
An Architectural Framework to deploy
Scatternet-based Applications over Bluetooth

Nitin Pabuwal , Navendu Jain and B. N. Jain
Departmentof ComputerScienceandEngineering

Indian Instituteof Technology, New Delhi 110016,India
Emails:pabuwal n,navendu,bnj@cse.iitd.ernet.in

Abstract— Bluetooth is a promising wir eless personal area
network technology and is on the verge of being ubiquitously
deployed over a wide range of devices. The basic unit of a
Bluetooth network is a centralized master-slave topology, namely
a piconet, that can be easily extended into a multi-hop ad-
hoc network called a scatternet. Scatternets increaseBluetooth’s
usability multi-f olds such that numerous applications may be
built over them to unleash the potential of Bluetooth. The main
ingredients of a scatternet-basedapplication include a topology
formation and a routing algorithm, which themselvesare of many
types.

A standard architectural framework shall prove extremely
useful to integrate all these applications and algorithms in a
seamless,modular and re-usablefashion, hencesaving one fr om
re-inventing the wheelmost of the time. In this paper, we present
onesuchnovel architectural framework that constitutesof highly
portable and plug-n-play modules to deploy scatternet-based
applications over Bluetooth. Theseconstituent modules may be
developed independently and be easily integrated at run-time.
The algorithm modules may be built in an application-oriented
fashion to deliver better performance to particular type of
applications that may have specificrequirementsand constraints.
To the best of our knowledge, this is a first attempt to propose
a standard architecture to deploy applications over Bluetooth.
We provide details of our proposedset of APIs and describe a
multimedia application that we have built in completeaccordance
with our architecture.

I . INTRODUCTION

In December , an industry consortiumknown as the
Bluetooth SIG standardizedVersion of Bluetooth [1]:
a promising wireless personalarea network technology to
providea low power, low cost,globallyuniformradiointerface
between any two devices with Bluetooth support. Today,
Bluetoothis on thevergeof beingubiquitouslydeployedover
a wide rangeof devices.

Piconet(Fig. 1(a)) is thebasicunit of a Bluetoothnetwork.
A piconet is a centralizedmaster-slave topology with atmost
eight active membersat a time, with every slave within ten
metersof the master. The logical extensionto a piconetis to
join multiple piconetsandcreatea multi-hop ad-hocnetwork
called a scatternet(Fig. 1(b)). Within a scatternet,adjacent
piconetsareconnectedby commonnodesthat act asbridges.
Peacefulexistenceof upto tenpiconetsin a coverageregion is
guaranteedby the fact that communicationwithin a piconetis
basedon frequency-hoppingwith hops/second,with the

1N. Pabuwal is currentlyassociatedwith EnsimCorporationandN. Jainis
a ComputerScienceGraduateStudentat University of Texasat Austin.

Bridge

Master

Slave

Fig. 1. (a) A Piconet(b) A Scatternet

hoppingsequencebeing a function of the Bluetoothaddress
of the masterandhencevarying acrossseparatepiconets.

ScatternetsincreaseBluetooth’s usability multi-folds and
open many new arenas to provide excellent value-added
servicesto the users.Numerousapplicationsmay be built
over them to unleashthe potential of Bluetooth. The main
ingredientsof ascatternet-basedapplicationincludea topology
formation and a routing algorithm, which themselves are of
many typesasthe Bluetoothspecification[1] doesnot define
any specificones.Every implementationof theseapplications
requiresan implementationof one of thesealgorithmshence
making one re-invent the wheel most of the time. This calls
for a standardarchitecturalframework to integrate all the
applicationsand algorithms in a seamless,modular and re-
usablefashion.

