
On Inferring TCP Behavior

Jitendra Padhye and Sally Floyd
AT&T Center for Internet Research at ICSI (ACIRI)

padhye@aciri.org, floyd@aciri.org

ABSTRACT
Most of the traffic in today’s Internet is controlled by the Transmis-
sion Control Protocol (TCP). Hence, the performance of TCP has a
significant impact on the performance of the overall Internet. TCP
is a complex protocol with many user-configurable parameters and
a range of different implementations. In addition, research con-
tinues to produce new developments in congestion control mech-
anisms and TCP options, and it is useful to trace the deployment
of these new mechanisms in the Internet. As a final concern, the
stability and fairness of the current Internet relies on the voluntary
use of congestion control mechanisms by end hosts. Therefore it
is important to test TCP implementations for conformant end-to-
end congestion control. Since web traffic forms the majority of
the TCP traffic, TCP implementations in today’s web servers are
of particular interest. We have developed a tool called TCP Be-
havior Inference Tool (TBIT) to characterize the TCP behavior of
a remote web server. In this paper, we describe TBIT, and present
results about the TCP behaviors of major web servers, obtained us-
ing this tool. We also describe the use of TBIT to detect bugs and
non-compliance in TCP implementations deployed in public web
servers.

1. INTRODUCTION
Most of the traffic currently carried on the Internet is controlled

by the Transmission Control Protocol (TCP) [8]. Thus, TCP perfor-
mance has a significant impact on the performance of the overall In-
ternet. Understanding TCP behavior can be important for Internet-
related research, ISPs, OS Vendors and application developers. We
have designed a tool called TCP Behavior Inference Tool (TBIT)
to characterize the TCP behavior of remote web servers.

There are two reasons for using web servers to test TCP behavior,
one expedient and the other more fundamental. First, web servers
are easy to test, since web servers will respond to a request for
information without requiring any special privileges on those web
servers. One could imagine extending this approach to test other
information servers, such as SMTP and NNTP servers. However,
it would be difficult to extend this approach to test the TCP be-
havior of arbitrary Internet hosts. Second, and more importantly,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’01, August 27-31, 2001, San Diego, California, USA..
Copyright 2001 ACM 1-58113-411-8/01/0008 ...$5.00.

the overall congestion control behavior of the Internet is heavily
influenced by the TCP implementations in web servers, since a sig-
nificant fraction of the traffic in the Internet consists of TCP traffic
from web servers to browsers [8].

TCP is a complex protocol with a range of user-configurable
parameters. A host of variations on the basic TCP protocol [27]
have been proposed and deployed. Variants on the basic conges-
tion control mechanism continue to be developed along with new
TCP options such as Selective Acknowledgment (SACK) and Ex-
plicit Congestion Notification (ECN). To obtain a comprehensive
picture of TCP performance, analysis and simulations must be ac-
companied by a look at the Internet itself. Several factors motivated
us to develop TBIT.

One motivation for TBIT is to answer questions such as “Is it ap-
propriate to base Internet simulation and analysis on Reno TCP?”
As Section 4.2 explains in some detail, Reno TCP is a older vari-
ant of TCP congestion control from 1990 that performs particularly
badly when multiple packets are dropped from a window of data.
TBIT shows that newer TCP variants such as NewReno and SACK
are widely deployed in the Internet, and this fact should be taken
into account for simulation and analysis studies. We believe that
this is the first time quantitative data to answer such questions is
being reported. In other words, TBIT helps to document the migra-
tion of new TCP mechanisms to the public Internet.

A second motivation for TBIT is to answer questions such as
“What are the initial windows used in TCP connections in the In-
ternet?”. As is explained in Section 4.1, TCP’s initial window
determines the amount of data that can be transmitted in the first
round-trip time after a TCP connection has been established. The
initial window is a user-configurable parameter in some systems,
and so the TCP initial window used at a web server can not neces-
sarily be inferred simply by knowing the operating system used at
that server. Knowing the distribution of configured values of initial
windows can be useful not only in simulations and modeling, but
also in standards-body decisions to advance documents specifying
larger values for initial windows [4].

A third motivation for TBIT is to have the ability to easily verify
that end-to-end congestion control is in fact deployed at end hosts
in the Internet (Section 4.3). The stability and fairness of the overall
Internet currently depend on this voluntary use of congestion con-
trol mechanisms by TCP stacks running on end hosts. We believe
that the ability to publically identify end hosts not conforming to
end-to-end congestion control can help significantly in reinforcing
the use of end-to-end congestion control in the Internet.

