An Architectural Framework to deploy
Scatternet-based Applications over Bluetooth

Nitin Pabuwal , Navendu Jain and B. N. Jain
Departmeniof ComputerScienceand Engineering
Indian Institute of Technology New Delhi 110016,India

Emails: pahuwal_n,navendu,bnj@cse.iitd.ernet.in

Abstract— Bluetooth is a promising wireless personal area
network technology and is on the verge of being ubiquitously
deployed over a wide range of devices. The basic unit of a
Bluetooth network is a centralized masterslave topology, namely
a piconet, that can be easily extended into a multi-hop ad-
hoc network called a scattemet. Scattemets increaseBluetooth’s
usability multi-f olds such that numerous applications may be
built over them to unleashthe potential of Bluetooth. The main
ingredients of a scattemet-basedapplication include a topology
formation and a routing algorithm, which themsehesare of many
types.

A standard architectural framework shall prove extremely
useful to integrate all these applications and algorithms in a
seamlessmodular and re-usablefashion, hencesaving one from
re-inventing the wheelmost of the time. In this paper, we present
onesuchnovel architectural framework that constitutesof highly
portable and plug-n-play modules to deploy scattemet-based
applications over Bluetooth. These constituent modules may be
developed independently and be easily integrated at run-time.
The algorithm modules may be built in an application-oriented
fashion to deliver better performance to particular type of
applications that may have specificrequirementsand constraints.
To the best of our knowledge, this is a first attempt to propose
a standard architecture to deploy applications over Bluetooth.
We provide details of our proposedset of APIs and describe a
multimedia application that we have built in completeaccordance
with our architecture.

I. INTRODUCTION

In December , an industry consortiumknown as the
Bluetooth SIG standardizedVersion of Bluetooth [1]:
a promising wireless personalarea network technology to
provide alow power, low cost,globally uniformradiointerface
betweenary two devices with Bluetooth support. Today
Bluetoothis on the verge of beingubiquitouslydeployed over
a wide rangeof devices.

Piconet(Fig. 1(a)) is the basicunit of a Bluetoothnetwork.
A piconetis a centralizedmasterslave topology with atmost
eight active membersat a time, with every slave within ten
metersof the master The logical extensionto a piconetis to
join multiple piconetsand createa multi-hop ad-hocnetwork
called a scatternet(Fig. 1(b)). Within a scatternetadjacent
piconetsare connectecby commonnodesthat act asbridges.
Peacefukxistenceof uptotenpiconetsin a coverageregion is
guaranteedby the factthat communicatiorwithin a piconetis
basedon frequeng-hoppingwith hops/secondwith the

IN. Pakuwal is currentlyassociatedvith Ensim CorporationandN. Jainis
a ComputerScienceGraduateStudentat University of Texasat Austin.

L2

Fig. 1. (a) A Piconet(b) A Scatternet

hopping sequencéeing a function of the Bluetoothaddress
of the masterand hencevarying acrossseparatepiconets.

ScatternetancreaseBluetooths usability multi-folds and
open mary newv arenasto provide excellent value-added
servicesto the users.Numerousapplicationsmay be built
over them to unleashthe potential of Bluetooth. The main
ingredientof ascatternet-basegbplicationincludeatopology
formation and a routing algorithm, which themseles are of
mary typesasthe Bluetoothspecification[1] doesnot define
ary specificones.Every implementatiorof theseapplications
requiresan implementationof one of thesealgorithmshence
making one re-invent the wheel most of the time. This calls
for a standardarchitecturalframewnork to integrate all the
applicationsand algorithmsin a seamlessmodular and re-
usablefashion.