To build ahighly flexible androbustarchitecturalframework
to deploy a wide variety of scatternet-basedapplicationsover
Bluetooth,we have identified the following requirements:

A. Platform Independent

Any applicationthat wishesto be deployed over Bluetooth
shouldaim to beportableover a wide rangeof platforms.This
platform independenceis requiredon two accounts:

1) Stack Independence: With the coming of Bluetooth,
camea plethoraof stacks,both open-sourceand proprietary.
A basic Bluetooth stack spans atleast four layers of the
OSI network model from the physicalto the transport.Most
of these layers are directly accessibleto the applications
running at the top. With each stack having its own API
and specifications,porting an applicationover eachof these
stacksposesa herculeantask. So the idea is to provide a
standardAPI betweenthe applicationsand the stackssuch
that an applicationcomplying to this standardAPI becomes
independentof the underlyingimplementation.

2) Device Independence: Bluetoothintendsto getdeployed
on just any wirelessdevice that may ever exist. To achieve



device independence,the applicationshould be written in a
programminglanguagethat is portableacrossmost of these
devices.Java comesasa naturalchoice.Java 2 PlatformMicro
Edition(J2ME),with its ConnectedLimited DeviceConfigura-
tion (CLDC) augmentedwith the Mobile InformationDevice
Profile (MIDP) [2], is the most widely deployed version of
Java and spansalmost every wirelessdevice that possesses
the capability to connectto a network.

So to meet both the above requirementsof stack inde-
pendence and device independence, we needa standardAPI
betweentheapplicationsandthestackandthattooJava-based.
In March , the Java CommunityProcess(JCP)finalized
Version of theJava SpecificationRequest82 (JSR-82)[3],
thefirst standardJava API for Bluetooth.TheJSR-82API has
beendesignedto operateon any device with a J2ME CLDC
ReferenceImplementation(RI) andwith a minimum K of
total memoryfor theJava 2 platform.Thoughour architecture
is not dependenton the BluetoothAPI beingused(aslong as
it is Java-based),presentlythe functionality hasbeendefined
keepingJSR-82in mind but shouldhold good for any other
API that providesatleastasmuchfunctionality asJSR-82.

B. Plug-n-Play

Scatternetformationandrouting algorithmsareresponsible
for definingthecharacteristicsof a scatternet.A scatternetcan
deliver betterperformanceto particulartype of applicationsif
thesealgorithmsareapplication-oriented.By simplyswitching
amongalgorithmstheuserscaneasilydecidewhatworksbest
for them.So to allow selectionof algorithmsat run-time,we
have integrated them into the architecturein a plug-n-play
fashion. In this way, the user may also download and run
algorithm modulesthat may be developedindependentlybut
in accordancewith the architecture.

This paperis organizedasfollows. In sectionII we describe
our proposedarchitecture,andthenprovide the specifications
of the APIs in sectionIII. We also presenta state-of-the-art
multimediaapplicationbasedon our proposedarchitectureas
an illustration in sectionIV andconcludethe paperin V.

I I . ARCHITECTURE

Fig. 2 shows the componentsof our proposedarchitecture.
Availability of an underlyingJava-basedBluetoothAPI such
as JSR-82 is the lowest-level requirementfor applications
complying to our architectureto be deployed on a device.
Devices running similar scatternetformation and routing al-
gorithmsconnectto form a network overwhich theapplication
runs. The various modules–UserInterface and Application,
ScatternetFormationAlgorithm, and Router–interactthrough
a fixed set of proposedAPIs hencemaking each of them
completelypluggableandre-usable.Detailsof the APIs have
beenprovided in the next section.

A. User Interface and Application

TheUserInterfaceprovidestheinteractionwith theend-user
andencapsulatestheApplicationwhich is an implementation-
instanceof the protocol being definedby the deployed ap-
plication to interpret application-level data.The architecture

User Interface

J2SE: Swing J2ME: MIDLets
Platform−dependent Tools

Application

Scatternet Formation Algorithm
Portable and Pluggable

over

Router
Portable and Pluggable

over
J2ME CLDC + MIDP and JSR−82

add/remove connections
send/receive control information

send/receive data

Baseband + Radio

Java−based Bluetooth API (such as JSR−82)

J2ME CLDC + MIDP and JSR−82

Bluetooth Stack (L2CAP + HCI)

