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Abstract

Most interactive, “query-by-example” based image re-
trieval systems employ relevance feedback technique for
bridging the gap between the user-defined high-level con-
cept and the low-level image representation in the feature
space. We propose in this paper a unified relevance feed-
back methodology that offers flexibility in capturing user
perception and at the same time robustness to deal with lim-
ited training images. A generalized additive model based
nonparametric probabilistic approach is adopted for flexi-
bility. A generalized ellipsoid based parametric model with
outlier rejection is proposed for robustness. Our approach
initially assumes a unimodal user perception, and depend-
ing on the size of the outliers infers a multi-modal percep-
tion, and switches to nonparametric mode. Experimental
results with simulated training set are presented to demon-
strate the validity and effectiveness of the proposed rele-
vance feedback technique. We also report results on real
image databases and show the effect of our algorithm on
the end-to-end retrieval performance.

1. Introduction
Rapid growth in the number and size of image databases has
created the need for more efficient search and retrieval tech-
niques, since conventional database search based on textual
queries can at best provide a partial solution to the problem.
This is because either the images are often not annotated
with textual descriptions, or the vocabulary needed to de-
scribe a user’s implied “concept” may not exist (or, at least
not be known to the user). Additionally there is rarely a
unique description that can be associated with an image.

The standard paradigm for content-based image retrieval
(CBIR) is the so-called “query by example” where the user
provides the system with one or more query images, and
the system retrieves from the database images that are visu-
ally similar to the example(s). Initial designs of CBIR en-
gines concentrated largely on selection of feature space so
�
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that images that are “close” to each other in feature space
are also visually closer. Over the last couple of years, it
has widely been recognized that a fully automatic, “rigid”
approach to image retrieval cannot satisfy the information
need of a wide variety of users. Thus the human-in-the-loop
interactive approach has emerged as a de facto standard
methodology in more recent CBIR engines to bridge the
gap between the user-level high-level concept and the low-
level representation of images in the feature space. Rel-
evance feedback, commonly practiced in the information
retrieval (IR) community has been adopted by the CBIR
community as the means of user interaction – given a user’s
preferences (likes/dislikes) to a set of images, “similar” to
his query image (according to an initial metric), the goal
is to learn her notion of similarity, and improve the rele-
vance of the retrieved images to that user over successive
iterations.

Commonly used relevance feedback techniques can be
broadly categorized into two: (1) geometric similarity-
based, and (2) probabilistic similarity-based. In geometric
similarity-based approaches, a parametric distance measure
is assumed between two image feature vectors

���
and

���
such as

�	� � ��
 � �
��� � � ��� � ����� � � ��� � �����
(1)

where
�

is the cross-correlation matrix.
�

is diagonal if
feature independence is assumed. In a typical retrieval sce-
nario, given a query feature vector � , a distance

��� � 
 � �
is computed between � and an image feature vector

�
in

the database. � images with least distances are retrieved,
and user’s opinion is sought (A rather interesting query
modification-based retrieval paradigm has been recently re-
ported in [5]). The matrix entries (denoting feature weights)
are updated based on some feature properties of the rele-
vant images. In MARS [3], one of the earliest CBIR sys-
tems employing relevance feedback the feature weights are
chosen inversely proportional to the variance of the feature
values in the relevant set, based on the intuitive argument
that if the relevant images are distributed widely along a
feature dimension, its importance in user’s mind must be
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small. MindReader formalized the MARS approach, and
obtained the weight updation rule for non-diagonal

�
by

solving a minimization problem [4]. Rui et. al introduced
the concept of feature classes, and inter- and intra-feature
weights, and showed its effectiveness of the approach over
MindReader for image retrieval in [2]. Most of these ge-
ometric similarity-based approaches only handle unimodal
queries, and ignore the information from the non-relevant
set of images. Using information contained in the non-
relevant examples is essential to prevent the algorithm from
getting stuck in local minima. This also ensures that the
algorithm explores the feature space. For example, say an
user is interested only in images containing sun setting over
the sea and not in images of sunsets over land. This can
only be handled by algorithms which explicitly consider the
non-relevant images.

