
WebView: Scalable Information Monitoring for
Data-Intensive Web Applications

Navendu Jain
nav@cs.utexas.edu

Mike Dahlin
dahlin@cs.utexas.edu

Yin Zhang
yzhang@cs.utexas.edu

Department of Computer Sciences
University of Texas at Austin

Austin, TX 78712

Abstract
We present WebView, a scalable information monitoring ser-
vice for data-intensive Web applications that continuously
monitors local application state, aggregates local state into
a global view, and uses the global view to help ensure high
performance and high availability for these applications. We
demonstrate the effectiveness of WebView by building three
key Web applications: (a) a data prefetching service for con-
tent distribution and (b) a heavy hitter monitoring service
for detecting anomalies such as flash crowds and denial-of-
service attacks, and (c) monitoring large-scale systems host-
ing Web services.

To provide a global system view in real-time, a monitor-
ing service faces two key challenges: (1) scalability to many
nodes and attributes as well as high volume of data updates
and (2) bounding the freshness of monitoring results i.e.,
the time between an event update and its notification to
the application. To address these challenges, we design, im-
plement, and evaluate WebView that leverages Distributed
Hash Tables (DHT) to build scalable aggregation trees, and
that exploits precision-performance tradeoffs which tolerate
a bounded small approximation error to significantly reduce
the monitoring load. WebView enables applications to con-
trol this tradeoff by providing (1) arithmetic filtering that
caches recent reports and only transmits new information
if it differs by some numeric threshold (e.g., ± 10%) from
the cached report and (2) temporal batching that combines
multiple updates that arrive near one another in time into a
single network message, and that further bounds the fresh-
ness of monitoring query results. Our prototype implemen-
tation of WebView combines these techniques with DHT-
based aggregation hierarchy to implement a single highly-
scalable monitoring system. Evaluation of our WebView
prototype for our three Web applications shows that our
system provides significant application benefits and is an
order of magnitude more scalable than existing approaches
while still delivering fresh results with high accuracy.

1. INTRODUCTION
With the growing scale of the World Wide Web (WWW),

an increasingly key requirement is managing high-performance,
secure, and high-availability Web services. To meet these de-
mands, we require constant measurement and monitoring of
these services by gathering and correlating information from
many vantage points in the network. For example, in a co-
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operative caching system, a set of caches can gather local
object access distributions and use these aggregate statis-
tics to prefetch “globally popular” objects for improving re-
sponse times. Similarly, to balance load on a large set of
Web servers or enterprise systems hosting these services re-
quires collecting several attributes from each machine such
as request rate, CPU load, memory consumption, etc. Fi-
nally, to detect network events such as flash crowds and
distributed denial-of-service (DDoS) attacks requires moni-
toring and analyzing traffic originating from different points
in the network.

The common theme binding these applications is a key
building block for scalable system monitoring that tracks the
distributed application state, performs queries, and reacts
quickly to changes in their global state. Ideally, we want
to provide this global information view of the system at a
minimum cost and in as close to real-time as possible.

To achieve this objective, a monitoring system should ad-
dress two key challenges. First, the system should scale to
many nodes and allow applications to query many data at-
tributes (e.g., CPU load of a Web server, popularity of a
cached object). To support large numbers of dynamic at-
tributes, the system must provide high performance to pro-
cess high volumes of data updates while delivering query
results in real-time. Second, the system should deliver time-
critical results within a bounded “freshness” delay both for
making online decisions (e.g., stock quotes, speed auctions)
and detecting anomalies (e.g., DDoS attacks). Unfortu-
nately, traditional monitoring approaches of logging the en-
tire data at a single repository would either generate moni-
toring traffic whose volume is proportional to the total traf-
fic, or be too late in detecting network anomalies (e.g., DDoS
attacks), both of which are clearly unacceptable.

To address these challenges, we have developed WebView,
a scalable information monitoring service for data-intensive
Web applications that provides a global information view of
these applications in real-time. To compute this global view,
WebView provides hierarchical aggregation [17, 21, 37, 42]
that allows a node to access detailed views of nearby in-
formation and summary views of global information. To
provide aggregation hierarchy, WebView builds on recent
work that uses DHTs [28, 30, 31, 34] to construct scalable,
load-balanced forests of self-organizing aggregation trees [3,
12, 28, 42]. To process high volume of data updates in real
time, WebView provides two key techniques vital for a mon-
itoring system’s scalability.

• Arithmetic filtering [21, 25] caches recent reports and
only transmits new information if it differs by some nu-
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meric threshold (e.g., ± 10%) from the cached report,
thus trading a bounded small approximation error for
a significant load reduction. WebView provides the
basic mechanisms to perform arithmetic filtering in an
aggregation hierarchy that divide the numeric error
among different nodes in the tree while bounding the
total error.

• Temporal batching [23, 32] combines multiple updates
that arrive near one another in time into a single net-
work message. A key benefit of temporal batching
is that it bounds the freshness of monitoring query
results by taking into account the inherent delay to
propagate updates through the system. To implements
temporal batching, WebView pipelines the available
batching interval across levels of the aggregation hi-
erarchy to maximize the number of updates batched
together.