Proposed API

Fig. 2. Architecture

does not require this module to be portable over different
devices and hence it may be built using any of the tools
providedby thetargetdevice,suchasMIDLets overJ2MEand
Swing over J2SE(Java 2 Platform StandardEdition). In this
way more sophisticatedInterfacesmay be provided to users
working with moreresourcefuldevices.Only theencapsulated
Applications are expectedto comply to the sameprotocol.
TheInterfacemayprovide accessto only thosefeaturesof the
applicationthat can be supportedby the target device. The
detailsareimplementation-dependent.It may alsoprovide the
user with an option to choosethe scatternetformation and
routing algorithms.

The encapsulatedApplication shall normally interactonly
with theScatternetFormationAlgorithm andtheRoutermod-
ules,but may accessthe BluetoothAPI directly if required.

B. Scatternet Formation Algorithm

The ScatternetFormationAlgorithm is responsiblefor con-
structingthescatternet.Eachalgorithmhasa specificprotocol
that defines how the topology should be constructedand
maintained.Maintenanceis requiredin order to accountfor
mobility asdevicescontinuouslymove in andout of range.

The Algorithm module definesa Maximum Transmission
Unit (MTU) size for eachpacket sentand received over the
scatternet.TheApplicationandtheRouterareexpectedto get
the MTU-size from it.

C. Router

The Router defines how data is to be routed over the
scatternet.The Routermoduletakescareof constructingand
maintainingthe routesas well as sendingand receiving data
over them. It provides abstractionof two types of packets:
Application Data and Control Information, being sent and
received by the Application and the ScatternetFormation
Algorithm respectively. A third type, the Route Information,
is usedby the Routerfor internalpackets to perform its own
taskof constructingandmaintainingthe routes.

The Routerneedsto fill internalheaderinformationwithin
everypacketandhenceeverypacketsentandreceivedthrough
it shouldaccommodateextra spacefor theheader. The header
sizeshouldbe obtainedfrom the Routeritself.



Both, the Algorithm andthe Routermodules,areexpected
to becompletelyportableandshouldbebuilt usingonly J2ME
CLDC and MIDP APIs as that is the most widely deployed
version of Java. Also, the modulesshould interact with the
Bluetoothstackonly throughthe intermediateAPI.

Important to note is that since two devices may connect
only whenthey arerunningthesamescatternetformationand
routingalgorithms,for resolutionpurpose,differentalgorithms
should identify themselves as separateservices.Before con-
nectingto a device, the local device is first expectedto initiate
a servicesearchon the remotedevice to checkif it provides
the sameservicesthat representthe algorithmsbeingused.

D. Interactions

The componentmodulesof the architectureinteract only
through a proposedset of APIs. Each module implements
specificJava interfacesthat are exposedto other modulesto
provide abstraction.

1) Application and the Scatternet Formation Algorithm:
The ScatternetFormation Algorithm implementsScatternet
interface through which the Application may ask the Al-
gorithm to join, cancel joining, or leave a scatternet.The
Application may ask for information about its local device’s
presentstatusin thescatternet,dependingon which immediate
connecteddevices might be known. It may also get the list
of all devices in the scatternetor its piconet, provided the
algorithm’s implementationsupportsit. The Application also
obtainsa referenceto a RoutermodulethroughtheAlgorithm
that it usesto sendandreceive data.

The Application implements ScatternetListener interface
throughwhich theAlgorithm conveys informationof addition
andremoval of devicesfrom thenetwork, bothat thescatternet
and the local piconetlevel.

2) Application and the Router: The Router implements
Router interface through which the Application sendsand
receivespacketsof the Application Data type. This is a one-
way interaction.The Routernever initiates a communication
and hencedoesnot require the Application to implementa
specificinterface.

