Online Node-weighted Steiner Tree and Related Problems

Joseph (Seffi Naor)
Technion
Haifa, Israel.
Email: naor@cs.technion.ac.il

Abstract— We obtain the first online algorithms for the
node-weighted Steiner tree, Steiner forest and group Steiner
tree problems that achieve a poly-logarithmic competitive
ratio. Our algorithm for the Steiner tree problem runs in
polynomial time, while those for the other two problems
take quasi-polynomial time. Our algorithms can be viewed
as online LP rounding algorithms in the framework of Buch-
binder and Naor; however, while the natural LP formulation of
these problems do lead to fractional algorithms with a poly-
logarithmic competitive ratio, we are unable to round these
LPs online without losing a polynomial factor. Therefore, we
design new LP formulations for these problems drawing on a
combination of paradigms such as spider decompositions, low-
depth Steiner trees, generalized group Steiner problems, etc.
and use the additional structure provided by these to round
the more sophisticated LPs losing only a poly-logarithmic
factor in the competitive ratio. As further applications of our
techniques, we also design polynomial-time online algorithms
with polylogarithmic competitive ratios for two fundamental
network design problems in edge-weighted graphs: the group
Steiner forest problem (thereby resolving an open question
raised by Chekuri et al) and the single source ¢-vertex
connectivity problem (which complements similar results for
the corresponding edge-connectivity problem due to Gupta et
al).

1. INTRODUCTION

Network design problems, where the goal is to select
a minimum cost subgraph of a given graph satisfying
a given set of connectivity constraints, have played a
crucial role in recent developments of many algorithmic
paradigms. Perhaps the most well-known problem in
this suite is the Steiner tree problem, in which the
selected subgraph must connect! a subset T = {t;:1<
i <k} of designated vertices called terminals. In this
paper, we consider the node-weighted (NW) version of
this problem (where both edges and vertices have costs)
in the classical online model (for the online model, see
e.g. [6]), where the input graph G = (V,E) is known in
advance, but the terminals arrive online. The algorithm
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needs to ensure that at any stage of the online process,
the subgraph selected thus far connects the terminals
that have already arrived. We give the first algorithm for
this problem with poly-logarithmic competitive ratio.

Node weights are often used to model various prac-
tical scenarios such as the equipment cost at nodes
of a real network, the load on network switches and
routers [23], the latency and cost of recovery from
power outages in electrical networks [21], etc. Further,
from a theoretical perspective, node weights serve to
unify edge-weighted network design problems and other
classical covering problems such as set cover, facility
location, etc. In fact, the NW Steiner tree problem,
besides being a classical network design problem itself,
also unifies (and generalizes) two fundamental opti-
mization problems: set cover® and edge-weighted (EW)
Steiner tree (Where only edges have costs). It is therefore
somewhat surprising that no online algorithm with poly-
logarithmic competitive ratio was known for the NW
Steiner tree problem in spite of such algorithms being
known for these two important special cases:

o Alon et al [3] gave an algorithm for the online set
cover problem by rounding (online) a fractional
solution obtained from an LP-based* primal-dual
algorithm with multiplicative updates (for a com-
prehensive survey on this technique, see [7]); this
algorithm has poly-logarithmic competitive ratio.

o Imase and Waxman [24] showed that the natural
greedy algorithm has a logarithmic competitive
ratio for the online EW Steiner tree problem.

Part of the challenge in generalizing the above results
lies in the contrasting techniques used to obtain them.
We can easily rule out the greedy algorithm for the

2For a minimization problem, the competitive ratio of an online
algorithm is the maximum ratio between the algorithmic solution and
the (offline) optimal solution over all input sequences.

3Given a collection of subsets of a universe with respective costs,
the set cover problem asks for a minimum cost sub-collection such
that for every element of the universe, at least one subset containing
it is in the sub-collection.

4LP stands for linear programming.



online NW Steiner tree problem (see Figure 1(a) for
an input instance on which the greedy algorithm has a
polynomial competitive ratio). On the other hand, for
the LP-based approach, no online rounding technique
is known for the standard LP formulation even in the
EW case.

A key to understanding NW Steiner tree instances are
spider decompositions, which were introduced by Klein
and Ravi [26] for the offline version of the problem. In
the online problem, it is a substantial challenge to even
define spiders because of the dynamically changing set
of terminals. We overcome this obstacle, and our key
technical contribution in solving the online NW Steiner
tree problem is two-fold:

o We prove a surprising structural property of NW
Steiner trees showing that if we are ready to
settle for a logarithmic loss, then the cost on very
few vertices (and no edge) needs to be shared
between terminals. This is in sharp contrast to
the usual notion that the main challenge in the
Steiner tree problem is in choosing between cheap
edges/vertices that a few terminals pay for and
expensive edges/vertices that many terminals share
the cost on.

o The above property substantially simplifies the
structure of a spider decomposition. This lets us
write a (somewhat sophisticated) LP for the NW
Steiner tree problem that unifies the set cover and
EW Steiner tree problems, and sheds new light on
the structure of the latter.

