
Hiding Names: Private Authentication
in the Applied Pi Calculus

Cédric Fournet1 and Mart́ın Abadi2

1 Microsoft Research
2 University of California at Santa Cruz

Abstract. We present the analysis of a protocol for private authentica-
tion in the applied pi calculus. We treat authenticity and secrecy prop-
erties of the protocol. Although such properties are fairly standard, their
formulation in the applied pi calculus makes an original use of process
equivalences. In addition, we treat identity-protection properties, which
are a delicate concern in several recent protocol designs.

1 Introduction

In recent years, the understanding of basic security properties such as integrity
and confidentiality has become both deeper and wider. There has also been sub-
stantial progress in the design and verification of protocols that aim to guarantee
these properties. On the other hand, fundamental tasks such as secure session
establishment remain the subject of active, productive research. Moreover, prop-
erties beyond integrity and confidentiality have been studied rather lightly to
date. These properties include, for example, protection of identity information
and protection against denial-of-service attacks. They may seem secondary but
they are sometimes important.

This paper contributes to the ongoing study of security protocols and of
their properties. More specifically, this paper presents the analysis of a security
protocol in the applied pi calculus [2], a recent variant of the pi calculus. The
protocol in question is one for private authentication (the second protocol of [1]).
Its analysis is worthwhile for several reasons:

– The protocol is for a standard purpose, namely establishing a session (with
associated cryptographic keys), and it is concerned with standard security
properties, such as authenticity and secrecy. Therefore, the analysis of the
protocol exemplifies concepts and techniques relevant to many other proto-
cols.

– In addition, the protocol is concerned with a privacy property: it aims to
guarantee that third parties do not learn the identity of protocol participants.
Although this property and similar ones appear prominently in several recent
protocol designs, they have hardly been specified and proved precisely to
date. Therefore, this paper develops an approach for stating and deriving
those properties.

To appear in the proceedings of the International Symposium on Software Security (ISSS’02), Tokyo,
Japan, November 8-10, 2002, LNCS. c© Springer-Verlag Berlin Heidelberg 2002

– The protocol includes some delicate features, and is not a trivial example
invented only in order to illustrate formal techniques. On the other hand, the
protocol remains fairly simple, so we can give relatively concise treatments
of its main properties.

In the applied pi calculus, the constructs of the classic pi calculus can be used
to represent concurrent systems that communicate on channels, and function
symbols can be used to represent cryptographic operations and other operations
on data. Large classes of important attacks can also be expressed in the applied
pi calculus, as contexts. These include the typical attacks for which a symbolic,
mostly “black-box” view of cryptography suffices (but not for example some
lower-level attacks that depend on timing behavior or on probabilities). Thus,
in general, the applied pi calculus serves for describing and reasoning about
many of the central aspects of security protocols. In particular, it is an appro-
priate setting for the analysis of the protocol for private authentication. Some
of the properties of the protocol can be nicely captured in the form of equiva-
lences between processes. Moreover, some of the properties are sensitive to the
equations satisfied by the cryptographic functions upon which the protocol re-
lies. The applied pi calculus is well-suited for expressing those equivalences and
those equations.

In a sense, private authentication is about hiding the names (or identities) of
protocol participants. The applied pi calculus permits hiding the names that rep-
resent private communication channels and secret cryptographic keys (through
the restriction construct ν). Despite this superficial coincidence, the name hiding
of private authentication and that of the applied pi calculus are rather differ-
ent. We do not have a direct reduction of one to the other. However, the name
hiding of the applied pi calculus is crucial for expressing the protocol under
consideration and for deriving the equivalences that express its properties.

The next two sections explain private authentication and the applied pi cal-
culus, respectively. Section 4 shows how to express a protocol for private au-
thentication in the applied pi calculus. Section 5 treats the authenticity and
secrecy properties of the protocol; section 6, its privacy properties. (We omit all
proofs, because of space constraints.) Section 7 discusses some related work and
concludes.

2 Private Authentication

Although we do not aim to provide a general definition of privacy (partly because
one might have to be too vague or empty), we focus on the following frequent
scenario in which privacy is a central concern: two or more mobile interlocutors
wish to communicate securely, protecting their messages and also their identi-
ties from third parties. This scenario arises often in mobile telephony and mo-
bile computing [7, 14, 12, 15, 6, 8]. In these contexts, roaming users may want to
conceal their identities from others and even from infrastructure providers and
operators. Furthermore, identity protection is a goal of several recent protocols
for communication at the IP level [9, 5].

2

More specifically, suppose that a mobile principal A (a user or a computer)
wishes to communicate with some other principals, and that A is willing to prove
its identity to these principals. Suppose that B is one of them, and that B is
willing to communicate with A and to prove its identity to A. After providing
these proofs, in the subsequent session, A and B may make sensitive requests
from each other and may reveal sensitive data to each other. We study a protocol
(from [1]) that enables A and B to establish an authenticated communication
channel. By following the protocol, A and B should not have to indicate their
identity and presence to any third parties.

In this section, we review the protocol informally. We start by outlining its
assumptions, then describe its message flow and (briefly) some of its properties
and limitations. Later sections contain a formal development of these points.

2.1 Assumptions

The protocol assumes that messages do not automatically reveal the identity of
their senders and receivers—for example, by mentioning them in headers. This
assumption entails some difficulties in routing messages. Focusing on a relatively
simple but important case, the protocol supposes that all messages are broadcast
within some location, such as a physical building or a virtual chat room.

As in most security protocols (following Needham and Schroeder [13]), the
communication infrastructure is untrusted. An attacker can interpose itself on
all public communication channels, and thus can alter or copy parts of messages,
delete messages, replay messages, or emit false material.

The protocol also assumes that each principal A has a public key KA and
a corresponding private key K−1

A (e.g., [11]), and that the association between
principals and public keys is known. This association can be implemented with
the help of a mostly-off-line certification authority, and it is trivial when one
identifies public keys with principal names. Public keys are used for encryp-
tion and private keys for the corresponding decryptions. Informally, when K is
a public key, we write {M}K for the encryption of M using K. The protocol
assumes some properties of the encryption scheme (not all entirely standard).
Only a principal that knows the corresponding private key K−1 should be able
to understand a message encrypted under a public key K. Furthermore, decrypt-
ing a message with a private key K−1 should succeed only if the message was
encrypted under the corresponding public key K, and the success or failure of a
decryption should be obvious to the principal who performs it. Finally, someone
who sees a message encrypted under a public key K should not be able to tell
that it is under K without knowledge of the corresponding private key K−1,
even with knowledge of K or other messages under K.