3) Scatternet Formation Algorithm and the Router: The
Router extends RouterControl abstractclass which in turn
implementsRouter interface.Hencethe Algorithm may send
and receive packets of the Control Information type using
the Router interface. Additionally, the Algorithm conveys
informationof additionandremoval of immediateconnections
of the local device to the Routerthat it may useto updateits
internalstateandroutes.TheAlgorithm mayobtainthe list of
all devices in the scatternetthroughthe Router(if supported
by it) in order to passit to the Application. It may ask the
Router to shutdown and return to initial statewhenever it is
askedby theApplicationto leavethescatternet.TheAlgorithm
also asksthe Router for its serviceidentifier while initiating
a servicesearchon the remotedevice.

The Algorithm implementsRouterListener interface.Loss
of existing connectionsis detectedby the Router which it
communicatesto the Algorithm. If supported,the Routeralso

conveys informationof additionandremoval of devicesat the
scatternetlevel to theAlgorithm which it furtherpassesto the
Application.

No specificationhas beenproposedfor the interactionof
the moduleswith the BluetoothAPI andshouldonly depend
on the API’s specifications.

I I I . API SPECIFICATION

Here we provide the details of our proposedAPIs for
interactionbetweendifferentmodulesof the architecture.All
classesare containedin packagecom.iitd.bluetooth.scat. All
memberslisted arepublic. Descriptionmay be found in [4].

A. Classes

1) Interfaces:

Router
RouterListener
Scatternet
ScatternetListener

2) Classes:

AppData
RouterControl

3) Exceptions:

DeviceStatusException

B. com.iitd.bluetooth.scat.Router
1) Fields:

staticbyte ALGO PKT
staticbyte APP PKT
staticbyte ROUTE PKT

2) Methods:

int getHeaderSize()
booleanready(bytetype)
int receive(AppDatadata,byte type)
void send(AppDatadata,byte type)

C. com.iitd.bluetooth.scat.RouterListener
1) Methods:

byte connectionRemoved
(javax.bluetooth.L2CAPConnectionconn,
java.lang.Stringbdaddr)
void deviceAdded(java.lang.Stringbdaddr)
void deviceRemoved(java.lang.String bdaddr)
int getMTU()
byte getStatus()

D. com.iitd.bluetooth.scat.Scatternet
1) Fields:

staticbyte BRIDGE
staticbyte MASTER
staticbyte SLAVE
staticbyte UNKNOWN



2) Methods:

booleancancelJoinScatternet
(ScatternetListenerlistener)
java.util.EnumerationgetBridges()
java.lang.StringgetFriendlyName
(java.lang.Stringbdaddr)
java.lang.StringgetMaster()
java.util.EnumerationgetMasters()
int getMTU()
java.util.EnumerationgetPiconetDevices()
RoutergetRouter()
java.util.EnumerationgetScatternetDevices()
java.util.EnumerationgetSlaves()
byte getStatus()
booleanjoinScatternet(ScatternetListener
listener, java.lang.StringrouterName)
booleanleaveScatternet
(ScatternetListenerlistener)

E. com.iitd.bluetooth.scat.ScatternetListener

1) Fields:

static int PICO ALT
static int SCAT ALT

2) Methods:

void deviceAdded(java.lang.Stringbdaddr,
int type, byte status)
void deviceRemoved(java.lang.Stringbdaddr,
int type, byte status)

F. com.iitd.bluetooth.scat.AppData

1) Fields:

staticbyte BCAST
staticbyte MCAST
staticbyte RECVD
staticbyte UCAST

2) Constructors:

AppData(bytetype)
AppData(bytetype, java.lang.Objectbdaddr,
byte[] data,int size)

3) Methods:

void finalize()
java.lang.ObjectgetBluetoothAddress()
byte[] getData()
int getSize()
byte getType()
void setBluetoothAddress
(java.lang.Objectbdaddr)
void setData(byte[]data)
void setSize(intsize)

G. com.iitd.bluetooth.scat.RouterControl
1) Constructors:

RouterControl(RouterListenerlistener)