A key focus of this paper is to demonstrate the effective-
ness of WebView by building three key Web applications:
(1) data prefetching for content distribution, (2) Distributed
Heavy Hitter detection (DHH), and (3) PrMon, a monitor-
ing application for large-scale systems hosting Internet-scale
services. Our experience with building these applications us-
ing WebView illustrate how explicitly managing precision-
performance tradeoffs can qualitatively enhance a monitor-
ing service. The key benefit is improved scalability: for
these applications, introducing small amounts of arithmetic
imprecision (AI) and temporal imprecision (TI) drastically
reduces monitoring load or allow more extensive monitoring
for a given load budget. For example, in PrMon, a 10%
AI allows us to reduce network load by an order of magni-
tude compared to periodic centralized logging. Conversely,
PrMon can provide highly responsive monitoring with a TI
guarantee of 30 seconds and a 10% AI for approximately the
same network cost as once-per-5-minute periodic logging.
Another significant advantage of WebView is the benefit to
applications: by gathering popularity information from sev-
eral cooperating caches, our WebView based data prefetch-
ing service can significantly increase hit rates compared to
demand caching by almost 3x for about 2.5x increase in
bandwidth cost.

The key contributions of this paper are as follows1. First,
we present WebView, the first DHT-based system that en-
ables precision-performance tradeoffs for scalable aggrega-
tion and continuous monitoring for large-scale Web applica-
tions. Second, we provide key mechanisms and efficient im-
plementations of (1) distributing numeric error budgets in
an aggregation tree and (2) pipelining of temporal batching
delays across tree levels. Third, our evaluation demonstrates
that WebView enables scalable aggregation by significantly
reducing load for our case-study Web applications. Finally,
our prototype implementation demonstrates that WebView
provides significant application benefits.

The rest of this paper is organized as follows. Section 2
provides background description of SDIMS [42], a scalable
DHT-based aggregation system at the core of WebView.
Section 3 describes the WebView design: (a) mechanism

1Note to reviewers: In prior work, we presented a self-tuning
algorithm for setting AI [21]. This paper provides significant
extensions not explored in earlier work: (1) setting monitor-
ing budget for AI filtering, (2) design and implementation
of TI, (3) combining AI and TI in WebView, and (4) ex-
perience with Web applications. Finally, all results in this
paper are new.
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Figure 1: The aggregation tree for key 000 in an
eight node system. Also shown are the aggregate
values for a simple SUM() aggregation function.

and policies to perform arithmetic filtering and (b) pipelin-
ing of updates in temporal batching for reducing monitoring
overhead. Section 4 presents the experimental evaluation of
WebView. Finally, Section 5 discusses related work, and
Section 6 provides conclusions.

2. POINT OF DEPARTURE
WebView extends SDIMS [42] which embodies two key

abstractions for scalable monitoring: aggregation and DHT-
based aggregation.

2.1 Aggregation
Aggregation is a fundamental abstraction for scalable mon-

itoring [3, 12, 17, 28, 37, 42] because it allows applications to
access summary views of global information and detailed
views of rare events and nearby information.

SDIMS’s aggregation abstraction defines a tree spanning
all nodes in the system. As Figure 1 illustrates, each physical
node in the system is a leaf and each subtree represents a log-
ical group of nodes. Note that logical groups can correspond
to administrative domains (e.g., department or university)
or groups of nodes within a domain (e.g., a /28 subnet with
14 hosts on a LAN in the CS department) [15,42]. An inter-
nal non-leaf node, which we call a virtual node, is simulated
by one or more physical nodes at the leaves of the subtree
rooted at the virtual node.

SDIMS’s tree-based aggregation is defined in terms of an
aggregation function installed at all the nodes in the tree.
Each leaf node (physical sensor) inserts or modifies its local
value for an attribute defined as an {attribute type, attribute
name} pair which is recursively aggregated up the tree. For
each level-i subtree Ti in an aggregation tree, SDIMS defines
an aggregate value Vi,attr for each attribute: for a (physical)
leaf node T0 at level 0, V0,attr is the locally stored value
for the attribute or NULL if no matching tuple exists. The
aggregate value for a level-i subtree Ti is the result returned
by the aggregation function computed across the aggregate
values of Ti’s children. Figure 1, for example, illustrates the
computation of a simple SUM aggregate.

2.2 DHT-Based Aggregation
SDIMS leverages DHTs [28, 30, 31, 34, 45] to construct a

forest of aggregation trees and maps different attributes to
different trees [3,12,28,42] for scalability and load balancing.
DHT systems assign a long (e.g., 160 bits), random ID to
each node and define a routing algorithm to send a request
for key k to a node rootk such that the union of paths from
all nodes forms a tree DHTtreek rooted at the node rootk. By
aggregating an attribute with key k = hash(attribute) along
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the aggregation tree corresponding to DHTtreek, different
attributes are load balanced across different trees. Stud-
ies suggest that this approach can provide aggregation that
scales to large numbers of nodes and attributes [3,12,28,42].

2.3 Case-study Applications
Aggregation is a building block for many distributed ap-

plications such as network management [43], service place-
ment [13], sensor monitoring and control [23], multicast tree
construction [37], and naming and request routing [7]. In
this paper, we focus on three case-study applications built
using WebView: (1) a data prefetching service for content
distribution, (2) a distributed heavy hitter detection ser-
vice, and (3) a distributed monitoring service for network
platforms hosting Web and Internet-scale services.

