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Abstract. Fuzzing consists of repeatedly testing an application with
modified, or fuzzed, inputs with the goal of finding security vulnerabili-
ties in input-parsing code. In this paper, we show how to automate the
generation of an input grammar suitable for input fuzzing using sam-
ple inputs and neural-network-based statistical machine-learning tech-
niques. We present a detailed case study with a complex input format,
namely PDF, and a large complex security-critical parser for this format,
namely, the PDF parser embedded in Microsoft’s new Edge browser.
We discuss (and measure) the tension between conflicting learning and
fuzzing goals: learning wants to capture the structure of well-formed in-
puts, while fuzzing wants to break that structure in order to cover unex-
pected code paths and find bugs. We also present a new algorithm for this
learn&fuzz challenge which uses a learnt input probability distribution
to intelligently guide where to fuzz inputs.

1 Introduction

Fuzzing is the process of finding security vulnerabilities in input-parsing code by
repeatedly testing the parser with modified, or fuzzed, inputs. There are three
main types of fuzzing techniques in use today: (1) blackbox random fuzzing [27],
(2) whitebox constraint-based fuzzing [12], and (3) grammar-based fuzzing [23,
27], which can be viewed as a variant of model-based testing [28]. Blackbox
and whitebox fuzzing are fully automatic, and have historically proved to be
very effective at finding security vulnerabilities in binary-format file parsers.
In contrast, grammar-based fuzzing is not fully automatic: it requires an input
grammar specifying the input format of the application under test. This grammar
is typically written by hand, and this process is laborious, time consuming, and
error-prone. Nevertheless, grammar-based fuzzing is the most effective fuzzing
technique known today for fuzzing applications with complex structured input
formats, like web-browsers which must take as (untrusted) inputs web-pages
including complex HTML documents and JavaScript code.

In this paper, we consider the problem of automatically generating input
grammars for grammar-based fuzzing by using machine-learning techniques and
? The work of this author was done mostly while visiting Microsoft Research.
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Fig. 1. Excerpts of a well-formed PDF document. (a) is a sample object, (b) is a
cross-reference table with one subsection, and (c) is a trailer.

sample inputs. Previous attempts have used variants of traditional automata
and context-free-grammar learning algorithms (see Section 5). In contrast with
prior work, this paper presents the first attempt at using neural-network-based
statistical learning techniques for this problem. Specifically, we use recurrent
neural networks for learning a statistical input model that is also generative: it
can be used to generate new inputs based on the probability distribution of the
learnt model (see Section 3 for an introduction to these learning techniques).
We use unsupervised learning, and our approach is fully automatic and does not
require any format-specific customization.

We present an in-depth case study for a very complex input format: PDF.
This format is so complex (see Section 2) that it is described in a 1,300-pages
(PDF) document [1]. We consider a large, complex and security-critical parser
for this format: the PDF parser embedded in Microsoft’s new Edge browser.
Through a series of detailed experiments (see Section 4), we discuss the learn&fuzz
challenge: how to learn and then generate diverse well-formed inputs in order
to maximize parser-code coverage, while still injecting enough ill-formed input
parts in order to exercise unexpected code paths and error-handling code.

We also present a novel learn&fuzz algorithm (in Section 3) which uses a
learnt input probability distribution to intelligently guide where to fuzz (statis-
tically well-formed) inputs. We show that this new algorithm can outperform the
other learning-based and random fuzzing algorithms considered in this work.

The paper is organized as follows. Section 2 presents an overview of the PDF
format, and the specific scope of this work. Section 3 gives a brief introduction
to neural-network-based learning, and discusses how to use and adapt such tech-
niques for the learn&fuzz problem. Section 4 presents results of several learning
and fuzzing experiments with the Edge PDF parser. Related work is discussed
in Section 5. We conclude and discuss directions for future work in Section 6.
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Fig. 2. PDF data objects of different types.

2 The Structure of PDF Documents

The full specification of the PDF format is over 1, 300 pages long [1]. Most of
this specification – roughly 70% – deals with the description of data objects and
their relationships between parts of a PDF document.

PDF files are encoded in a textual format, which may contain binary infor-
mation streams (e.g., images, encrypted data). A PDF document is a sequence
of at least one PDF body. A PDF body is composed of three sections: objects,
cross-reference table, and trailer.