To build a highly flexible androbustarchitecturaframenork
to deploy a wide variety of scatternet-baseapplicationsover
Bluetooth,we have identified the following requirements:

A. Platform Independent

Any applicationthat wishesto be deployed over Bluetooth
shouldaim to be portableover a wide rangeof platforms.This
platform independencés requiredon two accounts:

1) Stack Independence: With the coming of Bluetooth,
camea plethoraof stacks,both open-sourceand proprietary
A basic Bluetooth stack spans atleast four layers of the
OSI network model from the physicalto the transport.Most
of these layers are directly accessibleto the applications
running at the top. With each stack having its own API
and specificationsporting an applicationover eachof these
stacksposesa herculeantask. So the idea is to provide a
standardAPI betweenthe applicationsand the stackssuch
that an applicationcomplying to this standardAPI becomes
independenbf the underlyingimplementation.

2) Device Independence: Bluetoothintendsto getdeployed
on just any wirelessdevice that may ever exist. To achieve

device independencethe applicationshould be written in a
programminglanguagethat is portable acrossmost of these
devices.Java comesasa naturalchoice.Java 2 PlatformMicro
Edition (J2ME),with its Connected.imited Device Configura-
tion (CLDC) augmentedvith the Mobile Information Device
Profile (MIDP) [2], is the most widely deployed version of

Java and spansalmost every wireless device that possesses

the capabilityto connectto a network.

So to meet both the above requirementsof stack inde-
pendence and device independence, we needa standardAPI
betweerthe applicationsandthe stackandthattoo Java-based.
In March , the Java Community ProcesqJCP)finalized
Version of the Java SpecificationRequesB2 (JSR-82)[3],
thefirst standardlava API for Bluetooth.The JSR-82API has
beendesignedto operateon ary device with a J2ME CLDC
ReferencdmplementationRI) andwith a minimum K of
total memoryfor the Java 2 platform. Thoughour architecture
is not dependenbn the BluetoothAPI beingused(aslong as
it is Java-based)presentlythe functionality hasbeendefined
keepingJSR-82in mind but should hold good for ary other
API that provides atleastas much functionality as JSR-82.

B. Plug-n-Play

Scatterneformationandrouting algorithmsareresponsible
for definingthe characteristicef a scatternetA scatternetan
deliver betterperformanceo particulartype of applicationsf
thesealgorithmsareapplication-orientedBy simply switching
amongalgorithmsthe userscaneasilydecidewhatworks best
for them. Soto allow selectionof algorithmsat run-time,we
have integrated them into the architecturein a plug-n-play
fashion.In this way, the user may also download and run
algorithm modulesthat may be developedindependentlybut
in accordancevith the architecture.

This paperis organizedasfollows. In sectionll we describe
our proposedarchitectureandthen provide the specifications
of the APIs in sectionlll. We also presenta state-of-the-art
multimediaapplicationbasedon our proposedarchitectureas
anillustrationin sectionlV and concludethe paperin V.

Il. ARCHITECTURE

Fig. 2 showns the componentf our proposedarchitecture.
Availability of an underlyingJava-basedluetooth APl such
as JSR-82is the lowest-level requirementfor applications
complying to our architectureto be deployed on a device.
Devices running similar scatterneformation and routing al-
gorithmsconnecto form anetwork overwhich theapplication
runs. The various modules—Useinterface and Application,
Scatterneformation Algorithm, and Routerinteractthrough
a fixed set of proposedAPIs hence making each of them
completelypluggableandre-usable Details of the APIs have
beenprovided in the next section.

A. User Interface and Application

TheUserlnterfaceprovidestheinteractionwith theend-user
andencapsulatethe Application which is animplementation-
instanceof the protocol being defined by the deployed ap-
plication to interpret application-leel data. The architecture

Scatternet Formation Algorithm

User Interface
Platform-dependent Tools <> Portable and Pluggable
J2SE: Swing J2ME: MIDLets

Application

J2ME CLDC + MIDP and JSR-82

i add/remove connections

. send/receive control information
send/receive data

Router
Portable and Pluggable

J2ME CLDC + MIDP and JSR-82

[Java—based Bluetooth API (such as JSR-82) |

‘ Bluetooth Stack (L2CAP + HCI) ‘

Baseband + Radio

I Proposed API

Fig. 2. Architecture

does not require this module to be portable over different
devices and henceit may be built using ary of the tools
providedby thetargetdevice, suchasMIDLets over J2MEand
Swing over J2SE (Java 2 Platform StandardEdition). In this
way more sophisticatednterfacesmay be provided to users
working with moreresourcefubdevices.Only the encapsulated
Applications are expectedto comply to the same protocol.
The Interfacemay provide accesso only thosefeaturesof the
applicationthat can be supportedby the target device. The
detailsareimplementation-dependerit. may also provide the
user with an option to choosethe scatternetformation and
routing algorithms.