We then observe that this LP is identical to a non-
metric facility location problem, for which Alon et
al [2] gave an online algorithm with poly-logarithmic
competitive ratio. Perhaps surprisingly, our algorithm
exactly yields the greedy algorithm for EW Steiner
tree [24] and the primal-dual algorithm for set cover [2],
two algorithms that do not share any apparent similarity,
when specialized to their respective instances.

Two generalizations of the Steiner tree problem that
have also been extensively studied are:

o The Steiner forest problem, in which the subgraph
must connect each pair (s;,#;) in a designated set of
vertex pairs T = {(s;,#;) : 1 <i <k} called terminal
pairs.

o The group Steiner tree problem, in which the
subgraph must connect the root vertex r to at
least one vertex from every set 7; in a designated
collection of vertex subsets T = {T;: 1 <i <k}
called terminal groups.

While online algorithms with poly-logarithmic competi-
tive ratios were known for the EW version of both these

problems (see [4], [5] and [2] respectively), no non-
trivial competitive ratio was known for the NW version.
We give the first online algorithms for these problems
with a poly-logarithmic competitive ratio. In fact, we
give an algorithm for a somewhat more general problem
(called the group Steiner forest problem) that unifies
the above two problems. As further applications of
our techniques, we also obtain polynomial-time online
algorithms for the EW group Steiner forest problem and
the EW single-source /-vertex connectivity problem. We
formally define our problems and state our results next.

1.1. Our Results

We start by formally defining the online NW Steiner
tree problem. Throughout the paper, for a graph G =
(V,E), let [V|=n and |E| = m. For a set cover instance,
n and m respectively denote the number of elements and
the number of sets.

The Online Node-Weighted Steiner Tree Problem.
We are given (offline) an undirected graph G = (V,E),
with cost ¢, for edge e¢ € E, and cost ¢, for vertex
v € V. A sequence of vertices (called terminals) T =
(t1,02,...,t) (t; €V for 1 <i < k) appear online; the
algorithm needs to maintain a subgraph H of G that
connects all the terminals, while minimizing the total
cost of vertices and edges in H. Our main result is the
following theorem.

Theorem 1. There is a polynomial-time randomized
online algorithm for the node-weighted Steiner tree
problem with a competitive ratio of O(lognlog? k).

We note that there is a lower bound of Q(lognlogk)
on the competitive ratio of this problem. This follows
from a recent lower bound of Q(logmlogn) on the
competitive ratio of any randomized polynomial time
algorithm for the online set cover problem, under the
BPP #+ NP assumption [27].

We now define the group Steiner forest problem,
which unifies (and generalizes) the Steiner forest prob-
lem and the group Steiner tree problem.

The Online Node-weighted Group Steiner For-
est Problem. We are given (offline) an undirected
graph G = (V,E) with cost ¢, for edge e¢ € E, and
cost ¢, for vertex v € V. A sequence of pairs of
vertex subsets (called terminal group pairs) =
((S],T]), (Sz,Tz),... y (Sk,Tk)) (Sl‘,Tl' g V for 1 S i S k)
appear online; the algorithm needs to maintain a sub-
graph H of G that connects at least one pair of vertices
s; € S;,t; € T; for each terminal group pair (S;,7;), while
minimizing the total cost of vertices and edges in H.
(Note that the Steiner forest and group Steiner tree
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Figure 1. (a) A counter-example to a greedy algorithm for the online node-weighted Steiner tree problem. All the curved edges have cost 1 —¢&
and the straight edges have cost 0. Vertex v has cost 1; all other vertices are terminals and have cost 0. In this example, the vertices r,1,t2,. ..,
appear as terminals. Since each terminal has a private path of cost 1 —¢€ to r, the greedy algorithm selects these private paths with total cost
(1 — &)k, whereas the optimal solution chooses the paths through vertex v and has cost 1. Choosing € to be an arbitrarily small positive constant
leads to a lower bound of k on the competitive ratio of this algorithm. (b) An example exhibiting the difficulty of online rounding of the natural
LP relaxation of NW Steiner tree. If each edge and vertex has a value of 1/4/n in the fractional solution, then an independent rounding of the
edges and vertices does not produce a feasible solution. On the other hand, since the value on an edge or vertex accumulates over multiple
rounds, dependent rounding may produce an integer solution that is polynomially more expensive than the fractional solution.

problems are special cases with |S;| =|T;| =1, Vi and
S;={r}, Virespectively.) We obtain an online algorithm
for this problem with poly-logarithmic® competitive
ratio.

Theorem 2. There is a quasi-polynomial-time® ran-
domized online algorithm for the node-weighted group
Steiner forest problem with a competitive ratio of

O(polylog(n,k)).

