
Parameterized Environment Maps
Ziyad S. Hakura
Stanford University

zsh@stanford.edu

John M. Snyder
Microsoft Research
johnsny@microsoft.com

Jerome E. Lengyel
Microsoft Research
jedl@microsoft.com

Abstract
Static environment maps fail
to capture local reflections
including effects like self-
reflections and parallax in the
reflected imagery. We in-
stead propose parameterized
environment maps (PEMs), a
set of per-view environment
maps which accurately repro-
duce local reflections at each
viewpoint as computed by an
offline ray tracer. Even with
a small set of viewpoint sam-
ples, PEMs support plausible
movement away from and
between the pre-rendered
viewpoint samples while
maintaining local reflections. They also make use of environment
maps supported in graphics hardware to provide real-time explo-
ration of the pre-rendered space. In addition to parameterization
by viewpoint, our notion of PEM extends to general, multidimen-
sional parameterizations of the scene, including relative motions
of objects and lighting changes.

Our contributions include a technique for inferring environment
maps providing a close match to ray-traced imagery. We also
explicitly infer and encode all MIPMAP levels of the PEMs to
achieve higher accuracy. We propose layered environment maps
that separate local and distant reflected geometry. We explore
several types of environment maps including finite spheres, ellip-
soids, and boxes that better approximate the environmental
geometry. We demonstrate results showing faithful local reflec-
tions in an interactive viewer.

Additional Keywords: ray tracing, reflections, Fresnel modulation, pa-
rameterized texture maps, surface light fields, IBR.

1. Introduction
Accurate, real-time rendering of shiny objects has long been a
goal of computer graphics. Environment maps (EMs) [2][8][9]
[15][20], which store a sphere of radiance incident at a point,
achieve a reasonable approximation of reflections and are easily
supported in hardware. Unfortunately, because EMs are con-
structed from a single point like the reflective object’s center, they
fail to accurately reproduce local reflections (Figure 1c). Self-
reflections are lost since the object itself is omitted during EM
construction and geometric accuracy suffers when the surface

point is not exactly at the object center or if the reflected object is
not very distant.

Our solution is to record multiple EMs at a set of viewpoints in a
pre-rendered space. These EMs are not spherical images of the
environment at a point. Instead, they are inferred as a least-
squares best match to a ray-traced image taken at each viewpoint,
when applied as an EM in a rendering by the target graphics
system. The result is a sequence of EMs, which we call a param-
eterized environment map, or PEM (Figure 2). More generally,
PEMs can be parameterized with any number of dimensions,
which can control positions of objects and lights as well as view,
and any number of samples per dimension.

Using PEMs, we are able to closely match local reflection effects
like self-reflections evident in each ray-traced sample (compare
Figure 1a and b). Furthermore, we can move the viewpoint away
from the ray-traced samples, plausibly maintaining these local
reflection effects. In fact, by inferring PEMs from ray traced
images along only a 1D subspace of views, we achieve convinc-
ing local reflections from an entire 3D viewspace quite far from
the original samples. Capturing a 2D viewspace provides even
better accuracy but uses many more maps. PEMs also capture
much of the coherence in view-dependent shading, and thus com-
press very well.

With simple EM models, this approach does not necessarily
match the ray traced images exactly, since the mapping from the
surface of the reflector to the EM is not necessarily one-to-one. In
other words, two or more reflected positions in the world can map
to the same EM point.1 We reduce these conflicts by using lay-
ered EMs which separate local and distant parts of the
environment. The final result is superior to images generated
using a static EM.

1 Another difficulty is that the same point in the world can be multiply
imaged by the reflector with different shading if its surface is non-
Lambertian.

(a) Ray-traced (b) PEM (c) Static EM
Figure 1: Simulating Reflections. Note the missing self-reflections of the knob and spout in (c) and the
fidelity of the PEM (b) matched to the ray-traced image (a).