Objects. The data and metadata in a PDF document is organized in basic units
called objects. Objects are all similarly formatted, as seen in Figure 1(a), and
have a joint outer structure. The first line of the object is its identifier, for
indirect references, its generation number, which is incremented if the object
is overridden with a newer version, and “obj” which indicates the start of an
object. The “endobj” indicator closes the object.

The object in Figure 1(a) contains a dictionary structure, which is delimited
by “<<” and “>>”, and contains keys that begin with / followed by their values.
[ 3 0 R ] is a cross-object reference to an object in the same document with the
identifier 3 and the generation number 0. Since a document can be very large, a
referenced object is accessed using random-access via a cross-reference table.

Other examples of objects are shown in Figure 2. The object in Figure 2(a)
has the content [680.6 680.6], which is an array object. Its purpose is to hold
coordinates referenced by another object. Figure 2(b) is a string literal that holds
the bookmark text for a PDF document section. Figure 2(c) is a numeric object.
Figure 2(d) is an object containing a multi-type array. These are all examples of
object types that are both used on their own and as the basic blocks from which
other objects are composed (e.g., the dictionary object in Figure 1(a) contains
an array). The rules for defining and composing objects comprises the majority
of the PDF-format specification.

Cross reference table. The cross reference tables of a PDF body contain the
address in bytes of referenced objects within the document. Figure 1(b) shows
a cross-reference table with a subsection that contains the addresses for five



objects with identifiers 1-5 and the placeholder for identifier 0 which never refers
to an object. The object being pointed to is determined by the row of the table
(the subsection will include 6 objects starting with identifier 0) where n is an
indicator for an object in use, where the first column is the address of the object
in the file, and f is an object not used, where the first column refers to the
identifier of the previous free object, or in the case of object 0 to object 65535,
the last available object ID, closing the circle.

Trailer. The trailer of a PDF body contains a dictionary (again contained within
“<<” and “>>”) of information about the body, and startxref which is the address
of the cross-reference table. This allows the body to be parsed from the end,
reading startxref, then skipping back to the cross-reference table and parsing
it, and only parsing objects as they are needed.

Updating a document. PDF documents can be updated incrementally. This means
that if a PDF writer wishes to update the data in object 12, it will start a new
PDF body, in it write the new object with identifier 12, and a generation number
greater than the one that appeared before. It will then write a new cross-reference
table pointing to the new object, and append this body to the previous docu-
ment. Similarly, an object will be deleted by creating a new cross-reference table
and marking it as free. We use this method in order to append new objects in a
PDF file, as discussed later in Section 4.

Scope of this work. In this paper, we investigate how to leverage and adapt
neural-network-based learning techniques to learn a grammar for non-binary
PDF data objects. Such data objects are formatted text, such as shown in Fig-
ure 1(a) and Figure 2. Rules for defining and composing such data objects makes
the bulk of the 1,300-pages PDF-format specification. These rules are numerous
and tedious, but repetitive and structured, and therefore well-suited for learning
with neural networks (as we will show later). In contrast, learning automati-
cally the structure (rules) for defining cross-reference tables and trailers, which
involve constraints on lists, addresses, pointers and counters, look too complex
and less promising for learning with neural networks. We also do not consider
binary data objects, which are encoded in binary (e.g., image) sub-formats and
for which fully-automatic blackbox and whitebox fuzzing are already effective.

3 Statistical Learning of Object Contents

We now describe our statistical learning approach for learning a generative model
of PDF objects. The main idea is to learn a generative language model over
the set of PDF object characters given a large corpus of objects. We use a
sequence-to-sequence (seq2seq) [5, 26] network model that has been shown to
produce state-of-the-art results for many different learning tasks such as machine
translation [26] and speech recognition [6]. The seq2seq model allows for learning
arbitrary length contexts to predict next sequence of characters as compared



to traditional n-gram based approaches that are limited by contexts of finite
length. Given a corpus of PDF objects, the seq2seq model can be trained in an
unsupervised manner to learn a generative model to generate new PDF objects
using a set of input and output sequences. The input sequences correspond to
sequences of characters in PDF objects and the corresponding output sequences
are obtained by shifting the input sequences by one position. The learnt model
can then be used to generate new sequences (PDF objects) by sampling the
distribution given a starting prefix (such as “obj”).

