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Abstract— Distributed stream processing systems offer a highly scal-
able and dynamically configurable platform for time-critical applica-
tions ranging from real-time, exploratory data mining to high perfor-
mance transaction processing. Resource management for distributed
stream processing systems is complicated by a number of factors –
processing elements are constrained by their producer-consumer rela-
tionships, data and processing rates can be highly bursty, and traditional
measures of effectiveness, such as utilization, can be misleading. In this
paper, we propose a novel distributed, adaptive control algorithm that
maximizes weighted throughput while ensuring stable operation in the
face of highly bursty workloads. Our algorithm is designed to meet
the challenges of extreme-scale stream processing systems, where over-
provisioning is not an option, by making the best use of resources
even when the proffered load is greater than available resources. We
have implemented our algorithm in a real-world distributed stream
processing system and a simulation environment. Our results show that
our algorithm is not only self-stabilizing and robust to errors, but also
outperforms traditional approaches over a broad range of buffer sizes,
processing graphs, and burstiness types and levels1.

I. INTRODUCTION

The stream processing paradigm has always played a key role
in time-critical systems. Traditional examples include digital signal
processing systems [9], large-scale simulation platforms [7], multi-
media clients and servers [12], and high resolution rendering farms
[11]. More recently, distributed stream processing systems have been
developed for high performance transaction processing [19] [3] and
continuous queries over sensor data [8].

In today’s distributed stream data processing systems, thousands
of real-time streams may enter the system through a subset of
the processing nodes. In such systems, hundreds of processing
nodes (PNs) may be co-located, for example within a single high
performance cluster, or geographically distributed over wide areas.
Applications are deployed on PNs as a network of operators, or
processing elements (PEs), as depicted in Figure 1. Each data stream
is composed of a sequence of Stream Data Objects (SDOs), the
fundamental information unit of the data stream. Each PE performs
some computation on the SDOs received from its input data stream,
e.g., filter, aggregate, correlate, classify, or transform. The output of
this computation could alter the state of the PE, and/or produce
an output SDO with the summarization of the relevant information
derived from (possibly multiple) input SDOs and the current state
of the PE. In order to carry out the computation, the PE uses
computational resources of the PN on which it resides. These
resources are finite, and are divided among the PEs residing on
the node.

Distributed stream processing systems present challenging re-
source management goals. For example, each PE’s resource utiliza-
tion is constrained by PEs that are upstream and downstream of the
PE in the processing graph. Further, a PEs resource consumption
may be state dependent, resulting in bursty processor and network

1An extended version of this paper can be obtained at [1].

utilization throughout the system. Even developing an appropriate
measure of effectiveness is difficult because the units of work (input
packets) and operations (PE computations) are unequally weighted,
and therefore monitoring resource utilization alone is insufficient.

In this paper, we propose ACES: Adaptive Control for Extreme-
scale Stream processing systems, a two-tiered approach for adaptive,
distributed resource control. The first tier determines the assign-
ment of PEs to PNs. Allocations are determined through a global
optimization of the weighted throughput for the processing graph,
based on a expected, time-averaged input stream rates. This global
optimization is performed when PEs are deployed or terminate and
periodically, to support changing workload and resource availability.
Second tier decisions are made in a distributed, ongoing manner.
This second tier, the resource controller, jointly optimizes the input
and output rates of the PE and the instantaneous processing rate of
a PE, with the express goal of stabilizing the system in the presence
of burstiness.

Our resource controller uses an adaptive, scalable, distributed
optimization technique. Specifically, CPU and flow control for each
PE is performed using only the buffer occupancy of that PE and
feedback from its downstream PEs and co-located PEs. We present
a closed-loop mathematical model for our solution to show that
the steady-state input rate of a PE is equal to its processing rate,
and each PE reaches steady-state behavior from an arbitrary starting
point.

We have implemented our solution in a distributed stream pro-
cessing system developed for extreme-scale data mining and in
a simulator to evaluate performance in more arbitrary distributed
stream processing configurations. We demonstrate that our approach
outperforms traditional approaches, in terms of weighted through-
put, by over 20% in the limit of small buffers and over a wide
range of burstiness levels. Additionally, as weighted throughput
increases, the end-to-end delay of our approach is as little as a
third of traditional approaches – a significant improvement.