2. Previous Work
Accurate reflections between arbitrary objects can be produced by
ray-tracing [21], but at significantly higher cost than traditional
texture-mapped polygon rendering. This has led to efforts that
exploit fast graphics hardware to produce realistic reflections.
Reflections on planar surfaces, explored by Diefenbach [6], can
be achieved using a rendering that mirrors the viewpoint about the
reflection plane. Reflections on curved objects, studied by Ofek
and Rappoport [17], can be performed by transforming each ver-
tex in the reflected image with respect to the reflector’s geometry.
This scheme handles smooth reflecting objects that are either
concave or convex; objects with mixed convexity or saddle re-
gions require careful decomposition.

Image-based rendering (IBR) methods such as the Light Field
[13] and Lumigraph [7] reduce the plenoptic function to a tabu-
lated 4D field. Surface light fields [16][22] are an alternative that
parameterize the radiance field over surfaces rather than views to
better capture spatial coherence, especially when surfaces are
mostly diffuse. For mirror-like reflectors, the surface light field is
essentially identical to a sphere-at-infinity EM per surface point2.
We obtain a better prediction of how reflections change with view
by using more accurate geometric approximations of the envi-
ronment (Section 4) including simple finite ellipsoids and boxes,
and by separating reflections into multiple layered maps for local
and distant elements. We also associate a single EM per object,
but parameterized by view, rather than multiple, view-
independent ones over a dense set of its surface points.

When applying existing IBR methods to highly reflective sur-
faces, it is not clear whether the required sampling density of
views (for view-based IBR) or of emitted radiance per surface
point (for surface-based IBR) is practical. Current results demon-
strate only fairly blurry highlights from light sources. In [22] for
example, this is not surprising given that the 258 lumisphere sam-
ples used per point represent 2-3 orders of magnitude fewer
samples than typical EMs contain. Furthermore, to reconstruct an
image from a particular view requires visiting an irregular scatter-
ing of samples over the entire 4D light field. With PEMs, all the
information needed to reconstruct a particular view is spatially
coherent in the form of a single EM image (two are needed for
smoother interpolation in a 1D viewspace) whose access is al-
ready supported by hardware. PEMs also handle arbitrary view
subspaces (e.g., 1D ones) and other scene parameterizations.

Heidrich et al. [11] decouple geometry from illumination by using
a light field to map incoming view rays into outgoing reflected or
refracted rays, thus handling self-reflections. These outgoing rays
then index either a static environment map, which ignores local
effects further from the reflector, or another light field represent-
ing the environment, which is more accurate but also more costly.
The result allows independent change to the reflecting object ge-
ometry and the environmental radiance, but suffers from the
limitations of other IBR methods mentioned above.

Cabral et al. [3] also decouple the reflecting object from the illu-
mination. They store a collection of view-dependent EMs where
each EM pre-integrates a specific BRDF with a lighting environ-
ment. The lighting environments for these EMs are generated
using standard techniques, such as taking photographs of a physi-
cal sphere in a desired environment or rendering the six faces of a
cube from the reflecting object center using a ray-tracer. As a

2 Though surface light fields store emitted radiance rather than incident,
the required BRDF integration is trivial for mirror-like reflections.

result these EMs suffer from the same problems as traditional
EMs in handling local reflections.

Lischinski and Rappoport [14] propose two ideas: layered light
fields, which are a collection of view-dependent LDIs for glossy
objects with fuzzy reflections, and image-based ray-tracing for
sharp reflections, where rays are traced through three view-
independent LDIs that accurately represent the scene geometry.
Bastos et al. [1] reproject LDIs into a reflected view for rendering
primarily planar glossy surfaces in architectural walkthroughs.
Our approach succeeds with much simpler and hardware-
supported EMs rather than LDIs.