The probabilistic approaches on the other hand utilizes
the notion of likelihood-based similarity measures. Given a
user’s preferences on an initial set of images, the probability
density functions for relevant and non-relevant images are
obtained. Next the likelihood of two image feature vectors
being similar or dissimilar – one being the query feature
vector � and the other one being an image feature vector �
in the database is computed using these distributions. Most
likely relevant images are shown in successive iterations.
Nastar et. al proposed a forward model of density estima-
tion in [8], and integrated both the positive and negative
examples in a common parametric density estimation tech-
nique. This technique was subsequently enhanced by using
nonparametric density estimation in [7], and Bayesian in-
ference was performed to retrieve most probable relevant
images from the database. In general parametric methods
provide robustness over nonparametric ones, but at the ex-
pense of flexibility.

We propose a novel approach to relevance feedback in
this paper that offers advantages over existing methods in
terms of both robustness and flexibility by integrating the
geometric and probabilistic similarity measures. Initially
a unimodal perception is assumed and a novel geometric
similarity-based search is invoked that explicitly utilizes
the information from the non-relevant images. Specifically,
relevant images that are close to non-relevant images than
others to its class are removed as outliers and only rest of
the relevant images are used for updating the entries of
cross-correlation matrix

�
. A nonparametric probabilis-

tic method is invoked if the ratio of outliers and relevant
images crosses a threshold. A generalized additive model-
based approach is adopted for retrieving the most probable
relevant images. The individual performances of both the
proposed approaches are established over several existing
ones. Performance measurement is conducted using sim-
ulated datasets (to decouple the feature selection process
from end-to-end retrieval performance) as well as real im-

ages.

2 Outlier Rejection Based Paramet-
ric Relevance Feedback Technique

We propose a novel geometric similarity-based relevance
feedback technique in this Section that explicitly uses the
information about non-relevant image feature points. The
proposed approach iteratively updates the parameters of a
geometric similarity metric so as to fit the relevant fea-
ture vectors while excluding the non-relevant ones. This
is achieved by modifying the weights associated with the
relevant examples. Specifically, relevant points that are far
away from the non-relevant points are given more weights,
and relevant points that are close to non-relevant ones are
treated as outliers and given small weights.

Let
� � 
 ��� 
������ 
 ������	�


denote a set of image
feature vectors, and � � 
 � � 

����� 
 � � be the correspond-
ing user responses.

�
is the dimension of the feature space.��� ��� if

� � is relevant to the user. ��� � ���
if
� � is

non-relevant to the user. Further assume
���

and
� �

rep-
resent the set of relevant and non-relevant feature vectors.� ����	�� ����� represent the weights associated with the rel-
evant examples. Initially � � ��� for all relevant feature
vectors. We assume a generalized ellipsoid-based similar-
ity measure of the form, given by Equation 1. Then, given a
feature vector

�
in the database, its relevance can be com-

puted as
�	� � �"! 
 � ��� � � � ! � � � � � � ! �

(2)

where
! �#	$


represents the target concept, and entries of�
represent the feature weights that capture the user per-

ception. Our goal is to estimate
!

and
�

, so that the sum
of distances of relevant vectors from the target concept is
minimized. Or in other words, minimize

% �
�'&( )
* � � �

)
� � � � � � � � � � � �

w.r.t. � and
�

, subject to the constraint det
� � � ���

. It can
be shown [4],

! � � � 
 � � ���,+.-�/10 � � � �
)
�
)

+ � �
) �

(3)

and
� � � � 
 � � ���.243 � � (4)

where,
2

is the covariance matrix for the set
���

of relevant
images, given by

2 � � � 
 � � � � + � &� * � � � � � � � ! � � � � � ! � �+ �'&� * � � �� �
(5)
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In the above formulation, � �� ’s are provided by the user in
each iteration. Typically existing systems require the user
to rank images based on their relevant to her, from very
relevant to not so relevant. We feel this multi-level rele-
vance assignment is too difficult for a user and prone to
error. Recently Hong et. al proposed a Support Vector Ma-
chine (SVM) based technique for automatic weight assign-
ment for relevant images [1], where the output of the trained
SVM for each relevant example is used as its weight. The
output of the SVM classifier gives the distance of the input
feature vector from the separating hyperplane in a trans-
formed domain. Weighing the examples using this distance
to estimate a quadratic metric may not be meaningful in the
original space. Also, the authors do not address the issues
associated with using a small training set obtained from the
user’s feedback in training a SVM classifier.