2) Methods:

abstractvoid addConnection
(javax.bluetooth.L2CAPConnectionconn,
java.lang.Stringbdaddr, byte status)
void addRouterListener
(RouterListenerlistener)
abstractjava.util.Enumeration
getScatternetDevices()
abstractjavax.bluetooth.UUIDgetUUID()
abstractvoid removeConnection
(javax.bluetooth.L2CAPConnectionconn,
java.lang.Stringbdaddr, byte status)
void removeRouterListener
(RouterListenerlistener)
abstractvoid shutdown()

H. com.iitd.bluetooth.scat.DeviceStatusException
1) Constructors:

DeviceStatusException()
DeviceStatusException(java.lang.Stringmsg)

IV. MULTIMEDIA APPLICATION

We shall now describe the multimedia application that
we have built in complete accordancewith our proposed
architecture.The applicationmay be usedas a referenceto
build further applications.

The multimediaapplicationprovidesfeaturessuchasChat,
File Transfer, Image Transfer, andVideo Streaming. All these
featuresare pushservicesand are initiated by the userwho
wants to send data to other users.Data may be sent over
a unicast,multicast,or a broadcastsession.Destinationsare
identified by their Bluetoothdevice address.All the features
may not be exposedto the user in every implementationof
the applicationas that dependson the tools being provided
by the target device. If somedatafor an unexposedfeatureis
received, it is simply discarded.

A. Protocol

Theprotocolfor theapplicationdefineshow communication
among instancesof the application deployed over separate
devicestakesplace.

Fig. 3 shows thestructureof eachpacket transmittedby the
applicationover the scatternet:

RouterHeader(Header): variable bytes - accommodates
spacefor theRouter’sheader. Sizemaybeknown through
the Routerbeingused.
Code (C): 1 byte - identifies the feature the packet
belongsto: Chat, File Transfer, Image Transfer, or Video
Streaming. Takes the value0, 1, 2, or 3, respectively.
Status(S): 1 byte- identifies the position of the packet
in a particular transmissioni.e. whether its the first,



Header C S L ID Payload

Fig. 3. Packet Structure

intermediate,or the last packet. Takes the value 0x01,
0x02, or 0x04, respectively.
Identifier Length (L): 1 byte - givesthe lengthof ID.
Identifier (ID): L bytes - identifies the transmissionthe
packet is a part of.
PayloadData(Payload): variable bytes - is the payload.

Importantto Note:

Total length of the packet never exceedsthe MTU-size
definedby the ScatternetFormationAlgorithm.
No sequencenumberis sentout with the packets as re-
orderingwithin the scatternetis assumedto be absent.
FieldsS, L andID arenot presentif the C field is 0 i.e.
if the featureis Chat. This is becausea chatmessageis
restrictedto onepacket only andhenceno identification
for the transmissionis required.And so if the C field is
0, the Payload startsimmediatelyafter it.

Every time theapplicationneedsto make a transmission,it
breaksthe datainto MTU-sized packets and setstheir ID to
thenameof thefile beingtransferred.At thereceiving end,the
data is collectedin a file namedsink ID source[.ext], where
sink andsource areBluetoothaddressesof thereceiverandthe
senderrespectively; and ext, if present,is the extensionpart
of the file-namebeing usedas ID. In this way uniquenessis
guaranteedandtwo simultaneousreceptionsdo not mix.

B. Modules

We have built all the modulespresentin the architecture
that work and interactexactly in the way proposed.Few of
their particularsinclude:

1) User Interface: The User Interfacehasbeenbuilt over
J2SEusing Swing componentsand shall not be portableto
small devicesthatprovide only J2ME.With this interface,the
usermay join and leave a scatternet;send,receive and view
datawhen in connectedstate;and checklogs. The usermay
selecta list of destinationsfor its packetsfrom a list of known
devicesthat keepsupdatingthroughnotificationsreceived via
the ScatternetFormationAlgorithm module.While trying to
join a scatternet,the user may choosethe Algorithm and
Router modulesto be usedto define the network character-
istics.Varioussnapshotsof the interfacemay be found in [4].