Hakura, et. al., [10] capture realistic, pre-rendered shading effects
including reflections as parameterized texture maps (PTMs) on
surfaces. This method of capturing view-dependent shading
makes it hard to move “off the manifold” or away from the sam-
pled views – the shading looks (and indeed is) pasted on. We
apply their method of texture inference, but instead of texture
maps we compute EMs in which a reflection ray is actually
bounced off the surface and intersected with a simple approxima-
tion of the environment. Our result provides much better quality
off the manifold.

Our factorization of the Fresnel modulation layer from the inci-
dent specular radiance and use of graphics hardware for its
evaluation is based on the work of Heidrich and Seidel [12].

3. System Overview
We begin with a ray-traced image at each viewpoint as in Figure
2, or more generally, each point in the parameter space which is to
be interactively explored later. The ray tracer segments the im-
agery by separating the images of individual objects (Figure 4). It
also segments various shading terms on each object, including a
diffuse layer, Fresnel reflection modulation layer, and an incident
specular layer. We use a modified version of Eon, a Monte Carlo
distribution ray tracer [19].

Given the parameterized, segmented image layers for each object,
we compute, or infer, parameterized texture and environment
maps that accurately reproduce the ray-traced images when ap-
plied to the original geometry by graphics hardware. PTMs are
inferred using the technique of [10]. PEMs are handled by apply-
ing that technique to hardware rendering with environment maps,
as discussed in detail in the next section. Because of the segmen-
tation, the PTMs and PEMs exhibit much coherence and can be

EM1 EM2 EM3 EM4 EM5 EM6 EM7 EM8

Figure 2: PEM. A PEM is a sequence of environment maps
(EMs) recorded over a set of viewpoints (or other parameters).
The diagram suggests a cube map parameterization for each EM,
but other choices are possible.

greatly compressed, using schemes like MPEG for 1D parameter
spaces, or the multidimensional Laplacian pyramid of [10].

At run-time, as a user explores the space, the system decodes a
per-object texture and environment map sample closest to the
user’s current parameter location (e.g., viewpoint). The resulting
maps are then loaded into the graphics hardware. Using appropri-
ate texture blending modes, we recombine the diffuse layer, if
present, with the product of the Fresnel-modulation layer and
environment-mapped result. This produces a rendering that accu-
rately matches the ray traced imagery at the sampled parameter
locations, and successfully interpolates images away from those
samples. We also blend between neighboring parameter samples
rather than choosing the closest to provide a smoother result.

4. Parameterized Environment Maps
The incident specular layer for a shiny object is the incident light
that is then attenuated by the surface reflectance and reflected
towards the viewer. Separating out the view-dependent Fresnel
modulation by recording incident rather than emitted radiance
makes this layer more view independent and thus more coherent.
After generation by the ray tracer, the layer is captured as an EM.
The next subsections present our approach for representing and
inferring EMs. By running the inference method at each point in
parameter space, we obtain a PEM which can then be compressed.

EM Representations. It is important to distinguish the geometry
of an EM from its parameterization. An EM’s geometry refers to
how it approximates the reflecting environment. For example, the
environment can be approximated by a sphere at infinity, by a
finite cube, or by a finite hemisphere with planar bottom. By
picking an EM geometry that closely matches the actual environ-
ment’s, we obtain better predictions of how reflections move as
the view changes. Of course, as we move to even better approxi-
mations of the environment, such as light fields, LDIs, or even ray
traces of the original environment, the cost of computing samples
becomes impractically high.

The parameterization of an EM refers to how the geometry is
represented in a 2D map. For example, the infinite sphere can be
represented using a latitude/longitude parameterization, the gazing
ball (or OpenGL) parameterization, or by six faces of a cube. The
choice of EM parameterization is less crucial than the choice of
geometry in determining final accuracy, but does impact how
much resolution the maps will require. Note that confusion arises
because parameterizations tend to have names related to shape;
for example, a finite sphere geometry can be parameterized using
a cube parameterization and vice versa.