Data Prefetching for Content Distribution. Our first
case-study application is a data prefetching service for Web
proxies and content distribution networks (CDN). The aim
is to improve hit rates of caches and CDN servers by prefetch-
ing and replicating a set of valuable objects that are likely
to be referenced in the near future. To identify which ob-
jects to prefetch, WebView aggregates local object access
patterns from a distributed federation of caches to compute
global object popularities. Based on these aggregate statis-
tics, different policies can be applied to select a good set of
globally valuable objects for prefetching that will result in
significant improvement in hit rates at modest costs.

For our study, we use the Good-Fetch algorithm [39] that
balances the object access frequency and object update fre-
quency and that only fetches objects whose probability of
being accessed before being updated exceeds a specified thresh-
old. In particular, assuming the overall object access rate
to be a, the object access frequency pi and average lifetime
li for object i, the probability that i is accessed during its
lifetime can be expressed as:

PgoodFetch = 1− (1− pi)
ali (1)

WebView applies this algorithm for a cooperative caching
network by aggregating a and the total pi for all the objects
from all caches. Note that our focus is scalably computing
these statistics to determine their benefit to applications and
not comparing different prefetching algorithms.

Distributed Heavy Hitter detection (DHH). Our sec-
ond application is identifying heavy hitters in a distributed
system—for example, the top 10 IPs that account for a sig-
nificant fraction of total incoming traffic in the last 10 min-
utes [11, 21]. The key challenge for this distributed query
is scalability for aggregating per-flow statistics for tens of
thousands to millions of concurrent flows in real-time. For
example, a subset of the Abilene [1] traces used in our ex-
periments include 170 thousand flows that send about 50
million updates per hour.

To scalably compute the global heavy hitters list, we chain
two aggregations where the results from the first feed into
the second. First, WebView calculates the total incoming
traffic for each destination address from all nodes in the sys-
tem using SUM as the aggregation function and hash(HH-
Step1, destIP) as the key. For example, tuple (H = hash(-
HH-Step1, 128.82.121.7), 700 KB) at the root of the ag-
gregation tree TH indicates that a total of 700 KB of data
was received for 128.82.121.7 across all vantage points dur-
ing the last time window. In the second step, we feed these
aggregated total bandwidths for each destination IP into
a SELECT-TOP-10 aggregation with key hash(HH-Step2,

TOP-10) to identify the TOP-10 heavy hitters among all
flows.

PrMon. The final case-study application is PrMon, a dis-
tributed monitoring service that is representative of moni-
toring enterprise data centers hosting Web applications [35]
and Internet-scale systems such as PlanetLab [27] and Grid
systems [36] that provide platforms for developing, deploy-
ing, and hosting global-scale services. For instance, to man-
age a wide array of user services running on the PlanetLab
testbed, the system administrators need a global view of the
system to identify problematic services (slices in PlanetLab
terminology) e.g., if any slice is consuming more than 10GB
of memory across all nodes on which it is running. Similarly,
users require system state information to query for “lightly-
loaded” nodes for deploying new experiments or to track the
resource consumption of their running experiments.

To provide such information in a scalable way and in
real-time, WebView computes the per-slice aggregates for
each resource attribute (e.g., CPU, MEM, etc.) along dif-
ferent aggregation trees. This aggregate usage of each slice
across all PlanetLab nodes for a given resource attribute
(e.g., CPU) is then input to a per-resource SELECT-TOP-
100 aggregate (e.g., SELECT-TOP-100, CPU) to compute
the list of top-100 slices in terms of consumption of the re-
source.

Compared to the common approach of periodically re-
porting all events to a centralized repository, in Section 4
we show that our system can monitor a larger number of
attributes at much finer time scales while incurring signifi-
cantly lower network costs.

3. WEBVIEW DESIGN
In this section we present the WebView design and de-

scribe how to enforce arithmetic and temporal precision lim-
its and quantify the consistency guarantees of query results.
WebView’s core architecture is a DHT-based aggregation
system that achieves scalability by mapping different at-
tributes to different aggregation trees [12, 28, 42]. WebView
then introduces controlled tradeoffs between precision guar-
antees and load.

3.1 Overview
WebView quantifies query precision along two axes: Arith-

metic and Temporal. Arithmetic imprecision (AI) bounds
the numeric difference between a reported value of an at-
tribute and its true value [26, 44], and temporal imprecision
(TI), bounds the delay from when an update is input at a
leaf sensor until the effects of the update are reflected in the
root aggregate [32, 44]. These aspects of precision provide
means to (a) expose inherent imprecision in a monitoring
system stemming from sensor inaccuracy and update prop-
agation delays and (b) reduce system load by introducing
additional filtering and batching on update propagation. In
the following two subsections, we describe how WebView
enforces arithmetic and temporal imprecision bounds while
maximizing load reduction.

3.2 Arithmetic Imprecision
Arithmetic imprecision (AI) deterministically bounds the

numeric difference between a reported value of an attribute
and its true value [20,26,44]. For example, a 10% AI bound
ensures that the reported value either underestimates or
overestimates the true value by at most 10%.

When applications do not need exact answers and data
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values do not fluctuate wildly, AI can greatly reduce mon-
itoring load by allowing caching to filter small changes in
aggregated values. Furthermore, for applications like DHH
monitoring, AI can completely filter out updates for most
“mice” flows i.e., attributes with low frequency.