The remainder of this paper is structured as follows. In Section II,
we review related work and highlight differences in our approach.
We present a model of distributed stream processing systems in Sec-
tion III, and summarize the resource management goals in Section
IV. We detail our proposed approach and experimental results in
Sections V - VI. In Section VII, we discuss our conclusions.

II. BACKGROUND

Stream processing jobs are relatively long running and as new
work is introduced into the system, the relative weights or priorities
of the various jobs may change. The task of assigning weights or
priorities to jobs may be performed by a human, or it may be
performed by a ”meta scheduler”. The goal of meta schedulers
generally is to assign time-averaged allocation targets based on
relative importance of work submitted to a system. In comparison,
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Fig. 1. Interconnection of processing elements (PEs) running on processor
nodes (PNs) in a distributed stream processing system.

the goal of a resource scheduler is to enforce these long-term
allocation targets.

In traditional shared processor environments, resource schedulers
select a waiting process from the ready queue and allocate the
resource (CPU) to it based on some assigned weight or priority.
Examples include: strict or guarantee-limit enforcement [15] and
velocity enforcement [5]. Neither strict or guarantee-limit enforce-
ment consider the bursty dataflow of stream processing systems, but
instead seek to enforce pre-established allocation limits. Adhering to
such limits may result in input and output buffer overruns. Velocity
enforcement seeks to limit how long, after requesting a resource, a
PE waits for that resource. Because allocation is controlled by PE
readiness for the resource, as opposed to proffered workload, the
system may still be plagued by buffer overruns.

Thus, stream processing systems challenge the practice of stati-
cally assigning of priorities to PEs. To address these challenges, the
River project [4] proposed effective placement of modules (PEs)
and queues. However these assignments are static and determined
by the application composer, as opposed to being dynamically
managed during runtime. Load shedding [19] was proposed as a
means to intelligently drop tuples (SDOs) from input queues, based
on thresholds and potentially packet content. Dynamic placement
algorithms [17] [13] have also been proposed so that operator
(PE) placement can be modified according to changes in resource
availability, in order to maximize some objective function on a time-
averaged basis.

In each case, previous resource management work for stream pro-
cessing environments targeted environments where the system must
adjust operator placement or shed load in order to adapt to available
underlying resources. Our work is fundamentally different in that
the goal is to determine and control the resource (processor and
network) allocations (placement and fractional allocations) in order
to maximize an objective function and maintain overall stability.
Further, instead of artificially limiting configuration changes (e.g.,
operator placement) [13] since such changes would destabilize the
system, our work uses a control theoretic approach so the system
can be self-stabilizing in the face of changes. This is especially
important since changes may be induced by the scheduler or the
bursty nature of the workload itself.

Our two-tiered proposal includes a meta scheduler, which assigns
a fractional allocation of PN resources to each PE, and a resource
scheduler that enforces the allocations in a distributed way. How-
ever, unlike conventional resource scheduling systems, our proposal
takes the input data flow rate, and the a priori importance of the
input data stream into account while allocating resources to a PE.
Our resource scheduler uses only locally derived information to
enforce allocations. Our approach strikes a compromise between
optimality and stability by first solving for the global solution that
does not take the stochastic, time-varying nature of the data flows
into account, to determine nominal CPU allocations among the PEs.
During run-time, these nominal allocations are adjusted to ensure

stability based on the local information available to each PE. We
are unaware of any such approach in the literature for the control
of stream processing systems.

III. THE STREAM-PROCESSING MODEL

This section presents an overview of the basic stream-processing
model to which this work applies, and the problems that arise
in controlling such networks. We discuss some issues of stream
processing systems that are relevant to the allocation of resources
in such systems. The simulator presented in section VI-A and the
experimental system presented in section VI are both based on these
basic concepts.

A. Measure of Effectiveness

To compare different mechanisms of controlling the stream
processing system, we need a meaningful metric of system per-
formance. Processor sharing algorithms typically use metrics based
on resource utilization - the more work that is done, the better [14].
In the distributed stream processing context, resource utilization is
not a good metric. An intermediate PE might utilize a lot of system
resources, do a lot of work, and output a large number of SDOs,
but that work may never make it to the output stream(s) of the
system. A large allocation to such a PE may may lead to a high
output rate on its output stream, but this is not productive if its
downstream PEs do not have sufficient resources to process the
stream into system outputs. The resource utilization metric does
not capture these effects.