We have tried several types of EM geometry achieving best re-
sults with finite rectangular parallelepipeds, called box maps, and
finite spheres and ellipsoids. Box maps are useful for room envi-
ronments. For objects resting on flat surfaces, it is effective to
align the box bottom with this flat surface and extend the other
sides to match the average distance to environmental geometry.
Finite ellipsoid maps have proved useful for local reflected ge-
ometry (see next section).

To index such maps, we resort to a combination of software and
hardware texture coordinate generation. Graphics systems, such
as the Nvidia GeForce running under DirectX, currently support
only the infinite sphere geometry with cube or gazing ball param-
eterization. In software, for each polygonal mesh vertex, we
bounce the view ray off the vertex using its associated normal to
determine a reflecting ray. The resulting ray is intersected with
the EM geometry, such as a finite box, sphere, or ellipsoid. The

simplicity of these models makes the ray intersection calculation
practical for real-time applications. Taking this point of intersec-
tion and subtracting the object’s EM origin point yields a vector
that is used as the hardware EM index (normalization isn’t re-
quired for the cube parameterization). The EM origin is chosen as
an area-weighted average of the object’s triangle centroids.

The hardware-supported cube map parameterization can thus be
used for any of these simple geometries.3 Alternatively, direct use
of the 6 cube face texture maps would require expensive texture
state switching and explicit handling of triangles whose vertex
indices straddle the cube edges or corners. The singularity in the
gazing ball parameterization makes it inappropriate for generating
views off the ray-traced samples, as observed in [12].

Layered EMs. Segmenting the environment into separate maps
for local and distant elements better approximates how each ele-
ments’ reflections behave (Figure 3). The separation allows
different EM geometries to be used to approximate the environ-
mental geometry in each layer. It also supports parallax between
imagery in each layer.

To perform this separation, the ray tracer records separate layers
for rays which bounce off a reflective object and immediately
reach the distant environment and rays which bounce one or more
additional times off the object (Figure 4). EMs are then inferred
for each layer separately (Figure 5). We have found that a finite
ellipsoidal EM geometry works well for the local layer. An ellip-
soid is selected to tightly bound the reflecting object. We
currently use an axis-aligned bounding ellipsoid centered at the
object centroid with axis scales that minimize resulting volume,
determined using brute force optimization.

To handle occlusion effects, the local EM is computed as a 4
channel image with transparency representing fraction of cover-
age in the local layer from an antialiased rendering. To compute
the distant layer without local occlusions, the ray tracer propa-
gates rays through the reflecting object if they intersect after the
first bounce, thus defining all distant layer samples without need
for an alpha channel. At run-time, we use the “over” blending
mode to composite the local layer (subscript L) over the distant
(subscript D) before modulating by the Fresnel term, F, via

()Frgbrgb DLLL)1(αα −+ .

3 Note that the cube map parameterization (6 equal-sized square faces)
uses texture area inefficiently for ellipsoids, but is a limitation of current
hardware.

reflector

local EM

distant EM

Figure 3: Layered EM. Here a box geometry is used for the
distant EM, modeling more distant reflected parts of the environ-
ment, while an ellipsoidal geometry is used for the local EM,
modeling parts of the reflector itself present in self-reflections.

Note that this method easily generalizes to more than two envi-
ronmental shells.

Because the local EM geometry only approximates the local ge-
ometry being reflected, erroneous local reflections can be
generated. We minimize such problems by separating polygons
on the reflector that lie on its convex hull from those lying inside
it as a view-independent pre-process. At run-time, polygons lying
on the convex hull are rendered only with the distant EM, since
they can never exhibit self-reflections. The rest of the polygons
are textured using the local/distant EM combination.

EM Inference. Our inference approach is based on the observa-
tion from [10] that a texel, whether from a texture map or an EM,
contributes to zero or more display pixels. Neglecting quantiza-
tion effects in the hardware, a texel that is twice as bright
contributes twice as much to these display pixels. We therefore
model hardware rendering as a linear system, called the rendering
matrix, which maps texels to display pixels. To find the render-
ing matrix, we perform test renderings that isolate the contribution
of each texel to the display. Given the rendering matrix, A, we
then find the least-squares best EM, x, which when applied
matches the ray tracer’s segmented incident specular layer, b.
This results in the linear system Ax=b, which we solve using con-
jugate gradient. The only difference in computing an EM instead
of a texture as in [10] is that the rendering matrix is created using
test renderings with environment mapping instead of texture map-
ping.