2.1 Automatic weight updation for relevant
images

We propose a new technique where only binary relevance
assignment is sought from the user, and the weights � � are
automatically computed based on their distances from the
non-relevant images. This proposed method updates the
weights ( � � ) and the parameters of the similarity metric
iteratively, so that the ellipsoids represented by the succes-
sive similarity metrics better capture the positive examples
while excluding negative ones. The algorithm, as shown
in Fig. 1 begins by initializing all the weights � �

)
to one,

i.e. initially all the relevant examples are considered to be
equally important. In each iteration, the parameters of the
similarity metric (

!
and

�
) using the current weight vec-

tor � � are determined. The distances of the relevant and
the non-relevant examples from the learned target concept
(
!

) are determined using (2). Let � �� � - denote the farthest
positive example having a non-zero weight and

� �� � - be its
distance from

!
. Let

�
be the ellipsoid defined by

� ! 
 � �
and having a radius

� �� � - . Let
� ������

represent the set of
negative examples which fall inside the ellipsoid

�
. The

aim of the algorithm is to modify the parameters
� ! 
 � �

in
each iteration to reduce the number of such examples. This
is achieved as follows. The weight of the farthest positive
example � �� � - is set to 0. The weights of the other positive
examples with non-zero weights are updated as the sum of
their quadratic distances from the examples in

� ������
. The

updated weights are then used to obtain a new estimate of
the similarity metric parameters and the iteration proceeds.
The iteration stops when the size of

� ������
becomes zero.

The algorithm proceeds by removing a positive exam-
ple in each iteration. This positive example is considered
an ”outlier” since its inclusion in the estimation of the sim-
ilarity metric results in negative examples (

� ������
) having

smaller distances than positive examples. This would lead

to the examples in
� ������

being retrieved again in the next
iteration. To avoid this, the remaining relevant examples
are weighted by their cumulative distances from examples
in
� ������

. Hence, the metric estimated in the next iteration
is forced away from

� ������
.

Input: 	�
 , 	�� the relevant and non-relevant examples.
Output: 
 and � parameters of similarity metric.
Let ������� be the dimension of the feature space

class with smallest number of components;
Let � 
������ � � � ; � 
���� ;
while (1)  

Calculate 
"!#	 
%$ � 
'& using (4);
Calculate �(!#	 
 $ � 
 & using (3);	�
)+*-, �/.10'2134.1576 �98%� �;:  '<=!#	?>-� $ 
 &�@

where < given by (2)< 
)+*-, � <=!#	 
)+*-, >-� $ 
 & ;	 ��BA-C �  D	FE%	 � 	 � >�<=!#	?>-� $ 
 &HG < 
IKJDL1@ ;
if ( M 	 ��%A-C M �/N ) break;� 
BO 5 
)+*-,QP �/N ;
� 
R � S N if( � 
R �TN )UTV 8B�XWW%Y[Z <=!#	�
R $]\�& otherwise<=!#	 $]\�& � !#	_^ \9&-` 
"!#	_^?a &
if ( M  D� 
R Eb� 
Rdc �/N @ M G ������� )

break;@
return 
 and � .

Figure 1: Proposed weight updation algorithm.

The algorithm stops when either of the following condi-
tions are satisfied:

1. There exist no negative examples inside
�

, i.e.
� ������

is empty. We have achieved our objective of determin-
ing the parameters

� ! 
 � �
to best fit the set of relevant

examples and excluding the irrelevant examples.

2. The number of non-zero weighted positive examples
is so small that some of the matrices

2 )
in (4) become

singular. This happens when the number of positive
examples are too small or when they are distributed in
the image space.

The algorithm is greedy in nature since the farthest pos-
itive example is removed in every iteration. Other methods
to search for the best subset of relevant examples can also
be employed. Jolion [6] describe a random sampling based
approach.