2.2 The Protocol

When a principal A wishes to talk to another principal B, and B is willing to
talk to a set of principals SB , the protocol specifies that A and B proceed as
follows:

3

– A generates a fresh, unpredictable quantity NA (a “nonce”), and sends out

“hello”, {“hello”, NA, KA}KB

– When B receives any message that consists of “hello” and (apparently) a
ciphertext, B tries to decrypt the second component using K−1

B . If the de-
cryption succeeds, then B extracts the corresponding nonce NA and key KA,
checks that A ∈ SB , generates a nonce NB , and sends out

“ack”, {“ack”, NA, NB , KB}KA

If the decryption fails, if the plaintext is not of the required form, or if
A /∈ SB , then B instead sends out a “decoy” message. This message should
basically look like B’s other message. In particular, it may have the form

“ack”, {N}K

where N is a fresh nonce and only B knows K−1, or it may be indistinguish-
able from a message of this form.

– When A receives a message that consists of “ack” and (apparently) a cipher-
text, A tries to decrypt the second component using K−1

A . If the decryption
succeeds, then A extracts the corresponding nonces NA and NB and key
KB , and checks that it has recently sent NA under KB . If the decryption or
the checks fail, then A does nothing.

Afterwards, A and B may use NA and NB as shared secrets. In particular,
A and B may use NB as a session key, or they may compute session keys by
concatenating and hashing the two nonces.

This protocol has some deliberate similarities with several previous ones [13,
10, 9]. However, unlike those protocols, it aims to preserve the privacy of the
participants, first of all by not publishing their names in cleartext, and also for
example through the decoy message. The inclusion of this message prevents an
attack where a malicious principal C /∈ SB computes and sends

“hello”, {“hello”, NC , KA}KB

and then deduces B’s presence and A ∈ SB by noticing a response. Moreover,
B’s response to A when A /∈ SB is a decoy message that any other principal
could have sent, so that A cannot confirm B’s presence in this case.

2.3 Properties and Limitations

Intuitively, the protocol is supposed to establish the shared secrets NA and NB .
At the very least, we would expect that A and B, and only them, can derive
a session key K from these secrets. We would expect, moreover, that this key
be essentially independent of any other data. For example, it should not be
possible for an attacker without access to K to compute a ciphertext under K
from a record of the protocol messages. In short, K should behave much like

4

a pre-established shared key. The only observable differences between running
the protocol and having a pre-established shared key should be that an attacker
can disrupt a protocol run, making it fail, and that an attacker can notice that
the protocol generates some opaque messages. Our results of section 5 provide a
more precise statement of this comparison, in the form of an equivalence.

The protocol is also supposed to assure A and B of each other’s identity.
However, the two participants have somewhat different states in this respect at
the conclusion of a key exchange. The initiator, A, has evidence that it shares the
session key K with the principal B that responded. On the other hand, B has
evidence that it shares K at most with A, but cannot be certain that A initiated
the protocol run. Any other principal C might have contacted B pretending to
be A, but then C will not obtain the key. Only after further communication
can B be sure of A’s participation in the session.

In addition, the protocol is supposed to protect the identity of the partici-
pants. This should mean, in particular, that an attacker cannot learn anything
when A wishes to communicate with B but not vice versa. It should also mean
that an attacker cannot distinguish a run between A and B from a run between
two other principals A′ and B′, under appropriate hypotheses. The hypotheses
should say, for example, that B is not the attacker, since B learns A’s identity.
The hypotheses should also limit what the participants can do besides running
the protocol. For example, if A were to broadcast “A knows some nonces!” after
every protocol run, then A’s identity would clearly not be protected. More gen-
erally, the hypotheses need to address possible leaks not caused by the protocol
proper. Section 6 develops these hypotheses and gives our privacy results, also
relying on equivalences.

3 The Applied Pi Calculus (Overview)

The applied pi calculus is a simple, general extension of the pi calculus with
value passing, primitive function symbols, and equations between terms. In [2],
we introduce this calculus, develop semantics and proof techniques, and apply
those techniques in reasoning about some security protocols. This section gives
only a brief overview.

3.1 Syntax and Informal Semantics

A signature Σ consists of a finite set of function symbols, such as h and decrypt,
each with an integer arity. Given a signature Σ, an infinite set of names, and an
infinite set of variables, the set of terms is defined by the grammar:

U, V ::= terms
a, n, . . . name
x, y, . . . variable
f(U1, . . . , Ul) function application

5

where f ranges over the function symbols of Σ and l matches the arity of f . We
use meta-variables u and v to range over both names and variables.

The grammar for processes is similar to the one in the pi calculus, except
that here messages can contain terms (rather than only names) and that names
need not be just channel names:

P,Q,R ::= processes (or plain processes)
0 null process
P | Q parallel composition
!P replication
νn.P name restriction (“new”)
if U = V then P else Q conditional
u(x).P message input
u〈V 〉.P message output

The null process 0 does nothing; P | Q is the parallel composition of P and Q; the
replication !P behaves as an infinite number of copies of P running in parallel.
The process νn.P makes a new name n then behaves as P . The conditional
construct if U = V then P else Q is standard, but we should stress that U = V
represents equality, rather than strict syntactic identity. We abbreviate it if U =
V then P when Q is 0. Finally, the input process u(x).P is ready to input
from channel u, then to run P with the actual message replaced for the formal
parameter x, while the output process u〈V 〉.P is ready to output message V on
channel u, then to run P . In both of these, we may omit P when it is 0.

Further, we extend processes with active substitutions:

A,B,C ::= extended processes
P plain process
A | B parallel composition
νn.A name restriction
νx.A variable restriction
{x = V } active substitution

We write {x = V } for the substitution that replaces the variable x with the
term V . The substitution {x = V } typically appears when the term V has been
sent to the environment, but the environment may not have the atomic names
that appear in V ; the variable x is just a way to refer to V in this situation.
The substitution {x = V } is active in the sense that it “floats” and applies to
any process that comes into contact with it. In order to control this contact,
we may add a variable restriction: νx.({x = V } | P) corresponds exactly to
let x = V in P . Although the substitution {x = V } concerns only one variable,
we can build bigger substitutions by parallel composition. We always assume that
our substitutions are cycle-free. We also assume that, in an extended process,
there is at most one substitution for each variable, and there is exactly one when
the variable is restricted.