The encapsulated\pplication shall normally interactonly
with the ScatterneFormationAlgorithm andthe Routermod-
ules, but may accesshe Bluetooth API directly if required.

B. Scatternet Formation Algorithm

The ScatterneFormationAlgorithm is responsibldor con-
structingthe scatternetEachalgorithmhasa specificprotocol
that defines how the topology should be constructedand
maintained.Maintenances requiredin order to accountfor
mobility asdevices continuouslymove in and out of range.

The Algorithm module definesa Maximum Transmission
Unit (MTU) size for eachpaclet sentand receved over the
scatternetThe Application andthe Routerare expectedto get
the MTU-size from it.

C. Router

The Router defineshow data is to be routed over the
scatternetThe Routermoduletakes careof constructingand
maintainingthe routesas well as sendingand receving data
over them. It provides abstractionof two types of paclets:
Application Data and Control Information, being sent and
receved by the Application and the ScatternetFormation
Algorithm respectrely. A third type, the Route Information,
is usedby the Routerfor internal pacletsto performits own
task of constructingand maintainingthe routes.

The Routerneedsto fill internal headerinformationwithin
every paclketandhenceevery paclet sentandrecevedthrough
it shouldaccommodatextra spacefor the headerThe header
size shouldbe obtainedfrom the Routeritself.

Both, the Algorithm and the Routermodules,are expected
to be completelyportableandshouldbe built usingonly J22ME
CLDC and MIDP APIs asthat is the mostwidely deplo/ed
version of Java. Also, the modulesshould interact with the
Bluetoothstackonly throughthe intermediateAPI.

Importantto note is that since two devices may connect
only whenthey arerunningthe samescatterneformationand
routingalgorithms for resolutionpurposedifferentalgorithms
should identify themseles as separateservices.Before con-
nectingto a device, thelocal device is first expectedto initiate
a servicesearchon the remotedevice to checkif it provides
the sameservicesthat representhe algorithmsbeing used.

D. Interactions

The componentmodulesof the architectureinteract only
through a proposedset of APIs. Each module implements
specificJava interfacesthat are exposedto other modulesto
provide abstraction.

1) Application and the Scatternet Formation Algorithm:
The ScatternetFormation Algorithm implements Scatter net
interface through which the Application may ask the Al-
gorithm to join, canceljoining, or leave a scatternet.The
Application may ask for information aboutits local device’s
presenstatusin the scatternetdependingon whichimmediate
connecteddevices might be known. It may also get the list
of all devicesin the scatternetor its piconet, provided the
algorithm’'s implementationsupportsit. The Application also
obtainsa referenceo a Routermodulethroughthe Algorithm
thatit usesto sendandreceve data.

The Application implements ScatternetListener interface
throughwhich the Algorithm corveys information of addition
andremoval of devicesfrom the network, both atthe scatternet
andthe local piconetlevel.

2) Application and the Router: The Router implements
Router interface through which the Application sendsand
receves paclets of the Application Data type. This is a one-
way interaction.The Router never initiates a communication
and hencedoesnot require the Application to implementa
specificinterface.