2) Scatternet Formation Algorithm: We havebuilt two scat-
ternet formation algorithmsof our own as separatemodules.
When started,thesemodulesregister their serviceidentifiers
with thestackandtry to discoverneighboringdevicesthatpro-
vide similar servicesand thenconnectasper their respective
protocols.Oncethe local device is a memberof a scatternet,
the algorithmscontinuouslytry to maintainthe scatternetby
connectingto moredevicesandaccountingfor mobility.

3) Router: We have implemented some of the exist-
ing wirelessad-hocrouting protocols,including Destination
SequencedDistance Vector (DSDV), ClusterheadGateway

Switch Routing(CGSR),andClusterBasedRoutingProtocol
(CBRP), as separatemodules.When started,thesemodules
register their serviceidentifierswith the stackand then con-
structandmaintaintheroutesaspertheir respective protocols.
DSDV and CGSR modulesalso provide with a list of all
devices in the scatternetas they needto maintain it within
their routing tables.

C. Simulations

We hadportedMotorola’sJSR-82RI [5] over BlueZ [6], an
opensourceBluetoothstackfor Linux, to conductexperiments
over BlueBird hardware modules[7] to be obtainedthrough
Inventel; but becauseof unavailability of the BlueBird mod-
ules,we conductedthe experimentsover ImprontoSimulator
[8] developedby Rococo.This Java-basedsimulatorprovided
us with JSR-82andJ2ME APIs andour codecould run over
it without any changesand its correctnesscould be verified.

Our main objective had beento achieve good perceptual
performanceand it was met. Theoretically, performanceof
themultimediaapplicationdependsmostlyon theapplication-
orientedtopologyformationandrouting algorithms.

V. CONCLUSION

In this paperwe have presenteda novel architecturalframe-
work to deploy scatternet-basedapplicationsover Bluetooth
personalareanetworks. Applicationscomplying to our archi-
tectureshall be able to integrate seamlesslywith pluggable
ScatternetFormationAlgorithm and Routermodulesto have
network characteristicsbest-suitedto their requirements.These
moduleswould becompletelyportableover devicesproviding
a Java-basedBluetooth API such as JSR-82.Only the User
Interfacemoduleis intendedto bebuilt separatelyfor different
targetdevicesasthey shouldbeableto usemoresophisticated
tools provided by more resourcefuldevices. We have also
presenteda state-of-the-artmultimedia application that we
have built in completeaccordancewith our architecture.A va-
riety of scatternet-basedapplicationsandportableapplication-
orientedalgorithmmodulesmaynow bebuilt andintegratedas
per our architectureto provide excellentvalue-addedservices
to the usersof Bluetooth.

REFERENCES

[1] Specificationsof the BluetoothSystemv 1.1b, BluetoothSIG Std.,2001.
[Online]. Available:http://www.bluetooth.com

[2] J2ME CLDC and MIDP, Sun MicrosystemsStd. [Online]. Available:
http://java.sun.com/products/cldc/

[3] JSR-82Specificationv 1, Java Community Process(JCP) Std., 2002.
[Online]. Available:http://jcp.org/jsr/detail /82.jsp

[4] N. Pabuwal, “Scatternet-based Multimedia Applications over
Bluetooth Personal Area Networks,” Master of Technology
Thesis, Computer Science and Engineering, Indian Institute of
Technology, New Delhi, India, May 2002. [Online]. Available:
http://www.cse.iitd.ernet.in/ csd97403/pubs/pabs-thesis.ps.gz

[5] JSR-82ReferenceImplementation.Motorola, Inc. [Online]. Available:
http://e-www.motorola.com/java/

[6] M. Krasnyansky. Bluez, the official Bluetoothstackfor Linux. [Online].
Available:http://bluez.sourceforge.net

[7] BlueBird Hardware Modules. Inventel, Inc. [Online]. Available:
http://www.inventel.com/bluemodules.html

[8] Impronto Simulator 1.1. Rococo Software Ltd. [Online]. Available:
http://www.rococosoft.com/products/index.html