We first describe the basic mechanism for enforcing AI for
each aggregation subtree in the system. Then we describe
how our system addresses the policy questions of setting
total budgets, computing AI error range, and distributing
an AI budget across subtrees to minimize system load.

3.2.1 Mechanism
To enforce AI, each aggregation subtree T for an attribute

has an error budget δT that defines the maximum inac-
curacy of any result the subtree will report to its parent
for that attribute. The root of each subtree divides this
error budget among itself δself and its children δc (with
δT ≥ δself +

P
c∈children δc), and the children recursively do

the same. Here we present the AI mechanism for the SUM
aggregate since it is likely to be common in network moni-
toring and financial applications [14]; other standard aggre-
gation functions (e.g., MAX, MIN, AVG, etc.) are similar
and defined precisely in an extended technical report [20].

This arrangement reduces system load by filtering small
updates that fall within the range of values cached by a sub-
tree’s parent. In particular, after a node A with error budget
δT reports a range [Vmin, Vmax] for an attribute value to its
parent (where Vmax ≤ Vmin + δT ), if the node A receives
an update from a child, the node A can skip updating its
parent as long as it can ensure that the true value of the
attribute for the subtree lies between Vmin and Vmax, i.e., if

Vmin ≤ P
c∈children V c

min

Vmax ≥ P
c∈children V c

max
(2)

where V c
min and V c

max denote the most recent update re-
ceived from child c.

Note the tradeoff in splitting δT between δself and δc. A
large δc allows a child to filter updates before they reach
its parent. Conversely, by setting δself > 0, a node can set
Vmin <

P
V c

min, set Vmax >
P

V c
max, or both to avoid fur-

ther propagating some updates it receives from its children.
WebView maintains per-attribute δ values so that differ-

ent attributes with different error requirements and different
update patterns can use different δ budgets in different sub-
trees. WebView implements this mechanism by defining a
distribution function; just as an attribute type’s aggregation
function specifies how aggregate values are aggregated from
children, an attribute type’s distribution function specifies
how δ budgets are distributed (partitioned) among the chil-
dren and δself .

3.2.2 Policy Decisions
Given these mechanisms, there is considerable flexibility

to (i) set δroot to an appropriate value for each attribute (ii)
compute Vmin and Vmax when updating a parent, and (iii)
divide δT among δself and δc for each child c.

Setting δroot:. Aggregation queries can set the root error
budget δroot to any non-negative value. For some applica-
tions, an absolute constant value may be known a priori
(e.g., count the number of connections per second ±10 at
port 1433.) For other applications, it may be appropriate
to set the tolerance based on measured behavior of the ag-
gregate in question (e.g., set δroot for an attribute to be
at most 10% of the maximum value observed) or the mea-

surements of a set of aggregates (e.g., in our heavy hitter
application, we set δroot for each flow to be at most 1% of
the bandwidth of the largest flow measured in the system.)
Our mechanisms support all of these approaches by allowing
new absolute δroot values to be introduced at any time and
then distributed down the tree via a distribution function.
We have prototyped systems that use each of these three
policies.

Computing [Vmin, Vmax]:. When either
P

c V c
min or

P
c V c

max

goes outside of the last [Vmin, Vmax] that was reported to
the parent, a node needs to report a new range. Given
a δself budget at an internal node, we have some flexi-
bility on how to center the [Vmin, Vmax] range. Our ap-
proach is to adopt a per-aggregation-function range pol-
icy that reports Vmin = (

P
c V c

min) − bias ∗ δself and
Vmax = (

P
c V c

max) + (1 − bias) ∗ δself to the parent. For
example, we can set the bias (∈ [0, 1]) parameter as follows:

• bias ≈ 0.5 if inputs are expected to be stationary

• bias ≈ 0 if inputs are expected to be increasing

• bias ≈ 1 if inputs are expected to be decreasing

For example, suppose a node with total δT of 10 and δself

of 3 has two children reporting ([V c
min, V c

max]) of [1, 2] and
[2, 8], respectively, and it reports [0, 10] to its parent. Then,
suppose the first child reports a new range [10, 11], so the
node must report to its parent a range that includes [12, 19].
If bias = 0.5, then the node reports [10.5, 20.5] to its parent
to filter out small deviations around the current position.
Conversely, if bias = 0, the node reports [12, 22] to filter
out the maximal number of updates of increasing values.

Self-Tuning Error Budgets. A key AI policy question is
how to divide a given error budget δroot across the nodes in
an aggregation tree.

A simple approach is a static policy that divides the er-
ror budget uniformly among all the children. E.g., a node
with budget δT could set δself = 0.1δT and then divide the
remaining 0.9δT evenly among its children. Although this
approach is simple, it is likely to be inefficient because dif-
ferent aggregation subtrees may experience different loads.

To make cost/accuracy tradeoffs self-tuning, we provide
an adaptive algorithm. The high-level idea is simple: in-
crease δ for nodes with high load and large standard devia-
tion but low δ (relative to other nodes); decrease δ for nodes
with low load and small standard deviation but high δ.

Additional implementation details of the self-tuning algo-
rithm for distributing error budgets in a general aggregation
hierarchy are described elsewhere [21].

