
Measurement Based Fair Queuing for Allocating
Bandwidth to Virtual Machines

Khoa To, Jitendra Padhye, George Varghese, Daniel Firestone
Microsoft

ABSTRACT
We wish to allocate outgoing bandwidth at a server among
customer VMs. The allocation for each VM is proportional
to the bandwidth purchased for that VM by the customer,
and any idle bandwidth is also proportionally redistributed.
This is the classical fair queuing problem. However, most
solutions [9, 5, 4] to the classical fair queuing problem as-
sume tight feedback between transmitter and scheduler, and
cheap scheduler invocation on every transmission. Since
these assumptions are false in Virtual Switches, we propose
MBFQ (Measurement Based Fair Queuing) with two levels
of scheduling: a microscheduler that operates cheaply and
paces VM transmissions, and a macroscheduler that period-
ically redistributes tokens to microschedulers based on the
measured bandwidth of VMs. We show that MBFQ allows
a VM to obtain its allocated bandwidth in three scheduling
intervals, and that idle bandwidth is reclaimed within five pe-
riods. An implementation of MBFQ is available in Windows
Server 2016 Technical Preview.

1. INTRODUCTION
We revisit the age-old problem of weighted fair allocation

of bandwidth among competing “flows”. Why do we need a
new solution for such a well-studied problem? The reason is
the new context and requirements imposed by software im-
plementation in a virtualized cloud environment. This new
context both demands and allows a simple and CPU-efficient
solution.

Fair bandwidth allocation has typically been studied in the
context of a router. It was assumed that one had to deal with
thousands, if not millions of flows. It was also assumed (per-
haps unjustifiably) that bandwidth had to be apportioned at
a fine granularity approaching ideal processor sharing. A
tight coupling between the packet transmission engine and

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

HotMIddlebox, August 22-26, 2016, Florianopolis , Brazil
c© 2016 ACM. ISBN 978-1-4503-4424-1/16/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2940147.2940153

the packet scheduler was also assumed, since both were im-
plemented in switch hardware. For example, the DRR [9]
implementation assumes that the scheduler is woken up on
every packet departure. Further, the "CPU utilization" was
important only in the sense that the switch hardware had to
capable of handling the expected workload because the CPU
(switch hardware) was dedicated to scheduling.

Our context is quite different. We want to build a packet
scheduler for Windows Hyper-V Virtual Switch that ensures
that VMs hosted on a single server share outgoing bandwidth
in proportion to specified weights. Customized versions of
this Vswitch powers Azure, and many large private corpo-
rate clouds. Our context implies that:
We cannot assume any hardware support: We must sup-
port legacy deployments, and so cannot assume NIC hard-
ware support for packet scheduling. Instead, it must be be
done by the CPU.
Coordination costs are high: Coordination between a soft-
ware Vswitch and a hardware NIC is very expensive at Giga-
bit speeds, requiring optimizations like Large Send Offload.
Transmission from a VM to the NIC should ideally bypass
a coordinating scheduler to minimize context switches, and
avoid access to shared state to minimize lock overhead. Fur-
ther, to scale to 40 Gbps, the scheduler should be distributed
across cores instead of being single-threaded.
CPU cycles are precious: For a cloud provider, any CPU
cycles saved from say packet scheduling can be resold for
profit [3]. This requires us to depart from the state-of-the art
software solutions such as QFQ [5] that requires a CPU to
do significant processing on every sent packet.
Fine-grained guarantees are unnecessary: Public and pri-
vate cloud providers typically host less than 100 VMs per
physical server, and provide only coarse per-VM bandwidth
guarantees determined by the pricing tier. A granularity of 1
Mbps typically suffices. Fine-grained, per-flow bandwidth is
neither used nor demanded by the customers, since application-
layer issues often have far more impact on throughput.

We do, however, want our scheduler to be as work con-
serving as possible, and we do want to allocate any spare
bandwidth roughly proportionally among backlogged VMs.

Thus, we designed a new packet scheduling algorithm,
called Measurement-based Fair Queuing (MBFQ) to pro-
vide roughly proportional bandwidth sharing with minimum
CPU overhead. We achieve this by refactoring scheduling

into two parts: a microscheduler that controls the send rate
of a VM using a token bucket, and a macroscheduler that
periodically allocates tokens to each microscheduler based
on VM bandwidth usage. Coordination costs are small and
limited to the macroscheduler that runs once every schedul-
ing period T (say 100 milliseconds). Each microscheduler
can run in a separate thread/core. The split scheduler can
thus scale to high overall transmit bandwidth with very little
CPU overhead.