3) Scatternet Formation Algorithm and the Router: The
Router extends RouterControl abstractclass which in turn
implementsRouter interface.Hencethe Algorithm may send
and receve paclets of the Control Information type using
the Router interface. Additionally, the Algorithm corveys
informationof additionandremoval of immediateconnections
of the local device to the Routerthatit may useto updateits
internalstateandroutes.The Algorithm may obtainthe list of
all devicesin the scatternethroughthe Router (if supported
by it) in orderto passit to the Application. It may ask the
Routerto shutdavn andreturnto initial statewheneer it is
asledby the Applicationto leave the scatternetThe Algorithm
also asksthe Routerfor its serviceidentifier while initiating
a servicesearchon the remotedevice.

The Algorithm implementsRouterListener interface.Loss
of existing connectionsis detectedby the Router which it
communicateso the Algorithm. If supportedthe Routeralso

corveysinformationof additionandremoval of devicesat the
scatternetevel to the Algorithm which it further passego the
Application.

No specificationhas beenproposedfor the interaction of
the moduleswith the BluetoothAPI and shouldonly depend
on the API's specifications.

I11. APl SPECIFICATION

Here we provide the details of our proposedAPIs for
interactionbetweendifferent modulesof the architecture All
classesare containedin packagecom.iitd.bluetooth.scat. All
memberdisted are public. Descriptionmay be found in [4].

A. Classes
1) Interfaces:

Router
RouterListener
Scatternet
ScatternetListener

2) Classes:

AppData
RouterControl

3) Exceptions:

| DeviceStatusException

B. com.iitd.bluetooth.scat. Router
1) Fields:
staticbyte ALGO_PKT

staticbyte APP_PKT
staticbyte ROUTE_PKT

Methods:

int getHeaderSize()
booleanready(bytetype)

int receve(AppDatadata,byte type)
void send(AppDatalata,byte type)

2)

C. comi.itd.bluetooth.scat. Router Listener
1) Methods:

byte connectionRemeed
(javax.bluetooth.L2CAPConnectiazonn,
java.lang.Stringodaddr)

void deviceAdded(jaa.lang.Stringodaddr)
void deviceRemaed(java.lang.Strig bdaddr)
int getMTU()

byte getStatus()

D. com.iitd.bluetooth.scat. Scatter net
1) Fields:

staticbyte BRIDGE

staticbyte MASTER

static byte SLAVE
static byte UNKNOWN

2) Methods:

booleancancelJoinScatternet
(ScatternetListendistener)

java.util. EnumeratiorgetBridges()

java.lang.StringgetFriendlyName
(java.lang.Stringodaddr)

java.lang.StringgetMaster()

java.util. EnumeratiorgetMasters()

int getMTU()

java.util. EnumeratiorgetPiconetDeices()

RoutergetRouter()

java.util.EnumeratiorgetScatternetDéces()

java.util.EnumeratiorgetSlaes()

byte getStatus()

booleanjoinScatterne(ScatternetListener
listener java.lang.StringouterName)

booleanleaveScatternet
(ScatternetListendistener)

E. com.iitd.bluetooth.scat. Scatter netListener
1) Fields:

staticint PICOALT

staticint SCAT_ALT

2) Methods:

void deviceAdded(jaa.lang.Strindbdaddr
int type, byte status)

void deviceRemaed(java.lang.Stringbdaddy
int type, byte status)

F. comiitd.bluetooth.scat. AppData
1) Fields:

staticbyte BCAST

staticbyte MCAST

staticbyte RECVD

staticbyte UCAST

2) Constructors:

AppData(bytetype)

AppData(bytetype, java.lang.Objecbdaddr
byte[] data,int size)

3) Methods:

void finalize()

java.lang.ObjecgetBluetoothAddress()

byte[] getData()

int getSize()

byte getType()

void setBluetoothAddress
(java.lang.Objecbdaddr)

void setData(byte[[data)

void setSize(intsize)