3.3 Temporal Imprecision
Temporal imprecision bounds the delay from when an

event/update occurs until it is reported. A temporal im-
precision of TI seconds guarantees that every event that
occurred TI or more seconds ago is reflected in the reported
result; events younger than TI may or may not be reflected.
In WebView, each attribute has a TI bound, and to meet
this bound, the system must ensure that updates propagate
from the leaves to the root in the allotted time.

Temporal imprecision benefits monitoring applications in
two ways. First, it accounts for inherent network and pro-
cessing delays in the system; given a worst case per-hop
cost hopmax even immediate propagation provides a tem-
poral guarantee no better than ` ∗ hopmax where ` is the
maximum number of hops from any leaf to the root of the
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Figure 2: For a given TI bound, pipelined delays
with synchronized clocks (a) allows nodes to send
less frequently than unpipelined delays without syn-
chronized clocks (b).

tree. Second, explicitly exposing TI allows WebView to use
temporal batching: a set of updates at a leaf sensor are con-
densed into a periodic report or a set of updates that arrive
at an internal node over a time interval are combined before
being sent further up the tree [20]. This temporal batch-
ing improves scalability by reducing processing and network
load.

To maximize the possibility of batching updates, when
clocks are synchronized2, we pipeline delays as shown in
Figure 2(a) so that each node sends once every (TI − ∆)
seconds with each level’s sending time staggered so that the
updates from level i arrive just before level i + 1 can send.
The extended technical report [20] details how we set each
level’s sending time while coping with transmission delays
and clock skew across nodes. As detailed there, accounting
for the worst case delays hopmax and skews skewmax yields
∆ = ` ∗ (hopmax + 2 ∗ skewmax), and it guarantees the fol-
lowing property: an event at a leaf node at local time X is
reflected at the root no later than time (X + TI) according
to the local time at the leaf node.

Conversely, if clocks are not synchronized, then we fall
back on a simple but less efficient approach of having each
node send updates to its parents once per TI/` seconds as
illustrated in Figure 2(b).

3.4 Robustness
Failures and reconfigurations are common in large scale

systems. As a result, a query might return a stale answer
either due to incorrect previous aggregate values or due to
nodes whose inputs are needed to compute the aggregate
result becoming unreachable. More importantly, in a large
scale monitoring system, such failures interact badly with
our techniques for providing scalability—hierarchy, arith-
metic filtering, and temporal batching. For example, if a
monitoring subtree is silent over an interval, it is difficult to
distinguish between two cases: (a) the subtree has sent no
updates because the inputs have not significantly changed
or (b) the inputs have significantly changed but the subtree
is unable to transmit its report. As a result, reported results
can be arbitrarily far from their true values.

2Algorithms in the literature can achieve clock synchroniza-
tion among nodes to within one millisecond [38].

Addressing this fundamental problem of node failures and
network disruptions in large scale system monitoring is be-
yond the scope of this paper. In a separate work, we have de-
veloped a new metric called Network Imprecision (NI) that
characterizes and quantifies the accuracy of query results in
the face of failures, network disruptions, and system recon-
figurations; the details are available in an extended technical
report [20].

4. EXPERIMENTAL EVALUATION
We have developed a prototype of the WebView monitor-

ing system on top of FreePastry [31]. To guide the system
development and to drive the performance evaluation, we
have also built three case-study applications using WebView
as described in Section 2.3.

We performed both micro-benchmark experiments and
large scale application experiments to characterize the per-
formance and scalability of the AI and TI metrics. First,
we quantify the performance of our system under AI and TI
filtering using micro-benchmark experiments. Second, we
perform a detailed study analysis of our data prefetching ap-
plication using Squid traces [33] from IRCache network [18].
For the DHH and the PrMon applications, we use netflow
traces from Abilene [1], and CoTop [6] data collected from
PlanetLab [27], respectively, to quantify the load reduction
due to AI and TI. Third, we analyze the deviation in the
WebView’s reported values with respect to both the ground
truth based on input data readings and the guarantees de-
fined by AI and TI. Finally, we investigate how to set the
budgets in terms of AI and TI to reduce the monitoring
overhead.

In summary, our experimental results show that WebView
is an effective substrate for scalable monitoring: introducing
small amounts of AI and TI significantly reduces monitoring
load, TI successfully bounds the freshness of reported query
results, and Web applications can benefit significantly from
the global information view provided by our WebView mon-
itoring system.

4.1 Load vs. Precision
First, we evaluate the performance of WebView using

three micro-benchmark experiments.
In the first micro-benchmark, we quantify load reduction

for aggregating an attribute solely due to AI with no TI
filtering. We compare the monitoring cost of PrMon dis-
tributed monitoring service to a centralized periodic logging
service which uses a fixed TI of 5 minutes and which does not
exploit AI. We gather CoTop [6] data from 200 PlanetLab
nodes at 1-second intervals for 1 hour. The CoTop data pro-
vides the per-slice resource usage (e.g., CPU, MEM, TX1,
etc.) for all applications (slices in PlanetLab terminology)
running on a given PlanetLab node. Using these logs as
sensor data input, we run WebView on 200 servers mapped
to 50 Emulab machines each having a 3GHz CPU and 2GB
RAM.