Online Edge-weighted Network Design Problems.
Our techniques also lead to new results in online EW
network design. First, we give a polynomial-time online
algorithm for the EW group Steiner forest problem, thus
resolving an open question raised by Chekuri et al [11]
in the affirmative.

Theorem 3. There is polynomial-time randomized on-
line algorithm’ for the edge-weighted group Steiner for-
est problem with a competitive ratio of O(polylog(n,k)).

Next, for the EW single-source (-vertex connectivity
problem, where the goal is to find a minimum cost
subset of edges such that each terminal has at least ¢
vertex-disjoint paths to a fixed root vertex, we obtain
the following theorem.

Theorem 4. There is a polynomial-time deterministic
online algorithm for the edge-weighted single-source (-

5The exact competitive ratio in Theorem 2 is O(log’ klog® n), while
that in Theorem 3 is O(log® nlogk).

6An algorithm is said to be quasi-polynomial-time if its time
complexity is O(|I]'°¢!!), where I is the input to the algorithm.

"In fact, our (online) algorithm is somewhat simpler than the
previously known offline algorithm for this problem [11], though
the previous algorithm has a slightly better approximation ratio of
O(log? nlog® k) (versus O(log> nlogk) for our algorithm).

vertex connectivity problem with a (bicriteria)® compet-
itive ratio of (0 (elogk> ,2—1—8) for any € > 0.

€

This theorem complements the results of Gupta et
al [22] for the corresponding online edge-connectivity
problem.

1.2. Our Techniques

As noted earlier, the NW Steiner tree problem gen-
eralizes both the EW Steiner tree problem and the
set cover problem; therefore, a natural approach is
to unify (and generalize) the online algorithms for
these problems. We first discuss the challenges faced
by these approaches. For the online EW Steiner tree
problem, there are mainly two approaches. The first
one is the greedy algorithm (each terminal connects
via a shortest path to the previous terminals) which
is known to be O(logn)-competitive. Unfortunately, for
the NW version, the greedy algorithm has a polynomial
competitive ratio (see Figure 1(a)). The second approach
is based on probabilistic tree embeddings [17], which
have been successfully used by Gupta et al [22] even for
higher connectivity requirements in EW online settings.
However, such tree embeddings do not exist if vertices
have costs, ruling out such an approach.

The online set cover problem has an O(logmlogn)
competitive algorithm [3] which works by first solving
online the standard LP within an O(logm) factor, and
then adapting the randomized rounding method for set
cover to work online, losing another factor of O(logn).
Using the methods of [2] for online covering of cuts
in a graph, it is not hard to show that a fractional

8A bi-criteria competitive ratio of (a,b) for an f-connectivity
problem implies that the solution produced by the online algorithm
achieves a connectivity of ¢/b and is at most a factor of a more
expensive than the optimal offline solution for connectivity ¢.



solution to the standard LP formulation of the NW
Steiner tree problem can be computed online and has
a poly-logarithmic competitive ratio. Now, rounding
the fractional solution online (as in set cover) is the
natural approach to obtaining an online algorithm with
a poly-logarithmic competitive factor. However, this
LP appears to be too weak to allow for this kind of
rounding without losing a polynomial factor in the
competitive ratio (see Figure 1(b) for an illustrative
example). Moreover, even for the EW Steiner tree
problem, we do not know how to round a fractional
solution to this LP. In fact, one of our main contributions
is developing an approach that unifies two seemingly
different algorithms: the greedy algorithm for the EW
Steiner tree problem and the online LP rounding based
approach to the set cover problem. We describe below
our new approach.

Observe that one can view a solution to the online
Steiner tree problem as a collection of paths, one from
each terminal to another terminal that appeared earlier
in the online sequence. If each terminal could afford to
pay for its entire path (to the previous terminal), then a
greedy algorithm suffices. In fact, for the EW version
this is indeed the case, and this property is crucial for the
analysis of the greedy algorithm in the online setting.
However, as indicated earlier, the example in Figure 1(a)
asserts that for the NW version this property is not true,
i.e. terminals must necessarily share the cost of these
paths in order to obtain a poly-logarithmic competitive
ratio.

A natural next step is bounding the extent of the
cost sharing among the terminals. For example, in
Figure 1(a), terminals #1,1;,...,# only need to share the
cost on the solitary vertex v on their paths to terminal
r. Our key lemma, somewhat surprisingly, generalizes
this to show that if we are ready to sacrifice a factor
of O(logk) in the cost, then the cost sharing among
terminals can be restricted to a single vertex on every
path.

Lemma 1. Let G = (V,E) be an undirected graph with
vertex and edge costs ¢y, c,. respectively. Suppose T CV
is a set of k terminal vertices. Then, for any ordering
of the terminals t1,t,...,ty, and for any subgraph Gt
of G connecting all the terminals, there exists a set of
paths P, Ps, ... P, and a corresponding set of vertices
V2, V3, ...,V such that

e P; is a path from terminal t; to another terminal t;

which is earlier in the order, i.e., j <1,
e v; is on path P; and is also contained in Gp, and
o Xio(e(R) —¢y) < O(logk) -¢(Gr),

where ¢(P;) is the sum of costs of vertices and edges on

Non-Metric
Facility Location

NW Group
Steiner Network
on trees

Figure 2. The figure shows the relationships between the
different problems considered in this paper. The arrows show
the reductions from one problem to the other. Dashed lines
represent the reductions via generalization. The numbers on
the reductions represent the approximation factor lost in the
reduction and the size of the reduction.

