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Abstract

We study the interaction of the “new” construct with a rich
but common form of (first-order) communication. This in-
teraction is crucial in security protocols, which are the main
motivating examples for our work; it also appears in other
programming-language contexts. Specifically, we introduce
a simple, general extension of the pi calculus with value pass-
ing, primitive functions, and equations among terms. We
develop semantics and proof techniques for this extended
language and apply them in reasoning about some security
protocols.

1 A case for impurity

Purity often comes before convenience and even before
faithfulness in the lambda calculus, the pi calculus, and
other foundational programming languages. For example,
in the standard pi calculus, the only messages are atomic
names [32]. This simplicity is extremely appealing from a
foundational viewpoint, and helps in developing the theory
of the pi calculus. Furthermore, ingenious encodings demon-
strate that it may not entail a loss of generality: in partic-
ular, integers, objects, and even higher-order processes can
be represented in the pure pi calculus.

On the other hand, this purity has a price. In applica-
tions, the encodings can be futile, cumbersome, and even
misleading. For example, in the study of programming lan-
guages based on the pi calculus (such as Pict [37] or Jo-
caml [14]), there is little point in pretending that integers
are not primitive. The encodings may also complicate static
analysis and preclude careful thinking about the implemen-
tations of communication. Moreover, it is not clear that
satisfactory encodings can always be found. We may ask,
for instance, whether there is a good representation of the
spi calculus [5] (a calculus with cryptographic operations)
in the standard pi calculus; we are not aware of any such
representation that preserves security properties without a
trusted central process.

These difficulties are often circumvented through on-the-
fly extensions. The extensions range from quick punts (“for
the next example, let’s pretend that we have a datatype of
integers”) to the laborious development of new calculi, such
as the spi calculus and its variants. Generally, the exten-
sions bring us closer to a realistic programming language or
modeling language—that is not always a bad thing.

Although many of the resulting calculi are ad hoc and
poorly understood, others are robust and uniform enough
to have a rich theory and a variety of applications. In
particular, impure extensions of the lambda calculus with
function symbols and with equations among terms (“delta
rules”) have been developed systematically, with consider-
able success. Similarly, impure versions of CCS and CSP
with value-passing are not always deep but often neat and
convenient [31].

In this paper, we introduce, study, and use an analo-
gous uniform extension of the pi calculus, which we call the
applied pi calculus (by analogy with “applied lambda calcu-
lus”). From the pure pi calculus, we inherit constructs for
communication and concurrency, and for generating stati-
cally scoped new names (“new”). We add functions and
equations, much as is done in the lambda calculus. Messages
may then consist not only of atomic names but also of val-
ues constructed from names and functions. This embedding
of names into the space of values gives rise to an important
interaction between the “new” construct and value-passing
communication, which appears in neither the pure pi cal-
culus nor value-passing CCS and CSP. Further, we add an
auxiliary substitution construct, roughly similar to a float-
ing “let”; this construct is helpful in programming examples
and especially in semantics and proofs, and serves to cap-
ture the partial knowledge that an environment may have
of some values.

The applied pi calculus builds on the pure pi calculus and
its substantial theory, but it shifts the focus away from en-
codings. In comparison with ad hoc approaches, it permits
a general, systematic development of syntax, operational se-
mantics, equivalences, and proof techniques.

Using the calculus, we can write and reason about pro-
gramming examples where “new” and value-passing appear.
First, we can easily treat standard datatypes (integers, pairs,
arrays, etc.). We can also model unforgeable capabilities
as new names, then model the application of certain func-
tions to those capabilities. For instance, we may construct
a pair of capabilities. More delicately, the capabilities may
be pointers to composite structures, and then adding an off-
set to a pointer to a pair may yield a pointer to its second



component (e.g., as in [27]). Furthermore, we can study a
variety of security protocols. For this purpose, we repre-
sent fresh channels, nonces, and keys as new names, and
primitive cryptographic operations as functions, obtaining
a simple but useful programming-language perspective on
security protocols (much as in the spi calculus). A distin-
guishing characteristic of the present approach is that we
need not craft a special calculus and develop its proof tech-
niques for each choice of cryptographic operations. Thus,
we can express and analyze fairly sophisticated protocols
that combine several cryptographic primitives (encryptions,
hashes, signatures, XORs, . . . ). We can also describe at-
tacks against the protocols that rely on (equational) proper-
ties of some of those primitives. In our work to date, security
protocols are our main source of examples.

The next section defines the applied pi calculus. Sec-
tion 3 introduces some small, informal examples. Section 4
defines semantic concepts, such as process equivalence, and
develops proof techniques. Sections 5 and 6 treat two larger
examples; they concern a Diffie-Hellman key exchange and
message authentication codes, respectively. (The two ex-
amples are independent.) Section 7 discusses some related
work and concludes.

2 The applied pi calculus

In this section we define the applied pi calculus: its syntax
and informal semantics, then its operational semantics (in
the now customary chemical style).

2.1 Syntax and informal semantics

A signature Σ consists of a finite set of function symbols,
such as f, encrypt, and pair, each with an arity. A function
symbol with arity 0 is a constant symbol.

Given a signature Σ, an infinite set of names, and an
infinite set of variables, the set of terms is defined by the
grammar:

L,M,N, T, U, V ::= terms
a, b, c, . . . , k, . . . ,m, n, . . . , s name
x, y, z variable
f(M1, . . . ,Ml) function application

where f ranges over the functions of Σ and l matches the
arity of f . Although names, variables, and constant symbols
have similarities, we find it clearer to keep them separate.
A term is ground when it does not have free variables (but
it may contain names and constant symbols). We use meta-
variables u, v, w to range over both names and variables. We
also use standard conventional notations for function appli-
cations. We abbreviate tuples u1, . . . , ul and M1, . . . ,Ml to

ũ and M̃ , respectively.
We rely on a sort system for terms. It includes a set

of base types, such as Integer, Key, or simply a universal
base type Data. In addition, if τ is a sort, then Channel〈τ〉
is a sort too (intuitively, the sort of those channels that
convey messages of sort τ). A variable can have any sort. A
name can have any sort or, in a more refined version of the
sort system, any sort in a distinguished class of sorts. We
typically use a, b, and c as channel names, s and k as names
of some base type (e.g., Data), and m and n as names of
any sort. For simplicity, function symbols take arguments
and produce results of the base types only. (This separation
of channels from other values is convenient but not essential

to our approach.) We omit the unimportant details of this
sort system, and leave it mostly implicit in the rest of the
paper. We always assume that terms are well-sorted and
that substitutions preserve sorts.