Figure 3 shows the AI precision-performance results for
the PrMon application for two attributes (the total TX1
and CPU usage of slice princeton codeen across 200 Plan-
etLab nodes). The TX1 attribute denotes the total number
of bytes transmitted by a slice in the last minute. The x-
axis shows the global AI budget, and the y-axis shows the
total message load normalized with respect to AI of -1 (i.e.,
no AI caching) and TI = TImin = 50ms i.e., immediate
update propagation assuming 50ms as the minimum end-
to-end propagation delay in the system. Each data point
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represents the total number of messages sent during the 1-
hour run. From the figure, we observe that for CPU, the
load falls by 68% when AI changes from -1 (no caching) to
0 and a 10% AI further provides almost a 40% reduction in
load compared to AI=0. The load reduction from AI=-1 to
AI=0 comes from culling new updates that exactly match
the previous report. However, if the CPU value changes,
it generally deviates by a large amount, resulting in limited
gains achieved by even 10% AI. For the TX1 attribute, since
the sensor sends an update every 60 seconds, it is relatively
stable compared to the dynamic CPU attribute. Hence, it
can achieve higher benefits from AI filtering for x-axis rang-
ing from AI = 0 to AI = 10% in Figure 3. In this case,
changing AI from -1 to 0 provides roughly a 12% reduction
in load whereas 10% AI reduces the load by about 50%.

In the second micro-benchmark, we complement the first
experiment by quantifying load reduction for aggregating
an attribute solely due to TI with no AI filtering. Fig-
ure 4 shows the corresponding TI precision-performance re-
sults with no AI filtering. The initial TI value of TImin

(50 ms) corresponds to immediate propagation of messages
along the aggregation tree. From the graph, we observe
that the reduction in system load is 80% and over an order
of magnitude for non-pipelined (unsynchronized clocks) and
pipelined (synchronized clocks) 10 second TI delays respec-
tively compared to TI of TImin.

The third benchmark evaluates the combined effect of AI
and TI in reducing monitoring load. Figure 5 shows the
corresponding precision-performance graph for the CPU at-
tribute for the princeton codeen slice. We use TI of 10 sec-
onds, 30 seconds, 1 minute, and 5 minutes, and for each of
these TI values, we run the experiment for AI values of -1,
0, 10%, and 20%. We observe that the load falls by 70%
from AI of -1 to AI of 10% for a given TI. Further, for a
fixed AI, the monitoring load shows a curve following 1/TI
as in Figure 4. For this attribute, giving an AI of 10% or
20% only provides additional load reduction of 10% and 16%
respectively due to low temporal locality.

4.2 Applications
In this subsection we first perform a detailed study analy-

sis of our data prefetching service for content distribution to
evaluate application benefits of WebView, and then quantify
the performance of WebView for the DHH and the PrMon
applications.

4.2.1 Data Prefetching Service
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Figure 6: Number of requests and CDF versus ob-
ject rank for the IRCache dataset. The x-axis and
y-axis are on log scale.

We begin by analyzing the hit rates, bandwidth cost ob-
tained by our prefetching service that aggregates popularity
information from several cooperating caches. We gathered
a 9 day trace logged by the Squid proxy caches [33] oper-
ated by the IRCache system [18] between 22 Oct and 30 Oct
2007. The trace consists of 24 million records and accesses
to 9.7 million unique objects from 7500 client IPs. The trace
also logs the sizes of the objects including the headers in-
formation. However, since the traces do not contain object
update information, we generated object lifetimes as ran-
domly distributed between 1 and 1,000,000 seconds (11.6
days) given by Wu et al. [41] assuming no correlation with
popularity or size. Query URLs (having a “?” in the URL)
are considered as both uncacheable and unprefetchable. The
Squid proxy mesh implements as a demand cache that routes
requests based on network proximity and load balances re-
quests across caches.

Figure 6 shows the number of requests versus object rank
and the corresponding cumulative distribution function (CDF)
for the IRCache dataset. As expected [4, 5], we observe a
Zipf-like popularity distribution of Web objects where the
100 most popular objects account for about 7% of requests,
1000 most popular constitute about 13% of requests, and
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Figure 7: Comparing the performance of WebView compared to oracle and demand caching: (a) Object Hit
Rate and (b) Bandwidth usage per cache.

10,000 most popular about 25% of requests. For our eval-
uation, we uniformally distributed the input trace into 60
buckets corresponding to 60 sensors which are mapped to
30 nodes running on the department Condor cluster each
having dual core 2.4GHz and 4GB RAM.

For all experiments in this subsection, we set TI = 10
seconds and AI of 10% of the global access frequency in
the most popular object in the trace. Since the input trace
data shows a Zipf-like distribution, setting this AI budget
likely to filter most of the mice objects i.e., objects that
are least popular since they will incur bandwidth cost for
prefetching without providing any significant increase in hit
rates. However, it may perturb the popularity estimate of
medium-popular objects which we next evaluate.

We analyze the performance of WebView using the Good-
Fetch algorithm [39] compared to pure demand cache and or-
acle that knows the global access and update pattern of each
object apriori. Figure 7(a) plots the hit rates for these three
techniques. The x-axis denotes the number of prefetched ob-
jects as ranked by the respective prefetching algorithms and
y-axis shows the hit rate. Demand caching provides a hit
rate of about 22%. As we increase the number of prefetched
objects, the hit rates for both WebView and oracle services
increases steadily but peaks out after 1 million objects since
the latter ranked objects have medium to low popularity
and hence least likely to be accessed. WebView computes
approximate global statistics due to AI and TI and trails by
at most 9% in hit rates from the oracle.