Network control algorithms typically use metrics based on max-
imizing the aggregate throughput [9], [16]. However, in a stream
processing system, not all output streams contribute equally to the
effectiveness of the system, i.e., the results produced by differ-
ent output streams may have differing importance. The aggregate
throughput metric does not capture this disparity. We would like
to measure the number of SDOs the system outputs, weighted
appropriately by their utility – and not just the aggregate production
rate of SDOs on internal, partially processed streams. To do so, we
use a weighted throughput metric, which attaches a positive weight
to each stream that is a system output. By summing the weighted
throughputs at each of these output streams, we arrive at a metric
of the total productive work done by the system, in accordance with
the fact that some results may be much more valuable than others.
Weighted throughput has been used as a metric in other contexts in
the literature [6] for reasons similar to those mentioned here.

B. Correlated Resource Usage Among PEs

PEs are constrained by their producer-consumer relationships.
Most PEs in the system receive their input SDOs from other PEs,
and send their output SDOs to yet other PEs for further processing.
PEs cannot process SDOs at a faster (average) rate than the rate at
which the upstream PE(s) produce them. Similarly, if a PE produces
SDOs faster (on average) than a receiving PE can process them,
the PEs will queue up in buffers until the buffers overflow. These
constraints implicitly create a correlation between the resource
usage of up- and down-stream PEs in a processing graph.

In addition to the correlation among up- and down-stream PEs
(i.e., PEs in a single connected component), resource usage amongst
PEs in separate connected components is correlated if the connected
components have one or more PNs in common. Thus the effects of a
resource allocation to a single PE can propagate not just through that
PE’s connected component, but also other connected components.
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C. The Burstiness Problem

Most PEs tend to do work not in a fluid (infinitely divisible
and smooth) stream of processing operations, but in relatively large
chunks. For example, video processing PEs may require an entire
frame, or an entire set of independently-compressed frames (“Group
Of Pictures”) to do a processing step. Also, consumed resources
may vary according to the state of the PE or content of SDOs.
Both of these factors contribute to unevenness – burstiness – in the
processing rates and resource utilizations of a PE.

The classical solution to burstiness problems is to add buffers, and
our stream processing system is no exception. However, designing
for very high data rates and scalability in the number of PEs per
processing node make buffering increasingly expensive, as system
memory becomes a severe constraint. Additionally, increasing buffer
sizes also increases the average end-to-end latency of the system,
and decreasing latency is one of our performance objectives. So we
must use what buffer space we have wisely to balance the effects
of data loss, burstiness, and latency.

D. Unequal Stream Consumption Rates

A PE connected to a single downstream PE must either constrain
its output rate to the input rate of the downstream PE or experience
loss of SDOs when the downstream input buffer overflows. Thus,
it would seem prudent to synchronize the output rate of a PE to
the input rate of its downstream PE, as dropping SDOs would be
wasteful (why spend processing resources creating SDOs only to
drop them?).
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Fig. 2. Multiple PEs can read from a single stream at different rates. The
sending PE can choose which of these rates at which to send data. If it
chooses to send data at the rate of its fastest downstream PE (PE 5), there
is buffer overflow at the other downstream PEs. If it sends data at the rate
of the slowest downstream PE, the output rate of the other PEs decreases,
and reduces the weighted throughput of the system.

Such a strategy, however, is not necessarily the best when a
PE’s output stream is read by multiple downstream PEs. Figure
2 presents an example: four PEs read the same stream, but at
different rates - 10, 20, 20, and 30 SDOs/sec. For this example,
assume the time-averaged CPU allocation of PE 1 is sufficient
to produce SDOs at a maximum rate of 30 SDOs/sec (producing
SDOs at a rate greater than this is obviously wasteful). However,
using the traditional reliable delivery approach (e.g., TCP flow
control) PE 1 would produce SDOs at 10 SDOs/sec – the rate
supported by the slowest PE (PE 2). We refer to this policy as
the min-flow policy. In many environments, this is indeed desirable
since it prevents buffer overflows and data loss at downstream PEs.
However, in a distributed stream processing system, it slows the
entire PE connected component to the rate of its slowest member

and thus leads to under-utilization of resources and data loss at the
input to the system – and is clearly undesirable.