The grammar for processes is similar to the one in the
pi calculus, except that here messages can contain terms
(rather than only names) and that names need not be just
channel names:

P,Q,R ::= processes (or plain processes)
0 null process
P | Q parallel composition
!P replication
νn.P name restriction (“new”)
if M = N then P else Q conditional
u(x).P message input
u〈N〉.P message output

The null process 0 does nothing; P | Q is the parallel com-
position of P and Q; the replication !P behaves as an infinite
number of copies of P running in parallel. The process νn.P
makes a new, private name n then behaves as P . The condi-
tional construct if M = N then P else Q is standard, but we
should stress that M = N represents equality, rather than
strict syntactic identity. We abbreviate it if M = N then P
when Q is 0. Finally, u(x).P is ready to input from channel
u, then to run P with the actual message replaced for the
formal parameter x, while u〈N〉.P is ready to output N on
channel u, then to run P . In both of these, we may omit P
when it is 0.

Further, we extend processes with active substitutions:

A,B,C ::= extended processes
P plain process
A | B parallel composition
νn.A name restriction
νx.A variable restriction
{M/x} active substitution

We write {M/x} for the substitution that replaces the vari-
able x with the term M . Considered as a process, {M/x} is
like let x = M in . . . , and is similarly useful. However, un-
like a “let” definition, {M/x} floats and applies to any process
that comes into contact with it. To control this contact, we
may add a restriction: νx.({M/x} | P ) corresponds exactly to
let x = M in P . The substitution {M/x} typically appears
when the term M has been sent to the environment, but
the environment may not have the atomic names that ap-
pear in M ; the variable x is just a way to refer to M in this
situation. Although the substitution {M/x} concerns only
one variable, we can build bigger substitutions by parallel
composition, and may write

{M1/x1 , . . . ,
Ml/xl} for {M1/x1} | . . . | {

Ml/xl}

We write σ, {M/x}, {M̃/̃x} for substitutions, xσ for the image
of x by σ, and Tσ for the result of applying σ to the free
variables of T . We identify the empty substitution and the
null process 0. We always assume that our substitutions
are cycle-free. We also assume that, in an extended process,
there is at most one substitution for each variable, and there
is exactly one when the variable is restricted.

Extending the sort system for terms, we rely on a sort
system for extended processes. It enforces thatM and N are
of the same sort in the conditional expression, that u has sort



Channel〈τ〉 for some τ in the input and output expressions,
and that x and N have the corresponding sort τ in those
expressions. Again, we omit the unimportant details of this
sort system, but assume that extended processes are well-
sorted.

As usual, names and variables have scopes, which are
delimited by restrictions and by inputs. We write fv(A),
bv(A), fn(A), and bn(A) for the sets of free and bound vari-
ables and free and bound names of A, respectively. These
sets are inductively defined, using the same clauses for pro-
cesses as in the pure pi calculus, and using:

fv({M/x})
def
= fv(M) ∪ {x}

fn({M/x})
def
= fn(M)

for active substitutions. An extended process is closed when
every variable is either bound or defined by an active substi-
tution. We use the abbreviation νũ for the (possibly empty)
series of pairwise-distinct binders νu1.νu2. . . . νul.

A frame is an extended process built up from 0 and active
substitutions of the form {M/x} by parallel composition and
restriction. We let ϕ and ψ range over frames. The domain
dom(ϕ) of a frame ϕ is the set of the variables that ϕ exports
(those variables x for which ϕ contains a substitution {M/x}
not under a restriction on x). Every extended process A can
be mapped to a frame ϕ(A) by replacing every plain process
embedded in A with 0. The frame ϕ(A) can be viewed as an
approximation of A that accounts for the static knowledge
exposed by A to its environment, but not for A’s dynamic
behavior. The domain dom(A) of A is the domain of ϕ(A).

2.2 Operational semantics

Given a signature Σ, we equip it with an equational theory,
that is, with an equivalence relation on terms that is closed
under substitutions of terms for variables. (See for exam-
ple [33, chapter 3] and its references for background on uni-
versal algebra and algebraic data types from a programming-
language perspective.) We further require that this equa-
tional theory be closed under one-to-one renamings, but not
necessarily closed under substitutions of arbitrary terms for
names.

We write Σ `M = N when the equationM = N is in the
theory associated with Σ. Here we keep the theory implicit,
and we may even abbreviate Σ `M = N to M = N when Σ
is clear from context or unimportant. We write Σ 6`M = N
for the negation of Σ `M = N .

An equational theory may be generated from a finite set
of equational axioms, or even from rewrite rules, but this
property is not essential for us. We tend to ignore the me-
chanics of specifying equational theories.

As usual, a context is an expression (a process or ex-
tended process) with a hole. An evaluation context is a con-
text whose hole is not under a replication, a conditional, an
input, or an output. A context C[ ] closes A when C[A] is
closed.

Structural equivalence ≡ is the smallest equivalence re-
lation on extended processes that is closed by α-conversion
on both names and variables, by application of evaluation
contexts, and such that:

Par-0 A ≡ A | 0
Par-A A | (B | C) ≡ (A | B) | C
Par-C A | B ≡ B | A
Repl !P ≡ P |!P

New-0 νn.0 ≡ 0
New-C νu.νv.A ≡ νv.νu.A
New-Par A | νu.B ≡ νu.(A | B)

when u 6∈ fv(A) ∪ fn(A)

Alias νx.{M/x} ≡ 0
Subst {M/x} | A ≡ {M/x} | A{M/x}
Rewrite {M/x} ≡ {N/x} when Σ `M = N

The rules for parallel composition and restriction are stan-
dard. Alias enables the introduction of an arbitrary active
substitution. Subst describes the application of an active
substitution to a process that is in contact with it. Rewrite
deals with equational rewriting. In combination, Alias and
Subst yield A{M/x} ≡ νx.({M/x} | A) for x /∈ fv(M):

A{M/x} ≡ A{M/x} | 0 by Par-0
≡ 0 | A{M/x} by Par-C
≡ (νx.{M/x}) | A{M/x} by Alias
≡ νx.({M/x} | A{M/x}) by New-Par
≡ νx.({M/x} | A) by Subst

Using structural equivalence, every closed extended proc-
ess A can be rewritten to consist of a substitution and a
closed plain process with some restricted names:

A ≡ νñ.{M̃/̃x} | P

where fv(P ) = ∅, fv(M̃) = ∅, and {ñ} ⊆ fn(M̃). In partic-
ular, every closed frame ϕ can be rewritten to consist of a
substitution with some restricted names:

ϕ ≡ νñ.{M̃/̃x}

where fv(M̃) = ∅ and {ñ} ⊆ fn(M̃). The set {x̃} is the
domain of ϕ.