A frame is an extended process built up from active substitutions by parallel
composition and restriction. Informally, frames represent the static knowledge

6

gathered by the environment after communications with an extended process. We
let ϕ range over frames, and let ϕ(A) be the frame obtained from the extended
process A by erasing all plain subprocesses of A. We write (U = V)ϕ when U
and V are equal up to ϕ [2, section 4.2]. An evaluation context C[] is an extended
process with a hole in the place of an extended process. As usual, names and
variables have scopes, which are delimited by restrictions and by inputs. When
E is any expression, fv(E), bv(E), fn(E), and bn(E) are the sets of free and
bound variables and free and bound names of E, respectively.

We rely on a sort system for terms and extended processes [2, section 2].
We always assume that terms and extended processes are well-sorted and that
substitutions and context applications preserve sorts.

3.2 Operational Semantics

Given a signature Σ, we equip it with an equational theory (that is, with an
equivalence relation on terms with certain closure properties). We write Σ `
U = V when the equation U = V is in the theory associated with Σ. We usually
keep the theory implicit, and abbreviate Σ ` U = V to U = V when Σ is clear
from context or unimportant.

Structural equivalences, written A ≡ B, relate extended processes that are
equal by any capture-avoiding rearrangements of parallel compositions, restric-
tions, and active substitutions, and by equational rewriting of any terms in
processes. Reductions, written A → B, represent silent steps of computation
(in particular, internal message transmissions and branching on conditionals).
Labelled transitions, written A

α−→ B, represent interactions with the environ-
ment. They consist of message inputs and message outputs, respectively written

A
a(U)−−−→ B and A

νũ.a〈U〉−−−−−→ B. An output transition A
νũ.a〈U〉−−−−−→ B is enabled only

if the message U is a very simple term, typically a fresh variable x. Nonetheless,
B may contain an active substitution that associates x with any term. An input

transitions A
a(U)−−−→ B may use variables defined in A (typically from previous

message outputs) to form the message U . Reductions and labelled transitions
are closed by structural equivalence, hence by equational rewriting on terms.

3.3 Examples

We further explain the applied pi calculus with examples motivated by the pro-
tocol under consideration. We start with formatted messages. We then discuss
one-way hash functions and encryption functions.

In our protocol, we use two kinds of formated messages (“hello” and “ack”)
with two and three variable fields, respectively. Accordingly, we introduce binary
and ternary function symbols hello(,) and ack(, ,) in the signature Σ; these
symbols represent the message constructors. In addition, we introduce inverse,
unary function symbols hello.0 (), hello.1 (), ack.0 (), ack.1 (), and ack.2 () in
order to select particular fields in messages. Finally, we describe the intended

7

behavior of formatted messages with the evident equations:

hello.0 (hello(x0, x1)) = x0

hello.1 (hello(x0, x1)) = x1

ack.0 (ack(y0, y1, y2)) = y0

ack.1 (ack(y0, y1, y2)) = y1

ack.2 (ack(y0, y1, y2)) = y2

(A first equational theory may consists of these equations, and all equations
obtained by reflexivity, symmetry, and transitivity and by substituting terms for
the variables x0, . . . , y2.)

In order to model the one-way hash computation of a session key out of
the nonces NA and NB , we introduce a binary function symbol h(,) with no
equations. The fact that h(NA, NB) = h(N ′

A, N ′
B) only when NA = N ′

A and
NB = N ′

B models that h is collision-free. The absence of an inverse for h models
the one-wayness of h. In our protocol, these properties are important to guarantee
that h(NA, NB) is indeed secret (as long as NA or NB is) and, further, that the
attacker cannot recover NA or NB even if it obtains h(NA, NB).

In order to model symmetric cryptography (that is, shared-key cryptogra-
phy), we may introduce binary function symbols encrypt(,) and decrypt(,)
for encryption and decryption, respectively, with the equation:

decrypt(encrypt(x, y), y) = x (1)

Here x represents the plaintext and y the key. We often use the notation {U}V

instead of encrypt(U, V). For instance, the (useless) process νK.c〈{U}K〉 sends
the term U encrypted under a fresh key K on channel c. It is only slightly harder
to model asymmetric (public-key) cryptography, where the keys for encryption
and decryption are different. In addition to encrypt(,) and decrypt(,), we
introduce the unary function symbol pk() for deriving a public key from a
private key. Instead of (1), we use the equation:

decrypt(encrypt(x, pk(y)), y) = x (2)

Since there is no inverse for pk(), the public key pk(s) can be passed to the
environment without giving away the capability to decrypt messages encrypted
under pk(s).

For instance, a principal B with public key KB can be represented as a pro-
cess in a context PB [] def= νs. ({KB = pk(s)} | []) that binds a decryption key s
and exports the associated encryption key as a variable KB . As this example
indicates, we essentially view ν as a generator of unguessable seeds. In some
cases, those seeds may be directly used as passwords or keys; in others, some
transformations are needed.

3.4 Observational Equivalences

In the analysis of protocols, we frequently argue that two given processes cannot
be distinguished by any context, that is, that the processes are observationally

8

equivalent. As in the spi calculus, the context represents an active attacker,
and equivalences capture security properties in the presence of the attacker.
The applied pi calculus has a useful, general theory of observational equivalence
parameterized by Σ and its equational theory [2]. Specifically, the following three
relations are defined for any Σ and equational theory:

– Static equivalence, written ≈s, relates frames that cannot be distinguished
by any term comparison. In the presence of the “new” construct, the relation
≈s is somewhat delicate and interesting.
For instance, we have

νN.{x = h(N,KB)} ≈s νN.{x = h(N,KC)}

for any KB and KC , since the nonce N guarantees that both terms substi-
tuted for x have the same (null) equational properties, but

νN.{x = hello(N,KB)} 6≈s νN.{x = hello(N,KC)}

as soon as KB and KC differ, since the comparison hello.1 (x) = KB succeeds
only with the first frame.

– More generally, contextual equivalence relates extended processes that cannot
be distinguished by any evaluation context in the applied pi calculus, with
any combination of messaging and term comparisons.

– Labelled bisimilarity, written ≈l, coincides with contextual equivalence, but
it is defined in terms of labelled transitions instead of arbitrary evaluation
contexts, and it is the basis for standard, powerful proof techniques.

4 The Protocol in the Applied Pi Calculus

In this section we give a precise model for the protocol described in section 2.2:
we first choose an adequate equational theory, then detail our representation of
principals and attackers, and finally give processes that express the protocol.