There are two possible approaches to solving this rate mismatch
problem. The first is to prevent the mismatch by allocating resources
such that all the downstream PEs are capable of processing incoming
data at the same rate. This is often infeasible, as certain PEs may
have severe resource constraints. Further, as stated in section III-
A, our measure of effectiveness is the weighted throughput of the
system. Since the weights of different streams vary, maximizing the
weighted throughput will result in unequal processing rates.

Dismissing this option, we must choose PE 1’s output rate from
among the different downstream PE processing rates. We argue that
the maximum is the most logical choice, based on the fact that our
system scheduler has chosen the resource allocations for all PEs,
and we should do our best to allow them enough data to fully utilize
their allocations as far as is possible. Since the system scheduler has
optimized the weighted throughput, adding an additional constraint
by slowing processing rates will necessarily reduce the weighted
throughput. Therefore, our control algorithm attempts set the output
rate of PE 1 to the input rate of its fastest downstream PE. Setting it
larger than this will waste resources, and is thus sub-optimal. Setting
it lower will reduce the throughput of the of fastest downstream PE
of PE 1 (PE 5 in Figure 2) and necessarily reduce the weighted
throughput of the system.

Thus the proposed max-flow policy mandates that each PE operate
at its CPU allocation, and forward packets to all its downstream PEs
if there is a vacancy in the input buffer of its fastest downstream
PE.

IV. CONTROL SYSTEM PERFORMANCE OBJECTIVES

The design and evaluation of the proposed system is motivated
by a core set of design goals: maximization of weighted throughput,
low end-to-end processing latency, minimization of wasted process-
ing, and stable operation. We provided the rationale for the first 3
goals in sections III-A, III-C, and III-D, respectively. In this section,
we discuss the merits of stable system operation.

A key goal of our scheduling approach is to stabilize the
input, output, and processing rates of all the PEs in the system,
adjusting these rates gradually over time as necessary to keep
input buffers near target levels. Ensuring stable buffer occupancy
levels has several benefits. When the system keeps enough data in
incoming PE buffers, many PEs can take advantage of “batching”
by processing several SDOs in quick succession (rather than having
each PE process a single SDO, then executing the next PE). By
batching the processing of several SDOs by the same PE, the
system can avoid context-switching overhead, decrease memory
cache misses, and transfer data in larger chunks (e.g. by buffering
multiple output SDOs before sending them to the network). Also,
when the system keeps buffers from becoming too large, end-to-
end processing latency is decreased, and we avoid filling a buffer
completely (which may result in upstream PEs being asked to pause
their processing).

An oscillating input rate to a PE leads to an oscillating output
rate and oscillatory use of processing resources. The oscillations in
output rate and CPU usage can propagate through downstream and
co-located PEs and destabilize the system. Also, a PE with a nearly-
full buffer could force upstream PEs to oscillate between stopped
(when the PE’s input buffer is full) and started (when buffer space is
freed). Generally speaking, local rate stability is conducive to global
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stability, and thus highly desirable to create a stable distributed
processing system [10].

V. ACES ALGORITHM

In this section, we present our distributed adaptive control
algorithm 2. We propose a two-tiered approach where the first
tier assigns resource allocation targets to maximize the weighted
throughput assuming a fluid-flow model of processing, and the
second tier adjusts the instantaneous resource allocations to stabilize
the system in the face of an inherently quantized and bursty
workload. The first tier employs a global optimization (Section V-
B) and communicates resource allocation targets to a distributed
resource controller instantiated on each processing node. The second
tier accepts these resource allocation targets, monitors the process-
ing rate, input rate and quantity of buffered data for each PE,
and proactively informs the distributed resource controller of the
upstream PEs of the desired input rate (Sections V-C and V-D).