Internal reduction → is the smallest relation on extended
processes closed by structural equivalence and application of
evaluation contexts such that:

Comm a〈x〉.P | a(x).Q → P | Q
Then if M = M then P else Q → P

Else if M = N then P else Q → Q
for any ground terms M and N
such that Σ 6`M = N

Communication (Comm) is remarkably simple because
the message concerned is a variable; this simplicity entails
no loss of generality because Alias and Subst can introduce
a variable to stand for a term:

a〈M〉.P | a(x).Q ≡ νx.({M/x} | a〈x〉.P | a(x).Q)

→ νx.({M/x} | P | Q) by Comm

≡ P | Q{M/x}

(This derivation assumes that x /∈ fv(M)∪ fv(P ), which can
be established by α-conversion as needed.)

Comparisons (Then and Else) directly depend on the
underlying equational theory; using Else sometimes re-
quires that active substitutions in the context be applied
first, to yield ground terms M and N .

This use of the equational theory may be reminiscent of
initial algebras. In an initial algebra, the principle of “no
confusion” dictates that two elements are equal only if this is



required by the corresponding equational theory. Similarly,
if M = N then P else Q reduces to P only if this is required
by the equational theory, and reduces to Q otherwise. Initial
algebras also obey the principle of “no junk”, which says
that all elements correspond to terms built exclusively from
function symbols of the signature. In contrast, a fresh name
need not equal any such term in the applied pi calculus.

3 Brief examples

This section collects several examples, focusing on signa-
tures, equations, and some simple processes. We start with
pairs; this trivial example serves to introduce some nota-
tions and issues. We then discuss one-way hash functions,
encryption functions, digital signatures, and the XOR func-
tion [30, 40]. Further examples appear in sections 5 and 6.

Of course, at least some of these functions appear in
most formalizations of cryptography and security protocols.
In comparison with the spi calculus, the applied pi calculus
permits a more uniform and versatile treatment of these
functions, their variants, and their properties. Like the spi
calculus, however, the applied pi calculus takes advantage
of notations, concepts, and techniques from programming
languages.

Pairs and other data structures Algebraic datatypes such
as pairs, tuples, arrays, and lists occur in many examples.
Encoding them in the pure pi calculus is not hard, but nei-
ther is representing them as primitive. For instance, the
signature Σ may contain the binary function symbol pair
and the unary function symbols fst and snd, with the abbre-
viation (M,N) for pair(M,N), and the evident equations:

fst((x, y)) = x

snd((x, y)) = y

(So the equational theory consists of these equations, and
all obtained by reflexivity, symmetry, and transitivity and
by substituting terms for variables.) The sort system may
enforce that fst and snd are applied only to pairs. Alterna-
tively, we may add a boolean function that recognizes pairs.
We may also add equations that describe the behavior of
fst and snd on other values (e.g., adding a constant symbol
wrong, and equations fst(M) = snd(M) = wrong for all ap-
propriate ground terms M). We usually omit such standard
variants in other examples.

Using pairs, we may for instance write the process:

νs.
(
a〈(M, s)〉 | a(x).if snd(x) = s then b〈fst(x)〉

)
One of its components sends a pair consisting of a term M
and a fresh name s on a channel a. The other receives a
message on a and, if its second component is s, it forwards
the first component on a channel b. Thus, we may say that
s serves as a capability (or password) for the forwarding.
However, this capability is not protected from eavesdroppers
when it travels on a. Any other process can listen on a and
can apply snd, thus learning s. We can represent such an
attacker within the calculus, for example by the following
process:

a(x).a〈(N, snd(x))〉

which may receive (M, s) on a and send (N, s) on a. Com-
posing this attacker with the program, we may obtain N
instead of M on b.

One-way hash functions In contrast, we represent a one-
way hash function as a unary function symbol h with no
equations. The absence of an inverse for h models the one-
wayness of h. The fact that h(M) = h(N) only whenM = N
models that h is collision-free.

Modifying our first example, we may now write:

νs.

(
a〈(M, h(s,M))〉 |
a(x).if h(s, fst(x)) = snd(x) then b〈fst(x)〉

)
Here the value M is signed by hashing it with the fresh
name s. Although (M, h(s,M)) travels on the public chan-
nel a, no other process can extract s from this, or produce
(N, h(s,N)) for some other N using the available functions.
Therefore, we may reason that only the intended term M
will be forwarded on channel b.

This example is a typical cryptographic application of
one-way hash functions. In light of the practical impor-
tance of those applications, our treatment of one-way hash
functions is attractively straightforward. Still, we may ques-
tion whether our formal model of these functions is not too
strong and simplistic in comparison with the properties of
actual implementations based on algorithms such as MD5
and SHA. In section 6, we consider a somewhat weaker,
subtler model for keyed hash functions.

Symmetric encryption In order to model symmetric cryp-
tography (that is, shared-key cryptography), we take binary
function symbols enc and dec for encryption and decryption,
respectively, with the equation:

dec(enc(x, y), y) = x

Here x represents the plaintext and y the key. We often use
fresh names as keys in examples; for instance, the (useless)
process:

νk.a〈enc(M,k)〉

sends the term M encrypted under a fresh key k.
In applications of encryption, it is frequent to assume

that each encrypted message comes with sufficient redun-
dancy so that decryption with the “wrong” key is evident.
We could consider incorporating this property for example
by adding the equation dec(M,N) = wrong whenever M
and N are two ground terms and M 6= enc(L,N) for all L.
On the other hand, in modern cryptology, such redundancy
is not usually viewed as part of the encryption function
proper, but rather an addition. The redundancy can be im-
plemented with message authentication codes. Accordingly,
we do not build it in.