4.1 An Equational Theory

The following grammar of terms indicates the function symbols and notation
conventions that we use:

T,U, V, V0, · · · ::= terms

A,B, K, x1, x2, . . . variable
c1, c2, initA, acceptB , connectA, . . . name (for a channel)
N,NA,K−1

A , . . . name (typically for nonces and keys)

h(U, V) cryptographic hash
pk(U) public-key derivation
{T}V public-key encryption
decrypt(W,U) private-key decryption

9

hello(U0, U1), ack(V0, V1, V2) constructor for protocol message
hello.0 (U) , . . . , ack.2 (V) field selector for protocol message
∅ empty set
U.V set extension

This grammar includes primitives for constructing sets (∅ and .) but not a set
membership relation. We write V ∈ W as an abbreviation for W.V = W .

Our equational theory is fairly standard. The equations on terms are:

decrypt({x}pk(z), z) = x private-key decryption

hello.j (hello(x0, x1)) = xj field selection in “hello” message
ack.j (ack(x0, x1, x2)) = xj field selection in “ack” message

(∅.x).x = ∅.x idempotence of set extension
(x.y).z = (x.z).y associativity of set extension

The equational theory implicitly assumes that encryption is “which-key con-
cealing”, in the sense that someone who sees a message encrypted under a public
key K should not be able to tell that it is under K without knowledge of the
corresponding private key K−1. On the other hand, it would be easy to add
functions and equations that negate this property, in order to model additional
capabilities of an attacker. In particular, for the benefit of the attacker, we could
add the function symbols get-key, test-key, or same-key, with respective equa-
tions:

get-key({x}z) = z

test-key({x}z, z) = true

same-key({x}z, {y}z) = true

These additions would not affect authentication and secrecy properties, but they
would compromise privacy properties.

4.2 The Principals

We model arbitrary configurations of principals. Each principal may run any
number of sessions, as initiator and responder, and may perform other operations
after session establishment or even independently of the protocol. Only some of
these principals are trustworthy. We are interested in the security properties that
hold for them.

Our model of a principal A has two parts: an implementation of the protocol,
written PA, and a “user process” (or “user protocol”), written UA. The user pro-
cess defines any additional behavior, such as when protocol runs are initiated and
what happens after each session establishment. It consumes the shared secrets
produced during the establishment of sessions and uses these secrets, perhaps
to do something useful. According to the user process, each principal may run
several sessions of the protocol, possibly playing both the role of initiator and

10

that of responder. Of course, security properties depend on both PA and UA. We
define PA below in section 4.4; on the other hand, we treat UA as a parameter.

We use the following control interface between the (abstract) user process
and the (specific) session-establishment protocol. The interface concerns both
the roles of session initiator and responder.
init : Principal A sends initA〈B〉 to trigger a session-establishment attempt with

principal B.
accept : The responder part of the protocol for principal B sends acceptB〈A,K〉

to notify principal B that it has accepted a session apparently from princi-
pal A, with session key K.

connect : The initiator part of the protocol for principal A sends connectA〈B,K〉
to notify principal A that its attempt to contact B succeeded, with session
key K.

In addition, for each principal B, the set SB represents all acceptable inter-
locutors for B. For simplicity, we do not provide an interface for updating this
set, so it remains constant. Thus, the interface between the session protocol and
the user process for each principal X consists of the communication channels
VX

def= {initX , acceptX , connectX} plus a (constant) set of principals SX .
Note that the interface provides a key K to the user process, rather than

nonces NA and NB . We prefer to define K in such a way that NA and NB

cannot be computed from K (for example, K = h(NA, NB)). Our results can
thus be independent of how the user process applies K.

As suggested by the informal description of the protocol, we represent the
identity of each principal as its public key, using variables A, B, E, X, . . . for
both identities and public keys (rather than A, B, KA, and KB as in section 2.2).
For the present purposes, the essence of a principal lies in its ability to decrypt
any message encrypted under its public key. Accordingly, we associate a context
of the form

PKA [] def= νK−1
A .

(
{A = pk(K−1

A)} | []
)

with every principal identity A. This context restricts the use of the decryption
key K−1

A to the process in the context and it exports the corresponding public
key. Whenever we put a process R in this context, our intent is that R never
communicates K−1

A to the environment.
By definition of well-formed configurations in the applied pi calculus, a pro-

cess of the form C[PKA [R]] exports A, only R can access K−1
A , and we cannot

apply a context that would redefine A. On the other hand, C[] can define any
number of other principals. Thus, we obtain a fairly generous and convenient
model when we represent an attacker by an arbitrary context.

For example, the process PKA [0] indicates that A is a principal whose de-
cryption key is never used. This process concisely models an absent principal.

4.3 The Network and the Attacker

In our model of the protocol, network messages are transmitted on the channels
named c1 and c2. These represent two public communication channels, or a single

11

public channel, perhaps the ether, in which tags serve for differentiating traffic
flows.

As explained in section 2, we assume that an attacker can interpose itself
on all public communication channels. In our model, an arbitrary environment
(an arbitrary evaluation context) represents the attacker. This environment can
interact with the configuration of principals using labelled transitions on any
free channel name. We obtain an attractively simple representation of broadcast
communication: each message is simply made available to the attacker, on a
public channel, and the attacker may then decide to transmit the message, again
on a public channel, to one or more principals.

In addition, we sometimes model a weaker, passive attacker. An attack step—
that is, eavesdropping on a message—amounts to a message interception (for-
mally, with an output label) followed by a re-emission of the same message (with

an input label). We write A
νũ.c[Ṽ]−−−−−→ A′ as a shorthand for the sequence of two

transitions A
νũ.c〈Ṽ 〉−−−−−→ c(Ṽ)−−−→ A′.

4.4 The Protocol

In this section we give a formal counterpart to the description of message flows
of section 2.2.

Messages We rely on substitutions in order to define the protocol messages
and the key derivation, as follows.

σ1
def= {x1 = {hello(NA, A)}B}

σ2
def= {x2 = {ack(NA, NB , B)}A}

σ◦2
def= {x2 = NB}

σK
def= {K = h(NA, NB)}

Although NA and NB are free here, they represent fresh nonces. They will be
bound in any process that introduces these substitutions. The substitution σ◦2
corresponds to the responder’s decoy message, in which here we use a name
rather than a ciphertext, for simplicity.

Syntactic sugar We sometimes use the following abbreviations.
For testing, we write if U1 = V1 and U2 = V2 then P else Q for the process

if U1 = V1 then (if U2 = V2 then P else Q) else Q, and rely on other similar
abbreviations.

For decryption, we use pattern matching on message contents. Specifically,
we write

if x = {ack(NA, νNB , B)}A using K−1
A then P else Q

12

for the process

νNB .