This decomposition is key to achieving our ambitious scalability
requirements. Specifically, the first tier updates time-average re-
source allocations on the order of minutes and can take into account
arbitrarily complex policy constraints. The second tier, which must
deal with sub-second timescales involved in burstiness, is embedded
in each node of the system, uses only local information and desired
rate information from directly downstream PEs, and employs simple
token bucket and rate tracking mechanisms.

We begin this section with review of the notation used. We
then present the global optimization and provide an analysis of
the steady-state and stability properties. Finally we describe the
flow control and and CPU control algorithms embedded in each
processing node’s distributed resource controller.

A. Mathematical Preliminaries

The distributed stream processing system under consideration
consists of S streams, indexed from s0 to sS−1 that are inputs of
the system. The system comprises of P PEs, denoted p0, p1, . . .,
pP−1 residing on N nodes, denoted n0, n1, . . . , nN−1. The set of
all PEs and all nodes are denoted as P and N , respectively. The
set of PEs residing on a node is denoted as Nj , where the subscript
j denotes the node index.

The interconnection of the PEs is represented by a directed
acyclic graph (DAG). We denote the set of PEs that feed data to PE j
as U(pj), and the set of PEs that PE j feeds data to as D(pj). Thus,
U(pj) denotes the “upstream” PEs of pj , while D(pj) denotes the
“downstream” PEs of pj . Since the PEs at the egress of the system
do not have any downstream PEs, D(pj) = null for pj at the
egress. In addition, the PEs at the ingress of the system derive their
input from a data stream, thus, we denote U(pj) = sk if PE pj

derives its data from stream sk.
We discretize time by sampling in intervals of Δt and all

quantities are measured at the sampled times. Denote by rin,j(n)
and rout,j(n) the input and output bytes of data for PE j in the
time interval [nΔt, (n + 1)Δt). The CPU allocation of PE pj in
the interval [nΔt, (n + 1)Δt) is denoted as cj(n)Δt. The CPU
allocations are represented in normalized form, thus

j∈Ni

cj(n) ≤ 1 ∀ n ≥ 0. (1)

2A detailed development of the algorithm is presented in [1], with the
necessary proofs.

We define rin,j , rout,j and cj as the time averaged values of
rin,j(n), rout,j(n) and cj(n). Thus,

rin,j = limn→∞
1

N

N

n=0
rin,j(n),

rout,j = limn→∞
1

N

N

n=0
rout,j(n),

cj = limn→∞
1

N

N

n=0
cj(n)

(2)

B. Global Optimization

The global optimization determines the time-averaged allocations
rin,j , rout,j and cj for each PE such that the weighted throughput
is maximized. During operation, we use a control algorithm to alter
rin,j(n), rout,j(n) and cj(n) to achieve two objectives: (1) stability
of the system, (2) ensure that rin,j(n), rout,j(n) and cj(n) are
varied such that over a reasonably long epoch, Equation 2 is met.
We refer to cj as the long-term CPU target, and cj(n) as the CPU
allocation at time nΔt.

The global optimization maximizes an aggregate utility function.
Associate with PE pj a utility Uj(rout,j), if its time-averaged output
rate is set to rout,j . The function Uj(rout,j) is strictly increasing,
concave, differentiable. We parameterize the utility function of the
various PEs as Uj(rout,j) = wjU(rout,j), where wj is the “weight”
of a PE (a larger weight implies higher utility), and the function
U(x) is is identical for all the PEs . For example, we could set
U(x) = 1 − e−x; U(x) = log(x + 1); U(x) = x. The weights
{wj} measure the relative importance of the PEs. The cumulative
utility of the system (denoted US) is then given as the sum of the
utilities of the PEs

US(rout,0, rout,1, . . . , rout,P−1) =
j∈P

wjU(rout,j). (3)

We maximize Equation 3 under the following set of constraints:

Σj∈Ni
cj ≤ 1 for 0 ≤ i ≤ N − 1, (4)

rin,j ≤ rout,i for i ∈ U(pj), 0 ≤ j ≤ P − 1, (5)

rin,j = hj(cj), (6)

where hj(cj) denotes the average input rate when the CPU alloca-
tion for PE j is cj

3. Equation 4 ensures that the CPU allocations
of all the PEs on a node sum to less than one. Equation 5 ensures
that the output rate of a PE is not less than the input rate of its
downstream PE (the inequality in Equation 5, as opposed to an
equality, stems from the fact that we enforce a max-flow policy).
Lastly, Equation 6 maps the CPU allocations to the time-averaged
input rates rin,j .