Asymmetric encryption It is only slightly harder to model
asymmetric (public-key) cryptography, where the keys for
encryption and decryption are different. We introduce two
new unary function symbols pk and sk for generating public
and secret keys from a seed, and the equation:

dec(enc(x, pk(y)), sk(y)) = x

We may now write the process:

νs.
(
a〈pk(s)〉 | b(x).c〈dec(x, sk(s))〉

)
The first component publishes the public key pk(s) by send-
ing it on a. The second receives a message on b, uses the



corresponding secret key sk(s) to decrypt it, and forwards
the resulting plaintext on c. As this example indicates, we
essentially view ν as a generator of unguessable seeds. In
some cases, those seeds may be directly used as passwords
or keys; in others, some transformations are needed.

Some encryption schemes have additional properties. In
particular, enc and dec may be the same function. This
property matters in implementations, and sometimes per-
mits attacks. Moreover, certain encryptions and decryp-
tions commute in some schemes. For example, we have
dec(enc(x, y), z) = enc(dec(x, z), y) if the encryptions and
decryptions are performed using RSA with the same modu-
lus. The treatment of such properties is left open in [5]. In
contrast, it is easy to express the properties in the applied pi
calculus, and to study the protocols and attacks that depend
on them.

Non-deterministic (“probabilistic”) encryption Going fur-
ther, we may add a third argument to enc, so that the en-
cryption of a plaintext with a key is not unique. This non-
determinism is an essential property of probabilistic encryp-
tion systems [23]. The equation for decryption becomes:

dec(enc(x, pk(y), z), sk(y)) = x

With this variant, we may write the process:

a(x).
(
νm.b〈enc(M,x,m)〉 | νn.c〈enc(N,x, n)〉

)
which receives a message x and uses it as an encryption key
for two messages, enc(M,x,m) and enc(N,x, n). An ob-
server who does not have the corresponding decryption key
cannot tell whether the underlying plaintexts M and N are
identical by comparing the ciphertexts, because the cipher-
texts rely on different fresh names m and n. Moreover, even
if the observer learns x, M , and N (but not the decryption
key), it cannot verify that the messages contain M and N
because it does not know m and n.

Public-key digital signatures Like public-key encryption
schemes, digital-signature schemes rely on pairs of public
and secret keys. In each pair, the secret key serves for
computing signatures and the public key for verifying those
signatures. In order to model digital signatures and their
checking, we use again the two unary function symbols pk
and sk for generating public and secret keys from a seed. We
also use the new binary function symbol sign, the ternary
function symbol check, and the constant symbol ok, with
the equation:

check(x, sign(x, sk(y)), pk(y)) = ok

(Several variants are possible.)
Modifying again our first example, we may now write:(

νs.{pk(s)/y} | a〈(M, sign(M, sk(s)))〉
)
|

a(x).if check(fst(x), snd(x), y) = ok then b〈fst(x)〉

Here the value M is signed using the secret key sk(s). Al-
though M and its signature travel on the public channel a,
no other process can produce N and its signature for some
other N . Therefore, again, we may reason that only the in-
tended term M will be forwarded on channel b. This prop-
erty holds despite the publication of pk(s) (but not sk(s)),
which is represented by the active substitution that maps y
to pk(s). Despite the restriction on s, processes outside the
restriction can use pk(s) through y. In particular, y refers
to pk(s) in the process that checks the signature on M .

XOR Finally, we may model the XOR function, some of
its uses in cryptography, and some of the protocol flaws con-
nected with it. Some of these flaws stem from the intrinsic
equational properties of XOR, such as cancellation property
that we may write:

xor(xor(x, y), y) = x

Others arise because of the interactions between XOR and
other operations (e.g., [41, 15]). For example, CRCs (cyclic
redundancy codes) can be poor proofs of integrity, partly
because of the equation:

crc(xor(x, y)) = xor(crc(x), crc(y))

4 Equivalences and proof techniques

In examples, we frequently argue that two given processes
cannot be distinguished by any context, that is, that the
processes are observationally equivalent. The spi calculus
developed the idea that the context represents an active at-
tacker, and equivalences capture authenticity and secrecy
properties in the presence of the attacker.

In this section we define observational equivalence for
the applied pi calculus. We also introduce a notion of static
equivalence for frames, a labeled semantics for processes,
and a labeled equivalence relation. We prove that labeled
equivalence and observational equivalence coincide, obtain-
ing a convenient proof technique for observational equiva-
lence.

4.1 Observational equivalence

We write A ⇓ a when A can send a message on a, that
is, when A→∗ C[a〈M〉.P ] for some evaluation context C[ ]
that does not bind a.

Definition 1 Observational equivalence (≈) is the largest
symmetric relation R between closed extended processes with
the same domain such that A R B implies:

1. if A ⇓ a, then B ⇓ a;

2. if A→∗ A′, then B →∗ B′ and A′ R B′ for some B′;

3. C[A] R C[B] for all closing evaluation contexts C[ ].

These definitions are standard in the pi calculus, where
⇓ a is called a barb on a, and where ≈ is one of the two
usual notions of barbed bisimulation congruence. (See [20]
for details.)

For example, when h is a unary function symbol with no
equations, we obtain that νs.a〈s〉 ≈ νs.a〈h(s)〉.

4.2 Static equivalence

Two substitutions may be seen as equivalent when they be-
have equivalently when applied to terms. We write ≈s for
this notion of equivalence, and call it static equivalence. In
the presence of the “new” construct, defining ≈s is some-
what delicate and interesting. For instance, consider two
functions f and g with no equations (intuitively, two inde-
pendent one-way hash functions), and the three frames:

ϕ0
def
= νk.{k/x} | νs.{s/y}

ϕ1
def
= νk.{f(k)/x,

g(k)/y}

ϕ2
def
= νk.{k/x,

f(k)/y}



νk.a〈enc(M,k)〉.a〈k〉.a(z).if z = M then c〈 oops ! 〉 νx.a〈x〉−−−−−→ νk.
(
{enc(M,k)/x} | a〈k〉.a(z).if z = M then c〈 oops ! 〉

)
νy.a〈y〉−−−−−→ νk.

(
{enc(M,k)/x} | {k/y} | a(z).if z = M then c〈 oops ! 〉

)
a(dec(x,y))−−−−−−−→ νk.

(
{enc(M,k)/x} | {k/y} | if dec(x, y) = M then c〈 oops ! 〉

)
→ νk.

