
Real estate of names

K. Rustan M. Leino

Compaq Systems Research Center,
130 Lytton Ave., Palo Alto, CA 94301, U.S.A.

Abstract

A common convention for writing names (identifiers) in mathematical formulas
makes poor use of the real estate on the page occupied by those names. Here is a
design principle for using space more efficiently.

Key words: Streamlined mathematical expressions, types

The choice of a suitable notation is
a vital part of designing clear and
convincing presentations of scientific
material. Good notation is precise,
concise, and suggestive; poor nota-
tion may be ambiguous, clumsy, or
misleading. Integral to the design
of notation is choosing what names
(identifiers) to use to represent the
entities involved. How to typeset for-
mulas is also an important part of
the design, for one would like formu-
las to use the available real estate
effectively and efficiently.

Let us examine how some of these
design decisions are often made by
focusing on a common usage of sub-
scripts. Figure 0 shows two equa-
tions from physics [1] and one from
computer science [0]. The first of
these equations states that the po-
tential difference between points a
and b equals the difference between
the potentials at these points. (The

potential “at a point” is really the
potential difference between that
point and some implicit point, usu-
ally ground.) The second equation
states that the angular magnification
is minus the ratio of the focal lengths
of the objective lens and eyepiece
lens. The third equation specifies the
lag time of a FIFO synchronizer cir-
cuit with N elements in terms of the
cycle time and a timing margin.

The names in these formulas contain
two parts: the type (like V for volt-
age), indicating which attribute is be-
ing measured, and the brand (like a),

a) Vab = Va − Vb

b) mθ = −fob

fey

c) tcy + tm < tlag < N tcy − tm

Fig. 0. Examples of a common usage of
names in formulas.

Preprint submitted to Elsevier Preprint August 2000



indicating where the measurement is
obtained. In Figure 0, the types use
a larger font than the brands.

By encoding the types as part of the
names themselves, it is easy to type-
check the formulas. For example, by
subtracting a voltage from a voltage
in the right-hand side of equation (a),
one gets a voltage, which is indeed
the type indicated by the name in the
left-hand side of the equation.

But the brands are important, too.
In fact, they are paramount in Fig-
ure 0—for one, they distinguish
names with equal types. Unfortu-
nately, the proportion of space allo-
cated to the respective parts of the
names in Figure 0 make the types
more prominent than the brands.
For example, the capital types stand
out when looking at equation (a),
whereas the subscript brands are less
noticeable. Yet it is the brands of this
equation that make it what it is. Ex-
ample (b) demonstrates why being
able to identify the brands is impor-
tant: by confusing the focal lengths
of the objective and the eyepiece,
one would calculate a vastly differ-
ent angular magnification. Timing
equations like the one in example
(c) often occur in a context with
even more time variables, but read-
ing off which quantity’s time is being
denoted requires inspection of the
brands, which occupy a regrettably
small part of the total real estate of
the names.

To show just how ridiculous the
frequently-used convention in Fig-
ure 0 is, consider the rendition of
Euclid’s algorithm for computing the

greatest common divisor in Figure 1.

A better way to write the names in
Figure 0 is to make the brands more
visible. For example, Figure 2 shows
the same formulas, but with the types
contracted and the brands enlarged.
I am not arguing that types should
be given as prefix superscripts. The
point is that the brands of these
names ought to be bigger and more
noticeable than the types.

In some programming contexts, mak-
ing type or usage information part
of the names of program variables
can be quite helpful. The notational
convention Hungarian [2] (named in
reference to Charles Simonyi, who
popularized the notation) comes to
mind. Figure 3 shows three example
variable declarations. The first decla-
ration uses the Hungarian prefix “c”

{ 1 ≤ Zx = ZX ∧ 1 ≤ Zy = ZY }

do Zx < Zy −→ Zy := Zy − Zx

[] Zy < Zx −→ Zx := Zx − Zy

od

{ Zx = Zy = ZX gcdZY }

Fig. 1. A rendition of Euclid’s algo-
rithm in which the types overwhelm the
brands.

a) Vab = Va − Vb

b) mθ = −
fob
fey

c) tcy + tm < tlag < N tcy − tm

Fig. 2. A different layout of the parts of
the names makes it clearer which quan-
tities are being denoted.

2



int cWarnings;

char * pchCurrent;

char * pszMessage;

Fig. 3. Example declarations of vari-
ables in Hungarian.

to denote that the integer is a count
(in this case a count of warnings, as
the brand suggests). The type of the
variable name in the second decla-
ration indicates that the variable is
a pointer to a character (the “cur-
rent” character under inspection).
The type of the third variable name
specifies that the variable contains a
pointer to a null-terminated string
(the text of a message). In these
names, the balance between types
and brands seems more well-suited
than in Figure 0.

In some contexts where type infor-
mation is understood or not partic-
ularly relevant, the type can be left
out of the name altogether. For ex-
ample, this leads to a nicer rendition
of Euclid’s algorithm, writing x in-
stead of Zx in Figure 1. Similarly, if
brand information is understood, it
can be omitted. This is often done
in Hungarian and in physics. For ex-
ample, in Einstein’s famous equation
E = mc2, the brand-less names E
and m denote the energy and mass of
one (unnamed) object.

I don’t have any hard and fast rules
for how to write down names. But
the moral is this: the most important
parts of your names should get the
bulk of their real estate.

Acknowledgements The thoughts
I’ve presented here have been influ-
enced by the attention devoted to
the streamlining of mathematical no-
tation and mathematical arguments
spearheaded by Edsger W. Dijkstra.
This influence was bestowed upon me
in a class on “mathematical method-
ology” I took from Professor Dijkstra
in Spring 1989 at UT Austin. I am
grateful not just to Dijkstra, but also
to the attendees of the In Pursuit
of Simplicity symposium (honoring
Dijkstra, May 2000, at UT Austin)
whose positive feedback on the short
talk I gave on this subject caused me
write these thoughts down. Thanks
also to Lyle Ramshaw who provided
useful feedback on drafts of this note.

Some related work is done by
Tufte [3], who also gives design prin-
ciples for presentations, but for using
graphs to convey data rather than
for using mathematical notation to
convey concepts.

References

[0] William J. Dally and
John W. Poulton. Digital Systems
Engineering, page 479. Cambridge
University Press, 1998.

[1] David Halliday and Robert Resnick.
Physics, part two, pages 699 and 982.
John Wiley & Sons, third edition,
1978.

[2] Charles Petzold. Programming
Windows. Microsoft Press, 1988.

[3] Edward R. Tufte. The Visual
Display of Quantitative Information.
Graphics Press, Cheshire, CT, 1983.

3