We use Lagrange multipliers to maximize Equation 3. As such
any concave optimization algorithm can be used. The concavity of
the cumulative utility ensures that there exists a unique set of CPU
allocations cj that maximize Equation 3.

C. Flow control algorithm

The arguments of Section III-C show that a myopic optimization
strategy, where each PE processes data agnostic to the state of its co-
located and downstream PEs leads to instability of the system. We
propose a joint flow and CPU control algorithm to meet the stability

3The function hj(cj) is modeled as acj −b, where a and b are constants
that are determined empirically. The constant b represents the overhead
involved in setting up the data structures of the PE, the overhead in function
calls etc., while the constant a represents the number of bytes of input data
that can be processed by the PE per processing cycle.
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objectives stated in Section IV. For PE j at time nΔt, the control
algorithm jointly determines rin,j(n), rout,j(n) and cj(n) in a
distributed manner, taking into account the input buffer occupancy
of PE j and the feedback it receives from its downstream and co-
located PEs. The goal of the allocation is to maintain stability of
the system, and avoid loss of partially processed data due to buffer
overflow.

The distributed allocation algorithm proceeds as follows. Every
Δt seconds, each PE determines its maximum sustainable input
rate, based on its input buffer occupancy and its processing rate,
and the maximimum sustainable rates of its downstream PEs. The
PE then computes a maximum input rate using this information, and
communicates this rate to its upstream PEs, and so on and so forth.
Our goal is to determine this rate judiciously. A conservative choice
will lead to wastage of processing resources, and an optimistic
choice would cause buffer overflow. Additionally, it is desirable
to have a computationally light algorithm to achieve this goal.

Towards this end, we propose an Linear Quadratic Controller
(LQR), that guarantees asymptotic stability. The details of the
algorithm are given in Appendix A. The optimization yields the
following control equation for the maximum output rate of a PE

rmax,j(n) = [ ρj(n) − K

k=0
λk{bj(n − k) − b0}

− L

l=1
μl{rmax,j(n − l) − ρj(n − l)} ]+,

(7)

where the subscript j indexes the PE, ρj(n) is the processing rate of
the PE in time step n and b0, {λk}, {μj} are constants determined
a − priori through the approach presented in Appendix A.

The parameter b0 is the buffer occupancy level that the controller
tries to maintain. It is chosen to satisfy two objectives: (a) it is
small enough to minimize the queuing delay, and avoid buffer
overflow, and (b) large enough to ensure high utilization of the
PE, or equivalently, minimize the chance of a buffer underflow. For
a given b0, if constants {λk} are large (relative to {μl}), the PE
tries to make bj(n) equal to b0. On the other hand, if {μl} are
large relative to {λk}, the PE attempts to equalize the input and the
processing rates. Next, we propose our approach to determining the
CPU allocations, ρj(n).

D. CPU Control

The CPU scheduling algorithm, which is run independently on
each node, partitions the computational resources of the node among
the PEs running on it based on (a) the long-term averaged CPU
targets of the PEs, (b) the input buffer occupancies of these PEs,
and (c) feedback from downstream PEs.

The feedback from downstream PEs provides an upper bound
for the CPU allocation to a PE. At time nΔt, PE j receives an
update of rmax,i(n) from all its downstream PEs i ∈ D(pj). PE j
determines an upper bound on its output rate using this information
as

ro,j(n) ≤ max{rmax,i(n) : i ∈ D(pj)} (8)

This bounds its CPU allocation cj(n) ≤ g−1

j (ro,j(n)), and conse-
quently, its processing rate ρj . Note that Equation 8 embodies the
max-flow paradigm discussed in Section III-D.