(
{NB = ack.1

(
decrypt(x,K−1

A)
)
} |

if x = {ack(NA, NB , B)}A then P else Q

)
with the assumption that NB 6∈ fv(Q), and we use analogous abbreviations with
νA and νNA. Here, we use the identifiers NA and NB as variables rather than
names, locally.

For filtering duplicate messages, we write

!c1(x \ V).if x fresh then P else Q

for the process

νc. (c〈V 〉 | !c1(x).c(s).(c〈s.x〉 | if x ∈ s then Q else P))

where c is a fresh channel name and s is a fresh variable. We use channel c for
maintaining a set V of previously received messages; Q is triggered instead of P
when one of those messages is received again.

Processes The following code represents the protocol. It includes definitions of
processes both for the initiator role (with A as initiator) and for the responder
role (with B as responder).

PA
def= IA | RA

IA
def= !initA(B).νNA. (c1〈x1σ1〉 | I ′A)

I ′A
def= c2(x2).if x2 = {ack(NA, νNB , B)}A using K−1

A then connectA〈B,KσK〉

RB
def= !c1(x1 \ ∅).

if x1 fresh and x1 = {hello(νNA, νA)}B using K−1
B and A ∈ SB

then νNB .
(
c2〈x2σ2〉 | acceptB〈A,KσK〉

)
else νNB .c2〈x2σ

◦
2〉

Here, IA shows the initiator receiving an initiation request on channel initA
and sending the first protocol message; I ′A then shows the initiator receiving
and checking a response, and passing a session key on channel connectA if the
response is satisfactory. On the other hand, RB shows the responder receiving a
message, processing it, responding, and in some cases passing a session key on
channel acceptB . Both IA and RB are replicated processes. According to RB ,
the responder filters duplicate messages. This filtering is not suggested by the
informal descriptions of the protocol, but we believe that it is a reasonable
refinement, with useful consequences.

As coded, the protocol has little resistance to multiplexing errors. In particu-
lar, the initiator fails if the first response that it receives is not the expected one.
We could add retries without much difficulty, but this aspect of the protocol is
mostly irrelevant in the study of safety properties.

13

4.5 Configurations of Principals

In our statements of security properties (not in the definition of the protocol
itself), we distinguish a particular finite, non-empty set C of compliant principals
A, B, A compliant principal A is one in which the decryption key K−1

A is
used exclusively in the session-establishment protocol. The initial configuration
of a single compliant principal A with user process UA is therefore an extended
process of the form:

QA
def= νVA.

(
UA | PKA [PA]

)
This extended process is parameterized by the set SA, and (at least) exports the
variable A and has free channels c1 and c2. In QA, by definition, UA does not
have access to K−1

A .
Combining several such extended processes, we obtain a global configuration

of the form
∏

A∈C QA for any set of compliant principals C. Sometimes, however,
we do not need to distinguish the user processes of several compliant principals.
We can instead group them in a single expression U , letting U =

∏
A∈C UA.

Then, letting V =
⋃

A∈C VA, we consider configurations of the form:

P
def=

∏
A∈C PKA [PA]

Q
def= νV.

(
U | P

)
We assume that the user processes of compliant principals (UA and U)

never communicate control channels (V) in messages. For instance, the process
c1〈connectA〉 cannot be the user process of a compliant principal. This assump-
tion can easily be enforced by the sort system.

We use P in section 5 when we establish security properties that do not
depend on U , thus effectively regarding U as part of the attacker. We use Q in
section 6, with additional restrictions on U , when we study privacy.

5 Authentication and Secrecy Properties

We begin our analysis of the protocol with traditional properties, namely re-
sponder authentication and session-key secrecy. Such standard properties are
important, and often a prerequisite for privacy properties. Moreover, their for-
mulation in the applied pi calculus illustrates the use of observational equivalence
for expressing security properties. In contrast, many other formalisms for similar
purposes rely only on properties of traces, rather than on equivalences.

For a given set of compliant principals C, we study runs of the protocol in
the presence of an active attacker, by examining transitions P

η−→ P ′ from the
configuration P defined above to some configuration P ′, where η is an arbitrary
sequence of labels.

In our statements, we let ω and ϕ abbreviate the series of actions and the
equational “net effect” of a successful run of the protocol, and let ω− and ϕ−

14

abbreviate the series of actions and the equational “net effect” of a non-accepted
run of the protocol:

ω−→ def=
initA(B)−−−−−→ νx1.c1[x1]−−−−−−→→∗ νx2.c2[x2]−−−−−−→→ νK.acceptB〈A,K〉−−−−−−−−−−−→ connectA〈B,K〉−−−−−−−−−−→

ω−−−→ def=
initA(B)−−−−−→ νx1.c1[x1]−−−−−−→→∗ νx2.c2[x2]−−−−−−→→

ϕ
def= νNA. (σ1 | νNB .(σ2 | σK))

ϕ− def= (νNA.σ1) | (νNB .σ◦2)

We have that if A ∈ SB then

P
ω−→ Px1 | ϕ

else
P

ω−−−→ Px1 | ϕ−

where Px1 is P updated so that RB holds an element x1 in the set of messages
it has received. Thus, P may perform a complete run of the protocol, and this
run succeeds if authorized by the responder and fails otherwise. More generally,
for any P ′ such that P

η−→ P ′, we have that if A ∈ SB then

P ′ ω−→ P ′
x1 | ϕ

else
P ′ ω−−−→ P ′

x1 | ϕ−

where P ′
x1 is a corresponding update of P ′. These results express the functional

correctness of the protocol. They hold independently of whether encryption is
which-key concealing.

The following theorem relates the two possible outcomes of an actual run
to a “magical” outcome ϕ◦ def= νN1.{x1 = N1} | νN2.{x2 = N2} where the two
intercepted messages are trivially independent of the principals A and B and of
the established key.

Theorem 1 (Secrecy for complete runs). Let A,B ∈ C.

1. (Success:) If P
η−→ P ′ and A ∈ SB, then P ′ ω−→≈l P ′ | ϕ◦ | νN.{K = N}.

(Failure:) If P
η−→ P ′ and A 6∈ SB, then P ′ ω−−−→≈l P ′ | ϕ◦.

