
SWAN: Software-driven wide area network

Ratul Mahajan



Partners in crime

Ratul MahajanChi-Yao HongVijay Gill Srikanth Kandula Ming Zhang

Dave Maltz Lihua Yuan

Roger Wattenhofer

Peng SunHarry LiuXin JinRohan Gandhi

Mohan Nanduri



Inter-DC WAN: A critical, expensive resource

Hong Kong

Seoul

Seattle

Los Angeles

New York

Miami

Dublin

Barcelona



But it is highly inefficient



One cause of inefficiency: Lack of coordination



Another cause of inefficiency: Local, greedy 
resource allocation 

Local, greedy allocation

A

B C D

E

FGH

B C D

FGH

A E

Globally optimal allocation



SWAN: Software-driven WAN

Goals:
– Highly efficient WAN

– Support flexible sharing policies

o Strict priority classes

o Max-min fairness within a class

Key design elements:
– Coordinate the sending rate of services

– Centralized resource allocation



SDN primer

SDNs
• Streamlined switches

• Control plane: centralized, off-board

• Data plane: direct configuration



SWAN controller

SWAN overview

WAN

Service hosts

Network agentService broker

Traffic demand

BW 
allocation

Network
config.

Topology,  traffic

Rate limiting

[Achieving high utilization with software-driven WAN, SIGCOMM 2013]



Key design challenges

Scalably computing  BW 
allocations and network config

Avoiding congestion during 
network updates

Working with limited switch 
memory



Scalably computing allocation

Path-constrained, multi-commodity flow problem 

• Allocate higher-priority traffic first

• Fair within a class (weighted, max-min)

Solve at the granularity of DCs

• Split DC-level allocation fairly among services

• Derive switch configuration by leveraging network symmetry



Achieving Max-Min Fairness

Why is network-wide max-min fairness hard?

– Requires progressive water filling

– Freeze rates whenever a link becomes congested

Our approach

– Geometrically partitions the rate space with param 

– At i’th step, classes receive rate up to iU

– If class gets lower rate, then its rate is held fixed in subsequent iterations

– We prove that rates within [1/ , ] of fair rate



Congestion during network updates



Congestion-free network updates



Computing congestion-free update plans

Leave scratch capacity 𝑠 on each link

• Ensures a plan with at most 
1

𝑠
− 1 steps

Find a plan with minimal number of steps using an LP

• Search for a feasible plan with 1, 2, …. max steps

Use scratch capacity for background traffic



Working with limited switch memory

Use tunnel-based forwarding

Install only the “working set” of tunnels

– Efficient mechanisms to update the set



Updating the set of tunnels

Challenge: 

– Must add before remove

Our approach:

– Leave scratch rule capacity of λ

– Compute a multi-step transition plan 

• Add and remove λ.M tunnels in each step

• Max number of steps is 
1

λ
− 1



Workflow in each epoch

1. Compute bw allocation, network config.

2. Compute rule change plan

3. Compute bounded-congestion plan

4. Notify services with lower allocation

5. Update the network

6. Notify services with higher allocation  



Workflow in each epoch



Prototype

16 OpenFlow switches

– Mix of Blades and Aristas

BigSwitch OpenFlow controller

32 servers as traffic sources

– 25 virtual hosts per server

8 routers (L3)

– Mix of Cisco and Juniper



Demo



SWAN comes close to optimal

SWAN

Th
ro

u
gh

p
u

t

(r
el

at
iv

e 
to

 o
p

ti
m

al
)

SWAN

w/o rate 
control

MPLS 
TE



Network updates: SWAN provides 
congestion-controlled updates



Ongoing work

Wide-area pilot

Resilience to failures and uncertainty

– Algorithms for local failure recovery

– Fast application of updates

– Robust switch software

WAN

Data
center



Summary

SWAN yields a highly efficient and flexible WAN
– Coordinates transmissions of services

– Allocates resources centrally

– Manages transitions by using scratch link and memory capacity

High efficiency is key to cost-effective cloud services
– Many avenues for impactful research

– Opportunity to be “clean slate”



Backup



SWAN comes close to optimal (testbed)



No transient congestion during updates with SWAN

One shot updates SWAN



Network updates: Impact of s

s = ~10% leads to quick updates and little throughput loss



SWAN’s dynamic tunnel management 
needs little memory and is nimble 