Our design tradeoff is that when demand changes, it takes
a few macroscheduler periods (T) before the system con-
verges to fair allocations, whether in allowing a previously
idle VM to recapture its allocated bandwidth or to redis-
tribute bandwidth when a VM’s demand falls. T must be
high not just to reduce CPU overhead but also to stably mea-
sure the bandwidth demand of a VM in the face of bursts.

Since the NIC does not provide per-packet feedback, the
macroscheduler further ensures that the sum of bandwidths
allocated to the VMs does not exceed the NIC bandwidth. To
minimize bandwidth “wastage”, the macroscheduler grad-
ually increases/decreases the allocated bandwidth to a VM
based on its measured demand in the last period.

The rest of the paper is organized as follows. We first
describe our operating context in more detail (§2). Then, we
describe the MBFQ algorithm (§3), and its implementation
(§4). Finally, we evaluate the algorithm in (§5).

2. MODEL
We seek to allocate the outbound link bandwidth among

client VMs, to ensure:
1. Congestion Freedom: The sum of the allocated band-

widths does not exceed the outbound link bandwidth.
2. Strong Fair Allocation: The bandwidth is divided

among clients in proportion to their weights, not exceeding
their demand. Leftover bandwidth is divided proportionally.

The classical fair queuing model (Figure 1(a)) used by al-
gorithms such as DRR [9] and WF2Q [4] make two implicit
assumptions. First, after packet transmission, the link alerts
the hardware scheduler who chooses the next packet to trans-
mit. Second, the scheduler is able to keep up with link speed.
Both assumptions are reasonable for hardware routers.

However, in our model (Figure 1(b)) the feedback loop
between link and scheduler is batched. Modern NICs use
mechanisms like Large Send Offload (LSO) to minimize over-
head, so they can only generate one send-complete notifica-
tion for a group of packets. Without per-packet feedback, a
DRR software implementation will receive transmit comple-
tion notifications in bursts. Figure 2 shows the distribution of
transmit-complete notifications for a random 1000 contigu-
ous samples, for three different traffic patterns. The figure
shows that the size of each notification can be on the or-
der of 500 kilobytes, and they can be microseconds (10000
ticks) apart. If we run DRR under such conditions, it would
cause transmit jitter and packet drops; upper-layer throttling
by the TCP stack will further exacerbate the issue. Figure 2
also shows that the distribution depends on the traffic pat-

tern. Thus, the scheduler cannot simply be tuned to respond
to a certain distribution.

Implementations of weighted fair queuing algorithms like
QFQ [5] solve this problem by using technologies such as
DPDK [1] or NetMap [7], that allow them to bypass the
NIC batching. This is not feasible in our scenario. For fine-
grained scheduling, they also require more CPU cycles than
we can afford to spend.

We must also consider another subtle issue with classical
fair queuing model. The software entity that schedules pack-
ets from the queues must ensure that packets are en-queued
to the NIC’s transmit buffer in the same order that they are
de-queued from the VSwitch queues. Without preserving
the ordering, queues on different CPUs would compete, post
qos-scheduler, for the NIC’s transmit buffer, leading to loss
of fairness at the NIC level.

There are two options to achieve this. First, the software
could use a handle to the NIC’s transmit buffer. This re-
quires strong coordination between the software module and
the NIC’s driver. This is not desirable for a software imple-
mentation on top of a hardware abstraction layer (e.g. NDIS
in Windows), in a general-purpose OS that must work across
many NIC vendors. A second alternative is to make the soft-
ware entity single-threaded so that each packet is processed
sequentially through the entire software stack from VSwitch
to NIC using a single processor. This is not scalable at multi-
gigabit speeds. Additionally, having to process packets on a
single thread forces packets that were processed on different
processors to be then processed on a different single proces-
sor, leading to cache misses which increase latency.

Therefore, our implementation needs to be able to sched-
ule packets across multiple processors. This means we can-
not satisfy the second implicit assumption that classical fair
queuing models made (namely the scheduler can keep up
with link speed) if the scheduler is invoked on a per-packet
basis. Signaling events across processors on a per-packet
basis is prohibitively expensive. For example, in Figure 2,
transmission completes can occur on the order of nanosec-
onds. Signaling a scheduler at that granularity would require
the CPU to spend most of its time doing the signaling, leav-
ing very few cycles for packet processing. It typically takes
at least one dedicated core to saturate a 40Gbps link.