Figure 7(b) shows the corresponding graph for the band-
width usage per cache. Demand caching incurs a bandwidth
cost of about 90 KBps per cache. To compute the band-
width usage of the oracle, we assume a push-based system in
which updates to objects are sent immediately by the server
to caches that are ”subscribed” to the object in question.
Note that as we increase the number of prefetched objects,
the bandwidth consumption slowly increases up to 1000 ob-
jects and quickly increases after that. From the graph, we
observe that oracle consumes roughly 10% more bandwidth
compared to our WebView service. Taking the ratio of hit
rate to bandwidth consumption in Figure 7, our WebView
based data prefetching service can significantly increase hit
rates compared to demand caching by almost 3x for about
2.5x increase in bandwidth cost.

4.2.2 Detecting Heavy Hitters

For DHH application, we use multiple netflow traces ob-
tained from the Abilene [1] Internet2 backbone network.
The data was collected from 3 Abilene routers for 1 hour;
each router logged per-flow data every 5 minutes, and we
split these logs into 400 buckets based on the hash of source
IP. As described in Section 2.3, our DHH application exe-
cutes a Top-10 query on this dataset for tracking the top 10
flows (destination IP as key) in terms of bytes received over
a 15 second moving window shifted every 5 seconds.

Figure 8 shows the precision-performance results for the
top-10 DHH query for 400 nodes mapped to 100 Emulab
machines. The total monitoring load is normalized relative
to the load for AI of 0 and TI of 10 seconds. The AI budget is
varied from 1% to 20% of the maximum flow’s global traffic
volume. We observe that AI of 10% reduces monitoring load
by an order of magnitude compared to AI of 0 for a fixed TI
of 10 seconds, by (a) culling all updates for large numbers of
“mice” flows whose total bandwidth is less than this value
and (b) filtering small changes in the remaining elephant
flows. Similarly, TI of 5 minutes reduces load by about 80%
compared to TI of 10 seconds. For DHH application, AI
filtering is more effective than TI batching for reducing load
because of the large fraction of mice flows in Abilene traces.

4.2.3 PrMon
Finally, we evaluate the monitoring cost of PrMon dis-

tributed monitoring service using CoTop [6] data from 200
PlanetLab nodes at 1-second intervals for 1 hour. The Co-
Top data provide the per-slice usage of 9 CPU, NW, and
memory resources for all slices running on each node. Using
these logs as sensor input, we run WebView on 200 servers
mapped to 50 Emulab machines. Note that for compari-
son with centralized services that performs periodic logging,
the baseline is set to AI of -1 (no AI caching) and TI of 5
minutes.

Figure 9 shows the combined effect of AI and TI in reduc-
ing PrMon’s load for monitoring all the running PlanetLab
slices in our CoTop trace data. The x-axis shows the TI
budget and the y-axis shows the total message load during
the 1-hour run normalized with respect to AI of -1 and TI =
10 seconds. We observe that for AI of -1, there is more than
one order of magnitude load reduction for TI of 5 minutes
compared to 10 seconds; the corresponding message over-
head per node is about 90 messages per second (TI = 10s)
and 4 messages per second (TI = 5 minutes). Likewise, for
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Figure 8: Load vs. AI and TI for DHH applica-
tion.
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Figure 9: Load vs. AI and TI for PrMon appli-
cation.

a fixed TI of 10 seconds, AI of 20% reduces load by two
orders of magnitude (to 0.7 messages per node per second)
compared to AI = -1. By combining AI of 20% and TI of 30
seconds, we get both an order of magnitude load reduction
(to 0.3 messages per node per second) and an order of mag-
nitude reduction in the time lag between updates compared
to centralized logging that sets AI of -1 and TI of 5 minutes.
Alternatively, for approximately the same bandwidth cost
as periodic logging with TI of 5 minutes and AI of -1 for
200 nodes, WebView provides highly time-responsive and
accurate monitoring with TI of 10 seconds and AI of 0.

In summary, our evaluation shows that small AI and TI
budgets can provide large bandwidth savings to enable scal-
able monitoring.

4.3 Setting Monitoring Budget
Finally, to reduce bandwidth, one can either increase AI

or TI. We provide two guidelines here. First, TI filtering is
more beneficial than AI for attributes that exhibit (a) large
variation in values of consecutive updates (e.g., CPU) or
(b) high update rates. For these attributes, bandwidth falls
roughly proportionally with increasing TI but increasing AI
may only have a little impact as most updates will bypass
AI filters under modest AI error budgets as shown in Fig-
ure 5. Second, AI filtering is more useful for attributes that
show small variance in values of consecutive updates (e.g.,
TX1 attributed in Figure 3, number of processes). Thus,
for environments where sensor readings change slowly (or
even predictably) with time, increasing the AI budget may
be more effective.

4.4 Promised vs. Realized Accuracy
A central goal of WebView is to go beyond providing best

effort imprecision estimates to ensuring worst-case approx-
imation guarantees. In this subsection, we experimentally
investigate WebView’s accuracy by using the CoTop trace
for the “CPU” attribute, configuring WebView with differ-
ent AI and TI values, playing that trace through WebView
on 200 servers mapped to 50 Emulab nodes, logging the
value reported for the attribute at each second, and doing
an off-line comparison between the WebView’s reported val-
ues and trace inputs.