The method of [10] includes regularization terms which ensure all
texels are in range and non-contributing ones are filled in
smoothly from defined neighbors. It also provides an efficient
method of computing the rendering matrix.

EM MIPMAPs. Our inference method solves for all MIPMAP
levels of the EM simultaneously. Interestingly, we find that these
levels are not simple filtered versions of each other, even when
performing weighted filtering that accounts for the variation of
solid angle over the EM parameterization, as in [12]. This is be-
cause in computing the best matching EM at a particular
viewpoint, our inference method implicitly accounts for the
reflector geometry, which can magnify and distort the reflection
in a spatially varying way. Therefore, unlike [10], we explicitly
encode all levels of the EM MIPMAP rather than creating them
on-the-fly as decimated versions of the finest level. The result is
improved sharpness in the reflections. To increase compression,
encoded levels are stored as residuals from corresponding deci-
mated versions of the finest level.

EM Resolution. Choosing the proper EM resolution is important
to preserve frequency content in the reflections. A very conserva-
tive approach is to use test renderings to determine the most
detailed EM MIPMAP level actually accessed by the graphics
system. Texture memory bandwidth and capacity limitations may
dictate the use of somewhat lower resolutions.

5. Run-Time Implementation
The Fresnel modulation layer is generated on-the-fly using a per-
vertex software shader that copies the ray tracer’s computation of
the Schlick model [18]. We make use of a 1D texture map to
better interpolate the fifth order polynomial involved in that
model. Such per-vertex computation requires adequate tessella-
tion of the reflecting object’s geometry.

We use multi-pass rendering to assemble the shading layers.
Purely reflective objects in a 1D viewspace require 5 texture map
accesses: 2 EMs for the local/distant dual at each of 2 viewpoints

for smooth interpolations and the 1D Fresnel map. Addition of a
diffuse layer requires one more texture access. Current PC graph-
ics hardware performs 2 texture accesses per pass, so 3 passes are
needed.

Factoring surface reflectance from incident radiance is problem-
atic on current hardware with fixed point 8-bit texture arithmetic;
it is difficult to fit the dynamic range needed by the incident
specular layer [5]. We clip samples that are too bright, sometimes
resulting in artificially dimmed highlights. Solving this problem
will require more dynamic range in texture processing, perhaps
using a floating point representation.

6. Results
We tested our approach on a simple scene of a reflective teapot in
a room environment. The teapot contains ~40k triangles and was
ray traced from a 1D viewspace partially circling the teapot at 1°
per view sample to generate a PEM containing 100 EMs. We
used the local/distant dual EM with finite ellipsoid for the local
map and box map for the distant at 256×256×6 resolution. To
improve accuracy, we decomposed the teapot into two parts: the
lid in one and the spout, body, and handle in the other. Each part
used a separate layered EM model. A more efficient approach
would be to decompose the teapot only for the local EM layer
while using a single distant EM for the combined teapot.

Our viewer performs at about 17.5 frames per second with blend-
ing between adjacent viewpoints on 733MHz PC with Nvidia
GeForce graphics accelerator. Downloading textures into hard-
ware memory is a performance bottleneck; this will be alleviated
by higher bandwidth memory and hardware-supported decoding
of compressed textures. The following table details run-time
performance, assuming the EM textures are already resident in
system (but not video) memory. “Texgen time” below is the time
to compute EM coordinates using ray intersection with simple box
and ellipsoid primitives, performed on the CPU. Use of program-
mable vertex shaders supported in the graphics system, such as
those available in DirectX DX8, may speed up this computation.