3.1 Sequence-to-Sequence Neural Network Models

A recurrent neural network (RNN) is a neural network that operates on a variable
length input sequence 〈x1, x2, · · · , xT 〉 and consists of a hidden state h and an
output y. The RNN processes the input sequence in a series of time stamps (one
for each element in the sequence). For a given time stamp t, the hidden state ht

at that time stamp and the output yt is computed as:

ht = f(ht−1, xt)

yt = φ(ht)

where f is a non-linear activation function such as sigmoid, tanh etc. and φ is a
function such as softmax that computes the output probability distribution over
a given vocabulary conditioned on the current hidden state. RNNs can learn a
probability distribution over a character sequence 〈x1, · · · , xt−1〉 by training to
predict the next character xt in the sequence, i.e., it can learn the conditional
distribution p(xt|〈x1, · · · , xt−1〉).

Cho et al. [5] introduced a sequence-to-sequence (seq2seq) model that con-
sists of two recurrent neural networks, an encoder RNN that processes a variable
dimensional input sequence to a fixed dimensional representation, and a decoder
RNN that takes the fixed dimensional input sequence representation and gener-
ates the variable dimensional output sequence. The decoder network generates
output sequences by using the predicted output character generated at time step
t as the input character for timestep t + 1. An illustration of the seq2seq archi-
tecture is shown in Figure. 3. This architecture allows us to learn a conditional
distribution over a sequence of next outputs, i.e., p(〈y1, · · · , yT1〉|〈x1, · · · , xT2〉).

We train the seq2seq model using a corpus of PDF objects treating each one
of them as a sequence of characters. During training, we first concatenate all
the object files si into a single file resulting in a large sequence of characters
s̃ = s1 + · · · + sn. We then split the sequence into multiple training sequences
of a fixed size d, such that the ith training instance ti = s̃[i ∗ d : (i + 1) ∗ d],
where s[k : l] denotes the subsequence of s between indices k and l. The output
sequence for each training sequence is the input sequence shifted by 1 position,
i.e., ot = s̃[i∗d+1 : (i+1)∗d+1]. The seq2seq model is then trained end-to-end
to learn a generative model over the set of all training instances.
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Fig. 3. A sequence-to-sequence RNN model to generate PDF objects.

3.2 Generating new PDF objects

We use the learnt seq2seq model to generate new PDF objects. There are many
different strategies for object generation depending upon the sampling strategy
used to sample the learnt distribution. We always start with a prefix of the
sequence “obj ” (denoting the start of an object instance), and then query the
model to generate a sequence of output characters until it produces “endobj”
corresponding to the end of the object instance. We now describe three different
sampling strategies we employ for generating new object instances.

NoSample: In this generation strategy, we use the learnt distribution to greedily
predict the best character given a prefix. This strategy results in generating PDF
objects that are most likely to be well-formed and consistent, but it also limits
the number of objects that can be generated. Given a prefix like “obj”, the best
sequence of next characters is uniquely determined and therefore this strategy
results in the same PDF object. This limitation precludes this strategy from
being useful for fuzzing.

Sample: In this generation strategy, we use the learnt distribution to sample
next characters (instead of selecting the top predicted character) in the sequence
given a prefix sequence. This sampling strategy is able to generate a diverse set
of new PDF objects by combining various patterns the model has learnt from the
diverse set of objects in the training corpus. Because of sampling, the generated
PDF objects are not always guaranteed to be well-formed, which is useful from
the fuzzing perspective.

SampleSpace: This sampling strategy is a combination of Sample and NoSample
strategies. It samples the distribution to generate the next character only when
the current prefix sequence ends with a whitespace, whereas it uses the best
character from the distribution in middle of tokens (i.e., prefixes ending with
non-whitespace characters), similar to the NoSample strategy. This strategy is
expected to generate more well-formed PDF objects compared to the Sample
strategy as the sampling is restricted to only at the end of whitespace characters.



Algorithm 1 SampleFuzz(D(x, θ), tfuzz, pt)
seq := “obj ”
while ¬ seq.endswith(“endobj”) do

c,p(c) := sample(D(seq,θ)) (* Sample c from the learnt distribution *)
pfuzz := random(0, 1) (* random variable to decide whether to fuzz *)
if pfuzz > tfuzz ∧ p(c) > pt then

c := argminc′{p(c′) ∼ D(seq, θ)} (* replace c by c’ (with lowest likelihood) *)
end if
seq := seq + c
if len(seq) > MAXLEN then

seq := “obj ” (* Reset the sequence *)
end if

end while
return seq

3.3 SampleFuzz: Sampling with Fuzzing

Our goal of learning a generative model of PDF objects is ultimately to per-
form fuzzing. A perfect learning technique would always generate well-formed
objects that would not exercise any error-hanlding code, whereas a bad learn-
ing technique would result in ill-formed objects that woult be quickly rejected
by the parser upfront. To explore this tradeoff, we present a new algorithm,
dubbed SampleFuzz, to perform some fuzzing while sampling new objects. We
use the learnt model to generate new PDF object instances, but at the same
time introduce anomalies to exercise error-handling code.

The SampleFuzz algorithm is shown in Algorithm 1. It takes as input the
learnt distribution D(x, θ), the probability of fuzzing a character tfuzz, and a
threshold probability pt that is used to decide whether to modify the predicted
character. While generating the output sequence seq, the algorithm samples the
learnt model to get some next character c and its probability p(c) at a particular
timestamp t. If the probability p(c) is higher than a user-provided threshold pt,
i.e., if the model is confident that c is likely the next character in the sequence,
the algorithm chooses to instead sample another different character c′ in its
place where c′ has the minimum probability p(c′) in the learnt distribution.
This modification (fuzzing) takes place only if the result pfuzz of a random coin
toss returns a probability higher than input parameter tfuzz, which lets the user
further control the probability of fuzzing characters. The key intuition of the
SampleFuzz algorithm is to introduce unexpected characters in objects only in
places where the model is highly confident, in order to trick the PDF parser.
The algorithm also ensures that the object length is bounded by MAXLEN. Note
that the algorithm is not guaranteed to always terminate, but we observe that
it always terminates in practice.



3.4 Training the Model

Since we train the seq2seq model in an unsupervised learning setting, we do not
have test labels to explicitly determine how well the learnt models are perform-
ing. We instead train multiple models parameterized by number of passes, called
epochs, that the learning algorithm performs over the training dataset. An epoch
is thus defined as an iteration of the learning algorithm to go over the complete
training dataset. We evaluate the seq2seq models trained for five different num-
bers of epochs: 10, 20, 30, 40, and 50. In our setting, one epoch takes about 12
minutes to train the seq2seq model, and the model with 50 epochs takes about
10 hours to learn. We use an LSTM model [15] (a variant of RNN) with 2 hidden
layers, where each layer consists of 128 hidden states.

4 Experimental Evaluation

4.1 Experiment Setup

In this section, we present results of various fuzzing experiments with the PDF
viewer included in Microsoft’s new Edge browser. We used a self-contained single-
process test-driver executable provided by Microsoft for testing/fuzzing pur-
poses. This executable takes a PDF file as input argument, executes the PDF
parser included in the Microsoft Edge browser, and then stops. If the executable
detects any parsing error due to the PDF input file being malformed, it prints
an error message in an execution log. In what follows, we simply refer to it as the
Edge PDF parser. All experiments were performed on 4-core 64-bit Windows 10
VMs with 20Gb of RAM.

We use three main standard metrics to measure fuzzing effectiveness:

Coverage. For each test execution, we measure instruction coverage, that is,
the set of all unique instructions executed during that test. Each instruction
is uniquely identified by a pair of values dll-name and dll-offset. The
coverage for a set of tests is simply the union of the coverage sets of each
individual test.

Pass rate. For each test execution, we programmatically check (grep) for the
presence of parsing-error messages in the PDF-parser execution log. If there
are no error messages, we call this test pass otherwise we call it fail. Pass
tests corresponds to PDF files that are considered to be well-formed by the
Edge PDF parser. This metric is less important for fuzzing purposes, but it
will help us estimate the quality of the learning.

Bugs. Each test execution is performed under the monitoring of the tool Ap-
pVerifier, a free runtime monitoring tool that can catch memory corruptions
bugs (such as buffer overflows) with a low runtime overhead (typically a few
percent runtime overhead) and that is widely used for fuzzing on Windows.



4.2 Training Data

We extracted about 63,000 non-binary PDF objects out of a diverse set of 534
PDF files. This set of 534 files was itself the result of seed minimization, that
is, the process of computing a subset of a larger set of input files which provides
the same instruction coverage as the larger set. Seed minimization is a standard
first step applied before file fuzzing [27, 12]. The larger set of PDF files came
from various sources, like past PDF files used for fuzzing but also other PDF
files collected from the public web.

These 63,000 non-binary objects are the training set for the RNNs we used in
this work. Binary objects embedded in PDF files (typically representing images
in various image formats) were not considered in this work.

We learn, generate, and fuzz PDF objects, but the Edge PDF parser pro-
cesses full PDF files, not single objects. Therefore we wrote a simple program
to correctly append a new PDF object to an existing (well-formed) PDF file,
which we call a host, following the procedure discussed in Section 2 for updating
a PDF document. Specifically, this program first identifies the last trailer in the
PDF host file. This provides information about the file, such as addresses of
objects and the cross-reference table, and the last used object ID. Next, a new
body section is added to the file. In it, the new object is included with an object
ID that overrides the last object in the host file. A new cross reference table
is appended, which increases the generation number of the overridden object.
Finally, a new trailer is appended.

4.3 Baseline Coverage

To allow for a meaningful interpretation of coverage results, we randomly selected
1,000 PDF objects out of our 63,000 training objects, and we measured their
coverage of the Edge PDF parser, to be used as a baseline for later experiments.

A first question is which host PDF file should we use in our experiments:
since any PDF file will have some objects in it, will a new appended object
interfere with other objects already present in the host, and hence influence the
overall coverage and pass rate?

To study this question, we selected the smallest three PDF files in our set of
534 files, and used those as hosts. These three hosts are of size 26Kb, 33Kb and
16Kb respectively.

Figure 4 shows the instruction coverage obtained by running the Edge PDF
parser on the three hosts, denoted host1, host2, and host3. It also show the
coverage obtained by computing the union of these three sets, denoted host123.
Coverage ranges from 353,327 (host1) to 457,464 (host2) unique instructions,
while the union (host123) is 494,652 and larger than all three – each host covers
some unique instructions not covered by the other two. Note that the smallest
file host3 does not lead to the smallest coverage.

Next, we recombined each of our 1,000 baseline objects with each of our
three hosts, to obtain three sets of 1,000 new PDF files, denoted baseline1,
baseline2 and baseline3, respectively. Figure 4 shows the coverage of each
set, as well as their union baseline123. We observe the following.



Fig. 4. Coverage for PDF hosts and baselines.

– The baseline coverage varies depending on the host, but is larger than the
host alone (as expected). The largest difference between a host and a baseline
coverage is 59,221 instruction for host123 out of 553,873 instruction for
baseline123. In other words, 90% of all instructions are included in the
host coverage no matter what new objects are appended.

– Each test typically covers on the order of half a million unique instructions;
this confirms that the Edge PDF parser is a large and non-trivial application.

– 1,000 PDF files take about 90 minutes to be processed (both to be tested
and get the coverage data).

We also measured the pass rate for each experiment. As expected, the pass rate
is 100% for all 3 hosts.

Main Takeaway: Even though coverage varies across hosts because objects
may interact differently with each host, the re-combined PDF file is always per-
ceived as well-formed by the Edge PDF parser.

4.4 Learning PDF Objects

When training the RNN, an important parameter is the number of epochs be-
ing used (see Section 3). We report here results of experiments obtained after
training the RNN for 10, 20, 30, 40, and 50 epochs, respectively. After training,
we used each learnt RNN model to generate 1,000 unique PDF objects. We also
compared the generated objects with the 63,000 objects used for training the
model, and found no exact matches.

As explained earlier in Section 3, we consider two main RNN generation
modes: the Sample mode where we sample the distribution at every character
position, and the SampleSpace mode where we sample the distribution only after
whitespaces and generate the top predicted character for other positions.

The pass rate for Sample and SampleSpace when training with 10 to 50
epochs is reported in Figure 5. We observe the following:



Fig. 5. Pass rate for Sample and SampleSpace from 10 to 50 epochs.

– The pass rate for SampleSpace is consistently better than the one for Sample.
– For 10 epochs only, the pass rate for Sample is already above 70%. This

means that the learning is of good quality.
– As the number of epochs increases, the pass rate increases, as expected, since

the learned models become more precise but they also take more time (see
Section 3).

– The best pass rate is 97% obtained with SampleSpace and 50 epochs.

Interestingly, the pass rate is essentially the same regardless of the host PDF file
being used: it varies by at most 0.1% across hosts (data not shown here).

Main Takeaway: The pass rate ranges between 70% and 97% and shows
the learning is of good quality.

4.5 Coverage with Learned PDF Objects

Figure 6 shows the instruction coverage obtained with Sample and SampleSpace
from 10 to 50 epochs and using host1 (top left), host2 (top right), host3 (bot-
tom left), and the overall coverage for all hosts host123 (bottom right). The
figure also shows the coverage obtained with the corresponding baseline. We
observe the following:

– Unlike for the pass rate, the host impacts coverage significantly, as already
pointed out earlier. Moreover, the shapes of each line vary across hosts.

– For host1 and host2, the coverage for Sample and SampleSpace are above
the baseline coverage for most epoch results, while they are mostly below
the baseline coverage for host3 and host123.

– The best overall coverage is obtained with Sample 40-epochs (see the host123
data at the bottom right).

– The baseline123 coverage is overall second best behind Sample 40-epochs.
– The best coverage obtained with SampleSpace is also with 40-epochs.

Main Takeaway: The best overall coverage is obtained with Sample 40-epochs.
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Fig. 6. Coverage for Sample and SampleSpace from 10 to 50 epochs, for host 1, 2,

3, and 123.

4.6 Comparing Coverage Sets

So far, we simply counted the number of unique instructions being covered. We
now drill down into the overall host123 coverage data of Figure 6, and compute
the overlap between overall coverage sets obtained with our 40-epochs winner
Sample-40e and SampleSpace-40e, as well as the baseline123 and host123
overall coverage. The results are presented in Figure 7. We observe the following:

– All sets are almost supersets of host123 as expected (see the host123 row),
except for a few hundred instructions each.

– Sample-40e is almost a superset of all other sets, except for 1,680 instructions
compared to SampleSpace-40e, and a few hundreds instructions compared
to baseline123 and host123 (see the Sample-40e column).

– Sample-40e and SampleSpace-40e have way more instructions in common
than they differ (10,799 and 1,680), with Sample-40e having better coverage
than SampleSpace-40e.

– SampleSpace-40e is incomparable with baseline123: it has 3,393 more in-
structions but also 6,514 missing instructions.

Main Takeaway: Our coverage winner Sample-40e is almost a superset of all
other coverage sets.



Row\Column Sample-40e SampleSpace-40e baseline123 host123

Sample-40e 0 10,799 6,658 65,442
SampleSpace-40e 1,680 0 3,393 56,323
baseline123 660 6,514 0 59,444
host123 188 781 223 0

Fig. 7. Comparing coverage: unique instructions in each row compared to each column.

Algorithm Coverage Pass Rate

SampleSpace+Random 563,930 36.97%
baseline+Random 564,195 44.05%

Sample-10K 565,590 78.92%
Sample+Random 566,964 41.81%
SampleFuzz 567,634 68.24%

Fig. 8. Results of fuzzing experiments with 30,000 PDF files each.

4.7 Combining Learning and Fuzzing

In this section, we consider several ways to combine learning with fuzzing, and
evaluate their effectiveness.

We consider a widely-used simple blackbox random fuzzing algorithm, de-
noted Random, which randomly picks a position in a file and then replaces the
byte value by a random value between 0 and 255. The algorithm uses a fuzz-
factor of 100: the length of the file divided by 100 is the average number of bytes
that are fuzzed in that file.

We use random to generate 10 variants of every PDF object generated by 40-
epochs Sample-40e, SampleSpace-40e, and baseline. The resulting fuzzed ob-
jects are re-combined with our 3 host files, to obtain three sets of 30,000 new PDF
files, denoted by Sample+Random, SampleSpace+Random and baseline+Random,
respectively.

For comparison purposes, we also include the results of running Sample-40e
to generate 10,000 objects, denoted Sample-10K.

Finally, we consider our new algorithm SampleFuzz described in Section 3,
which decides where to fuzz values based on the learnt distribution. We applied
this algorithm with the learnt distribution of the 40-epochs RNN model, tfuzz =
0.9, and a threshold pt = 0.9.

Figure 8 reports the overall coverage and the pass-rate for each set. Each set
of 30,000 PDF files takes about 45 hours to be processed. The rows are sorted
by increasing coverage. We observe the following:

– After applying Random on objects generated with Sample, SampleSpace and
baseline, coverage goes up while the pass rate goes down: it is consistently
below 50%.

– After analyzing the overlap among coverage sets (data not shown here),
all fuzzed sets are almost supersets of their original non-fuzzed sets (as ex-
pected).



– Coverage for Sample-10K also increases by 6,173 instructions compared to
Sample, while the pass rate remains around 80% (as expected).

– Perhaps surprisingly, the best overall coverage is obtained with SampleFuzz.
Its pass rate is 68.24%.

– The difference in absolute coverage between SampleFuzz and the next best
Sample+Random is only 670 instructions. Moreover, after analyzing the cover-
age set overlap, SampleFuzz covers 2,622 more instructions than Sample+Random,
but also misses 1,952 instructions covered by Sample+Random. Therefore,
none of these two top-coverage winners fully “simulate” the effects of the
other.

Main Takeaway: All the learning-based algorithms considered here are com-
petitive compared to baseline+Random, and three of those beat that baseline
coverage.

4.8 Main Takeaway: Tension between Coverage and Pass Rate

The main takeaway from all our experiments is the tension we observe between
the coverage and the pass rate.

This tension is visible in Figure 8. But it is also visible in earlier results: if we
correlate the coverage results of Figure 6 with the pass-rate results of Figure 5,
we can clearly see that SampleSpace has a better pass rate than Sample, but
Sample has a better overall coverage than SampleSpace (see host123 in the
bottom right of Figure 6).

Intuitively, this tension can be explained as follows. A pure learning algo-
rithm with a nearly-perfect pass-rate (like SampleSpace) generates almost only
well-formed objects and exercises little error-handling code. In contrast, a nois-
ier learning algorithm (like Sample) with a lower pass-rate can not only generate
many well-formed objects, but it also generates some ill-formed ones which ex-
ercise error-handling code.

Applying a random fuzzing algorithm (like random) to previously-generated
(nearly) well-formed objects has an even more dramatic effect on lowering the
pass rate (see Figure 8) while increasing coverage, again probably due to in-
creased coverage of error-handling code.

The new SampleFuzz algorithm seems to hit a sweet spot between both pass
rate and coverage. In our experiments, the sweet spot for the pass rate seems
to be around 65% − 70%: this pass rate is high enough to generate diverse well-
formed objects that cover a lot of code in the PDF parser, yet low enough to also
exercise error-handling code in many parts of that parser.

Note that instruction coverage is ultimately a better indicator of fuzzing
effectiveness than the pass rate, which is instead a learning-quality metric.

4.9 Bugs

In addition to coverage and pass rate, a third metric of interest is of course
the number of bugs found. During the experiments previously reported in this



section, no bugs were found. Note that the Edge PDF parser had been thoroughly
fuzzed for months with other fuzzers before we performed this study, and that
all the bugs found during this prior fuzzing had been fixed in the version of the
PDF parser we used for this study.

However, during a longer experiment with Sample+Random, 100,000 objects
and 300,000 PDF files (which took nearly 5 days), a stack-overflow bug was found
in the Edge PDF parser: a regular-size PDF file is generated (its size is 33Kb)
but it triggers an unexpected recursion in the parser, which ultimately results
in a stack overflow. This bug was later confirmed and fixed by the Microsoft
Edge development team. We plan to conduct other longer experiments in the
near future.

5 Related Work

Grammar-based fuzzing. Most popular blackbox random fuzzers today sup-
port some form of grammar representation, e.g., Peach3 and SPIKE4, among
many others [27]. Work on grammar-based test input generation started in
the 1970’s [14, 23] and is related to model-based testing [28]. Test generation
from a grammar is usually either random [20, 25, 8] or exaustive [18]. Imperative
generation [7, 10] is a related approach in which a custom-made program gener-
ates the inputs (in effect, the program encodes the grammar). Grammar-based
fuzzing can also be combined with whitebox fuzzing [19, 11].

Learning grammars for grammar-based fuzzing. Bastani et al. [2] present an
algorithm to synthesize a context-free grammar given a set of input examples,
which is then used to generate new inputs for fuzzing. This algorithm uses a
set of generalization steps by introducing repetition and alternation constructs
for regular expressions, and merging non-terminals for context-free grammars,
which in turn results in a monotonic generalization of the input language. This
technique is able to capture hierarchical properties of input formats, but is not
well suited for formats such as PDF objects, which are relatively flat but include
a large diverse set of content types and key-value pairs. Instead, our approach
uses sequence-to-sequence neural-network models to learn statistical generative
models of such flat formats. Moreover, learning a statistical model also allows
for guiding additional fuzzing of the generated inputs.

AUTOGRAM [16] also learns (non-probabilistic) context-free grammars given
a set of inputs but by dynamically observing how inputs are processed in a pro-
gram. It instruments the program under test with dynamic taints that tags
memory with input fragments they come from. The parts of the inputs that are
processed by the program become syntactic entities in the grammar. Tupni [9]
is another system that reverse engineers an input format from examples using
a taint tracking mechanism that associate data structures with addresses in the
application address space. Unlike our approach that treats the program under
3
http://www.peachfuzzer.com/

4
http://resources.infosecinstitute.com/fuzzer-automation-with-spike/



test as a black-box, AUTOGRAM and Tupni require access to the program for
adding instrumentation, are more complex, and their applicability and precision
for complex formats such as PDF objects is unclear.

Neural-networks-based program analysis. There has been a lot of recent interest
in using neural networks for program analysis and synthesis. Several neural archi-
tectures have been proposed to learn simple algorithms such as array sorting and
copying [17, 24]. Neural FlashFill [21] uses novel neural architectures for encod-
ing input-output examples and generating regular-expression-based programs in
a domain specific language. Several seq2seq based models have been developed
for learning to repair syntax errors in programs [3, 13, 22]. These techniques learn
a seq2seq model over a set of correct programs, and then use the learnt model
to predict syntax corrections for buggy programs. Other related work optimizes
assembly programs using neural representations [4]. In this paper, we present a
novel application of seq2seq models to learn grammars from sample inputs for
fuzzing purposes.

6 Conclusion and Future Work

Grammar-based fuzzing is effective for fuzzing applications with complex struc-
tured inputs provided a comprehensive input grammar is available. This paper
describes the first attempt at using neural-network-based statistical learning
techniques to automatically generate input grammars from sample inputs. We
presented and evaluated algorithms that leverage recent advances in sequence
learning by neural networks, namely seq2seq recurrent neural networks, to auto-
matically learn a generative model of PDF objects. We devised several sampling
techniques to generate new PDF objects from the learnt distribution. We show
that the learnt models are not only able to generate a large set of new well-
formed objects, but also results in increased coverage of the PDF parser used in
our experiments, compared to various forms of random fuzzing.

While the results presented in Section 4 may vary for other applications, our
general observations about the tension between conflicting learning and fuzzing
goals will remain valid: learning wants to capture the structure of well-formed
inputs, while fuzzing wants to break that structure in order to cover unexpected
code paths and find bugs. We believe that the inherent statistical nature of learn-
ing by neural networks is a powerful tool to address this learn&fuzz challenge.

There are several interesting directions for future work. While the focus of
our paper was on learning the structure of PDF objects, it would be worth
exploring how to learn, as automatically as possible, the higher-level hierarchical
structure of PDF documents involving cross-reference tables, object bodies, and
trailer sections that maintain certain complex invariants amongst them. Perhaps
some combination of logical inference techniques with neural networks could
be powerful enough to achieve this. Also, our learning algorithm is currently
agnostic to the application under test. We are considering using some form of
reinforcement learning to guide the learning of seq2seq models with coverage



feedback from the application, which could potentially guide the learning more
explicitly towards increasing coverage.
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