Our solution is to divide the scheduler into two entities
as shown in Figure 1(c). The macroscheduler runs only ev-
ery T seconds and hence can run on a single thread. The
microschedulers, by contrast, run on every packet based on
tokens allocated by the microscheduler.

While this model reduces overhead, it has obvious draw-
backs because allocations can only occur in units of T sec-
onds. Thus, our evaluation will focus on the worst case time
for a VM to ramp up to its guaranteed bandwidth, and its
counterpart: the minimum amount of time needed to redis-
tribute “unused” bandwidth from a VM that is not fully using
its allocated bandwidth to other active VMs.

3. MBFQ ALGORITHM
Table 1 shows the notation we use in this section. The

Queue 1

Queue 2

Output Queue
Scheduler
In hardware

W 1

W n

Output Link

Per-packet real time
feedback

Coordination cheap with
dedicated hardware

(a) Standard Fair queuing model

VM 1

VM 1

VM Switch
(Software)

W 1

W n

NIC

Batched
feedback

Coordination expensive via
context switches, locks, timers

(b) VM Fair Queuing model

VM 1

VM 1

Macro-scheduler
W 1

W n

NIC

Batched
feedback

= Micro-scheduler

(c) Macro-Micro scheduler model

Figure 1: Scheduling models

0

100000

200000

300000

400000

500000

600000

700000

1 10 100 1000 10000 100000

B
u

rs
t

si
ze

 (
b

yt
es

)

Inter-burst gap (ticks)

1 connection @ 7Gbps 32 connections @ 7Gbps 128 connections @ 7Gbps

Figure 2: Burstiness of packet transmit-completes

C The link capacity to share among VMs
AvailBwAll Bandwidth available, initialized to C.

WAll Total weight of VMs that need bandwidth.
V mCountAll Number of VMs that need bandwidth.

SRi The measured send rate of the VM.
ARi The current allocated rate for the VM.
TRi The target rate for the VM, based on its

SRi.
RUi Consecutive iterations VM needs band-

width.
MGi The VM’s minimum bandwidth guarantee.
Wi The VM’s weight, the ratio of MGi to C.
NRi New rate being allocated to the VM.

BelowTRi Whether NRi is less than TRi.

Table 1: MBFQ notation

MBFQ algorithm runs every T seconds. Rates are com-
puted in two phases. First, we compute an ideal target rate
(TR) for each VM, by comparing its measured send rate
(SR) to the allocated rate (AR). TR is a proxy for what
the VM would desire if it were not subject to constraints like
link bandwidth, and sharing with other VMs. In the sec-
ond phase, we adjust the TR to ensure that the link is not
oversubscribed and rates are allocated according to weights.
These adjusted target rates then become the allocated rates.

Phase 1: Computing target rates: The pseudocode for
phase 1 is shown in Figure 3. We calculate a new target
rate for every VM, based on its recently-measured send rate
(SR). Intuitively, if a VM is not fully using its allocated rate,
we should offer the residual bandwidth to other VMs. On the
other hand, if the VM is indeed fully using its allocated rate,
it may be able to use additional bandwidth.

We assume that a VM is fully utilizing is allocated band-
width if SR ≥ 0.95∗AR (line 9). The 5% margin allows for
small, unavoidable variations in the sending rate. To increase
the bandwidth allocated to such a VM we need to strike a
balance between two competing goals. First, we must mini-
mize “waste”– the VM may not be able to use the additional
bandwidth that we give it. Second, customers must be able

1: V mCountAll ← 0
2: WAll ← 0
3: AvailBwAll ← C
4: for (each VM sharing the link capacity) do
5: SRi ← AverageSendRateInLastTSeconds
6: if (ARi = Disabled) then
7: TRi ← 1.1× SRi
8: else if (SRi < 0.85 × ARi for the last 500 msec)

then
9: TRi ← 1.1× SRi

10: RUi ← max(0, RUi − 1)
11: else if (SRi > 0.95×ARi) then
12: RUi ← min(3, RUi + 1)
13: if (RUi = 1) then
14: TRi ← min(1.2×ARi, ARi + 0.1× C)
15: else if (RUi = 2) then
16: TRi ← min(1.5×ARi, ARi + 0.1× C)
17: else if (RUi = 3) then
18: TRi ← max(2×ARi,MGi)