On the Manifold
(unblended)

Off the Manifold
(blended)

#geometry passes 2 3

texgen time 35ms 35ms

frame time 45ms 57ms

FPS 22 17.5

For each viewpoint sample, ray tracing required about 15 minutes
while EM inference took 5.5 minutes.

Figure 1 compares results “on the manifold”; i.e., at the ray traced
samples. Our PEMs achieve good fidelity to the ray traced im-
ages matched, while static EMs eliminate local effects.

To test off the manifold quality, we tried several alternatives,
including PTMs and non-layered PEMs using a single sphere-at-
infinity EM geometry. Figure 6 compares these choices for EM
geometry at a viewpoint between the original samples. A ray
tracing at the exact viewpoint is included for comparison. It can
be seen that the layered EM model produces greater accuracy than
the sphere-at-infinity EM (notice especially the reflection of the
knob on the lid). The results are even more obvious interactively
than in a static image, where the dual layered PEM model elimi-
nates “wobble” exhibited by the simpler model as the user moves
off the manifold.

Figure 7 compares results between PEMs and PTMs above the
plane of viewpoint samples. Note especially the lack of fidelity of
the PTM image in the teapot lid reflections. These images and,
more dramatically, the video results, show the pasted-on effect
obtained by PTMs off the manifold, resulting in a popping artifact
when switching between textures inferred at adjacent viewpoint
samples. PTMs also suffer from disocclusions where non-
contributing texture area is revealed in a different view. While
disocclusions can also occur with PEMs since they too are solved
at a given view, they are less frequent and less visible as long as
the object reflects most of its environment.

Figures 4 through 7 are reproduced in the color plate section.

7. Conclusions and Future Work
PEMs provide a faithful approximation to ray-traced images at
pre-rendered viewpoint samples and the ability to plausibly move
away from those samples using real-time graphics hardware. In
future work, we are interested in further exploring the use of mul-
tiple environment map shells to better approximate the
environment, including finding the optimal placement for such
shells. Applying the analog of the optimal plane placement in
planar-projection IBR [4] to spherical imagery may prove useful.
More generally, we seek automatic selection of EM geometry.

Another area of future work is handling cases where the reflector
does not image parts of its environment that can nevertheless be
seen in nearby views “off the manifold”. For example, a reflector
can be partially occluded or occlude itself (like the teapot spout
obscuring its body), thus potentially eliminating from its EM the
part of the environment reflected in this occluded portion. This
problem can be solved by inferring EMs for all front-facing parts
of the reflector, even if they are occluded in the particular view
sample. Incomplete imaging of the environment also occurs when
the reflector’s set of normals incompletely cover the sphere such
as with non-closed objects (like a small portion of a sphere) or
objects with zero curvature (like a plane or cylinder). One solu-
tion may be to infer EMs across multiple neighboring viewpoints
rather than at a single viewpoint sample to provide more complete
knowledge of the reflected environment.

We are also interested in applying these methods to refractive as
well as reflective objects. Finally, handling glossy surfaces as
well as mirror-like ones should be possible with our techniques
but remains to be investigated.

Acknowledgements
We acknowledge our supervisors Anoop Gupta and Turner Whit-
ted for advice and assistance. Ravi Ramamoorthi and Li-Yi Wei
provided much-needed help in producing the video.

References
[1] BASTOS, R., HOFF, K., WYNN, W., AND LASTRA, A. Increased
Photorealism for Interactive Architectural Walkthroughs. In-
teractive 3D Graphics 1999, pp.183-190.

[2] BLINN, J. F., NEWELL, M. E. Texture and Reflection in Com-
puter Generated Images. Comm. ACM, 19(10), Oct. 1976,
pp.542-547.

[3] CABRAL, B., OLANO, M., AND NEMEC, P. Reflection Space
Image Based Rendering. SIGGRAPH 99, pp.165-170.

[4] CHAI, J., TONG, X., CHAN, S.C., AND SHUM, H., Plenoptic
Sampling, SIGGRAPH 2000, pp.307-318.