P, and ¢(Gr) is the sum of costs of vertices and edges
in GT.

Our main challenge, then, is to select vertex v; and
path P, for each terminal #; that arrives online. In
fact, the crux of this selection is in the choice of v;;
once v; is chosen, we can greedily add the cheapest
path from #; to v;, as well as the one from v; to any
t,j <, to obtain path P;. Note that since terminal #; can
exclusively pay for path P;, except for vertex v;, a greedy
choice of P, given v;, is optimal. This observation lets
us encode the Steiner tree problem as a non-metric
facility location problem for which an O(lognlogk)-
competitive algorithm was given by Alon et al [2]. This
ultimately leads to Theorem 1.

The Online Node-weighted Group Steiner Forest
Problem.: We now turn our attention to the online
node-weighted group Steiner forest problem. As with
the Steiner tree problem, the methods of [2] for online
covering of cuts in a graph can be used to obtain a
fractional solution with a poly-logarithmic competitive
ratio for the standard LP formulation of this problem.
However, this LP seems too weak to allow online
rounding; so one might hope for a strengthening of
the LP similar to Steiner tree. Unfortunately, for the
group Steiner forest problem, the cost sharing property
in Lemma 1 does not generalize.

Instead we give a different approach for strengthening
the LP. We first prove a structural result that there is a
near-optimal feasible solution in the form of a forest
such that every tree in the forest has small depth.” The
technical lemma behind this claim is a generalization

9Edges in the low-depth trees represent paths in the original trees.



of a similar result by Robins and Zelikovsky [32] on
EW graphs. In view of this structural result, we reduce
this problem on general graphs to trees in a natural
manner. The size of the tree instances we create are
bounded by O(n") where h is the height of the tree.
The structural lemma ensures that 4 =logk in our case,
thereby guaranteeing that the time complexity of our
algorithm stays quasi-polynomial.'®

We complement the above reduction by giving an
online algorithm for the group Steiner forest problem
on a tree with poly-logarithmic competitive ratio.

Theorem 5. There is an O(hlog® nlogk)-competitive
randomized online algorithm for the group Steiner forest
problem on trees of depth h with both edge and vertex
costs.

Combining all the pieces together, we obtain Theorem 2.

Online Edge-weighted Network Design Problems.:
An another application of Theorem 5, we use random-
ized low-distortion embeddings of graph into low-depth
trees (due to Fakcharoenphol et al [17]) to give an online
polynomial-time algorithm for the group Steiner forest
problem in EW graphs thereby proving Theorem 3. On
the other hand, the proof of Theorem 4 uses a combi-
nation of two sets of techniques: our decomposition of
spiders into paths in terminal arrival order (Lemma 1),
and a generalization of spider decompositions to higher
connectivity developed by Chuzhoy and Khanna [15]
(and simplified later by Chekuri and Korula [14]) for
the offline version of the problem.

1.3. Related Work

Klein and Ravi [26] introduced the notion of spider
decomposition to give the first (optimal'') O(logk)-
approximation algorithm for the (offline) NW Steiner
tree problem (and for some generalizations including
the NW Steiner forest problem). In subsequent work,
algorithms with better approximation ratios have been
developed for various special cases (see e.g. [16], [29],
[34]) and for higher (and more general) connectivity
requirements [31], [28], [15].

A different network model was considered by Guha
et al [21] and Moss and Rabani [30] where each node
has a cost and a profit, and the goal is to satisfy
the desired connectivity requirements while minimiz-
ing cost and maximizing profit. Buy-at-bulk network

10Since k is not known offline, we guess its value in constructing
the tree. When the actual number of terminal group pairs exceeds our
guess, we double our guess and start afresh. This adds an additional
factor of logk to the cost of our solution.

"I'The optimality is up to constants. In fact Guha and Khuller [20]
improved the constant factor in the approximation ratio.

design problems on NW graphs have also been stud-
ied previously [13]. Further, routing problems in node
capacitated graphs have also been studied extensively
(see e.g. GargVYO04, ChekuriKS05, HajiaghayiKRLO7,
FeigeHLO0S8), though these problems do not typically
have a minimum cost objective.