The allocation of CPU resources is achieved through the use of
a token-bucket mechanism, where each PE running on a node earns
tokens at a fixed rate, and expends them when it does processing.
If a PE does not use its tokens for a period of time, it accumulates
these tokens up to a maximum value. The PEs are allowed to
expend their token for CPU cycles proportional to their input buffer

occupancies, such that cj(n) does not exceed the bound of Equation
8. In this manner, the long-term CPU allocation of a PE on a
node is maintained at its CPU target, since it accumulates tokens at
a rate equal to its CPU goal. The instantaneous CPU allocation
of the PEs is, however, dependent on its congestion level (i.e.,
buffer occupancy) and the feedback from its downstream PEs. The
CPU control algorithm thus aims to mitigate congestion and loss
of partially processed data while maintaining the long-term CPU
targets of the PEs.

E. Summary

Our control algorithm works by backward induction on the DAG
of the PEs. At time nΔt, the CPU allocation of all the PEs on a
node are determined based on their buffer occupancies at time nΔt
and the number of tokens that they have accumulated – under the
constraint of Equation 8. This CPU allocation is used to determine
the maximum input bytes rmax,j(n) that each PE can admit in
the interval [nΔt, (n + 1)Δt) using Equation 7. This information
is then propagated to the upstream PEs, which perform the same
computation, and so on and so forth. Stability is guaranteed through
the LQR equations, and asymptotic convergence to the desired state
is guaranteed through the steady-state analysis ( detailed in [1].

Lastly, even though we have discretized time in intervals of Δt,
the algorithm does not depend on synchronization among the various
nodes. In practice, the computations are performed periodically at
each node, taking into account the most recent updates on the
maximum input rates received by the PEs.

VI. EMPIRICAL EVALUATION

In this section, we evaluate the performance of ACES in a
real-world distributed stream processing system, using workloads
developed to model real-world conditions. We compare our proposal
(denoted as the ACES approach (System 1) to two traditional
approaches:

System 2: UDP: Each PE communicates SDOs to its downstream
PE regardless of the input buffer occupancy of the downstream PE.
If the input buffer of the downstream PE is full, the incoming SDO
is dropped.

System 3: Lock-Step : Each PE communicates SDOs to its
downstream PE only if the input buffer of the receiving PE is not
full, i.e., the min-flow policy. If the downstream PEs input buffer is
full, the upstream PE sleeps until buffer space is available. While a
PE sleeps, the CPU is redistributed among the other PEs residing
on the node. The long-term CPU targets of the PEs are met.

We use our primary objectives – maximize weighted throughput,
minimize end-to-end latency, and maintain stability in the presence
of bursty workloads – to compare our system to traditional ap-
proaches. For example, supporting a large number of high volume
data streams results in contention for input buffer space. We evaluate
the performance, in terms of weighted throughput and end-to-
end latency, over a range of buffer sizes and show that ACES
outperforms traditional approaches for both measures.

Secondly, we anticipate a range of burstiness in both network
and processing resource consumption. In Section VI-C.1, we eval-
uated the performance, again in terms of weighted throughput, and
found that, except for very low levels of burstiness, our proposal
outperforms traditional approaches.
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Fig. 3. Graph plotting the mean and first standard deviation in the
end to end latency of the ACES approach and the Lock-Step .

A. Simulation Environment

The simulation environment was implemented in C using the
C-SIM [18] library. The physical system was replicated in the
simulation environment. The simulation environment was calibrated
to perform as closely as possible to the SPC system. The topologies
for the simulation were generated through a topology generation tool
that takes as input the number of CPUs in the system, the number of
ingress, egress and intermediate PEs in the system, and the average
degree of interconnectivity between the PEs. The output of the
generator is a PE graph, the assignment of the PEs to the CPUs,
the time-averaged CPU allocations of the PEs and the parameters
for each PE.

B. PE model

We model each PE as a state-machine and characterize it through
its input-output relationship. For every SDO that a PE reads from
its input buffer, it processes the SDO for time T , and subsequently
forwards M SDOs to its downstream PE. The PE operates in two
states, S ∈ {0, 1}. The processing time of a packet differ in the two
states, and this leads to burstiness in processing. The duration that a
PE spends in state S is chosen from a continuous-time exponential
distribution with parameter λS . A large value of λS signifies that
the PE switches between its processing states infrequently, and vice-
versa.