[5] DEBEVEC, P., Rendering Synthetic Objects into Real Scenes:
Bridging Traditional and Image-Based Graphics with Global
Illumination and High Dynamic Range Photography, SIG-
GRAPH 98, pp.189-198.

[6] DIEFENBACH, P. J. Pipeline Rendering: Interaction and Real-
ism through Hardware-based Multi-Pass Rendering. PhD
thesis, University of Pennsylvania, June 1996.

[7] GORTLER, S., GRZESZCZUK, R., SZELISKI, R., AND COHEN, M.
The Lumigraph. SIGGRAPH 96, pp.43-54.

[8] GREENE, N. Environment Mapping and Other Applications of
World Projections. IEEE CG&A, 6(11), Nov. 1986.

[9] HAEBERLI, P., SEGAL, M. Texture Mapping as a Fundamental
Drawing Primitive. Eurographics Rendering Workshop 1993,
pp.259-266.

[10] HAKURA, Z., LENGYEL, J., AND SNYDER, J. Parameterized
Animation Compression. Eurographics Rendering Workshop
2000, pp.101-112.

[11] HEIDRICH, W., LENSCH, H., COHEN, M. F., AND SEIDEL, H.
Light Field Techniques for Reflections and Refractions. Eu-
rographics Rendering Workshop 1999, pp.195-375.

[12] HEIDRICH, W., SEIDEL, H. Realistic, Hardware-Accelerated
Shading and Lighting. SIGGRAPH 99, pp.171-178.

[13] LEVOY, M., HANRAHAN, P. Light Field Rendering. SIG-
GRAPH 96, pp.31-41.

[14] LISCHINSKI, D., RAPPOPORT, A. Image-Based Rendering for
Non-Diffuse Synthetic Scenes. Eurographics Rendering
Workshop 1998, pp.301-314.

[15] MILLER, G. S., HOFFMAN, C. R. Illumination and Reflection
Maps: Simulated Objects in Simulated and Real Environ-
ments. SIGGRAPH 84: Advanced Computer Graphics
Animation Seminar Notes, July 1984.

[16] MILLER, G., RUBIN, S., AND PONCELEON, D. Lazy Decom-
pression of Surface Light Fields for Precomputed Global
Illumination. Eurographics Rendering Workshop 1998,
pp.281-292.

[17] OFEK, E., RAPPOPORT, A. Interactive Reflections on Curved
Objects. SIGGRAPH 98, pp.333-341.

[18] SCHLICK, C., A Customizable Reflectance Model for Every-
day Rendering, Fourth Eurographics Workshop on Rendering
(Paris, France), June 1993, pp.73-83.

[19] SHIRLEY, P., WANG, C., AND ZIMMERMAN, K. Monte Carlo
Methods for Direct Lighting Calculations, ACM Transactions
on Graphics, January 1996, pp.1-36.

[20] VOORHIES, D., FORAN, J. Reflection Vector Shading Hard-
ware. SIGGRAPH 94, pp.163-166.

[21] WHITTED, T. An Improved Illumination Model for Shaded
Display. Communications of the ACM, 23(6), June 1980,
pp.343-349.

[22] WOOD, D. N., AZUMA, D. I., ALDINGER, K. ET AL. Surface
Light Fields for 3D Photography. SIGGRAPH 2000, pp.287-
296.

Figure 4: Segmented Layers Produced by the Ray Tracer for one Viewpoint.

Inferred Distant EM
Inferred Local EM (with alpha channel below)

Figure 5: Inferred Layered EMs with MIPMAPs using cube map parameterization (6 faces) for teapot body part.

Ray-traced Layered PEM Single Sphere-at-Infinity PEM
Figure 6: Results Between Viewpoint Samples

Ray-traced Layered PEM PTM
Figure 7: Results Above Viewpoint Samples

Distant Layer Local Color Layer Local Alpha Layer Fresnel Layer