First, we experimentally test whether the results delivered
by WebView do, in fact, remain within the range promised
by WebView’s imprecision guarantees. We compare Web-

View’s actual output at every second to the oracle output
computed across the input traces for AI values of 0, 1%, 5%,
and 10% with TI values of 1s and 10s. In 99.9% (3596 of
3600) of the 1-second periods at the various levels of AI and
TI, the reported value lies within the range promised by We-
bView; the inaccuracy of less than 1% in the remaining 0.1%
of reports stems from short-term disruptions in the system
such as heavy CPU load and unexpected network delays.

Next, we examine how different levels of AI and TI affect
the actual end-to-end imprecision delivered to applications
relative to the instantaneous oracle value computed across
the input traces. Figure 10 and 11 show for different val-
ues of AI, the CDF of deviation between WebView’s reports
compared to the oracle truth for fixed TI of 1s and 10s, re-
spectively. We make two observations here: First, for AI
of 5% and 1 second TI, more than 90% of reports have less
than 16% difference from the oracle. Notice, however, that
even with AI of 0 and immediate propagation, any aggrega-
tion system’s reports can differ from the oracle truth due to
propagation delays. As illustrated in Figure 11, increasing
the TI to 10 seconds results in a larger deviation between
WebView’s reported results and the oracle. Second, for AI
of 5% AI and 10s TI, more than 90% reports differ by less
than 27% from the oracle. The relatively large errors rela-
tive to AI are due to the low temporal locality of the CPU
attribute.

5. RELATED WORK
Aggregation systems commonly use some form of AI or

TI to reduce monitoring overheads. Olston et al. [2, 25]
use adaptive filters at the data sources that compute an-
swers with bounded numerical approximation for continu-
ous queries in single-level communications topologies. Man-
jhi et al. [24] determine an optimal but static distribution
of slack to the internal and leaf nodes of an tree for the
special case of finding frequent items in database streams.
A-GAP provides an adaptive protocol to bound the aver-
age approximation error of continuous queries in a spanning
tree [29]. In comparison, WebView supports general ag-
gregation functions and employs a self-tuning algorithm for
distributing the error budgets in a general communication
hierarchy. Further, while many existing approaches [9, 25]
periodically shrink error budgets for each aggregation tree
which limits scalability for tracking many attributes, Web-
View’s self-tuning algorithm performs is optimized to scale
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Figure 11: CDF for difference between Web-
View’s reported values and oracle truth for fixed
TI of 10 seconds.

to a large number of nodes and attributes [21].
IrisNet [10] filters sensors at leaves and caches timestamped

results in a hierarchy with queries that specify the maximum
staleness they will accept and that trigger re-transmission if
needed. In contrast, WebView coordinates transmission of
push-based continuous query results to support in-network
aggregation, allowing it to more aggressively optimize the
TI batching. TAG [23] bounds TI by partitioning time into

intervals of duration TI
l

(l: maximum tree level) with nodes

at level i transmitting during the ith interval. In compar-

ison, WebView increases the batching interval from TI
l

to
(TI− l ∗ ε) to significantly reduce communication overhead.

Traditionally, DHT-based aggregation is event-driven and
best-effort, i.e., each update event triggers re-aggregation for
affected portions of the aggregation tree. Further, systems
often only provide eventual consistency guarantees on its
data [37, 42], i.e., updates by a live node will eventually be
visible to probes by connected nodes.

There are ongoing efforts similar to ours in the Web, P2P,
and databases communities to build global monitoring ser-
vices. PIER is a DHT-based relational query engine [17] tar-
geted at querying real-time data from many vantage-points
on the Internet. Sophia [40] is a distributed monitoring sys-
tem designed with a declarative logic programming model.
ATMEN [22] is a distributed triggered measurement infras-
tructure which uses Gigascope [8] packet monitoring system.
ATMEN focuses on monitoring the performance of Web sites
and DNS servers from multiple vantage points while Web-
View’s goal is to scalably aggregate local information into a
global view of the system. Gupta et al. [14] propose a query
planning based approach to answer continuous queries in
dynamic data dissemination networks like CDNs.

Some recent studies [16,19] have proposed monitoring sys-
tems with distributed triggers that fire when an aggregate
of remote-site behavior exceeds an a priori global thresh-
old. These systems are based on a single-level tree hierarchy
where the central coordinator tracks aggregate time-series
data by setting local filters at remote sites. WebView may
enhance such efforts by providing a scalable way to track
top-k and other significant events.

6. CONCLUSIONS
We designed, implemented, and evaluated WebView—a

scalable information monitoring infrastructure for perform-
ing data aggregation and continuous event monitoring for
data-intensive Web applications. To the best of our knowl-
edge, WebView is the first DHT-based system that enables
applications to control precision-performance tradeoffs by
specifying the precision guarantees of their query results and
then have the monitoring system minimize the load under
those precision constraints. To support these tradeoffs, We-
bView provides key mechanisms and efficient implementa-
tions of (1) distributing AI error budgets in an aggregation
tree and (2) pipelining TI delays across tree levels. Our
evaluation demonstrates that WebView provides significant
application benefits and enables scalable aggregation by sig-
nificantly reducing load for three key Web applications we
studied.

In future work, we plan to examine techniques for se-
cure information aggregation in distributed systems span-
ning multiple administrative domains as well as develop a
broad range of applications that could benefit from Web-
View.
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