Refer to Fig. 2 to see how the proposed approach se-
lects outliers and iteratively generates the similarity metric.
The dataset consists of 24 relevant and 25 non-relevant ex-
amples. Based on their proximity to non-relevant points,
13 relevant images were declared to be outliers (marked as
dark squares), and a similarity metric is derived. This is
depicted as an ellipse in the Figure. Evidently in the first
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Figure 2: Iterative learning of similarity metric on a syn-
thetic 2-d dataset

iteration
� �

non-relevant examples are enclosed, which re-
duces to zero after

���
iterations.

3 Generalized Additive Model-based
Non-Parametric Relevance Feed-
back

A novel probabilistic relevant feedback method is proposed
in this Section that utilizes generalized additive models for
learning user’s perception given the user’s preference on a
set of images. This proposed technique is inherently non-
parametric in nature, that makes little assumptions about
the underlying distribution. Thus this approach is natural
candidate for handling multi-modal user queries, in which
user’s preference cannot be approximated using an ellipsoid
in feature space.

The probabilistic approach estimates the likelihood of
an image to be relevant to the user, given a user’s responses
to a set of images. We assume a binary response from the
user - a

�
for relevant images, and a � for the non-relevant

ones. Thus we define a binary random variable � , which
would take the value

�
at a feature point corresponding to

a relevant image and the value � at a non-relevant feature
point. Or, in other words, the probability of an image fea-
ture vector

�
to be relevant is � � � ��� �����	� � � � ��
 � �

.
Similarly the probability of an image feature vector

�
to be

marked non-relevant is �����	� � � � � 
 � �
. Obviously,�����	� � � � ��
 � ��
 �����	� � � � � 
 � ��� �

Let
� � 
 ��� 
 ����� 
 ���

be a set of image feature vectors,
and � � 
 � � 
#����� 
 � � be the corresponding user responses

(
�

for relevance, � for non-relevance).Then the likelihood�
of the current estimates for � � � ) � is given by the joint

probability of � � 
 � � 
������ 
 � �� �
��)
* � � � � ) ��� / � ��� � � � ) � ��� � 3 � /�� 


or, more conveniently,� �
�( )
* � �
)������

� � ) ��
 � ��� �
)
�
��� �

� ��� � ) � 
 (6)

where � ) � � � � ) � . The goal here is to estimate the func-
tion !� � � � that maximizes the log-likelihood

�
in 6. Using

this maximum likelihood (ML) estimate !� � � � , relevance of
entire database feature vectors are estimated, and the maxi-
mally relevant images are retrieved.

3.1 Non-Parametric ML Estimation of P

Most of the reported work in the literature assume some
parametric form for the probability function, the sake of
convenience being one of the main reasons. Parametric
models also offer robustness in the context of interactive
image retrieval, given the lack of training samples (a user
cannot be expected to mark too many images as relevant or
non-relevant during a session). However, it is not likely that
information need of a diverse set of users can be satisfied
using parametric models (even if a set of choices is given to
the user, it is not practical to assume that the user can select
one). For example, if a multivariate Gaussian form for � is
assumed [7], retrieval performance will be satisfying a user,
only when the user perception can be expressed as a Gaus-
sian cluster in the feature space. Similarly if a generalized
linear form for � is assumed, only a simple hyperplane in
the feature space can be realized. In this paper, we propose
a generalized additive model (GAM) based flexible method
for learning user’s perception.

Before getting into details, let us introduce the concept
of a logistic function from the statistics literature. Our prob-
lem is to fit a function � �#" � � �

. By definition, the func-
tion �%$ " � � � $ � . To simplify the form of the function,
define a logistic function & � � �

such that!� � � ��� ')( � � ��*
 ' ( � � � � (7)

Note that
�,+ $-& � � � $ +

. The inverse is given by the
logit function, & � � ���

�����/. !� � � ���� !� � � ��0 � (8)

This function has the properties of monotonicity and being
one–to–one and onto. It also has a simple intuitive meaning
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Set !� ��� ���� zero function!� ��� � � � � ���
	 ���� � 
 �� � �� + �
)
* � �
)

Repeat over loop variable 

for � � � to �& ��� � � !� ��� � 
 + 
� * � !� ��� �� � ��� )� ��� �) � � � ����	 3 ��� & ��� ���� ) � � ��� �)� ) � & ��� � 
�� � ) � � ��� �)���� � )