(
{enc(M,k)/x} | {k/y}

)
| c〈 oops ! 〉

Figure 1: Example transitions

In ϕ0, the variables x and y are mapped to two unrelated
values that are different from any value that the context
may build (since k and s are new). These properties also
hold, but more subtly, for ϕ1; although f(k) and g(k) are
based on the same underlying fresh name, they look unre-
lated. (Analogously, it is common to construct apparently
unrelated keys by hashing from a single underlying secret,
as in SSL [21].) Hence, a context that obtains the values
for x and y cannot distinguish ϕ0 and ϕ1. On the other
hand, the context can discriminate ϕ2 by testing the pred-
icate f(x) = y. Therefore, we would like to define static
equivalence so that ϕ0 ≈s ϕ1 6≈s ϕ2.

This example relies on a concept of equality of terms in
a frame, which the following definition captures.

Definition 2 We say that two terms M and N are equal in
the frame ϕ, and write (M = N)ϕ, if and only if ϕ ≡ νñ.σ,
Mσ = Nσ, and {ñ}∩ (fn(M)∪ fn(N)) = ∅ for some names
ñ and substitution σ.

For instance, in our example, we have (f(x) = y)ϕ2 but not
(f(x) = y)ϕ1, hence ϕ1 6≈s ϕ2.

Definition 3 We say that two closed frames ϕ and ψ are
statically equivalent, and write ϕ ≈s ψ, when dom(ϕ) =
dom(ψ) and when, for all terms M and N , we have (M =
N)ϕ if and only if (M = N)ψ.

We say that two closed extended processes are statically
equivalent, and write A ≈s B, when their frames are stati-
cally equivalent.

Depending on Σ, static equivalence can be quite hard
to check, but at least it does not depend on the dynamics
of processes. Some simplifications are possible in common
cases, for example when terms can be put in normal forms.

The next two lemmas state several basic, important
properties of ≈s:

Lemma 1 Static equivalence is closed by structural equiva-
lence, by reduction, and by application of closing evaluation
contexts.

Lemma 2 Observational equivalence and static equivalence
coincide on frames. Observational equivalence is strictly
finer than static equivalence on extended processes: ≈ ⊂ ≈s.

To see that observational equivalence implies static equiv-
alence, note that if A and B are observationally equivalent
then A | C and B | C have the same barbs for every C, and
that they are statically equivalent when A | C and B | C
have the same barb ⇓ a for every C of the special form
if M = N then a〈s〉, where a does not occur in A or B.

4.3 Labeled operational semantics and equivalence

A labeled operational semantics extends the chemical se-
mantics of section 2, enabling us to reason about processes
that interact with their environment. The labeled semantics
defines a relation A

α−→ A′, where α is a label of one of the
following forms:

• a label a(M), where M is a term that may contain
names and variables, which corresponds to an input of
M on a;

• a label a〈u〉 or νu.a〈u〉, where u is either a channel
name or a variable of base type, which corresponds to
an output of u on a.

In addition to the rules for structural equivalence and re-
duction of section 2, we adopt the following rules:

In a(x).P
a(M)−−−→ P{M/x}

Out-Atom a〈u〉.P a〈u〉−−−→ P

Open-Atom
A

a〈u〉−−−→ A′ u 6= a

νu.A
νu.a〈u〉−−−−−→ A′

Scope
A

α−→ A′ u does not occur in α

νu.A
α−→ νu.A′

Par
A

α−→ A′ bv(α) ∩ fv(B) = bn(α) ∩ fn(B) = ∅
A | B α−→ A′ | B

Struct
A ≡ B B

α−→ B′ B′ ≡ A′

A
α−→ A′

According to In, a term M may be input. On the other
hand, Out-Atom permits output only for channel names
and for variables of base type. Other terms can be output
only “by reference”: a variable can be associated with the
term in question and output.

For example, using the signature and equations for sym-
metric encryption, and the new constant symbol oops ! , we
have the sequence of transitions of Figure 1. The first two
transitions do not directly reveal the termM . However, they
give enough information to the environment to compute M
as dec(x, y), and to input it in the third transition.

The labeled operational semantics leads to an equiva-
lence relation:



Definition 4 Labeled bisimilarity (≈l) is the largest sym-
metric relation R on closed extended processes such that
A R B implies:

1. A ≈s B;

2. if A→ A′, then B →∗ B′ and A′ R B′ for some B′;

3. if A
α−→ A′ and fv(α) ⊆ dom(A) and bn(α)∩fn(B) = ∅,

then B →∗ α−→→∗ B′ and A′ R B′ for some B′.

Conditions 2 and 3 are standard; condition 1, which requires
that bisimilar processes be statically equivalent, is necessary
for example in order to distinguish the frames ϕ0 and ϕ2 of
section 4.2.

Our main result is that this relation coincides with obser-
vational equivalence. Although such results are fairly com-
mon in process calculi, they are important and non-trivial.

Theorem 1 Observational equivalence is labeled bisimilar-
ity: ≈ = ≈l.

One of the lemmas in the proof of this theorem says that
≈l is closed by application of closing evaluation contexts.
However, unlike the definition of ≈, the definition of ≈l does
not include a condition about contexts. It therefore permits
simpler proofs.

In addition, labeled bisimilarity can be established via
standard “bisimulation up to context” techniques [38], which
enable useful on-the-fly simplifications in frames after out-
put steps. The following lemmas provide methods for sim-
plifying frames:

Lemma 3 (Alias elimination) Let A and B be closed ex-
tended processes. If {M/x} | A ≈l {M/x} | B, then A ≈l B.

Lemma 4 (Name disclosure) Let A and B be closed ex-
tended processes. If νs.({s/x} | A) ≈l νs.({s/x} | B), then
A ≈l B.

In Lemma 3, the substitution {M/x} can affect only the con-
text, since A and B are closed. However, the lemma implies
that the substitution does not give or mask any information
about A and B to the context. In Lemma 4, the restriction
on s and the substitution {s/x} mean that the context can
access s only indirectly, through the free variable x. Cru-
cially, s is a name of base type. Intuitively, the lemma says
that indirect access is equivalent to direct access in this case.

This labeled operational semantics contrasts with a more
naive semantics carried over from the pure pi calculus, with
output labels νũ.a〈M〉 and rules that permit direct output
of any term, such as:

Out-Term a〈M〉.P a〈M〉−−−→ P

Open-All
A

νũ.a〈M〉−−−−−→ A′ v ∈ fv(M) ∪ fn(M) \ {a, ũ}

νv.A
νv,ũ.a〈M〉−−−−−−−→ A′

These rules lead to a different, finer equivalence relation,
which for example would distinguish νk, s.a〈(k, s)〉 and
νk.a〈(f(k), g(k))〉. This equivalence relation is often inad-
equate in applications (as in [5, section 5.2.1]), hence our
definitions.