19: else
20: TRi ← ARi
21: RUi ← max(0, RUi − 1)

22:
23: TRi ← max(TRi, 10Mbps)
24: NRi ← min(TRi,MGi)
25:
26: if (NRi < TRi) then
27: BelowTRi ← true
28: WAll ←WAll +Wi
29: V mCountAll ← V mCountAll + 1
30: else
31: BelowTRi ← false
32:
33: AvailBwAll ← AvailBwAll −NRi

Figure 3: MBFQ Phase 1

to quickly ramp up to the bandwidth that they have paid for,
if they are backlogged.

Our approach works as follows (lines 10 - 16). If, for a
given VM, SR ≥ 0.95 ∗ AR, we set TR = 1.2 ∗ AR. If
the VM qualifies again in the immediate next round, we set
TR = 1.5 ∗ AR, and if it qualifies again, we set TR =
max(2 ∗ AR,MG) – i.e. if needed, we let it go to full
minimum guaranteed bandwidth (or higher). Thus, we are
conservative in the first two rounds, but a customer with
substantial pending demand is guaranteed to reach the min-
imum guaranteed bandwidth in three time intervals or less.
This staged allocation increment is a balance between grant-
ing the VM its bandwidth guarantee as quickly as possible,
and minimizing unused bandwidth (i.e. maximizing work-
conserving property).

If, on the other hand, the VM is using less than 85% of its

34: while (AvailBwAll > 0 and V mCountAll 6= 0) do
35: for (each VM sharing the network adapter) do
36: if (BelowTRi = true) then
37: FairSharei ← AvailBwAll ×Wi ÷WAll
38: NRi ← NRi + FairSharei
39:
40: if (NRi ≥ TRi) then
41: AvailBwAll ← AvailBwAll + (NRi −

TRi)
42: NRi = TRi
43: BelowTRi ← false
44: WAll ←WAll −Wi
45: V mCountAll ← V mCountAll − 1

Figure 4: MBFQ Phase 2

allocated bandwidth, i.e. SR ≤ 0.85 ∗ AR for five consec-
utive intervals (i.e. 500 milliseconds), we reduce the band-
width allocated to this VM by setting TR = 1.1 ∗ SR.

Phase 2: Preventing Congestion and Enforcing Fair
Sharing: The pseudocode for phase 2 is shown in Figure 4.
Our goal is to adjust the allocated rates so that the link is not
oversubscribed, and any leftover bandwidth is allocated in
proportion to the VMs’ weights.

We start by initializing each VM’s allocated rate (AR) to
be the minimum of its target rate (TR) and its guaranteed
rate (MG) (line 24 in Figure 3) . This guarantees congestion
freedom since the sum of the MG does not exceed the link
bandwidth. But it can leave bandwidth on the table.

We distribute this "remaining" bandwidth among “needy”
VMs (those whose target rates are more than their guaran-
teed rates), in proportion to their weights. This process must
be iterative, since we may end up allocating a VM more than
its target rate calculated in the first phase. Since the target
rate is our proxy for what the VM would desire in an ideal
world without sharing, we remove this bandwidth and iterate
again. Note also that the process is guaranteed to terminate
since at least one VM will be removed from the needy list in
each iteration. In practice, the loop terminates within a few
nanoseconds, even for 100s of VMs.

4. IMPLEMENTATION
In this section, we briefly discuss the implementation of

key components of MBFQ in Windows Server 2016.
Binary location: MBFQ is implemented in Windows as a

Hyper-V Virtual Switch Extension, which is an NDIS light-
weight filter (LWF) driver [2].

Like other LWF drivers, MBFQ uses a standard NDIS API
to receive outgoing packets from the upper stack and sends
conformed packets to the lower stack through another stan-
dard NDIS API. The MBFQ implementation is completely
abstracted from the application above and the hardware be-
low. The only information from hardware that MBFQ re-
ceives is from a standard NDIS API for receiving link state
status (NDIS_STATUS_LINK_STATE) to determine the link
capacity of the underlying network adapter.