Set !� ���! � �� 
 !� ���" � � by backfitting
� )

on
�
)

with weights �
)

converges

Figure 3: Local Scoring algorithm

as the logarithm of the odds of !� . The sigmoid form of
the function, takes value

�
for �$# � and � for �&% � and

is still a continuous function (analogous to neural network
classification model). Now, the log-likelihood functional

�
,

given in Equation 6 can be rewritten as� �
�( )
* � �
) & � � ) � � � � � � �*
 ' ( � � / � � (9)

3.1.1 Generalized Additive Model

In the Generalized Additive Model (GAM) of Hansie and
Tibshirani [9], & � � �

is expressed as a sum of general func-
tions � � � � � in each feature dimension

� � , i.e.,

& � � ��� � 
 
(
� * � � � � � � � 
 (10)

where,
�

is the number of feature dimensions, and � is a
constant to be determined. Thus, the goal now is to solve
for � and family of functions � � � � � so that the following
log-likelihood functional is maximized

�(')� � �
�( )
* � �
)
� � 
 
(

� * � � � � � ���
)
� �

�
�����

� �*
+*!,.- � � 
 
(
� * � � � � � ���

)
� ��� �

(11)

Hastie and Tibshirani’s local scoring algorithm is used
here to efficiently solve the maximization problem (Equa-
tion 11). This local scoring algorithm is shown in Fig-
ure 3.1.1. An iterative backfitting algorithm [10], shown
in Fig. 3.1.1 is chosen in this paper. During each iteration
the basic idea is to fit one dimension at a time, estimate how
much the contribution of the current dimension should be,

!� � � � � � � 
0/21!� � �� + �
)
* � �
)

REPEAT
FOR

1 � �
TO

�
FOR � � � TO �!3 ) � � ) � !� � + 
�54* � !� � � � � � ) �
END!� � � SMOOTH

� � ���76 
 !3 ) � [10](pages 41-42)
END

UNTIL
� � +

)
� �
)
�98 � � ) � � � %$:

Figure 4: Back Fitting Algorithm

fitting a curve in that dimension, and repeat this for all di-
mensions. This is repeated till the error falls below a preset
threshold : . The local scoring algorithm then uses the back-
fitting algorithm to fit values proportional to the values that
are left to be fitted, that is, points where the current model
does not perform well are given higher weights �

)
s.

The family of functions � � still remain to be estimated.
One of the ways to generate a function is to fit kernel
smoothers over the data. These are a sort of moving–
average functions that consider the function to be a aver-
age of nearby points. Gaussian kernel smoothers have been
used in [7]. One problem with Gaussian smoother is that
if training points are sufficiently far apart, the estimate of
the function would be wrong, as the Gaussians would go
to zero. Instead, spline smoothers are chosen to be the
smoothing function in this study. Splines have been shown
to have the form of a kernel smoother. Further, they can be
evaluated at new points quite easily. They are also easy to
calculate, taking time linear in the number of training points� [11].

Given the values �
)

at the data points
�
)
, without loss

of generality, assume ;<% � � % � � % ����� % � � % � . The
natural cubic spline smoother is defined to be the function
minimizing the expression

% � � � � � �( )
* � �

)
� �
)
� � � � � �=� ) ��� � 
 �?>$@� �.A A� � 	 � � � 	 
 (12)

where �
)

is the weight associated with the � -th point, and �
is a parameter that determines the amount of ‘smoothing’.
A very low value would give a good fit to the data, while
not doing well for points outside the training sample. A
very high value would on the other hand be almost linear,
missing the variations in the data (see Figure 8.

It is well known that the solution is the func-
tion !� that is cubic in each of the intervalsB � � 
 � �!C 
 B ��� 
 �?D"C 
������ 
 B ��� 3 � 
 ����C with the addi-
tional constraints that its first and second derivatives are
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all continuous at each of the
�
)
, and second and third

derivatives are zero at the end points
� �

and
���

.

