordinates imply physical proximity!

®

Applications
— Geometric Routing
— Locality-sensitive queries
— Obtaining meta information on the network
— Anycast services (,Which of the service nodes is closest to me?”)
— Internet mapping
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Model
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* Unit Disk Graph (UDG) to model
wireless multi-hop network
— Two nodes can communicate iff
Euclidean distance is at most 1

« Sensor nodes may not be capable of
— Sensing directions to neighbors
— Measuring distances to neighbors

« Goal: Derive topologically correct coordinate information from
connectivity information only.
— Even the simplest nodes can derive connectivity information
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Context
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Distance/Angle Connectivity
information information only
I
Positioning
With Anchors

(Solution quality depends on anchor density)
Distance/Angle based Connectivity based

No Anchors ﬁ
Virtual Coordinates Virtual Coordinates
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In this talk
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Virtual Coordinates «— UDG Embedding
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« Given the connectivity information for each node...

...and knowing the underlying
graphis a UDG...

 ..find a UDG embedding in the plane ;
such that all connectivity requirements are i~ g :
fulfilled! (= Find a realization of a UDG) : * Vs

This problem is NP-hard!

:> (Simple reduction to UDG-recognition i Tig o 5Vfc' i
’.‘i'. “‘;":‘ ............. 5‘“‘ n:
problem, which is NP-hard) BT Vs ;

[Breu, Kirkpatrick, Comp.Geom.Theory 1998] ...
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UDG Approximation — Quality of Embedding

®

Finding an exact realization of a UDG is NP-hard.
- Find an embedding r(G) which approximates a realization.

Particularly,
- Map adjacent vertices (edges) to points which are close together.

- Map non-adjacent vertices (,non-edges®) to far apart points.

Define quality of embedding q(r(G)) as:

Ratio between longest edge to shortest non-edge in the

embedding.
Let p(u,v) be the
distance between q(’r(G)) _— max{u,v}EE P(Ua ’U)
points u and v in the min{u/ VVEE p(u’, v’)
embedding. ’
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UDG Approximation

For each UDG G, there exists
an embedding r(G), such J(H(Q)) = n?ax{u,v}eE p(u/,vi
that, q(r(G)) < 1. Ming wiyg e p(u,v')

(a realization of G)

Finding such an embedding IS NP-hard

graphs G, q(r, s(G))< .
Example:
vV, v, V. v, Ve 2
v, V, v, V, v,
Vs Vs Va Vs Vs 3
Vs Vy s

“7(q(G))=1.8/0.7 =2.6
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Previous work and our results
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There are a few virtual coordinates algorithms
[Rao et al., MOBICOM 2003], [Shang et al., MOBIHOC 2003],

[Biswas, Ye, IPSN 2004]
All of them evaluated only by simulation on random graphs
We give them first provable approximation algorithm

Our algorithm achieves an approximation

ratio of O(I092'5n\/log logn), n being the

number of nodes in G.

Independently, it has been shown that there is no PTAS for the virtual
coordinates problem. [Lotker, Martinez de Albeniz, Perennes, ADHOC-NOW 2004]

We give the first actual lower bound on the approximability.

There is no algorithm with approximation

ratio better than \/3/2 — ¢, unless P=NP.
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Approximation Algorithm - Overview
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« Four major steps ,
UDG Graph G with MIS M.

1. Compute metric on MIS of input
graph = Spreading constraints

(Key conceptual difference to

previous approaches!) Approximate pairwise distances

between nodes such that, MIS
nodes are neatly spread out.

2. Volume-respecting, high l
dimensional embedding
Volume respecting embedding of

nodes in R" with small distortion.

3. Random projection to 2D l
Nodes spread out fairly well in R22.

4. Final embedding l

Final embedding of G in R?.
Thomas Moscibroda, ETH Zurich @ DIALM 2004 14



Step 1 — Linear Constraints
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* Problem: UDG conditions are inherently non-linear.
« Consider MIS in a UDG...
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« ...in each region of rad.i'ﬂs R, there are at most
O(R?) MIS nodes.

Thomas Moscibroda, ETH Zurich @ DIALM 2004
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Step 1 — Spreading Constraints
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» Set of non-edges (independent sets) must be sufficiently

far apart.
« |dea: Use spreading constraints to compute approximate
distances (metric) between MIS nodes! (Even et al., FOCS 95]

[Vempala, FOCS 98]

DXy < ClISPF2 VISCV,VveV

- Average distance of any set of k points from any given
point v is Q(k2).

- In any region of radius R, there are at most O(R?) points.
- Now, we have linear constraints!

@ Thomas Moscibroda, ETH Zurich @ DIALM 2004 16



Step 1 — Linear Program
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Tuy < 1 V{u,v} € E
Ty < /N Vu,v € V
Ty > 0O Yu,v e V
Tuv + Tyl = Tyk Vu,v,k €V
N zuw > wIS)3Z2 VISCV,VueV
velS

« Feasible solution can be found in polynomial time.
- Separation oracle
« Gives us meftric on nodes.

- Metric encodes UDG properties

@ Thomas Moscibroda, ETH Zurich @ DIALM 2004 17



Step 2 — Volume respecting embedding in "
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Goal: Find embedding such that UDG metric is not distorted
Problem: Direct embedding in 2D may have very large distortion

ldea: Compute a volume respecting embedding into R".
[Feige, J. of Computer and System Sciences, 2000]

Volume respecting embeddings:

Embedding that approximately maintains not only the
length of edges, but also the volumes of all k-tuples.