We have also studied intermediately liberal rules for out-
put, which permit direct output of certain terms. We ex-
plain those rules next.

4.4 Refining the labeled operational semantics

In the labeled operational semantics of section 4.3, the la-
bels for outputs do not reveal much about the terms being
output. Except for channel names, those terms are repre-
sented by variables. Often, however, more explicit labels
can be convenient in reasoning about protocols, and they
do not cause harm as long as they only make explicit in-
formation that is immediately available to the environment.
For instance, for the process νk.a〈(Header, enc(M,k))〉, the
label νy.a〈(Header, y)〉 is more informative than νx.a〈x〉. In
this example, the environment could anyway derive that
fst(x) = Header. More generally, we rely on the following
definition to characterize the information that the environ-
ment can derive.

Definition 5 A variable x can be derived from the extended
process A when, for some term M and extended process A′,
we have A ≡ {M/x} | A′.

In general, when x ∈ dom(A), there exist ñ, M , and A′ such
that A ≡ νñ.{M/x} | A′. If x can be derived from A, then
ñ can be chosen empty, so that M is not under restrictions.
Intuitively, if x can be derived from A, then A does not
reveal more information than νx.A, because the context can
build the term M and use it instead of x. For example, using
function symbols for pairs and symmetric encryption, we let:

ϕ
def
= νk.{M/x,

enc(x,k)/y,
(y,N)/z}

The variable y can be derived from ϕ using fst(z). Formally,
we have:

ϕ ≡ {fst(z)/y} | νk.{M/x,
(enc(x,k),N)/z}

In contrast, x and z cannot be derived from ϕ in general.
However, if k does not occur in N , then z can be derived
from ϕ using (y,N):

ϕ ≡ {(y,N)/z} | νk.{M/x,
enc(x,k)/y}

Conversely, if N = k, then x can be derived from ϕ using
dec(y, snd(z)), even if k occurs in M :

ϕ ≡ {dec(y,snd(z))/x} | νk.{enc(M,k)/y,
(y,k)/z}

Relying on Definition 5, we define rules for output that
permit composite terms in labels but require that every re-
stricted variable that is exported can be derived by the en-

vironment. In the relation A
α−→ A′, the label α now ranges

over the same labels a(M) for input and generalized labels
for output of the form νũ.a〈M〉, where M is a term that may
contain variables and where {ũ} ⊆ fv(M)∪fn(M). The label
νũ.a〈M〉 corresponds to an output of M on a that reveals
the names and variables ũ.

We retain the rules for structural equivalence and reduc-
tion, and rules In, Par, and Struct. We also keep rule
Scope, but only for labels with no extrusion, that is, for
labels a〈M〉 and a(M). As a replacement for the rules Out-
Atom and Open-Atom, we use the rules Out-Term and:

Open-Channel
A

a〈b〉−−→ A′ b 6= a

νb.A
νb.a〈b〉−−−−→ A′

Open-Variable

A
νũ.a〈M〉−−−−−→ A′ x ∈ fv(M) \ {ũ}

x can be derived from νũ.{M/z} | A′

νx.A
νx,ũ.a〈M〉−−−−−−−→ A′



Rule Open-Channel is the special of Open-Atom for chan-
nel names. Rule Open-Variable filters output transitions
whose contents may reveal restricted variables. Only non-
derivable subterms have to be replaced with variables before
the output. Thus, these rules are more liberal than those
of section 4.3. In fact, it is easy to check that the rules of
section 4.3 are special cases of these ones.

For instance, consider A1 = νk.a〈(f(k), g(k))〉 and A2 =
νk.a〈(k, f(k))〉. With the rules of section 4.3, we have:

Ai
νz.a〈z〉−−−−→ νx, y.{(x,y)/z} | ϕi

where x, y can be eliminated and ϕi is as in section 4.2.
With the new rules, we also have:

Ai
νx,y.a〈(x,y)〉−−−−−−−−→ ϕi

This transition is adequate for A1 since x and y behave like
fresh, independent values. For A2, we also have the more
informative transition:

A2
νx.a〈(x,f(x))〉−−−−−−−−−→ νk.{k/x}

that reveals the link between x and y, but not that x is a
name.

In general, for a given message, we may have several
output transitions. Each of these transitions may lead to a
process with a different frame. However, it suffices to con-
sider any one of the transitions in order to prove that a rela-
tion is included in labeled bisimilarity. Hence, a particular
label can be chosen to reflect the structure of the protocol
at hand, and to limit the complexity of the resulting frame.

The next theorem states that the two semantics yield the
same notion of equivalence. Thus, making the labels more
explicit only makes apparent some of the information that
is otherwise kept in the static, equational part of ≈l.

Theorem 2 Let ≈L be the relation of labeled bisimilarity
obtained by applying Definition 4 to the semantics of this
section. We have ≈l = ≈L.

In another direction, we can refine the semantics to per-
mit functions that take channels as arguments or produce
them as results (which are excluded in section 2). For ex-
ample, we can permit a pairing function for channels. Thus,
although the separation of channels from other values is fre-
quent in examples and convenient, it is not essential.

For this purpose, we would allow the use of the rule
Open-All in the case where v is a channel b. The dis-
advantages of this rule (indicated above) do not arise if two
reasonable constraints are met: (1) channel sorts contain
only pairwise-distinct names up to term rewriting; (2) for
every term M with a channel variable x, there is a channel
term N with free variable y and no free names such that
x = N{M/y}.

5 Diffie-Hellman key agreement (example)

The fundamental Diffie-Hellman protocol allows two prin-
cipals to establish a shared secret by exchanging messages
over public channels [17]. The principals need not have any
shared secrets in advance. The basic protocol, on which
we focus here, does not provide authentication; therefore,
a “bad” principal may play the role of either principal in
the protocol. On the other hand, the two principals that

follow the protocol will communicate securely with one an-
other afterwards, even in the presence of active attackers.
In extended protocols, such as the Station-to-Station pro-
tocol [18] and SKEME [26], additional messages perform
authentication.

We program the basic protocol in terms of the binary
function symbol f and the unary function symbol g, with
the equation:

f(x, g(y)) = f(y, g(x)) (1)

Concretely, the functions are f(x, y) = yx mod p and
g(x) = αx mod p for a prime p and a generator α of Z∗

p ,

and we have the equation f(x, g(y)) = (αy)x = αy×x =
αx×y = (αx)y = f(y, g(x)). However, we ignore the under-
lying number theory, working abstractly with f and g.