The spline function can easily be specified by the val-
ues of the function and its second derivatives at each of the
points

�
)
, which are called “knot points”, i.e. the vectors�

and � , where

� � � ��� !� � � � ) � 
������
� � � ��� !� A A� � � ) � �

This form allows us to use the Reinsch algorithm (see
[10],pages 41-42) for a linear time solution to the problem.

As mentioned earlier, nonparametric methods are inher-
ently not robust in the sense that the estimate are not re-
liable at points far away from training samples. Thus if an
image feature vector is far away from all the feature vectors,
marked as the user, the spline smoothing may give poor re-
sults. We thus try to constrain the system so far distant fea-
ture points do not arbitrarily achieve high probability of be-
ing selected (that will remove the points, currently marked
relevant to be excluded in the list of 
 retrieved images in
the next iteration). To alleviate this undesirable behavior of
splines, a discontinuity in the spline at the end points are in-
troduced, and by drawing a curve from that point to a neg-
ative spline value (negative values give a probability zero
after the sigmoid is applied on them). This curve could be
simply taken to be a straight line to a boundary, or an expo-
nential cut-off.
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Figure 7: � � � � �
Figure 8: Spline fitting with different �

4 Combining the Parametric and
Non-Parametric Approaches

Both parametric and nonparametric approaches have their
own strengths and limitations in the context of image search
and retrieval. Parametric methods by their very nature are
robust, and work well when there are not enough available
training data. This is particularly true in interactive image
retrieval framework where the user is not expected to mark
too many images based on which the system can learn his
intended “concept”. Parametric methods, however, assume
an underlying model (in our case generalized ellipsoid), and
if this model does not adequately capture the user percep-
tion, the retrieval performance becomes clear. On the other
hand, nonparametric (generalized additive models) meth-
ods offer flexibility in capturing the user perception in an
efficient manner but only at the cost of robustness. We pro-
pose a new integrated scheme that combines our parametric
and nonparametric the two approaches in a complimentary
way.

In this proposed integrated relevance feedback frame-
work, the outlier rejection-based estimation algorithm is in-
voked first, given the user’s responses on the initial set of
retrieved images (K Nearest neighbors of the query vector
in Euclidean space). This algorithm, according to Fig. 1
computes the weights � �� in the first relevance feedback it-
eration. Now a decision is made based on the distribution
of � � , whether a generalized ellipsoid is sufficient to cap-
ture user perception or not. Efron [12] have proposed that
to robustly fit a model requiring � parameter estimates, at
least 	
� observations are needed. Hence to obtain the gen-
eralized ellipsoid model, we need at least twice the number
of the ellipsoid parameters (the elements of the covariance
matrix and the mean vector). If after removal of outliers
the number of remaining points is less than this threshold,
GAM-based nonparametric method is executed. This se-
quence of steps are repeated, till the user is satisfied with
the retrieval result.

5 Experiments

In this section we demonstrate the performance of our al-
gorithms on synthetic and real image datasets.

In the first experiment we present results on artificially
generated datasets. Two synthetic datasets were gener-
ated, corresponding to two assumed models of users per-
ception. In the first dataset the users perception is modeled
as a Gaussian distribution. This models the case where the
user’s perception forms a single cluster in the feature space.
The second dataset was obtained by assuming a mixture of
gaussians model. This models the case where the users per-
ception of relevance is distributed in disjoint clusters in the
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feature space. The examples in the dataset for both these
cases were 2-dimensional and were generated using an as-
sumed beta distribution. The examples in the dataset were
then ranked based on the assumed user perception model.
Examples having a confidence greater than a threshold were
labelled as relevant.

The second experiment uses the Columbia Object Im-
age Library dataset. It contains pictures of 		� objects, each
viewed from different positions, giving a total of

����� � im-
ages. There are � 	 views per object. The images are of size� 	���� � 	�� . The images after ���	� block averaging are rep-
resented as vectors in a 	�
�� dimensional feature space. The
feature space dimension is then reduced to

�
through PCA.

In a particular experiment one of the objects was labelled as
relevant. The objective is to retrieve the views correspond-
ing to this object with a small number of relevance feed-
back iterations. The experiment was repeated for different
objects.