G. comiitd.bluetooth.scat. Router Control
1) Constructors:

\ RouterControl(RouterListendistener)
2) Methods:

abstractvoid addConnection
(javax.bluetooth.L2CAPConnectiaronn,
java.lang.Stringodaddr byte status)

void addRouterListener
(RouterListenetistener)
abstractava.util. Enumeration
getScatternetDéces()
abstractavax.bluetooth.UUIDgetUUID()
abstractvoid remosreConnection
(javax.bluetooth.L2CAPConnectiaronn,
java.lang.Stringodaddr byte status)

void removeRouterListener
(RouterListenetistener)

abstractvoid shutdavn()

H. comiiitd.bluetooth.scat. DeviceStatusException
1) Constructors:

DeviceStatusException()
DeviceStatusException(ja.lang.Stringnsg)

IV. MULTIMEDIA APPLICATION

We shall now describe the multimedia application that
we have built in complete accordancewith our proposed
architecture.The applicationmay be usedas a referenceto
build further applications.

The multimediaapplicationprovidesfeaturessuchas Chat,
File Transfer, Image Transfer, and Video Sreaming. All these
featuresare push servicesand are initiated by the userwho
wants to send data to other users.Data may be sent over
a unicast,multicast, or a broadcastsession Destinationsare
identified by their Bluetoothdevice addressAll the features
may not be exposedto the userin every implementationof
the applicationas that dependson the tools being provided
by the target device. If somedatafor an unexposedfeatureis
receved, it is simply discarded.

A. Protocol

The protocolfor the applicationdefineshow communication
among instancesof the application deployed over separate
devicestakesplace.

Fig. 3 shawvs the structureof eachpaclet transmittecby the
applicationover the scatternet:

RouterHeader(Header): variable bytes - accommodates
spacdor the Routers headerSizemay beknown through
the Routerbeing used.

Code (C): 1 byte - identifies the feature the paclet
belongsto: Chat, File Transfer, Image Transfer, or Video
Srreaming. Takesthe valueO, 1, 2, or 3, respectiely.
Status(S): 1 byte- identifies the position of the paclet
in a particular transmissioni.e. whether its the first,

|Header[C| S| L] ID |

Fig. 3. Paclet Structure

Payload |

intermediate,or the last paclet. Takes the value 0x01,
0x02, or 0x04, respectiely.

Identifier Length (L): 1 byte - givesthe lengthof ID.
Identifier (ID): L bytes - identifiesthe transmissiorthe
pacletis a part of.

PayloadData (Payload): variable bytes - is the payload.

Importantto Note:

Total length of the paclet never exceedsthe MTU-size
definedby the ScatterneformationAlgorithm.

No sequencenumberis sentout with the paclets asre-
orderingwithin the scatterneis assumedo be absent.
FieldsS, L andID arenot presentf the C field is O i.e.
if the featureis Chat. This is becausea chatmessagées
restrictedto one paclket only and henceno identification
for the transmissioris required.And soif the C field is
0, the Payload startsimmediatelyafter it.

Every time the applicationneedsto make a transmissionit
breaksthe datainto MTU-sized paclets and setstheir ID to
the nameof thefile beingtransferredAt thereceving end,the
datais collectedin a file namedsink_ID_source] .ext], where
sink andsource areBluetoothaddressesf thereceverandthe
senderrespectiely; and ext, if present,is the extensionpart
of the file-namebeing usedas|D. In this way uniquenesss
guaranteecndtwo simultaneouseceptionsdo not mix.

B. Modules

We have built all the modulespresentin the architecture
that work and interactexactly in the way proposed.Few of
their particularsinclude:

1) User Interface: The User Interfacehasbeenbuilt over
J2SE using Swing componentsand shall not be portableto
small devicesthat provide only J2ME. With this interface,the
usermay join and leave a scatternetsend,receive and view
datawhenin connectedstate;and checklogs. The usermay
selectalist of destinationdor its pacletsfrom alist of known
devicesthat keepsupdatingthroughnotificationsreceved via
the Scatternef~ormation Algorithm module. While trying to
join a scatternet,the user may choosethe Algorithm and
Router modulesto be usedto definethe network character
istics. Varioussnapshot®f the interfacemay be foundin [4].