Much of prior research in network design problems
has concentrated on EW versions. A series of algorithms
(e.g. [33], [32]) for (offline) EW Steiner tree has led to
the current best approximation factor of 1.39 [8]. For
the EW Steiner forest problem, Agrawal et al [1] (and
then Goemans and Williamson [19]) gave a primal-dual
algorithm with an approximation factor of 2 (which was
matched by Jain [25] for the generalized Steiner forest
problem). For the EW group Steiner tree and EW group
Steiner forest problems, Garg er al [18] and Chekuri
et al [11] gave the first algorithms to achieve a poly-
logarithmic approximation ratio (see [9], [10], [12] for
later improvements in group Steiner tree).

In the online model, Imase and Waxman [24] and
Awerbuch et al [4] respectively showed that the greedy
algorithm has a competitive ratio of O(logn) and
O(log?n) for the EW Steiner tree and the EW Steiner
forest problem (see [5] for a subsequent ©(logn)-
competitive algorithm for the EW Steiner tree prob-
lem). Later, Alon et al [2] used an online primal-
dual technique originally developed for set cover to
obtain the first poly-logarithmic competitive ratio for
the EW group Steiner tree problem. The design of a
poly-logarithmic competitive online algorithm for the
EW group Steiner forest problem was an open question
raised in [11]; we settle this question in the affirmative.

2. ONLINE NODE-WEIGHTED STEINER TREE

In this section, we prove Theorem 1 for which our
first goal is to prove Lemma 1, the key tool in our
algorithm. To prove this lemma, we need to introduce
the technique of spider decomposition of trees due to
Klein and Ravi [26].

Definition 1. A spider is a connected graph containing
at least three vertices, where at most one vertex has
degree greater than two. Each vertex that has degree
equal to one is called a foot, while the unique vertex
that has degree greater than two is called the head. If
no vertex has degree greater than two, then any of the
vertices with degree equal to two can be called the head.
A head-to-foot path is called a leg of the spider.

Klein and Ravi [26] defined the notion of a spider
decomposition of a tree and proved its existence.



Lemma 2 (Klein-Ravi [26]). Any tree R contains a set
of vertex-disjoint spiders such that the feet of the spiders
are exactly the leaves of the tree. This set is called a
spider decomposition.

Y t,

Figure 3. This figure shows a covering spider decomposition of
a tree. The leaves are ordered as {t1,t,#3,4,%5 }. The spiders
in the top right corner form a spider decomposition of the
tree. The red arrows indicate the paths used by #, to connect
to 1, 13 to #p and f5 to #4 in the proof of Lemma 1. In the
second recursive level, there are only two terminals 7; and
t4, which were the two earliest terminals in their respective
spiders. Thus, there is a single spider connecting them, and
this spider has a path from #4 to ;. In general, instead of two
recursive levels, we might have logk recursive levels.

We extend this lemma to produce a recursive spi-
der decomposition . of any tree R. Suppose .Z =
£1,6y,...,0; is an arbitrary ordering of the leaves of
tree R. A covering spider decomposition (see Figure 3
for an example) of R with respect to the ordering ¥
is a sequence of sets of spiders .#7,.72,... with the
following properties:

o The spiders in any set .#; are node-disjoint.

o ¢ is a spider decomposition of R, i.e. the feet of
the spiders in .#] are the leaves of R.

o Let &% = {si1,52,...,5ir, }. Now, let the leaves of
R that are feet of spider s;; be L;;; further let ¢;;
be the first among these leaves in the ordering .Z.
Then, the feet of the spiders in .| are exactly
the leaves {¢;; : 1 < j<r}.

Before showing that such a recursive decomposition
of spiders exists for any tree, let us show that its
existence implies Lemma 1. Recall that in Lemma 1,
Gr is a connected subgraph of G containing all the
terminals in 7. Let R be a spanning tree of Gr. We can
also assume that all terminals in T are leaves of R'Z.

120therwise, we can introduce a dummy terminal of cost O and
connect it to the original terminal using an edge of cost 0.

Now, for each terminal 7;, the path P, and the vertex v;
on it (as in Lemma 1) are defined as follows.

Let j; be the maximum index j such that terminal
is a foot in a spider s € .%;. Let T be the ordering of the
terminals that are feet of spider s with respect to arrival
order. Then, we define the path p; as the path from ¢; to
the terminal immediately before ¢ in the sequence T;.
Also, v; is defined as the head of spider s. The following
property is a direct consequence of this definition.

Lemma 3. The sum of costs c(P;) —c,, for all terminals
t; having j; = j for a fixed j is at most 2¢(R).

Proof: The proof follows by observing that each
leg of a spider s € .; appears in path p; for at most
two terminals #; having j; = j. [ ]
The next lemma follows from the fact that each spider
must contain at least two feet.

Lemma 4. The number of sets of spiders in a covering
spider decomposition of a tree containing O(k) vertices
is O(logk), irrespective of the ordering of the leaves.

The above two lemmas immediately imply Lemma 1.

Finally, we need to show that any tree has a covering
spider decomposition with respect to any ordering of the
leaves. We give a recursive procedure for constructing
such a decomposition. First, we use Lemma 2 to pro-
duce a spider decomposition .#|. Then, we delete all
the legs of each spider in .#, except the leg that ends
at the leaf that appears earliest in the ordering among
the leaves in s. We now recursively construct the spider
decompositions .#5,.%3, ... in the remaining tree. This
completes the proof of Lemma 1.

It is interesting to note that Lemma 1 implies that
no cost sharing is necessary in the edge-weighted case.
The next corollary formalizes this claim.

Corollary 1. Let G = (V,E) be an undirected graph
with edge costs only. Suppose T C 'V is a set of k ter-
minal vertices. Then, for any ordering of the terminals
1,1, .., I, and for any subgraph Gt of G connecting
all the terminals, there exists a set of paths Py, Ps, ..., P
such that:

o P; has endpoints t; and t; for some j <i,

« Yi,c(R) < O(logn)c(Gr),
where ¢(PB;) is the sum of costs of edges on P, and ¢(Gr)
is the sum of costs of edges in Gr.

It follows from Corollary 1 that the greedy algorithm
for the online edge-weighted Steiner tree problem is
O(logn)-competitive, providing an alternative proof for
this well known result.

Our goal now is to select vertex v; and path P; for
each terminal #; in fact, as observed earlier, selecting
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Figure 4.  An integer linear program for the online node-
weighted Steiner tree problem.

v; immediately selects the path P; as the cheapest path
from #; to v;, and then from v; to some ¢;,j < i. This
observation allows us to encode the Steiner tree problem
as an integer linear program in Figure 4.

In the linear program, CEV) is the sum of the costs of
the cheapest path from terminal # to vertex v and the
cheapest path from v to any of previous terminals, i.e.
any t;, j <i. Both of these costs do not include the
cost of v. The variable xl(l’) is an indicator variable for
the event v = v;. The first constraint guarantees that for
each terminal #;, we choose at least one vertex as v;; the
second constraint guarantees that if a vertex v is chosen
as v; by at least one terminal #;, then we pay c, in the
objective value.

Now, we claim that the integer program in Figure 4
can be modeled as a (non-metric) facility location
problem. In an instance of the facility location problem,
we are given a set of possible facilities F' and a set
of clients C. We are also given a facility opening cost
cy for each f € F and a client connection cost ¢;y for
each client i € C and f € F. The goal is to open the
facilities and assign clients to open facilities such that
the sum of facility opening costs and connection costs
is minimized. In the online version of the problem,
the clients arrive online; when a client arrives, we can
either open a new facility and connect the client to it
or connect the client to a previously opened facility.
Alon et al [2] gave a randomized online algorithm
for the facility location problem with competitive ratio
O(lognlogk), where |C| =k and |F| =n.

To model the integer program in Figure 4 as a facility
location problem, we give the following reduction.
Consider the set of terminals #;, 2 < i <k, as clients
and the vertices v € V as facilities. The cost of opening
a facility v is ¢,, while the connection cost of serving a
client #; using facility v is cl(v). Then, the linear program
in Figure 4 asks for the cheapest assignment of clients
to facilities. Using Lemma 1, we conclude that the
algorithm of Alon et al [2], applied to our facility
location instance, yields an 0(10gnlog2 k)-competitive

algorithm for the online NW Steiner tree problem,
thereby proving Theorem 1.

3. ONLINE NODE-WEIGHTED GROUP STEINER
FOREST IN TREES

Recall that the group Steiner forest problem is defined
as follows. Let G = (V,E) be an undirected graph
and .7 = {(81,T1),(52,T2),...,(Sk,Tx)} be k pairs of
subsets of vertices called terminal group pairs. We need
to find a minimum cost subgraph H such that for each
terminal group pair (S;,7;), H connects at least one pair
of vertices s; € S;,t; € T;.

In this section, we give an online algorithm for this
problem when the input graph is a tree, and prove
Theorem 5. Our algorithm has two stages. In the first
stage (details omitted due to lack of space), we use
an online primal-dual algorithm for generalized cut
problems due to Alon et al [2] to obtain a fractional
solution for our problem satisfying the next lemma.

Lemma 5. The fractional solution for the online node-
weighted group Steiner forest problem has cost at most
O(a-logn), where a is the cost of an (offline) optimum
integer solution.

In the second stage of the algorithm, we give a
randomized algorithm for rounding the fractional so-
lution to an integer solution. The basic idea is to run a
rounding technique for the group Steiner tree problem
on a tree due to Garg et al [18] (whose online version
was given by Alon et al [2]) for every subtree of the
rooted input tree. We will show that the integer solution
connects at least one pair of vertices from each ter-
minal group pair (S;,7;) with probability Q(1/log?n).
Moreover, the expected cost of the integer solution is
O(ha), where ¢ is the (offline) optimum cost and A
is the height of the input tree. We run O(log®nlogk)
parallel instantiations of this rounding technique; using
standard analysis, we then conclude that all terminal
group pairs are satisfied with probability at least 1 —1/k.
This allows us to add the cheapest path from a vertex in
S; to a vertex in 7; for an unsatisfied group pair (S;,T;);
the expected overhead because of this step is O(a) since
the cheapest path has cost at most «.

Suppose the new group pair in an online step is
(S;,T;). Our first step is to identify a collective flow
of one between vertices in S; and 7; that can be
supported by the fractional solution. We decompose this
flow into flow paths characterized by their endpoints
(Si17ti1)7 (Siz,ti2)7... where Sij € S,’,l,’j e T;. Let fl-(v)(e)
(resp., fl.(v) («)) denote the total flow routed through
edge e (resp., vertex u) on flowpaths such that the



least common ancestor'® of s; j,tij in the input tree R
is vertex v. Here, e is an edge and u is a vertex in the
subtree rooted at v in R (we denote this subtree R,). For
technical reasons, we double the value of fi<v>(v). This
lets us view the flow from S; to 7; through v in R, as
a flow from S; to v and a separate flow from 7; to v
of the same value. Now, let x\")(¢) = max;</{ f;v) (e)}
and x\") (1) = maxjgi{f;v) (u)}. Observe that xl@ (e) and

i
\4 . .
xl( )(u) are monotonically decreasing as we move down

from the root v in R,. Also, x\") () < x, and x\") (1) < x,
(after online round i). Finally, note that the values of
x,(V) (e) and va)(u) are non-decreasing during the course
of the online algorithm (i.e. with increase in 7). This lets
us apply the rounding algorithm of Alon et al [2] to the
solution xl(v) / fl-(v>(v) twice (if fi(v)(v) > 0) and then se-
lect the output of both instances with probability fl-(v) (v),
and reject the output with probability 1 — J‘i<v)(v). We
will now prove the next lemma using a technique similar

to [2].

Lemma 6. For each group pair (S;,T;), the randomized
rounding procedure selects a path from some vertex in
S; to some vertex in T; with probability Q(l/logzn).
Further, the cost of the integer solution obtained by the
randomized rounding procedure is O(h- Q).

In order to prove Lemma 6, we use the next lemma.

Lemma 7. For any R,, a path is selected in the integer
solution from v to some vertex in S; and some vertex in T;
with probability at least fi(v)(v) /log? n. Moreover each
edge e (resp., vertex u) in R, is selected with probability
at most 2x§v>(e) (resp., xgv)(u)).

Proof: Consider any v such that fl.(v)(v) > 0. Ob-
serve that the solution xl@ / fi(v) (v) is a feasible solution
to the group Steiner tree problem of connecting the
group S; (resp., ;) to root v. Alon et al’s analysis (in
particular, Lemma 12 in [2]) implies that the rounding
algorithm connects some vertex in S; to v with prob-
ability at least 1/logn in the first instance, also some
vertex in 7; to v with probability 1/logn in the second
instance. Since, the two runs are independent and we
select the output with probability fi(v) (v), we conclude
that a path is selected from some vertex in S; to T;
through v with probability at least fl-(v)(v) /log*n.

To bound the cost, observe that the rounding algo-
rithm of Alon et al [2] in a single run selects any
edge e with probability at most xl(v)(e) / flm(v) and

13The least common ancestor of two vertices in a tree is their
deepest common ancestor.

we conditionally select it with probability fi(v) (v). This
implies that over the two rounds, we select edge e with

) ,
probability at most 2 - x’(T(e) . fi(v) (v)= P
v

-/ (e). A similar
argument proves the bound for each vertex u. [ ]
Using the above lemma, we now prove Lemma 6.

Proof of Lemma 6: For any group pair (S;,T;), the
probability that a path between some s; € S; and some

t; € T; is selected is

oo\ 1
1_g<1— log”n >_Q(log2n>’

since Yooy £ (v) = 1.

To bound the cost of the integer solution, note that
each vertex u or edge e appears in at most & subtrees R,
and the integer solution obtained from each tree R, has
cost at most ¥,cg, x,(:)(u) +Yoer, x,((v>(e) < Yuer, Xu+
Yecr, Xe < Q. O

Lemmas 5 and 6 immediately imply Theorem 5.

4. ONLINE GROUP STEINER FOREST IN GENERAL
GRAPHS

In this section, we use the online NW group Steiner
forest algorithm on trees (from the previous section) to
obtain algorithms for the corresponding NW and EW
problems on general graphs.

4.1. Online Node-weighted Group Steiner Forest

We first consider the NW version of this problem
on general graphs. The following structural lemma
about an offline optimal solution (which generalizes
a similar lemma for the EW case due to Robins and
Zelikovsky [32]) is key to our reduction of this problem
to the corresponding problem on trees (proof omitted
due to lack of space).