The relevance feedback loop in the two experiments
works as follows. The starting queries in the experiments
were distributed along the boundary of the relevant exam-
ples. In the first iteration of the relevance feedback loop,
examples ranked based on their Euclidean distances from
the starting query are retrieved. These examples are la-
belled and input to the learning algorithm. Examples in
the dataset are then ranked by the learning algorithm. A
fixed number of top ranked examples are retrieved. After
labelling, the retrieved examples are input to the learning
algorithm, closing the relevance feedback loop.

We compare the performance of the learning algorithms
we have proposed in this paper with algorithms proposed
by Rui et. al. [3], Meilhac and Nastar [8] and by Ishikawa
et. al. [4].

5.1 Simulated dataset results

Fig.(9) plots the artificially generated 2d dataset. The co-
ordinates of the points along each axis conform to a mixture
of 2 beta distributions.

5.1.1 Unimodal model

A Gaussian distribution centered at
� � � � 
 � � � � was assumed

to model relevant examples. The ellipse obtained by thresh-
olding the Gaussian is shown in Fig.(10). The points in-
side the ellipse are labelled relevant. Fig.(10) also plots
the starting query points. The relevance feedback loop was
simulated starting from each of these points. The learning
algorithm in each iteration is input 
�� labelled examples.
To determine the generalization performance, the number
of relevant examples among the

� 
	� highest ranked exam-
ples is used. The number of relevant retrieved examples in
an iteration of the relevance feedback loop was averaged
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Figure 9: Data points in syn-
thetic dataset
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Figure 10: Unimodal model
of User’s perception.
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Figure 11: Multimodal
model of User’s percep-
tion.
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Figure 12: Precision over
relevance feedback itera-
tions for Unimodal model.
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Figure 13: Precision
over relevance feedback
iterations for Multimodal
model.

over different starting points. Precision is defined as per-
centage of retrieved examples which are relevant. Precision
over successive iterations is plotted for different algorithms
in Fig.(12).

5.1.2 Multimodal model

Three Gaussian distributions centered at� � � 
 
 � � ��
 � 
 � � � 	�
 
 � � � 
 � 
 � � � ��
 
 � � � 
 � were used to model
relevant examples. The corresponding relevant regions
are represented by the ellipses shown in Fig.(13). The
learning algorithm is trained on 
	� examples and tested on� 
	� examples. The precision performance over successive
iterations is shown in Fig.(13). The nonparametric GAM
algoritm shows the best performance in this case.
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5.2 COIL dataset
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Figure 14: Object number 	
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Figure 15: Object number
�
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Figure 16: Object number
�
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Figure 17: Object number �

Figure 18: Retrieval of views of objects from COIL dataset

Experiments to retrieve the views of different objects
were performed. The retrieval results are shown in Fig.(14),
Fig.(15),Fig.(16),Fig.(17).

6 Discussions

We have proposed a unified relevance feedback technique
that offers flexibility in capturing user perception without
sacrificing robustness too much. This proposed approach
switches between parametric and nonparametric based on
an outlier-based measure. Our method starts in a general-
ized ellipsoid-based parametric mode, given a query image.
This parametric method uses information from the non-
relevant images to automatically weigh the relevant points.
Relevant points that are closer to the non-relevant points
than others in its set are treated as outliers during adjust-
ment of the similarity metric. If the ratio of outliers and the
relevant points reaches a high value, then our method in-
fers a multi-modal user perception, and switches to a gen-
eralized additive model-based nonparametric mode. Exper-
iments with simulated as well as real image data show the
validity and relative performance of the proposed approach.

There has been a lot of progress in computer vision and
pattern recognition communities in the area of classifica-
tion, face detection being a more recent example of that.
Note that while fundamentally similar in nature, interactive
“query-by-example”-based image retrieval paradigm poses
new challenges, since the training size is very limited, and

moreover the training points are not necessarily representa-
tive of the database feature vectors. Thus incremental clas-
sification with few training samples and good generaliza-
tion become the key issue. All existing relevance feedback
techniques, including ours choose a greedy approach, and
try to efficiently classify the training samples at each itera-
tion. Our current research focus include application of ac-
tive learning principles and that would reduce user interac-
tion by seeking feedback on an intelligently selected more
informative set of images, and principles of learning from
incomplete data that would reduce the number of feedback
iteration.
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