2. Conversely, if P
ω−→ P ′′, then A ∈ SB and P ′′ ≈l P | ϕ◦ | νN.{K = N}.

The active substitution νN.{K = N} exports the simplest definition of a fresh
secret key, a fresh name, rather than an expression computed from x1 and x2.
Interestingly, ϕ◦ and νN.{K = N} do not depend on A and B at all, so this the-
orem implies a first privacy guarantee. The equivalences ≈l are used for rewriting
P ′

x1 | ϕ and P ′
x1 | ϕ−, by simplifying ϕ and ϕ− and by erasing x1 from the set of

messages that RB has received, returning to the process P ′ and hiding that a run
has occurred. These equivalences hold only if encryption is which-key-concealing.
Otherwise, we obtain only:

P ′
x1 | ϕ ≈l P ′

x1 | (νNA.σ1) | (νNANB .σ2) | (νN.{K = N})

15

On the right-hand side, we are left with messages x1 and x2 that contain the
public keys of A and B. Nonetheless, NA and NB are bound around σ1 and σ2,
so the independence and secrecy of the session key are still guaranteed.

A direct corollary concerns two instances PA and PB of the protocol in the
initial state. This corollary emphasizes the transitions observed by an environ-
ment with no access to the control channels.

PA | PB | initA〈B〉 → νx1.c1[x1]−−−−−−→→∗ νx2.c2[x2]−−−−−−→→≈l

PA | PB | ϕ◦ |
{

νN.
(
acceptB〈A,N〉 | connectA〈B,N〉

)
if A ∈ SB

0 if A 6∈ SB

Intuitively, when we erase control messages, we obtain the same trace and equa-
tional effect whether or not A ∈ SB .

Finally, we also obtain an authentication property:

Theorem 2 (Responder authentication). Suppose that P
η−→ P ′ and (1)

η has no internal communication step on c1 and c2; (2) P ′ has no immediate
output on channel acceptB.

If connectA〈B,K〉 occurs in η, then P
ω−→ η′−→ P ′ for some permutation ωη′ of η.

In the statement of the theorem, we rely on α-conversion and assume that the
names and variables in processes and labels never clash. With this standard
assumption, the commutation of two transition steps (when enabled) can be
written simply as the commutation of their labels. Conditions 1 and 2 in the
theorem are technically convenient, but not essential. Condition 1 rules out traces
where a message is not intercepted by the attacker, and is instead transmitted
internally. Any internal communication A → A′ on channel ci can be decomposed

into A
νxi.ci[xi]−−−−−−→ A′′ with A′ ≡ νxi.A

′′. Condition 2 rules out traces where the
transition acceptB in ω has not occurred and is enabled in P ′.

In light of the results above, we can interpret this theorem partly as a corre-
spondence assertion: whenever A receives a connection message after a protocol
run, apparently with B, we have that

1. A initiated the session with B;
2. B accepted the session with A;
3. both parties are now sharing a fresh key K, as good as a fresh shared name;
4. intercepted messages x1 and x2 are seemingly unrelated to A, B, and K.

6 Privacy Properties

In this section, we focus on privacy properties. For a given set of compliant prin-
cipals C, we consider the question of whether an attacker can distinguish two
user processes U1 and U2 when we place these processes in the context νV.([]|P)
that provides local access to the session-establishment protocol. Therefore, indis-
tinguishability for user processes depends on the identity-protection features of

16

the protocol, and it is coarser than ordinary observational equivalence ≈l (that
is, indistinguishability in all evaluation contexts).

For instance, if U1 and U2 each contain a message initA1〈B1〉 and initA2〈B2〉,
and if U1 and U2 “behave similarly” once a session is established, then U1

and U2 are indistinguishable in this specific sense. On the other hand, we have
initA1〈B1〉 ≈l initA2〈B2〉 only if A1 = A2 and B1 = B2.

In order to capture this notion of indistinguishability, we introduce a special
labelled transition system and a notion of bisimulation. We obtain a general
result in terms of that notion of bisimulation, then derive some privacy prop-
erties as corollaries. Thus, for the study of a particular protocol, we develop a
special notion of observation of user processes. In contrast, in recent, related
work [4, 3], we take a standard notion of observation, and develop communica-
tion protocols that are secure with respect to it (and which, for instance, rely on
“noise” messages in order to hide communication patterns between compliant
principals).

We adopt the following notation convention. We write A, B for principals in
the set of compliant principals C, and E for a principal not in C.

6.1 A Labelled Transition System

Next we define labelled transitions for user processes with control state. The con-
trol state records the sets SB of acceptable interlocutors and abstractly keeps
track of the sessions being negotiated. The labelled transitions reflect only what
the environment can observe about these sessions, filtering out identity informa-
tion.

Formally, a control state ρ consists of two functions, one that maps each
principal B ∈ C to a set SB , and the other a finite map from integers to entries t.
The entries are of four kinds:

– A B: a session offer from A to B not yet considered by B.
– A B Ki: a session offer from A to B accepted by B with key Ki (when

A ∈ SB).
– A B − : a session offer from A to B rejected by B (when A 6∈ SB).
– A E: a session offer from A to some non-compliant principal E.

For any ρ and any integer i not in ρ’s domain, we let ρ[i 7→ t] be the control state
that extends ρ by mapping i to t. We assume that the keys Ki are all distinct.
We let Vρ be the union of V with the keys Ki for all integers i in the domain
of ρ.

We pair a process with a control state, with the notation ρ :U . We assume
that Ki is free in U only if ρ maps i to an entry of the form A B Ki. (In Q,
the user process U may have free variables defined by P , such as variables A
and B that represent compliant principals, or Ki for a computed key. When we
consider transitions of U or ρ :U , we treat these variables as names.)

Such a pair ρ :U may have the three sorts of transitions ρ :U
γ−→ ρ′ :U ′ that we

define next: ordinary transitions, blinded transitions, and external transitions.

17

– Ordinary transitions are essentially those of the process U . For any label α
that does not contain control channels or keys Ki, we have:

Lift
U

α−→ U ′

ρ :U α−→ ρ :U ′
when

fn(α) ∩ Vρ = ∅
bn(α) ∩ (C ∪ Vρ) = ∅

– The attacker can blindly intercept all messages sent on public channels by
the principals in C and resend any of these messages later. Specifically, the
attacker can detect new session attempts, make responders consider session
offers (either genuine or fake), and make initiators consider intercepted “ack”

messages. We reflect these actions using blinded transitions init νi−−−−→,
accept i−−−−−→,

acceptB(A)−−−−−−−→, and connect i−−−−−−→.