C. Experimental results

Experiments were run on topologies consisting of 60 PEs running
on 10 nodes in the SPC and the C-SIM simulator. This was done to
calibrate the simulator to the SPC. Subsequently, experiments were
run on the simulator on topologies of 200 PEs on running on 80
nodes. Multiple randomly generated topologies were used for all
simulations, and the results were averaged over the multiple runs.
Unless otherwise stated, the buffer size of each PE was set to B =
50 SDOs, the parameter b0 was set to B/2 SDOs, the maximum
allowable fan-out degree was set to 4, the maximum allowable fan-
in degree was set to 3, the fraction of PEs that had multiple inputs or
multiple outputs was set to 20% and the parameters of the PEs were
set to λS = 10, λm = 1, ρ = 0.5, T0 = 2ms and T1 = 20ms.

Figure 4 plots mean latency of the ACES approach and Lock-Step
versus weighted throughput. The variation in latency and weighted
throughput was accomplished by altering the input buffer size (B)
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Fig. 4. Graph plotting the mean latency versus weighted throughput
for the ACES approach and the Lock-Step in the simulator (200 PE,
80 node topology). The ACES approach has a lower mean latency for
the same weighted throughput as the Lock-Step .

of the PEs. As is seen in the figure, the proposed approach has a
superior trade-off between throughput and latency as compared to
the Lock-Step approach. This is because the proposed approach
maintains each PE’s buffer less than full, thus packets spend less
time in each buffer. In addition, the proposed approach drops fewer
packets as compared to the Lock-Step approach, this leads to a
higher end-to-end throughput.

1) Performance measurements with variation in burstiness: We
plot the weighted throughput of the three approaches with variation
in burstiness in this section. The burstiness was varied by varying the
mean time the PEs spend in each of the two states before transition
(Figure 5).

Overall, an increase in λs increases the burstiness in processing
and results in a decline in the performance of the three systems.
However, the ACES approach performs better than either of the
other approaches for two reasons: (1) the proposed dynamic flow
and CPU control algorithms stabilize the system such that in the
short-term resources are allocated among the PEs that require them,
while in the long-term a fair allocation is maintained, and (2) the
merits of the max-flow policy over the min-flow policy. The figure
also shows the results of the calibration of the simulator to the SPC.

VII. CONCLUSIONS

In this paper, we have proposed an adaptive control algorithm for
resource sharing in a distributed stream processing environment. We
outlined the characteristics of a stream processing system relevant to
the problem of resource allocation – correlated usage among PEs,
burstiness in processing and unequal stream consumption rates –
and proposed the weighted throughput and end-to-end latency as
appropriate metrics for evaluating the performance of the system.

We proposed a two-tier optimization approach. The first tier, a
global optimization algorithm, determines the time averaged CPU
targets of the PEs to maximize the weighted throughput, taking the
correlation among the loads of the PEs into account. The second
tier distributed flow control and CPU control algorithms adjust the
flow of data and CPU allocations of the PEs, respectively, in real-
time to ensure stability and maintain the long-term CPU targets of
the PEs. Together, the two-tiers strive to maximize the weighted
throughput over suitably long epochs, while maintaining stability.
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Fig. 5. Graph plotting the weighted throughput with variation in
the average time spent in each of the two states of the PEs (λs).
An increase in λs leads to a lower weighted throughput of the three
approaches, however, the loss in performance is smaller for the ACES
approach as compared to the other approaches.

The proposed flow control algorithm was designed using the LQR
method – a robust and provably convergent design method.

Multiple experiments were conducted on the real-world SPC
system [2] and a simulator calibrated to the SPC, comparing the
performance of the weighted throughput and end-to-end latency
of ACES to Lock-Step and UDPapproaches. It was observed that
the weighted throughput achieved by ACES exceeds the other ap-
proaches, and increase as burstiness is increased. It was also shown
that the performance of ACES dominates the other approaches
across the entire range of operation. For large weighted throughput,
it was observed that the mean end-to-end latency of ACES was
as little as a third of the Lock-Step – a significant improvement.
Moreover, the standard deviation of the mean end-to-end latency
of ACES was much smaller than the Lock-step approach. The
robustness of ACES to errors in allocation was also demonstrated.

In summary, it was shown that ACES outperforms conventional
scheduling approaches across the relevant range of operation of the
PEs, both, in terms of weighted throughput and end-to-end latency,
with variation in buffer size, burstiness and errors in allocation.
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