The protocol has two symmetric participants, which we
represent by the processes A0 and A1. The protocol estab-
lishes a shared key, then the participants respectively run
P0 and P1 using the key. We use the public channel c01
for messages from A0 to A1 and the public channel c10 for
communication in the opposite direction. We assume that
none of the values introduced in the protocol appears in P0

and P1, except for the key.
In order to establish the key, A0 invents a name n0,

sends g(n0) to A1, and A1 proceeds symmetrically. Then
A0 computes the key as f(n0, g(n1)) and A1 computes it as
f(n1, g(n0)), with the same result. We find it convenient to
use the following substitutions for A0’s message and key:

σ0
def
= {g(n0)/x0}

φ0
def
= {f(n0,x1)/y}

and the corresponding substitutions σ1 and φ1, as well as
the frame:

ϕ
def
= (νn0. (φ0 | σ0)) | (νn1. σ1)

With these notations, A0 is:

A0
def
= νn0.(c01〈x0σ0〉 | c10(x1).P0φ0)

and A1 is analogous.
Two reductions represent a normal run of the protocol:

A0 | A1 →→ νx0, x1, n0, n1. (P0φ0 | P1φ1 | σ0 | σ1) (2)

≡ νx0, x1, n0, n1, y. (P0 | P1 | φ0 | σ0 | σ1) (3)

≡ νy.(P0 | P1 | νx0, x1. ϕ) (4)

The two communication steps (2) use structural equivalence
to activate the substitutions σ0 and σ1 and extend the scope
of the secret values n0 and n1. The structural equivalence
(3) crucially relies on equation (1) in order to reuse the active
substitution φ0 instead of φ1 after the reception of x0 in A1.
The next structural equivalence (4) tightens the scope for
restricted names and variables, then uses the definition of ϕ.

We model an eavesdropper as a process that intercepts
messages on c01 and c10, remembers them, but forwards
them unmodified. In the presence of this passive attacker,
the operational semantics says that A0 | A1 yields instead:

νy.(P0 | P1 | ϕ)

The sequence of steps that leads to this result is similar to
the one above. The absence of the restrictions on x0 and x1



corresponds to the fact that the eavesdropper has obtained
the values of these variables.

The following theorem relates this process to

νk.(P0 | P1){k/y}

which represents the bodies P0 and P1 of A0 and A1 shar-
ing a key k. This key appears as a simple shared name,
rather than as the result of communication and computa-
tion. Intuitively, we may read νk.(P0 | P1){k/y} as the ideal
outcome of the protocol: P0 and P1 execute using a shared
key, without concern for how the key was established, and
without any side-effects from weaknesses in the establish-
ment of the key. The theorem says that this ideal outcome
is essentially achieved, up to some “noise”. This “noise” is a
substitution that maps x0 and x1 to unrelated, fresh names.
It accounts for the fact that an attacker may have the key-
exchange messages, and that they look just like unrelated
values to the attacker. In particular, the key in use between
P0 and P1 has no observable relation to those messages, or
to any other left-over secrets. We view this independence of
the shared key as an important forward-secrecy property.

Theorem 3 Let P0 and P1 be processes with free variable
y where the name k does not appear. We have:

νy.(P0 | P1 | ϕ)

≈ νk.(P0 | P1){k/y} | νs0.{s0/x0} | νs1.{
s1/x1}

The theorem follows from Lemma 2 and the static equiva-
lence ϕ ≈s νs0, s1, k.{s0/x0 ,

s1/x1 ,
k/y}, which says that the

frame ϕ generated by the protocol execution is equivalent
to one that maps variables to fresh names.

Extensions of the basic protocol add rounds of communi-
cation that confirm the key and authenticate the principals.
We have studied one such extension with key confirmation.
There, the shared secret f(n0, g(n1)) is used in confirma-
tion messages. Because of these messages, the shared secret
can no longer be equated with a virgin key for P0 and P1.
Instead, the final key is computed by hashing the shared se-
cret. This hashing guarantees the independence of the final
key.

6 Message authentication codes and hashing
(another example)

Message authentication codes (MACs) are common crypto-
graphic operations. In this section we treat MACs and their
constructions from one-way hash functions. This example
provides a further illustration of the usefulness of equations
in the applied pi calculus. On the other hand, some aspects
of MAC constructions are rather low-level, and we would not
expect to account for all their combinatorial details (e.g., the
“birthday attacks”). A higher-level task is to express and
reason about protocols treating MACs as primitive; this is
squarely within the scope of our approach.

6.1 Using MACs

MACs serve to authenticate messages using shared keys.
When k is a key and M is a message, and k is known only
to a certain principal A and to the recipient B of the mes-
sage, B may take mac(k,M) as proof that M comes from A.
More precisely, B can check mac(k,M) by recomputing it
upon receipt of M and mac(k,M), and reason that A must

be the sender of M . This property should hold even if A
generates MACs for other messages as well; those MACs
should not permit forging a MAC for M . In the worst case,
it should hold even if A generates MACs for other messages
on demand.

Using a new binary function symbol mac, we may de-
scribe this scenario by the following processes:

A
def
= !a(x).b〈(x,mac(k, x))〉

B
def
= b(y).if mac(k, fst(y)) = snd(y) then c〈fst(y)〉

S
def
= νk.(A | B)

The process S represents the complete system, composed of
A and B; the restriction on k means that k is private to A
and B. The process A receives messages on a public channel
a and returns them MACed on the public channel b. When
B receives a message on b, it checks its MAC and acts upon
it, here simply by forwarding on a channel c. Intuitively,
we would expect that B forwards on c only a message that
A has MACed. In other words, although an attacker may
intercept, modify, and inject messages on b, it should not be
able to forge a MAC and trick B into forwarding some other
message.

This property can be expressed precisely in terms of the
labeled semantics and it can be checked without too much
difficulty when mac is a primitive function symbol with no
equations. The property remains true even if there is a func-
tion extract that maps a MAC mac(x, y) to the underlying
cleartext y, with the equation extract(mac(x, y)) = y. Since
MACs are not supposed to guarantee secrecy, such a func-
tion may well exist, so it is safer to assume that it is available
to the attacker.