Init
U

initA〈B〉−−−−−→ U ′

ρ :U init νi−−−−→ ρ[i 7→ A B] : U ′

Accept
ρ[i 7→ A B] : U

accept i−−−−−→
{

ρ[i 7→ A B Ki] : U | acceptB〈A,Ki〉 if A ∈ SB

ρ[i 7→ A B −] : U if A 6∈ SB

Accept-Fake

ρ :U
acceptB(A)−−−−−−−→

{
ρ :U | νN.acceptB〈A,N〉 if A ∈ SB

ρ :U if A 6∈ SB

Connect

ρ[i 7→ A B Ki] : U
connect i−−−−−−→ ρ : νKi.

(
U | connectA〈B,Ki〉

)
ρ[i 7→ A B −] : U connect i−−−−−−→ ρ :U

– In addition, compliant principals may be willing to open sessions with non-
compliant ones. These sessions are also mediated by the protocol, even if
they are transparent to the attacker who can in principle decrypt all mes-
sages in these sessions. We reflect these actions using external transitions
νiE.initA〈i,E〉−−−−−−−−−→,

acceptB(W,V)−−−−−−−−−→, and
connectA(i,E,V)−−−−−−−−−−→, where E is a variable and

V and W are terms such that fn(V) ∩ Vρ = fn(W) ∩ Vρ = ∅.

Init-E
U

νE.initA〈E〉−−−−−−−−→ U ′

ρ :U
νiE.initA〈i,E〉−−−−−−−−−→ ρ[i 7→ A E] : U ′

when (E 6= B)ϕ(U ′)
for all B ∈ C

Accept-E ρ :U
acceptB(W,V)−−−−−−−−−→ ρ :U | acceptB〈W,V 〉 when (W = A)ϕ(U)

for some A ∈ SB \ C

Connect-E ρ[i 7→ A E] : U
connectA(i,E,V)−−−−−−−−−−→ ρ :U | connectA〈E, V 〉

6.2 Private Bisimulation

In order to express hypotheses on the observable properties of user processes,
we define an ad hoc notion of bisimulation:

18

Definition 1. Private bisimilarity (≈C) is the largest symmetric relation R on
extended processes with control state such that, whenever T1 R T2 with T1 =
ρ1 :U1 and T2 = ρ2 :U2, we have:

1. νVρ1 .U1 ≈s νVρ2 .U2,
2. if T1 → T ′

1, then T2 →∗ T ′
2 and T ′

1 R T ′
2 for some T ′

2,
3. if T1

γ−→ T ′
1 and fv(γ) ⊆ dom(νVρ1 .U1) and bn(γ) ∩ fn(νVρ2 .U2) = ∅,

then T2 →∗ γ−→→∗ T ′
2 and T ′

1 R T ′
2 for some T ′

2.

This definition is an adaptation of that of weak labelled bisimilarity for the
applied pi calculus [2, definition 4]. The three clauses are exactly analogous to
those for the applied pi calculus, with different transitions in clause 3.

We also let ε range over initial control states, that is, control states that
have no session entries and only define sets SB for B ∈ C. We write P (ε) for the
protocol P with these sets SB . When ε is clear from context, we may write (as
usual) P instead of P (ε).

Our main privacy result states that, if two user processes are privately bisim-
ilar (under our new notion of bisimulation), then the two corresponding config-
urations are observationally equivalent from the environment’s point of view.
As we show below, this result provides an effective proof technique for privacy
properties.

Lemma 1 (Privacy). If ε1 :U1 ≈C ε2 :U2, then

νV.
(
U1 | P (ε1)

)
≈l νV.

(
U2 | P (ε2)

)
The hypothesis ε1 :U1 ≈C ε2 :U2 deals with arbitrary user processes and sets SB ,
and is typically not difficult to establish in particular cases. Importantly, its
statement does not depend on any detail of the session protocol, only on its
control interface. The conclusion νV.

(
U1 | P (ε1)

)
≈l νV.

(
U2 | P (ε2)

)
then says

that two composite systems, each with a user process, are indistinguishable.
The converse of Lemma 1 does not quite hold, at least because the definition

of labelled transitions is conservative in some respects. (For instance, in that
definition, we safely presume that the attacker has a private key associated with
any value E that U employs to identify a non-compliant principal.) Thus, user
processes that are not privately bisimilar may still be part of undistinguishable
systems. Such user processes can easily be excluded with additional hypotheses.

6.3 Applications of the Privacy Lemma

One may formulate and prove many specific privacy properties for the protocol.
The various properties may differ, in particular, on which user processes and
sets SB they consider. We give a series of simple examples of such properties.
In the examples, the hypotheses can usually be made less demanding, and more
specific and complicated. The proofs follow directly from Lemma 1.

We begin with a basic example that concerns the anonymity of failed sessions.
Provided that U never inputs on channels initX , if A 6∈ SB and A′ 6∈ SB′ , then

19

replacing initA〈B〉 with initA′〈B′〉 in U does not affect Q (up to observational
equivalence).

The next result deals with a single initial session attempt, and states that the
session attempt may not compromise any private bisimilarity that would hold
after establishing the session.

Theorem 3 (Equivalent sessions). For j = 1, 2, let

Uj
def= initAj 〈Bj〉 | connectAj (Bj ,K).Vj

U ′
j

def= νK.
(
acceptBj

〈Aj ,K〉 | Vj

)
with Aj , Bj ∈ C and Aj ∈ SBj in εj. If ε1 :U ′

1 ≈C ε2 :U ′
2, then ε1 :U1 ≈C ε2 :U2.

For any V1 and V2 that do not use the control channels, the private bisimi-
larity hypothesis holds as soon as νK.V1 ≈l νK.V2. With this additional as-
sumption and Lemma 1, we have a corollary expressed in terms of standard
labelled bisimilarity: we obtain that if νK.V1 ≈l νK.V2 then νV.

(
U1 | P (ε1)

)
≈l

νV.
(
U2 | P (ε2)

)
.

A further privacy property concerns compliant principals that attempt to
open sessions with one another but do not perform any action observable by
the attacker after establishing a session. (They may for instance use private
channels, or public channels with adequate decoys.) We may describe any such
configuration of principals in C by a parallel compositions of initA messages
with A ∈ C, plus the sets (SB)B∈C . In this special case, we easily characterize
the equivalence of two configurations:

Theorem 4 (Silent sessions). Let U1 and U2 be parallel compositions of mes-
sages initA〈X〉 with A ∈ C. If

1. U1 and U2 contain the same number of messages,
2. U1 and U2 contain exactly the same messages initA〈W 〉 for W 6∈ C, and
3. the sets SB \ C are identical in ε1 and ε2,

then νV.
(
U1 | P (ε1)

)
≈l νV.

(
U2 | P (ε2)

)
.