Intuition: large volumes have large projections when being

projected to a random lower dimensional subspace.

®
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Step 2 — Volume respecting embedding in R"
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Consider an embedding f of the metric in RN

Given set S of k vertices in RN
EVol(S) is the volume of the simplex spanned by S

Vol(S) is the maximum possible volume in any contracting
embedding (edges are not allowed to become longer)

By Feige, it is possible to obtain a (log n, log?n)-volume respecting
embedding, that is,

Vol(S) \®am
(EvOzms») = logm

Thomas Moscibroda, ETH Zurich @ DIALM 2004 19



Step 3 — Random Projection
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* Given positions v," € R" for all nodes u € V (step 2)
« We now project them to R?.

O

Random Projection:

1. Independently choose two random vectors I, |, € R"of unit
length (lines passing through origin).

2. Forallu eV, projectv," € R"to each line.

3. The R? coordinates are r 2 := (v, I, v," I,).

Properties:
*  When projecting a vector from RN to a random line in RN,

the length of the vector scales by roughly 1/vVN .

« The probability that a set of k points is projected to a small
interval is inversely proportional to the volume of the points.

[~
@ Thomas Moscibroda, ETH Zurich @ DIALM 2004
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Step 3 — Random Projection
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Properties:

—  When projecting a vector from RN to a random line in RN, the length
of the vector scales by roughly 1/v'N.

—  The probability that a set of k points is projected to a small
interval is inversely proportional to the volume of the points.

Together with the volume respecting embeddings,...

... randomly projected points spread quite well in 2D plane.

If we partition the plane into a grid with —
cell-width1/+/n, at most O(log*n-loglog n) _

points lie in a cell w.h.p.

n-1/2
@ Thomas Moscibroda, ETH Zurich @ DIALM 2004 21




Step 4 — Final embedding
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« Smallest non-edge must not be too short
- Spread points within one cell evenly
« Compute a maximal independent set of nodes in each cell
- Let M be the maximum cardinality of such a MIS in any cell

 For each cell,
— Construct refined grid with width 1/vn,
— Assign MIS nodes to grid points in this refined grid.

* All other (non-MIS) nodes in G

are placed on circles around an o
: : : o s T8 G
arbitrary neighboring MIS node. P AANPANY
oo o #7e
NAR VAN

Maximum Edge Length € O(log?°n - vloglogn)
Minimum Non-Edge Length > 1/3

> O(log?>n - v/log logn) Approximation

@ Thomas Moscibroda, ETH Zurich @ DIALM 2004 22
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Quasi Unit Disk Graph

» Definition Quasi Unit Disk Graph:

Let Ve R?, and d € [0,1]. The symmetric

Euclidean graph G=(V,E), such that for
any pair u,v € V

« dist(u,v) <d={uyv}ekE

e dist(u,v)>1 = {u,v}¢ E

Is called d-quasi unit disk graph.

[Barriére, Fraigniaud, Narayanan, DIALM 2001]
[Kuhn, Wattenhofer, Zollinger, DIALM 2003]

« Note that between d and 1, the existence of an edge is unspecified.

@ Thomas Moscibroda, ETH Zurich @ DIALM 2004 24



Reduction
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We want to show that finding an embedding with
q(r(G@)) <4/3/2 — ¢, where ¢ goes to 0 for n = oo is NP-hard.

We prove an equivalent statement:

Given a unit disk graph G=(V,E), it is NP-

hard to find a realization of G as a d-quasi
unit disk graph withd > /2/3 4 €, where ¢
tends to O for n>oc.

- Even when allowing non-edges to be smaller than 1, embedding a

- It follows that finding an approximation ratio better than/3/2 — ¢

®

unit disk graph remains NP-hard!

is also NP-hard.

Thomas Moscibroda, ETH Zurich @ DIALM 2004
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Reduction

O »0O »O »0O
« Reduction from 3-SAT (each variable appears in at most 3 clauses)

« Given a instance C of this 3-SAT, we give a polynomial time
construction of G.=(V,, E) such that the following holds:

— C is satisfiable = G, is realizable as a unit disk graph
— Cis not satisfiable = G is not realizable as a d-quasi unit disk
graph with d > /2/3 + ¢

* Unless P=NP, there is no approximation algorithm with
approximation ratio better than /3/2 —e.

@ Thomas Moscibroda, ETH Zurich @ DIALM 2004 26
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Proof-ldea
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Construct a grid drawing of the SAT instance.
Grid drawing is orientable iff SAT instance is satisfiable.

Grid components (clauses, literals, wires, crossings,...) are
composed of nodes - Graph Gg.

G is realizable as a d-quasi unit disk graph with d > /2/3 4 ¢
iff grid drawing is orientable.

(1 (1
) LlJ
E:? &
(1 1M 1 (1 1
o J J J J upJ
Gan €D
: T 3 |
eElEt
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Conclusion and Outlook
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Virtual coordinates problem is important!
Natural formulation as unit disk graph embedding.
—> Clear-cut optimization problem.

Upper Bound : « &€ O(log?°n+/loglogn)
Lower Bound: a > /3/2—¢

- Gap between upper and lower bound is huge!

Open Problems:
* Diminish gap between upper and lower bound
* Distributed Algorithm

Thomas Moscibroda, ETH Zurich @ DIALM 2004
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Questions? Comments?
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Questions?
Somments?

Fabian Kuhn, Thomas Moscibroda, Regina O'Dell

E Mirjam Wattenhofer, Roger Wattenhofer
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