The macroscheduler: MBFQ uses a timer to invoke the
macroscheduler every 100 milliseconds. if the network adapter
utilization is below 80% the macroscheduler deactivates the
microschedulers (if they have not already been deactivated),

and immediately returns. Thus, when the link utilization is
low, which is the common case in data centers [8, 6], outgo-
ing traffic is not throttled, and MBFQ uses minimal CPU. If
the link utilization is above 80%, the macroscheduler com-
putes and distributes the transmit rates to the microsched-
ulers as discussed earlier.

The microschedulers: The microschedulers are imple-
mented as token buckets, whose rates are periodically ad-
justed by the macroscheduler. Each microscheduler can sched-
ule packets across multiple processors, using per-processor
sub-queues that share a common token bucket. This pro-
vides a fully distributed weighted fair queuing implementa-
tion where packets can remain on the same processor from
the application layer to the NIC’s transmit buffer.

5. EXPERIMENTAL EVALUATION
We have evaluated MBFQ extensively. Due to lack of

space, we only present selected microbenchmarks in this pa-
per. Our microbenchmarking testbed consists of two Dell
PowerEdge R410 servers. Both servers have four 2.26GHz
cores, with hyper-threading enabled, which gives it 8 logi-
cal processors. Each machine has 8GB of RAM and 10G
NIC. Both machines run a flavor of Windows Server OS with
Hyper-V enabled for network virtualization. This configura-
tion emulates our common use case: VMs communicating
with other VMs in the same data center. 1

5.1 Picking a Timer Period for Measure-
ment

Question: The macrosheduler runs every T time units.
What is the right value of T ?

Motivation: As discussed earlier, it can take up to three
iterations (thus 3 ∗ T) for the macroscheduler to allocate a
VM with its minimum guaranteed bandwidth. Therefore,
we don’t want T to be too large. On the other hand, recall
that we measure send rate over the same time period. If T is
too small, the measured send rate of the VM (SR) may be
inaccurate. The primary source of inaccuracy is the inher-
ent burstiness of TCP. To estimate the inaccuracy for various
values of T , we carried out the following experiment.

Experiment: A single VM hosted on one of the servers
sends data to an external server using TCP. In all, 32 TCP
connections were used. The application generated data at
7.2Gbps. All rate allocation functionality of MBFQ was dis-
abled, only the measurement code was active. We logged the
measured send rate (SR) over 100 intervals. We repeated
experiment for values of T ranging from 15ms to 1000ms.
Figure 5 shows the standard deviation as a function of T .

Discussion: A value of T between 60 - 100ms reduces
standard deviation of SR to 5%. Larger T will lead to further
reduction, but decrease is small.

While a 100ms initial response time is not suitable for
some latency-sensitive applications, many applications that
we tested, including video streaming and file transfers, can
tolerate this delay. Latency-sensitive applications can use
hardware-assisted QoS such as 802.1p to isolate their traffic
1In modern data centers, most traffic is intra-DC [8, 6].

0

5

10

15

20

25

30

35

15 30 45 60 75 100 150 200 500 1000

Pe
rc

en
ta

ge
 D

ev
ia

ti
o

n

Time (ms)

Figure 5: Impact of T on variance in SR

from the general VM traffic. Alternatively, an implementa-
tion of MBFQ could have a combination of static and dy-
namic bandwidth allocations where latency-sensitive VMs
are assigned static queues, and other VMs dynamically share
the remaining bandwidth.

5.2 Bandwidth Ramp Up and Ramp Down
Question: A VM may have to wait for up to three macrosched-

uler intervals to reach its minimum guaranteed bandwidth.
Also, we wait for up to 500 milliseconds before we reclaim
bandwidth from a VM that is not fully using the allocated
bandwidth. Are these time intervals appropriate?

Motivation: While the allocated bandwidth to a VM ramps
up to the minimum guaranteed bandwidth in three intervals,
the VM may not be able to ramp up as quickly, due to limi-
tations of TCP congestion control. Furthermore, waiting for
500 milliseconds before reclaiming the bandwidth may lead
to under-utilization of the link.

Experiment: A test machine hosts 4 VMs with the fol-
lowing minimum bandwidth guarantees: VM1: 100Mbps
(relative weight: 1), VM2: 100Mbps (relative weight: 1),
VM3: 1Gbps (relative weight: 10), VM4: 3Gbps (relative
weight: 30). Each of the VMs sends traffic to an external ma-
chine ("client machine") over the shared 10G external phys-
ical NIC. The link is configured to share 9.5Gbps among the
VMs. Each VM is always backlogged and tries to send data
as fast as it can.

Figure 6 shows the transmit bandwidth for each VM, and
the total transmit bandwidth in several phases.

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

0 100 200 300

B
an

d
w

id
th

(M
b

p
s)

Time (s)

Virtual Switch VM1 VM2 VM3 VM4

Figure 6: Ramp up and ramp down test
Phase 1: At time 0, only VM1 and VM2 are active. As

expected, they share the bandwidth equally, with each get-
ting 4.75Gbps.

Phase 2: At time 69, VM3 starts transmitting. MBFQ
quickly throttles VM1 and VM2 to 792Mbps each, while
VM3 is allowed to use 7.92Gbps.

Phase 3: At time 119, VM4 starts transmitting. The four

VMs now get their weighted fair share: VM1 and VM2 get
226Mbps, VM3 gets 2.26Gbps and VM4 gets 6.79Gbps.

Phase 4: At time 189, we change the min bandwidth guar-
antee of VM1 from 100Mbps to 1Gbps. VM1 and VM3
now both transmit at the same rate, and the rates of VM2,
VM3, and VM4 were reduced to accommodate the increase
in VM1’s rate.

Phase 5: At time 249, VM1, VM3, and VM4 stop send-
ing. VM2 ramps up to consume the full link bandwidth.

Discussion: We see that while MBFQ generally performs
well, there are dips in link utilization at times 69 and 119 as
VMs ramp up. The dips in the aggregate bandwidth at the
beginning of phases 3 and 4 are due to our desire to allow
a VM to quickly attain minimum guaranteed bandwidth. As
VM3 and VM4 are ramping up, the algorithm detects that
the VMs requests for additional bandwidth in several con-
secutive iterations. Therefore, in order to quickly provide
the VMs their subscribed bandwidth, after three consecutive
iterations of additional bandwidth requests, the algorithm al-
locates the full fair share of bandwidth to the VM. However,
even after the bandwidth is allocated, the VMs could take
some time to consume all allocated bandwidth, due to TCP
artifacts. Thus, the dip represents a trade-off between how
fast the algorithm should grant a VM its fair share versus
how cautious it should be in allocating the VM bandwidth
that it might not be ready to consume (and thus risk being
non-work conserving). A more extreme dip is seen at the
beginning of phase 5, we shall discuss that in Section 5.4.

5.3 Can we ramp up any faster?
Question: Is the ramp up delay shown in Figure 6 for

VM3 at 69 seconds caused by our algorithm or it due to the
VM itself (e.g., its TCP behavior)?

Motivation: The previous experiment suggests the algo-
rithm may be too slow in allocating bandwidth to a newly
active VM.

Experiment: We measure bandwidth ramp up in two sce-
narios. First, we measure a “standalone” scenario where
VM3 is the only VM transmitting (i.e. the link was idle be-
fore VM3 started sending). Second, we measure a “sharing”
scenario in which the link was fully utilized before VM3
started sending. When VM3 starts sending, MBFQ performs
bandwidth allocation to give VM3 its fair share.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 5 10 15 20

B
an

d
w

id
th

 (
M

b
p

s)

Time (s)

Standalone Share link bandwidth

Figure 7: TCP and MBFQ ramp up
Discussion: As seen in Figure 7, it takes about the same

amount of time in both scenarios for VM3 to achieve most of
its bandwidth (up to 7Gbps). However, it takes an additional
15s for VM3 to reach its steady state in the "Share link band-
width" scenario. However, in the sharing scenario, the VM
is transmitting on top of a NIC that is already fully utilized.

But in the standalone case, the VM is transmitting on top of
an idle NIC.

Conclusion: It is probably not worthwhile to ramp up
faster because TCP may not be able to fully utilize the extra
bandwidth quickly.

5.4 How fast should we reclaim bandwidth?
Question: The faster we reclaim bandwidth the faster we

redistribute it other needy VMs who can use it. How large
should the reclaim period T be?

Motivation: We see a large dip in the utilization at the be-
ginning of Phase 5 in Figure 6 when VM1, VM3, VM4 stop
sending. In addition to the TCP ramp-up time of VM2, the
dip is also partly due to another parameter in the algorithm
where we configure the algorithm to wait for 500 millisec-
onds before reclaiming residual bandwidth. Unfortunately,
this is a tradeoff. The faster we reclaim, the more likely the
algorithm is to spuriously reclaim bandwidth from a paid
customer VM which has short term bursts.