2) Scatternet Formation Algorithm: We have built two scat-
ternetformation algorithmsof our own as separatenodules.
When started,thesemodulesregister their serviceidentifiers
with the stackandtry to discover neighboringdevicesthatpro-
vide similar servicesand then connectas per their respectie
protocols.Oncethe local device is a memberof a scatternet,
the algorithmscontinuouslytry to maintainthe scatterneby
connectingto more devices and accountingfor mobility.

3) Router: We have implemented some of the exist-
ing wirelessad-hocrouting protocols,including Destination
SequencedDistance Vector (DSDV), ClusterheadGatevay

Switch Routing (CGSR),and ClusterBasedRouting Protocol
(CBRP), as separatemodules.When started,thesemodules
register their serviceidentifierswith the stackand then con-
structandmaintainthe routesaspertheir respectie protocols.
DSDV and CGSR modulesalso provide with a list of all

devices in the scatternetas they needto maintainit within

their routing tables.

C. Smulations

We hadportedMotorola’s JISR-82RI [5] over BlueZ [6], an
opensourceBluetoothstackfor Linux, to conductexperiments
over BlueBird hardware modules[7] to be obtainedthrough
Inventel; but becauseof unavailability of the BlueBird mod-
ules, we conductedhe experimentsover Impronto Simulator
[8] developedby Rococo.This Java-basedsimulatorprovided
us with JSR-82and J2ME APIs and our codecould run over
it without any changesandits correctnesould be verified.

Our main objective had beento achieve good perceptual
performanceand it was met. Theoretically performanceof
the multimediaapplicationdependsnostly on the application-
orientedtopology formation and routing algorithms.

V. CONCLUSION

In this paperwe have presented novel architecturaframe-
work to deploy scatternet-basedpplicationsover Bluetooth
personalareanetworks. Applicationscomplyingto our archi-
tecture shall be able to integrate seamlesslywith pluggable
Scatterneformation Algorithm and Routermodulesto have
network characteristicbest-suitedo theirrequirementsThese
moduleswould be completelyportableover devicesproviding
a Java-basedBluetooth APl suchas JSR-82.0nly the User
Interfacemoduleis intendedto be built separatelyor different
targetdevicesasthey shouldbe ableto usemoresophisticated
tools provided by more resourcefuldevices. We have also
presenteda state-of-the-artmultimedia application that we
have built in completeaccordancevith our architectureA va-
riety of scatternet-baseapplicationsandportableapplication-
orientedalgorithmmodulesmaynow bebuilt andintegratedas
per our architectureto provide excellentvalue-addedservices
to the usersof Bluetooth.

REFERENCES

Specification®f the BluetoothSystenmv 1.1h BluetoothSIG Std.,2001.
[Online]. Available: http://wwwbluetooth.com
[2] J2ME CLDC and MIDP, Sun MicrosystemsStd. [Online]. Available:
http://java.sun.com/productdfic/
[3] JSR-82Specificationv 1, Java Community Process(JCP) Std., 2002.
[Online]. Available: http://jcp.og/jsr/detd /82.jsp
[4] N. Paluwal, “Scatternet-based Multimedia Applications over
Bluetooth Personal Area Networks; Master of Technology
Thesis, Computer Science and Engineering, Indian Institute of
Technology New Delhi, India, May 2002. [Online]. Available:
http://wwwcse.iitd.ernet.in/ csd97A03pubspals-thesis.ps.gz
JSR-82Referencelmplementation.Motorola, Inc. [Online]. Available:
http://e-wwwmotorola.com/jea/
M. Krasryansk. Bluez, the official Bluetoothstackfor Linux. [Online].
Available: http://bluez.sourcefgenet
BlueBird Hardware Modules. Inventel,
http://wwwinventel.com/bluemodules.html
Impronto Simulator 1.1. Rococo Software Ltd. [Online]. Available:
http://mwwwrococosoft.com/producistlex.html

(1

[5]
(6]
(71
(8]

Inc. [Online]. Available:

