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Abstract 

An approach to ray tracing complex models containing math- 
ematically defined surfaces is presented. Parametric and implicit 
surfaces, and boolean combinations of these, are first tessellated 
into triangles. The resulting triangles from many such surfaces 
are organized in a hierachy of lists and 3D grids, allowing efficient 
calcu]atlon of ray/model intersections. 

The technique has been used to ray trace models containing 
billions of triangles and surfaces never before ray traced. The orga- 
nizing scheme developed is also independently useful for efficiently 
ray tracing any complex model, whether or not it contains surface 
tessellations. 

KEYWORDS: Ray tracing, parametric surface, tessellation, trian- 
gle, llst, 3D grid 

1 Introduction 
In the past, models suitable for ray tracing have contained too 

few and too simple primitives. Much work has been focused on 
solving these two problems independently. 

To extend the set of aray-traceable ~ surfaces beyond polygons 
and qnadric surfaces, several schemes for intersecting rays with 
surfaces have been developed. Kajiya [Kajiya 82] has described an 
algorithm for ray tracing bicubic patches. Toth [Toth 85], Barr 
[Barr 86], and Joy and Bhetanabhotla I Joy 86] have studied al- 
gorithms for intersecting rays with general parameteric surfaces. 
These schemes axe slow, require expensive evaluation of surface 
parameterizations, and axe hard to robustly implement. 

Alternatively, mathematically defined surfaces can be broken 
down into simple pieces. The resulting tessellation is an approxi- 
mation to the real surface which can be made arbitrarily close to 
it by using tiny enough pieces. This approach has been avoided 
because ray tracers were unable to handle the vast numbers of 
primitives needed to approximate a surface. 

Recently, organizing structures for large and complex collec- 
tions of primitives have been proposed which make feasible ray 
tracing of models containing many fine tessellations. These struc- 
tures fall into three categories -- lists, octrees, and 3D grids. Each 
organizes a collection of objects into a single unit which may later 
be incorporated into a higher level structure. Each allows the ray 
tracing algorithm to determine which objects in the collection can 
potentially be intersected by a ray. 
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Lists were used in early ray tracers such as developed by Rubin 
and Whitted [Rubin 80]. A list is simply a grouping of objects. 
Hierarchies are built by grouping lists into higher level lists. Kay 
aztd Kajiya [Kay 86] investigated an algorithm to traverse the list 
hierarchy so that objects are considered in the order that they occur 
along the ray. This requires sorting of objects that can potentially 
be intersected by the ray. 

Octrees and 3D grids partition space rather than objects and 
thus avoid object sorting. In these structures, each cell, a rectan- 
gular volume in sp~ce, contains all the objects that occur within 
it. The difference between the two structures is that octrees are 
hierarchical with variable sized cells, while 3D grids are nonhierar- 
chical with cells of uniform size. Glassner [Glassner 84] and Kaplan 
[Kapian 85] investigated octrees. Fujimoto, et al. [Fujimoto 86] de- 
veloped 3D grids and compared their efficiency with octrees. 

Fujimoto found the 3D grid structure superior to an octree for 
ray tracing models containing large numbers of primitives homoge- 
nously scattered through space. This finding can be explained in 
light of two 3D grid properties. First, because grid cells are of 
uniform size, tracing a ray from one grid cell to the next is an 
extremely fast, incremental calculation. Second, because grids are 
nonhierarchical, determining which cell contains the ray origin can 
be done in constant time, while the same operation is logarithmic 
in the number leaf cells in an octree. In fact, both lists and octrees 
require hierarchy traversal; lists through a hierarchy of bounding 
volumes around objects, and octrees through a hierarchy of octree 
celia. Set up time for a ray/grid intersection is large, however, 
making it impractical for collections of a few objects. A single grid 
is also impractical for organizing objects at widely varying lengths 
of scale. 

The proposed algorithm uses a hybrid, hierarchical approach to 
organizing a complex model. In it, both lists and 3D grids are used 
to organize model elements, which are primitives~ or themselves 
lists or 3D grids. Grids axe used to organize large collections that 
axe evenly distributed through space. Lists axe used to organize 
small collections that are sparsely distributed through space. This 
scheme can adapt to complexity in a model at many scales; in fact, 
a hierarchy of 3D grids can be viewed as a generalization of an 
octree, in which arbitrary branching ratios are possible instead of 
a fixed branching ratio of eight. 

Using this technique, we have ray traced a model containing 
400 billion triangles, more primitives than have previously been 
rendered into a single image. We have generated complex images 
containing such shapes a~ teapots, grass blades, clover leaves, flower 
petals, and bumpy, twisted, and self-intersecting parametric sur- 
faces. In short, this technique has established a new state of the 
art in the complexity of ray traced images. 

2 Surface Tessellation 
A surface tessellation is a connected mesh of pieces which ap- 

proximates the surface. A triangle is the tessellation piece; a sur- 
face is thus approximated by a polyhedron with triangular faces. 
Triangles were chosen because their simplicity allowed fast con- 
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Figure 1: Parameter Space Tessellated Into Triangles 

struction of surface tesseRations and fast ray intersection with the 
mesh pieces (see Appendix). 

Tessellation of surfaces is accomplished in a program separate 
from the ray tracer. Currently, this program tessellates several 
types of parametric surfaces B(u, v): R 2 ---, R s by uniformly sam- 
piing a rectangular region of parameter space using a specified num- 
ber of divisions in u and v (see Figure la}. Each set of four adjacent 
samples is then used to create two triangles. Surfaces can also be 
tessellated using adaptive sampling techniques (see Figure lb} in 
which the fineness of the subdivision can vary over the parameter 
space. A technique for adaptive subdivision of parametric surfaces 
and boolean combinations of parametric surfaces is discussed in 
[Von Herzen 85]. In addition, a technique to tessellate implicit 
surfaces is currently being developed at Caltech IKalra 86]. 

2.1 Tessellation Artifacts And Solutions 

Experimentation has shown that surface tessellations can be ray 
traced without noticeable artifact. The organizational scheme can 
easily handle tessellations which are fine enough so that no silhou- 
ette or shadow polygonal segmentation is visible. Moreover, as the 
number of triangles in a tessellation is increased, the time to ray 
trace the tesselation grows slowly {see Section 6). In practice, while 
the algorithm had the capability to ray trace tessellations contain- 
ing many more triangles in an allotted rendering time, some sur- 
faces in very complex models remained inadequately tessellated be- 
cause of memory limitations (typically about 16 megabytes). Vis- 
ible artifacts were the result. 

Artifacts take the form of polygonal shading facets, siLhouettes, 
and shadows. Polygonal shading facets are largely controlled by 
using normal interpolation across triangles. SiLhouette and shadow 
artifacts are most pronounced in regions where the surface has high 
curvature, and in regions where triangles in the tessellation have 
long edges. One solution is to tessellate the surface adaptively 
using variation in normal vector, and linear length of triangle edge 
as criteria for subdivision. In this way, parts  of the surface requiring 
further sampling may be more finely tessellated without increasing 
the overall number of triangles. 

Information concerning how the surface is positioned with re- 
spect to the camera, the lights, and other surfaces can also be used 
in a subdivision scheme to reduce artifacts. For example, given an 
eye position, surfaces can be subdivided more in regions where the 
normal to the surface is nearly perpendicular to the direction to 
the eye. Silhouette edges of objects will then appear less choppy. 
This approach has not been pursued because it depends on prop- 
erties not inherent in the surface, creating tessellations which are 

D 

ray 

N 

Figure 2: The Surface Sidedness Problem - -  The triangle normal 
vector N faces slightly toward the ray origin (N - D < 0 implies 
outside intersection) but  the interpolated normal vector ~r faces 
away (~r . D > 0 implies inside intersection). The vector A is the 
normal to the surface at the intersection of the ray with the surface; 
it clearly indicates that the ray intersects the outside of the surface. 

only good in a particular scene. Also, determining the location of 
silhouettes and shadows is complicated by ray tracing effects such 
as reflections, refractions, diffuse shadows, and depth of field. 

Artifacts can also be reduced by intelligent shading and ray 
ca.sting techniques as well as by intelligent subdivision. The fol- 
lowing sections describe two examples. 

The Surface Sidedness ]Problem 

When a ray intersects a triangle, the triangle's interpolated 
normal, ~r is passed to the shader as the actual normal to the 
surface at the point of intersection. Let the ray be parametrized 
by O + Dt where t is a scalar greater than 0 and O and D are 
vectors; O is the ray origin, and D, the ray direction. The vector 
~r is used to determine whether the inside or outside of the surface 
was hit according to the sided intersection test: 

~r. D < 0 ===> outside intersection 

~r . D > 0 ~ inside intersection 

For an inside intersection, ~r is flipped {scaled by -1), since the 
intersection algorithm always returns outward facing normais. The 
final ]V~ flipped or unflipped, is used by the shader to compute 
diffuse (Lambert) shading, specular highlights, and directions for 
recnrsively generated reflection and refraction rays. 

Let N be the normal to the plane embedding the triangle. It 
is the normal of the polyhedral tessellation of the surface at the 
point of intersection, whereas ~r is an approximation to the actual 
(pre-tessellated} surfaceSs normal. A problem arises if the result 

of the sided intersection test is different when applied to ~r and 
N, as in Figure 2. Large shading discontinuities result when ~r 
is erroneously flipped in this situation since it indicates an inside 
intersection. As Figure 2 shows, the nnfiipped N is also a bad 
approximation to the actual surface normal. 

Experimentation has shown that this problem can be made less 
severe by using the actual triangle normal N instead of ~r when- 
ever the sign of N-  L) is not equal to the sign of N-  D. For outside 
intersections (as in Figure 2}, the normal must have some compo- 
nent toward the ray origin,~rather t h a n  away from it. Thus N is 
closer to A than is either N or - N .  Although not a completely 
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ray ~ light ~x0s. 

L ~  ~ 

j ./"~ shadow ray ~ ray 

Figure 3: The Terminator Problem -- Although ~r indicates that 
a surface point is not self-shadowed, (i.e. N • L < 0 where L is 
opposite to the shadow ray direction} the shadow ray is launched 
starting from inside the surface. The point is therefore found to 
be in shadow when the shadow ray intersects the surface on its 
way out. This problem manifests itself in a polygonal, segmented 
terminator, particularly evident with point light sources. 

satisfactory solution, this technique restored the brightness of a few 
unnaturally dark pixeis along silhouettes of highly curved surfaces 
in experimental pictures. It is expected that  adaptive surface tes- 
sellation which samples more highly in regions where the surface 
normals vary largely, coupled with this technique, will be an effec- 
tive solution to surface sldedness artifacts. Such adaptive sampling 
wiLl limit the maximum angular difference between N and A. 

The  T e r m i n a t o r  P r o b l e m  

A terminator is an area on a surface separating lit and self- 
shadowed areas. Let L be the direction of the light from a point on 
the surface. Whether or not a point on a surface is self-shadowed 
is determined according to the serf-shadowing test: 

~r. L _~ 0 ==~ potentially lit 

~r. L < 0 ~ serf-shadowing 

As in the previous case, artifacts occur in regions where the 
result of the sell-shadowlng test is different when applied to the 
actual triangle normal N and the interpolated normal ~r. In the 
case that N indicates that  an intersection point is lit, and N indi- 
cates that  it is in shadow, we can use the solution discussed for the 
surface sidedness problem. Merely substituting the actual triangle 
normal N for the interpolated normal ~r in subsequent shading cal- 
culations reduces terminator artifacts. In the case that N indicates 
that a surface point is in shadow and N indicates that it is lit, as 
in Figure 3, a different solution is required. Here, the problem is 
that the shadow ray is launched from inside the surface so that the 
point is always in shadow, even though the actual surface point 
may be lit. 

To solve this problem, the shadow ray is launched further from 
the point of intersection so that it can ~escape ~ to the outside of the 
surface. Ray tracing algorithms incorporate a tolerance, called the 
shadow tolerance, which controls how far from the point of inter- 
section to shoot the shadow ray. For most surfaces, simply making 
this number a parameter of the surface instead of a global constant 
eliminates terminator artifacts. When the shadow tolerance can 
not  be made large enough over the whole surface to eliminate ter- 
minator artifacts without simultaneously creating other artifacts, 

Figure 4: Solving The Terminator Problem Using Variable Shadow 
Tolerance -- To allow the shadow ray to escape from inside the 
surface, we can shoot the shadow ray starting from its intersection 
with a plane c from the point of intersection along the interpolated 
normal direction ~r. 

a variable shadow tolerance can be used. Figure 4 shows one such 
scheme. 

3 O r g a n i z a t i o n  O f  T h e  M o d e l  

Once the modeler has tessellated surfaces in the model into 
triangles~ he must organize these triangles and other model com- 
ponents using lists and 3D grids. This organization takes place 
during the preprocessing phase. When preprocessing is complete, 
the model may be ray traced to generate an image. This section 
describes the structure of lists and 3D grids, and their use in orga- 
nizing complex models. Section 4 describes how model components 
are inserted into lists and grids during preprocessing. Section 5 de- 
scribes how the preprocessed model is ray traced. 

A component of a model is called an object. The following is 
the C language definition of an object: 

s t r u c t u r e  o b j e c t  { 
d o u b l e  bounding_box [3] [2] ; 
structure transformation *trans; 
char *root_obj  ect ; 
int object_type: 

) 

Each object can be transformed using an 3 × 3 transformation 
matrix and a 3 × I translation vector, pointed to by the trans 
field. Each object is also bounded by a simple box formed by three 
pairs of extents in the x, y, and z directions in the bounding_box 
field. The root_object field is a pointer to a structure containing 
parameters of a specific object, called the root object. Examples of 
root objects are polygons, spheres, cylinders, triangles~ lists, and 
3D grids. The object_type field indicates the type of the root 
object. 

3 . 1  S t r u c t u r e  O f  L i s t s  A n d  3 D  G r i d s  

A list is a linked list of objects. Its C language definition is 

s t r u c t u r e  l i s t  { 
s t r u c t u r e  o b j e c t  * l i s t _ o b j e c t  : 
s t r u c t u r e  l i s t  *next ;  

} 
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A 81) grid is a three dimensional array of rectangular volumes, 
called cells, formed by regularly dividing a larger rectangular solid 
along the coordinate axes. Each cell contains a pointer to an object 
that is bounded by the cell extents. It is defined as: 

structure grid { 
double grid_extent[3] [2] ; 
int x_divlslons, y_dlvisions, z_divisions; 
s t r u c t u r e  o b j e c t  * c e l l s [ ] ;  

} 

Since many objects can occupy space within a cell extent, the 
object pointed to by a uonempty celt is always a list. This llst 
has its own bounding box which bounds all the objects inside the 
grid cell. Its transformation pointer is always null. Empty cells 
axe indicated by a null object pointer. Cells in the grid are stored 
in the cells field. The grid_extent field stores the extent of the 
volume that was divided into cells using x_divisions z divisions, 
y divisions y divisions, and z_divisions z divisions. 

3 . 2  B u i l d i n g  t h e  M o d e l  w i t h  L i s t s  a n d  G r i d s  

The modeler specifies lists and 3D grids by opening a list or 
3D grid and inserting a series of objects into it. Only one list or 
grid can be open at a time. When a grid is opened, the modeler 
specifies the number of z, y, and z divisions in the grid, and the =, 
y, and z extent of the grid. Opening a list requires no parameters. 
The specification of a list or grid also includes a unique name so 
that lists or grids built by the modeler can later be instantiated 
into other lists and grids. The entire model is hierarchically built 
in a bot tom-up fashion using instantiation. 

Triangles in a single surface tessellation are usually inserted into 
a single grid. This grid can then be instantiated many times in the 
model, and can be separately tranformed in each instance. This is 
accomplished by creating several objects whose root_obj  ec t  fields 
all point to a single copy of the grid, but whose truss field point to 
different transformation structures. In the same way, the modeler 
can also replicate lists by multiple instantiation. 

Model building is currently a heuristic, modeller directed pro- 
cess. More work still remains to develop fully automatic algorithms 
that can organize complex models for efficient ray tracing. On the 
other hand, lists and 3D grids often naturally tit the model's or- 
ganizational structure. For example, our model of a grassy plain 
{see image in Section 6} is a list containing a plain polygon and 
a grass field grid. The grass field was hierarchically constructed 
using two different grass blade surface tessellations. First, a grass 
patch was built by replicating these two blades many times with 
various rotations, scales, and translations and inserting them into 
a grid. Two of these patches were then replicated and inserted into 
a larger grid to form a field of grass. Fields were then replicated 
into a grass plain. In this way, without much modeler effort, we 
constructed a very complex model (4 x 1011 triangles) which could 
be ray traced quite quickly (12 hours on an IBM 4381). 

4 Preprocessing Algorithm 

Figure 5 describes the ageneric" algorithm to insert a object into 
a llst. The term agenericS is used because the algorithm works for 
any object that can be bounded in a simple zyz extent bounding 
box. Figure 5 refers to transforming and enlarging bounding boxes. 
A bounding box is transformed by transforming each vertex of the 
original bounding box, and bounding the result in x, y, and z. A 
bounding box is enlarged by another bounding box with simple 
maximum/minimum operations to produce a bounding box that 

Let 0 be an object to be inserted into list L 
Let B be O's bounding box 
Let T be the current transformation 

Transform B by T to give 

Create an object () whose 
r o o t _ o b j e c t  and o b j e c t _ t y p e  fields are equal to O's 
bounding_box field is B 
t r a n s  field points to T 

Enlarge L's bounding box by 
Add a pointer to 6 to L "S Jlnked list o£ objects 

Figure 5: Generic Object Enlist Algorithm 

Let 0 be an object to be inserted into grid G 
Let B be O's bounding box 
Let T be the current transformation 

• ransYorm B by T to give 

For each ceil in G within or intersecting B Do 
clip 13 to this grM ce//yielding a bounding box 
create an object () whose 

root_obj  ec t  and obj e c t_ type fields equal O's 
bounding_box 6eId is B 
trans field points to T 

add ~) to the cell's objec# list, creating this 
list f f  the eeL/ was previously empty  

Eudfor 

Figure 6: Generic Object Eugrid Algorithm 

bounds both. Figure 6 describes the generic algorithm for inserting 
an object into a grid. 

The generic algorithms work for any primitive. Several opti- 
mlsatious can be made, however, to speed ray tracing of trian- 
gle and polygon primitives. First, instead of transforming objects 
by inverse transforming the ray (see Section 5), we coat transform 
the primitives directly during preprocessing. This avoids many 
ray transformations and yields tighter bounding boxes around the 
primitives, allowing the ray tracing algorithm to cull more objects 
from ray intersection consideration. 

Second, instead of clipping the primitive's bounding box to each 
grid cell, the primitive itself can be clipped as in Figure 7 i. This 
yields tight bounding boxes around the triangles and polygons in- 
side of every grid cell, and appropriately ignores grid cells which in- 
tersect the bounding box but not the primitive inside. The bound- 
ing box of the primitive inside a grid cell becomes its bounding 
box after clipping to the grid cell's extents. On the other ha~d, 
the object inserted into the grid cell's list is still the original us- 
clipped triangle or polygon. The unclipped primitive is inserted to 
conserve memory since only one copy of a triangle or polygon is 
stored instead of several clipped versions of the same thing. It is 
also more efficient to intersect a ray with a triangle than to inter- 
sect with the many-sided polygon that may result from clipping a 
triangle to a volume. 

5 Ray/Model  Intersection Algorithm 
To intersect a ray with an object, the algorithm first determines 

if the ray intersects the object's bounding box (see Figure 8) 2. If 

1[Cyrus 78] discusses clipping polygons to convex volurnes. 

2The ray/bounding box intersection algorithm is adapted from that found in 
[Kay 86] to avoid intersections with planes behind the ray origin. 
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cell 

bounding box 
. . . . . . . . . . . . . . . . . . . . . . . . .  =y; 

' .:~,,:.i ....... ......... t rian gleii!i'!!i!!:ii~: ' 
. i~i~i!!!!i!iii~i~i . : :  :, .... .::y~!,,!.. 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  

Figure 7: Clipping a Triangle to a Grid Cell ~ Clipping the triangle 
yields a bounding box that is smaller {by the diagonally shaded 
areas) than intersecting the triangle bounding box (dashed lines) 
with the cell extent. 

it does, and the object's t r a n s  field is non-null, then it transforms 
the ray. Let A be a 3 × 3 matrix and B a 3 × 1 vector that trans- 
forms a point P to ps v i a / w  = A P +  B .  Intersecting a ray O-{-Dt 
with an object so transformed is equivalent to intersecting the un- 
transformed object with a transformed ray O' + D ' t  where s 

O' = A-*(O- B) 

D' = A-~(D) 

The transformed ray and the root object pointed to by the object's 
root_object field axe then passed to the intersection routine for 
the specific type of root object. If the root object is a primitive 
(e.g. a triangle) then this routine computes the ray#oot object 
intersection directly. If the object is a list or 3D grid, then the 
routine traces the ray through the structure, recursively calling the 
ray/object intersection routine for individual objects it contains. 

5 .1  T r a c i n g  A R a y  T h r o u g h  A L i s t  

Computing the intersection of a ray with a list can be accom- 
plished by performing a ray/object  intersection {defined in Section 
5) on each object in the lint. The intersection that occurs at the 
minimum t parameter of the ray is the desired frontmost intersec- 
tion. 

Alternatively, ray/bounding box intersections can be computed 
on each object first, so that  objects whose bounding box is inter- 
sected by the ray can be sorted in increasing order of the ray's t rain 

intersection with the object's bounding box (see [Kay g61). Then, 
when a ray/root  object intersection is computed at some t, the 
algorithm can eliminate any root objects whose t mr" > t. 

The imphmentat ion allows the modeler to specify whether sort- 
hag takes place in any list. The sort algorithm used is a simple 
linear insertion sort; [Kay 86] notes that  a heap sort is faster for 
large lists. 

5 .2  T r a c i n g  A R a y  T h r o u g h  A 3 D  G r i d  

The algorithm to trace a ray through a 3D grid is described in 
Figure 9. It visits each grid cell intersected by the ray in the order 
of intersection, and intersects the ray with the cell list in each grid 
cell visited. At the start  of the while loop, tx, ty, and tz are the 

n T h e  t r a n l f o r m a t i o n  i t r u c t u r e  i h o u l d  the re fo re  s to re  t h e  m a t r i x  A - l  a n d  the  
vec to r  B .  

Le t  the  ray be O + D t  
Le t  t be  b o u n d e d  b y  t r a in  __< t ____ t max 
Le t  the  b o u n d i n g  b o x  be  Bmin,B max where  

B mi" (B  max) ~ a vector containing the  m i n i m u m  
( m a x i m u m )  zyz extents o f  the  b o x  

For i +-- z-index to  z . i n d e x  Do 
I f  D~ > 0 T h e n  b rain +-- n rain , b ma-x 4-- B max 
E/se b rain ~ B~  ~ , b m ~  ~- B~  i" 

l i b  m~x - Oi < 0 T h e n  R e t u r n  no  h i t  
t +"- {bm~x -- O~)/D, 

lit < t m~x Then 
l i t  < t mi" Then  R e t u r n  no hi t  
t max ~-~ t 

E n d f f  

l i ~ m i n  -- O i  > 0 Then 
t ~-  {b ~ i"  - O i ) /D~  
l i t  __> t min  Then 

I f  t > t max T h e n  R e t u r n  no  h i t  
t rain ~'-  t 

E n d f f  
E n d i f  

End for  
Return hi t  ( in tersect ion at t = t rain ~lld t : t m a x )  

Figure 8: Ray/Bounding Box Intersection Algorithm 

Let  the ray be  pararaeter ized  by  0 + D t  
Le t  t be  h o u n d e d  b y  t rain <7 t < t m~x 
Le t  the  grid v o l u m e  origin he M 
Let the ce/ /extent  he C ie .  each grid cell  has e x t e n t  

Cffi ln x, C~ in y, and C, in z 

Compute t o -- the ray's minimum intersection 
wi th  the  whole  grid volume 

C o m p u t e  the  pos i t ion  P o f  this  in tersec t ion  
C o m p u t e  the grid cell  g where this in tersect ion occurs  

For ~ ~-- z - l n d e x  to  z - i n d e x  Do 
Ini t ial ize  t~ such t h a t  

M~ + i C ,  < P~ < M~ + (i + 1)C, and 

A ,  .-- C , / D ,  

End£or 

While  t ° <_ t m ~  and g is in grid Do  
Le t  ~b be the  i n d e x  such tha t  t~ : min( t= , t~ , t=)  
t l  4-- t,l , 

If  g is nonempty T h e n  
Intersect  ray w i t h  the  list at  cell  g (t o < t < t 1) 
If intersects Then  R e t u r n  in tersect ion 

E n d i f  
t o 4-- ~t 

t¢  .-- t¢~ + A¢~ 
Update g d e p e n d i n g  on ~ and the  sign o f  D~  

Endwhi/e 

R e t u r n  no  intersection 

Figure 9: Ray/3D Grid Intersection Algorithm 
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I ~ , ~ [  

ray ~ / ~  y 

cell A cell B 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

t = t o  t = t l  t = t 2  t = t 3  

Figure I0: Tracing a Ray Through a Grid -- The minimum t¢ oc- 
curs when ~b = x, so the next grid cell intersected is adjacent in the 
increasing ~ direction. In this case, the algorithm will increment 
tz by A= after intersecting the ray with the list in grid cell g. 

t values of the ray's maximum (second) intersection with the s, 9, 
and z bounding extents of the current grid cell, 9 (see Figure 10). 
The next grid cell may be computed incrementally by finding the 
minimum of these (re). This gives the t value of the ray's second 
intersection with 9. It is also the t value of the ray's minimum 
(first) intersection with the next grid cell intersected. The index 
~b indicates which grid cell is intersected next -- if De is positive~ 
the next cell is adjacent in the increasing ~ direction; otherwise, it 
is adjacent in the decreasing ~b direction. 

This grid traversal algorithm is different than the 3DDDA al- 
gorithm described in [gujimoto 86]. Like 3DDDA, no multiply 
operations are used in the inner loop. Also, the algorithm can be 
performed nsing integer arithmetic by scaling the t variables by 
1/(tmax _ train). Double precision arithmetic was actually used 
in the implementation~ however, to eliminate inaccuracies in trac- 
ing the  ray th rough  the  grid. Unlike 3DDDA, for each grid cell 
visited this  a lgor i thm computes  t ° and t 1 ~ the t extents  of  the  
ray through the grid cell. This  is useful to check tha t  root object 
intersections actually occur within the cell extent, and in further 
processing to cull objects in the grid ceLl llst. 

Checking ~tereectlons in n ~D Grid Cell 

Since a single object may occupy several grid cells, the ray's 
intersection with the object inside a grid cell should be checked to 
ensure it is actually within the grid cell. A ray/object intersection 
should occur in the cell where the ray actually intersects the object, 
not in the first grid cell visited which contains the primitive. The 
check for this situation is illustrated in Figure 11. 

C u l l i n g  I .uside a 3 D  G r i d  Cel l  

The grid intersection algori thm mus t  intersect the  ray with the  
list in each grid cell the ray  intersects.  Two optimizat ions to the 
algorithm in Section 5.1 can be made  for this  list intersection. 

The first concerns de termining whether  any object in the cell 
list is hit  by the  ray. A simple optimizat ion speeds up detection of 
s i tuat ions in which a ray intersects  a nonempty  grid cell, bu t  misses 
the cell list bounding box, as in Figure 12. Many times, most  of the 
extents of the cell list bounding  box are identical to the cell extent .  
Since the grid traversa[ a lgori thm has  ~lready computed  the  ray 's  
intersection with the cell extent,  the  a lgori thm need only process 
the cell list bounding planes tha t  are different from the cell extent .  

Figure 11: Intersecting a Ray with an Object in Multiple Grid 
Ceils -- A ray intersects a triangle in cell B at t = t2. The ray also 
intersects the bounding box (dashed tines) of the triangle in cell A, 
but not the triangle itself. When it processes cell A, the algorithm 
checks that the ray intersection with the triangle is between to and 
tl- Since it is not (t2 > tl), it correctly returns the intersection 
of the ray with the triangle only after processing cell B, where 

tl < t2 < t3. 

/ 
¸ 

cell 

s ~ f ~ e  

Figure 12: Bounding Box Inside a Grid Cell -- The bounding box 
around the surface inside a grid cell differs from the cell extent in 
only one extent, identified with an arrow. We need only check one 
extent to see that the ray misses the bounding box inside this cell. 

This is accomplished by stor ing six flags along with the cell list 
bounding box extents,  which indicate whether  or not  the extent  
differs from the  cell extent .  These flags are trivially computed  
during preprocessing. The  a lgor i thm in Figure 8 is modified to 
disregard extents  whose flag is false. 

A second opt imizat ion concerns de termining which objects in 
the list are intersected by the  ray. A simple cull called the ray 

boz cull, shown in Figure 13, de termines  if a ray misses an  object 's  
bounding box using only six comparison operations.  The  ray box 
cull is much faster  t han  the  bounding  box intersection algori thm, 
bu t  is less strict  (note Object  B, whose bound ing  box is not  inter- 
sected by the  ray, bu t  whose bounding box does intersect the  ray 
box). In practice, for very simple primit ives like triangles, it has  
been effective enough to replace the  bounding  box test,  since the 
bounding box tes t  has  complexi ty on the  order of a r a y / t r i a n g h  
intersection. 
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ray ! ~ ' )  

bounding box 

Figure 13: The Ray Box Cull - -  The t extents of the ray (t ~i~ and 
t m~x) through the cell list bounding box are used to construct a 
box, called the ray box, with corners at the ray's two intersections 
with the bounding box. If an object inside the cell extent is inter- 
sected by the ray, then its bounding box must overlap the ray box. 
By computing the ray box once for all the objects in the cell llst, 
any object whose bounding box does not overlap the ray box can 
be cuUed, like Object A. 

6 Results 

Figures 14 and 15 show how time to render a tessellation of 
a single surface depends on the number of triangles in the tes- 
sellation. Times for both graphs are given in seconds to render 
a non-antialiased (one ray per pixel) ]28 by 128 pixe] resolution 
picture. Reported times are for an IBM 4381/Group 12 running 
Amdahl UTS. An example picture produced is shown in upper left 
corner of the graph. The dashed line is the time to render the non- 
tessellated surface using an analytic algorithm in the case of the 
sphere 4 , and an iterative algorithm in the case of the superquadric 
(see [Barr 84] for an explanation of superquadrics). The solid lines 
represent graphs of time vs. number of triangles for grids of various 
cell sizes. 

The graphs demonstrate that  the time to render a tessellated 
surface grows quite slowly with increasing number of triangles. Fur- 
ther, in the case of superquadrics~ the iteratlve approach is slower 
than tessellating and rendering. Only about 2000 triangles were 
required to produce an image of the superquadric which was indis- 
tinguishable from that  produced by the iteratlve algorithm, while 
the rendering time for this tessellation was half that  for the itera- 
tive algorithm. Tessellations containing up to 50,000 triangles were 
still faster than the iterative algorithm. 

Yet, superquadrics are very simple parametric surfaces. Tes- 
sellation is even more advantageous for complex surfaces whose 
evaluation can cost hundreds of time~ more than a superquadric. 
In experiments, rendering time for tesselations del~ended on the 
number of triangles, surface area, and projected screen area of the 
tessellation. It was relatively independent of the mathematical def- 
inition and shape of the parametric surface. Numerical techniques, 
in contrast, depend on the complexity of the parameterization of 
the surface. 

For example, the grass blade rendered in several included pic- 
tures is a parametric surface defined by an integral of a specified 
Jacobian function that governs how the surface normals behave. 

4The sphere graph ie included for comparieon purposes only; tessellation is not 
necessary for qnadric surfaces for which ray intersections may be computed 
analytically. 
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Figure 14: Time to Render Sphere Tessellation 
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Figure 15: Time to Render Superquadric Tessellation 

Evaluation of surface points requires numerical integration and is 
veFy expensive. After tessellating once, this surface was incorpo- 
rated into many models at a rendering cost roughly equal to a 
tessellated sphere or superquadric of equal slz% surface area, and 
number of triangles. Use of a numerical technique to ray trace the 
blades would be prohibitively slow, if it can be made to work at 
all. 

The algorithm has been effective for fast rendering of mod- 
els. For simple pictures (< 100~000 primitives)~ it consistently 
performed about twice as fast as the current implementation of 
the algorithm developed in [Kay 86], which claimed to out-perform 
competing algorithms such as octrees. ]t was also able to render 
complex models that have never been attempted using conventional 
ray tracers. Table 1 shows the rendering time in CPU hours and 
number of primitives for pictures included in this paper. All pic- 
tures were computed at 512 by 512 pixel resolution. 

The times for ray tracing these images are comparable to times 
for conventional ray tracers to generate images containing a few 
hundred polygons and spheres. In this same rendering time, our 
ray tracer has generated pictures containing huge numbers of prim- 
itives, and surfaces that would require much greater rendering time 
using other published techniques. 
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Title 
graphics lab 
teapot museum piece 
reflective bristles 
statue of liberty 
brass ornament 
flowers, grass, clovers 
glass museum piece 
grass and trees 
field of grass 

Primitives Rays/Pixel 
100 16 

10,000 16 
15,000 16 

I00,000 16 
100,000 16 
200,000 16 
400,000 16 

2x109 16 
4x1011 16 

Table I: Rendering Time For Pictures 

Hours 
12 

8 
12 
14 
9 

3.5 
8.5 
16 
12 

raster images in this paper were incorporated using software writ- 
ten by Wen King Su and Brian Von Herzen. 
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Appendix - -  Ray/Trlangle Intersection 
This appendix describes an efficient algorithm to compute 

ray/triangle intersections. 
Let ]~ for i E 0, 1,2 be the coordinates of the three vertices of 

the triangle. Let R/ be the corresponding normal vectors at these 
vertices which axe to be used for normal interpolation across the 
triangle. 

During the preprocessing stage, the above information is used to 
construct a triangle structure, the tessellation unit root object. We 
first compute and store the normal vector to the plane containing 
the triangle, N, by 

N = ( P I - P o )  x ( P 2 - P o ) .  

We also compute and store a scalar d such that any point, P, in 
the triangle's plane satisfies P. N + d = 0. This scalar is computed 
by 

d = - P o . N .  

Lastly, we compute and store an index ~o such that  

0 if [Nx [ is ma~ximum 
io = 1 if [Nu] is maximum 

2 if [N=[ is maximum 

The triangle structure also stores the three vertices and normals, 
P/and R/. To conserve memory, the triangle structure should store 
pointers to these since, on average, each vertex in a tessellation is 
shared by six triangles. 

To intersect a ray parametrized by O+ Dt with a triangle, first 
compute the t parameter of the ray's intersection with the triangle 
plane: 

d - N , O  
t N - D  (1) 

Let it and £2 {ii,i2 E {0, 1, 2)) he two unequal indices different 
from io. Using the t value obtained from Equation 1, compute the 
il and i2 components of the point of intersection, Q, by 

Q~s = Oi~ + Di,  t. 

A point enclosure test can then be performed by computing 
scalars ~o, ill, and flz according to s 

p, = [(P,+~ -- e,+l) × (0, - e,+dl~0 (2) 

[~ho 

where a~ldltion in subscripts is modulo 3. Note that  these ~'s are 
the barycentric coordinates of the point where the ray intersects 
the triangle plane. Only the io component of the cross product is 
computed; the value of Qi0 is therefore unnecessary. Q is inside 
the triangle if and only if0 < /~i -< 1 for i E {0,1,2}. Division 
by Nio can be eliminated by appropriate rearrangement of the test 
implied by Equation 2. The interpolated normal ~r is given by 

~r = ~0Ro + ~iR1 + f12R2. 

S[X]# denotes the ith component of the vector X. 
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Figure 15: Graphics Lab - -  The carpet  t ex ture  map in this  
image was created by ray t rac ing a s imulated carpet  containing 
roughly 125,000 triangles.  Note the diffuse shadows from three 
extended light sources. 

Figure 16: Field of Grass - -  This image was rendered from a 
model descript ion containing more th~n 400 billion primitives.  

Figure 17: St atue of Liber ty  - -  The s ta tue  da tabase  was created 
using I -DEAS Geomod from SDRC~ and contained about 12,000 
triangles after processing, Each tree contains roughly 10,000 prim- 
itives. 
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I ~ ~ 1  

Figure 18: Flowers, Grass, and Clovers Figure 21: Teapot Museum Piece 

Fisure  19: Brass Ornament  Figure 22: Glass  Musettm Piece 

Figure 20: Reflective Bristles Figure 23: Trees and Grass 
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