Experiment: We measure the impact of different reclaim
timer values on the throughput of a large file transfer oper-
ation in a VM. We have VM1 host a large file that is be-
ing copied to a remote machine, while VM2, VM3, VM4
send background CBR traffic to fill up the idle link. The file
transfer application on VM1 uses about 800Mbps, and the
rest of the link bandwidth is distributed among VM2, VM3,
VM4. We change the wait time parameter from No Wait
(at every macroshedular iteration, bandwidth is immediately
reclaimed if VM1 is sending less than 85% of its allocated
rate) to 1000ms wait (bandwidth is not reclaimed unless the
VM has been sending less than 85% of its allocated rate in
the last 1000ms)

300

400

500

600

700

800

900

0 10 20 30 40 50 60

B
an

d
w

id
th

 (
M

b
p

s)

Time (ms)

No congestion

500ms

1000ms

(a) Reclaim timer of 500 msec and 1000
msec

300

400

500

600

700

800

900

0 10 20 30 40 50 60

B
an

d
w

id
th

 (
M

b
p

s)

Time (ms)

No congestion

no wait

200ms

(b) Reclaim timer of 0 msec and 200 msec.
Figure 8: Impact of reclaim timer

Figure 8(a) shows that the bandwidth stays roughly the
same with MBFQ and without MBFQ with a reclaim timer
of 500 or 1000 msec. On the other hand, Figure 8(b) shows
that with instantaneous reclaiming (reclaim timer of 0) the

bandwidth allocated to the VM is significantly affected and
its noticeable even at a reclaim timer of 200 msec.

Conclusion: A reclaim timer of 500 milliseconds was
chosen as a compromise.

5.5 CPU Utilization
We measure the CPU overhead of MBFQ for the setup in

Section 5.2 by comparing the CPU utilization of that setup
to the CPU utilization of a base scenario without MBFQ.

For the base scenario, we assign static rate limits to VM1,
VM2, VM3, and VM4 with 226Mbps, 226Mbps, 2.26Gbps,
and 6.79Gbps respectively. These are the rates that MBFQ
dynamically distributes to the VMs when all VMs are active.

With all VMs active, the CPU utilization of the base sce-
nario is 22.74%, and CPU utilization with MBFQ is 23.22%.
This shows that MBFQ has minimum CPU overhead.

6. CONCLUSION
We presented MBFQ, a measurement-based fair queuing

model for allocating bandwidth to virtual machines. MBFQ’s
two-tier scheduling model is scalable across multiple proces-
sors. MBFQ provides weighted fairness among virtual ma-
chines without any specific knowledge of the NIC. Our im-
plementation of MBFQ in Windows is a standard NDIS fil-
ter driver that can reside in any part of the networking stack.
Our evaluation on Windows Server 2016 shows that MBFQ
can allocate fair bandwidth sharing among VMs of differ-
ent weights. It responds quickly to changes in bandwidth
demands among VMs with minimum CPU overhead. An
implementation of MBFQ is available with Windows Server
2016 Technical Preview.

7. REFERENCES
[1] Data plane development kit. http://dpdk. org.
[2] Windows filter driver. https://msdn.microsoft.com/en-

us/library/windows/hardware/ff545890(v=vs.85).aspx.
[3] Amazon elastic compute cloud (amazon ec2). 2010.
[4] J. C. Bennett and H. Zhang. Wf 2 q: worst-case fair

weighted fair queueing. In INFOCOM’96, volume 1,
pages 120–128. IEEE, 1996.

[5] F. Checconi, L. Rizzo, and P. Valente. Qfq: Efficient
packet scheduling with tight guarantees. IEEE/ACM
Transactions on Networking), 21(3):802–816, 2013.

[6] S. Kandula et al. The nature of data center traffic:
measurements & analysis. In Proc. of IMC, 2009.

[7] L. Rizzo. Netmap: a novel framework for fast packet
i/o. In USENIX Security, 2012.

[8] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C.
Snoeren. Inside the social network’s (datacenter)
network. In SIGCOMM, 2015.

[9] M. Shreedhar and G. Varghese. Efficient fair queuing
using deficit round-robin. Networking, IEEE/ACM
Transactions on Networking, 4(3):375–385, 1996.