The property is more delicate if mac is defined from
other operations, as it invariably is in practice. In that
case, the property may even be taken as the specification of
MACs [22]. Thus, a MAC implementation may be deemed
correct if and only if the process S works as expected when
mac is instantiated with that implementation. More specif-
ically, the next section deals with the question of whether
the property remains true when mac is defined from hash
functions.

6.2 Constructing MACs

In section 3, we give no equations for one-way hash func-
tions. In practice, one-way hash functions are commonly
defined by iterating a basic binary compression function,
which maps two input blocks to one output block. Fur-
thermore, keyed one-way hash functions include a key as an
additional argument. Thus, we may have:

f(x, y + z) = h(f(x, y), z)

where f is the keyed one-way hash function, h is the com-
pression function, x is a key, and y + z represents the con-
catenation of block z to y. Concatenation (+) associates
to the left. We also assume other standard operations on
sequences and the corresponding equations.

In this equation we are rather abstract in our treatment
of blocks, their sizes, and therefore of padding and other
related issues. We also ignore two common twists: some
functions use initialization vectors to start the iteration, and
some append a length block to the input. Nevertheless, we
can explain various MAC constructions, describing flaws in
some and reasoning about the properties of others.



νk.(A | B)
a(M)−−−→ νk.(A | B | b〈(M,mac(k,M))〉)

νx.b〈x〉−−−−→ νk.(A | B | {(M,mac(k,M))/x})
b((M+N,h(snd(x),N)))−−−−−−−−−−−−−−→→ νk.(A | c〈M +N〉 | {(M,mac(k,M))/x})

νy.c〈y〉−−−−→ νk.(A | {(M,mac(k,M))/x,
M+N/y})

Figure 2: An attack scenario

νk.(A | B)
a(M)−−−→ νk.(A | B | b〈(M,mac(k,M))〉)

νx.b〈(M,x)〉−−−−−−−→ νk.(A | B | {mac(k,M)/x})
b((M+N,h(x,N)))−−−−−−−−−−−→→ νk.(A | c〈M +N〉 | {mac(k,M)/x})

c〈M+N〉−−−−−→ νk.(A | {mac(k,M)/x})

Figure 3: An attack scenario (with refined labels)

A first, classical definition of a MAC from a keyed one-
way hash function f is:

mac(x, y)
def
= f(x, y)

For instance, the MAC of a three-block message M = M0 +
M1 +M2 with key k is mac(k,M) = h(h(f(k,M0),M1),M2).
This implementation is subject to a well-known extension
attack. Given the MAC of M , an attacker can compute
the MAC of any extension M + N without knowing the
MAC key, since mac(k,M + N) = h(mac(k,M), N). We
can describe the attack formally through the operational
semantics, as done in Figure 2 and in Figure 3, which use the
semantics of sections 4.3 and 4.4 respectively. We assume
k 6∈ fn(M) ∪ fn(N). In those descriptions, we see that the
message M that the system MACs differs from the message
M +N that it forwards on c.

There are several ways to address extension attacks, and
indeed the literature contains many MAC constructions that
are not subject to these attacks. We have considered some
of them. Here we describe a construction that uses the MAC
key twice:

mac(x, y)
def
= f(x, f(x, y))

Under this definition, the process S forwards on c only a
message that it has previously MACed, as desired. Looking
beyond the case of S, we can prove a more general result by
comparing the situation where mac is primitive (and has no
special equations) and one with the definition of mac(x, y) as

f(x, f(x, y)). Given a tuple of names k̃ and an extended proc-
ess C that uses the symbol mac, we write [[C]] for the trans-
lation of C in which the definition of mac is expanded wher-

ever a key ki in k̃ is used, with f(ki, f(ki,M)) replaced for
mac(ki,M). The theorem says that this translation yields
an equivalent process (so, intuitively, the constructed MACs
work as well as the primitive ones):

Theorem 4 Suppose that the names k̃ appear only as MAC
keys in C. Take no equations for mac and the equation

f(x, y + z) = h(f(x, y), z) for f. Then νk̃.C ≈ νk̃.[[C]].

7 Related work and conclusions

In this paper, we describe a uniform extension of the pi
calculus, the applied pi calculus, in which messages may
be compound values, not just channel names. We study
its theory, developing its semantics and proof techniques.
Although the calculus has no special, built-in features to
deal with security, we find it useful in the analysis of security
protocols.

Other techniques have been employed for the analysis
of these protocols. Some are based on complexity theory;
there, principals are basically Turing machines that com-
pute on bitstrings, and security depends on the computa-
tional limitations of attackers (e.g., [44, 23, 24, 8, 22]). Oth-
ers rely on higher-level, formal representations where issues
of computational complexity can be conveniently avoided
(e.g., [19, 25, 29, 39, 35, 34, 42, 5, 16, 7]). Although some
recent work [28, 36, 6] starts to relate these two schools (for
example, justifying the soundness of the second with respect
to the first), they remain rather distinct. Our use of the ap-
plied pi calculus clearly belongs in the second. Within this
school, many recent approaches work essentially by reason-
ing about all possible traces of a security protocol. However,
the ways of talking about the traces and their properties
vary greatly. We use a process calculus. Its semantics pro-
vides a detailed specification for sets of traces. Because the
process calculus has a proper “new” construct (like the pi
calculus but unlike CSP), it provides a direct account of the
generation of new keys and other fresh quantities. It also
enables reasoning with equivalence and implementation re-
lations. Furthermore, the process calculus permits treating
security protocols as programs written in a programming
notation—subject to typing, to other static analyses, and to
translations [1, 3, 4, 2, 10, 11, 9, 13].

The applied pi calculus has many commonalities with the
original pi calculus and its relatives, such as the spi calculus
(discussed above). In particular, the model of communica-
tion adopted in the applied pi calculus is deliberately clas-
sical: communication is through named channels, and value
computation is rather separate from communication. Fur-



ther, active substitutions are reminiscent of the constraints
of the fusion calculus [43]. They are especially close to the
substitution environments that Boreale et al. employ in their
proof techniques for a variant of the spi calculus with a sym-
metric cryptosystem [12]; we incorporate substitutions into
processes, systematize them, and generalize from symmetric
cryptosystems to arbitrary operations and equations.

Famously, the pi calculus is the language of those lively
social occasions where all conversations are exchanges of
names. The applied pi calculus opens the possibility of more
substantial, structured conversations; the cryptic character
of some of these conversations can only add to their charm
and to their tedium.
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