Lemma 8. Given any instance of NW group Steiner for-
est problem on a graph G = (V,E) with terminal group
pairs 7 = ((81,T1),(S2,T2),---,(Sk, Tx)) (Si, T; CV for
1 <i < k), there exists another instance of the NW
group Steiner forest problem on a graph G' = (V' E")
where V C V' with the same terminal group pairs
T =((81,11),(82,T2),...,(Sk, Tx)) such that
1) For any feasible solution H for the the instance
on graph G, there exists a feasible solution H'
for the instance on graph G' such that ¢(H') <
c(H)-logn.
2) For any feasible solution H' for the instance on
graph G', there exists a feasible solution H for
the instance on graph G such that ¢(H) < c¢(H').



Moreover; there is an optimal solution H' for G' such
that every tree in H' has depth at most logn.

Using Lemma 8, we construct a reduction from NW
group Steiner forest on general graphs to trees, and show
the next lemma.

Lemma 9. Given an instance of the group Steiner forest
problem on a graph G = (V,E) such that each tree of
the optimal forest has depth at most logn, there exists
an instance of the group Steiner forest problem on a tree
T of size O(n'°%") such that every feasible solution on
G corresponds to a feasible solution on T of the same
cost and vice-versa.

Proof: Given an instance of the NW group Steiner
forest problem on a graph G = (V,E) such that every
tree has depth at most logn in the optimal solution, we
construct the tree R as follows. The tree R = (Vg,ER)
has logn+1 levels indexed by 0,1,2,...,logn. Level
i contains n' copies of each vertex in V, the cost of
each copy of a vertex being its cost in G. To index
these vertices, let us first arbitrarily index the vertices
in V as {vi,v2,...,v,}. Then, the vertices in level i are
denoted by (vp, ji, j2,...,ji) where each 1 < j, <n and
1 < p < n. The set of edges E comprises the following
sets of edges:

o Foreachi >0, edges between (v, j1, j2,. .., ji) and
(vgsJ1sJ2,---,Ji,p) for each 1 < p,g < n, of cost

dvpvq, i.e. the distance between vertices v, and v,

in graph G.

For a terminal group pair (S;,7;) in the NW group

Steiner forest problem, we introduce a set (S, 7)) where

S contains all copies of the vertices in S; and 7} contains

all copies of the vertices in T;.

Consider any group Steiner forest H in G. Without
loss of generality H is a forest. Root every tree T of
H at any vertex, say vr. Indeed, it is easy to see that
there is a copy of this tree rooted at the unique copy
of vertex vr at level 0. Observing this for every tree 7,
we obtain a solution H’ in the tree R of cost equal to
the cost of H.

Consider any group Steiner forest H' on the tree R.
Without loss of generality H' is a forest. For any tree
T’ in H’, there exists a subgraph T in G connecting
exactly the same set of nodes connected by 7’ and of
no greater cost. This follows from the fact that every
edge between a copy of node u and v in R corresponds
to a path between u and v in G. Hence, H is a group
Steiner forest. ]
Lemma 9 and Theorem 5 immediately lead to a proof
of Theorem 2.

4.2. Online Edge-weighted Group Steiner Forest

We now give a polynomial-time algorithm for the
online EW group Steiner forest problem and prove
Theorem 3. The algorithm follows from a simple re-
duction to the EW group Steiner forest problem on a
tree using small-depth low-distortion probabilistic tree
embeddings [17].

Lemma 10. Given any instance of the online EW group
Steiner forest problem on a graph G = (V,E), there
exists a distribution on trees T = (V,Er) such that
1) Every feasible solution H on G corresponds to a
feasible solution H' on T such that Er[c(H')] <
c(H)logn.
2) Every feasible solution H' on any tree T corre-
sponds to a feasible solution H on G such that
c(H) <c(H).
Moreover, the height of any tree is O(logA) where A is
the diameter of G and minimum length is one. Also, on
any root to leaf path, the length of the edges decreases
by a factor of 2 at every step.

Proof: Consider the shortest path metric d on
G = (V,E) with weights given by ¢, on edge e. The
result of Fakcharoenphol er al [17] shows that there
exists a distribution on tree metrics such that the average
distortion is at most O(logn). Moreover, each tree in
the support of the distribution has depth logA where A
is the diameter of the graph; further, the length of an
edge at level i is 2/ and the minimum distance between
any two vertices is 1. Sample one of the trees from
the distribution and solve the online EW group Steiner
forest problem on the tree using the algorithm given in
Theorem 5. [ ]
The competitive ratio of the randomized algorithm,
in expectation, is O(log*nlogklogA). To remove the
dependence on A we apply standard doubling tricks.
We maintain a guess o of the optimal solution which
we double each time we find it to be infeasible. At
every update of a, we select all edges of the tree of
length at most a/n? in the solution. When a terminal
set pair (S;,T;) arrives, we delete all edges of the tree
of length more than o and the solve the linear program
on the forest thus obtained. If in any iteration, we
find that the instance is infeasible or if the cost of
the linear programming solution is more than ¢, then
we double our guess of ¢. This leads a new level of
edges to be included in the forest over which we solve
the problem. Theorem 3 now follows from standard
doubling arguments (omitted due to lack of space).
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