In order to prove the theorem, we may establish ε1 :U1 ≈C ε2 :U2 by enumerating
a few blinded and external transitions, then apply Lemma 1. Conversely, these
conditions seem clearly necessary: the attacker can count the number of “hello”
messages, can decrypt “hello” messages sent to principals outside C (as long as
W is a public key not in C), and can attempt to establish a session with any
B ∈ C.

We can derive other similar privacy results for uniform families of user pro-
cesses, such as processes that do not use any principal identity after establishing
sessions.

Our final result relates a configuration with a present but silent principal to a
configuration with an absent principal. (This theorem does not require Lemma 1;
it has a simple, direct bisimulation proof.)

20

Theorem 5 (Absent principal). Assume that |C| > 1, and let X 6∈ C and
SX = ∅. We have:

Q | νVX .PKX [PX] ≈l Q | PKX [0]

The process on the left-hand side is structurally equivalent to a configuration Q′

with compliant principals C ∪ {X}; the process on the right-hand side includes
an absent principal (a principal X whose decryption key is never used). Hence,
one may first use private bisimilarity to show that X is apparently not involved
in any session in Q′, then apply Theorem 5 to substitute an absent principal
for X. (Conversely, if C = {} or C = {A}, then the addition of any instance of
the protocol is observable.)

7 Conclusions

This paper reports on the analysis of a protocol in the applied pi calculus,
covering standard authenticity and secrecy properties and also privacy (iden-
tity protection) properties. The formulation of these properties mainly relies
on equivalences, which express indistinguishability in an arbitrary context. Our
analysis concerns not only the core of the protocol but also its composition with
a user process, since this composition may endanger privacy properties. Thus,
we examine the protocol under several hypotheses on user processes. We ob-
tain several related results that transfer hypotheses on user processes to security
properties of complete systems.

The literature contains many other formal treatments of protocols and of
their security properties. We will not attempt to survey that work here, but
mention only the two most relevant papers. One of them is our original paper
on the applied pi calculus [2], which considers session establishment and some
of its properties, and which includes additional references. The other is a recent
paper by Shmatikov and Hughes that defines several notions of anonymity and
privacy [16], and sketches—in just a few sentences—an analysis of the protocol
that is the subject of this paper. Shmatikov and Hughes develop a special formal
framework for protocols, communication graphs. Despite some thematic overlap,
the applied pi calculus appears to be richer than communication graphs. In
particular, communication graphs do not include an account of user processes.
While the definitions of anonymity and privacy seem appropriate and useful for
communication graphs, it is not yet entirely clear whether and how they would
carry over to the applied pi calculus and other settings.

Acknowledgments

We are grateful to Vitaly Shmatikov for helpful discusions, and to the editors
for their patience. Part of Mart́ın Abadi’s work was done at Microsoft Research,
Silicon Valley. Mart́ın Abadi’s work was also partly supported by the National
Science Foundation under Grants CCR-0204162 and CCR-0208800.

21

References

1. Mart́ın Abadi. Private authentication. In Proceedings of the Workshop on Privacy
Enhancing Technologies (PET 2002), LNCS. Springer-Verlag, 2002. To appear.

2. Mart́ın Abadi and Cédric Fournet. Mobile values, new names, and secure communi-
cation. In Proceedings of the 28th ACM Symposium on Principles of Programming
Languages (POPL 2001), pages 104–115. ACM, January 2001.

3. Mart́ın Abadi, Cédric Fournet, and Georges Gonthier. Authentication primitives
and their compilation. In Proceedings of the 27th ACM Symposium on Principles
of Programming Languages (POPL 2000), pages 302–315. ACM, January 2000.

4. Mart́ın Abadi, Cédric Fournet, and Georges Gonthier. Secure implementation of
channel abstractions. Information and Computation, 174(1):37–83, April 2002.

5. William Aiello, Steven M. Bellovin, Matt Blaze, Ran Canetti, John Ionnidis, Ange-
los D. Keromytis, and Omer Reingold. Efficient, DoS-resistant, secure key exchange
for internet protocols. In Vijay Atluri, editor, Proceedings of the 9th ACM Confer-
ence on Computer and Communications Security (CCS 2002), pages 48–58. ACM,
November 2002.

6. Giuseppe Ateniese, Amir Herzberg, Hugo Krawczyk, and Gene Tsudik. On trav-
eling incognito. Computer Networks, 31(8):871–884, 1999.

7. Hannes Federrath, Anja Jerichow, and Andreas Pfitzmann. MIXes in mobile com-
munication systems: Location management with privacy. In Ross J. Anderson,
editor, Information hiding: First international workshop, volume 1174 of LNCS,
pages 121–135. Springer-Verlag, 1996.

8. Markus Jakobsson and Susanne Wetzel. Security weaknesses in Bluetooth. In
Topics in Cryptology - CT-RSA 2001, Proceedings of the Cryptographer’s Track
at RSA Conference 2001, volume 2020 of LNCS, pages 176–191. Springer-Verlag,
2001.

9. Hugo Krawczyk. SKEME: A versatile secure key exchange mechanism for in-
ternet. In Proceedings of the Internet Society Symposium on Network and Dis-
tributed Systems Security, February 1996. Available at http://bilbo.isu.edu/

sndss/sndss96.html.
10. Butler Lampson, Mart́ın Abadi, Michael Burrows, and Edward Wobber. Authen-

tication in distributed systems: Theory and practice. ACM Transactions on Com-
puter Systems, 10(4):265–310, November 1992.

11. Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of
Applied Cryptography. CRC Press, 1996.

12. Refik Molva, Didier Samfat, and Gene Tsudik. Authentication of mobile users.
IEEE Network, 8(2):26–35, March/April 1994.

13. Roger M. Needham and Michael D. Schroeder. Using encryption for authentication
in large networks of computers. Communications of the ACM, 21(12):993–999,
December 1978.

14. Michael G. Reed, Paul F. Syverson, and David M. Goldschlag. Protocols us-
ing anonymous connections: Mobile applications. In B. Christianson, B. Crispo,
M. Lomas, and M. Roe, editors, Security Protocols: 5th International Workshop,
volume 1361 of LNCS, pages 13–23. Springer-Verlag, 1997.

15. Didier Samfat, Refik Molva, and N. Asokan. Untraceability in mobile networks.
In Proceedings of the First Annual International Conference on Mobile Computing
and Networking (MobiCom 1995), pages 26–36, 1995.

16. Vitaly Shmatikov and Dominic Hughes. Defining anonymity and privacy (extended
abstract). In Workshop on Issues in the Theory of Security (WITS’ 02), January
2002.

22