A fourth motivation of TBIT is to aid in the identification and
correction of bugs detected in TCP implementations. Using TBIT,
we have detected bugs in Microsoft, Cisco, SUN and IBM prod-
ucts, and have helped the vendors fix those bugs. As an example,

as Explicit Congestion Notification (ECN) begins to be deployed in
the Internet (Section 4.6), reports are surfacing of web servers un-
able to communicate with newly-deployed clients. TBIT has been
used to help identify these failure modes and the extent of their de-
ployment in the Internet, to identify the responsible vendors, and
to track the progress (or lack of progress) in having these fixes
deployed. Information such as this is critical when new protocol
mechanisms such as ECN are standardized and actually deployed
in the Internet. Furthermore, as we shall see in Sections 4.2 and 4.4,
subtle bugs can cause a TCP implementation to behave quite differ-
ently from claims in vendor literature. From a user’s perspective, a
tool like TBIT is essential for detecting such bugs.

A fifth motivation that arose after the initial development of TBIT
was that of testing not just the TCP behavior of web servers, but
also testing the TCP behavior determined by equipment on the
path to the server. In particular, the tests of ECN behavior in Sec-
tion 4.6 are in part testing for the presence of firewalls and load-
balancers that block access to servers from hosts attempting to ne-
gotiate ECN. Because we are interested in understanding the con-
gestion control behavior in the Internet, and not just the congestion
control of the web server boxes themselves, this sometimes requires
taking into account the behavior of the various middleboxes along
the path.

The rest of the paper is organized as follows. In Section 2, we
describe the design of TBIT. In Section 3, we compare and contrast
TBIT with related work. In Section 4, we present the results we
obtained by using the TBIT tool to survey the TCP deployment at
some popular web servers. Section 5 provides a discussion of these
results. Section 6 concludes the paper.

2. TBIT ARCHITECTURE
The goal of the TBIT project is to develop a tool to characterize

the TCP behavior of major web servers. The first requirement for
the design of TBIT is that TBIT should have the ability to test any
web server, at any time. A second requirement is that the traffic
generated by TBIT should not be hostile or even appear hostile or
out-of-the-ordinary to the remote web server being probed. To sat-
isfy the first requirement, testing a web server using TBIT can not
require any services or privileges from that web server that are not
available to the general public. In addition, no assumptions can be
made about the hardware or software running on the remote web
server. The second requirement of ordinary and non-hostile traf-
fic is in contrast with programs like NMAP [13], which exploit the
response of remote TCPs to extraordinary packet sequences, like
sending FINs to a port without having opened a TCP connection.
Signatures of these tactics are usually easy to recognize, and many
web servers deploy firewalls to detect and block unusual packet se-
quences. In order to ensure the ability to test any web server at
any time, most of the TBIT tests only generate conformant TCP
traffic designed not be flagged as hostile or out-of-the-ordinary by
firewalls. The ECN tests are an exception to this, as they are specif-
ically investigating the presence of firewalls blocking traffic from
ECN-capable hosts.

TBIT provides several tests, each designed to examine a specific
aspect of TCP behavior of the remote web server. We describe the
design of TBIT in two stages. In the following, we describe in
detail the Initial Window test, illustrating several salient features of
the TBIT architecture. Several other tests implemented in TBIT are
described in Section 4.

The TBIT process establishes and maintains a TCP connection
with the remote host entirely at the user level. The TBIT process
fabricates TCP packets and uses raw IP sockets to send them to a
remote host. It also sets up a host firewall to prevent packets from

the remote host from reaching the kernel of the local machine. At
the same time, a BSD Packet Filter (BPF) [20] device is used to
deliver these packets to the TBIT process. This user-level TCP
connection can then be manipulated to extract information about
the remote TCP. This functionality is derived from the TCP-based
network measurement tool Sting [30].

To illustrate, let’s consider the problem of measuring the ini-
tial value of the congestion window (ICW) used by web servers.
This value is the number of bytes a TCP sender can send to a TCP
receiver, immediately after establishing the connection, before re-
ceiving any ACKs from the receiver. The TCP standard [5] speci-
fies that for a given Maximum Segment Size (MSS) ICW be set to
at most 2*MSS bytes, and an experimental standard [4] allows that
ICW can be set to:

min�� �MSS�max�� �MSS� ������ bytes

As the majority of the web pages are under 10KB in size [6, 8, 24],
the ICW value can have a significant impact on the performance of
a web server [18]. The TBIT test to measure the ICW value used by
a web server works as follows. Let us assume that TBIT is running
on host A, and the remote web server is running on host B.

� TBIT opens a raw IP socket.

� TBIT opens a BPF device and sets the filter to capture all
packets going to and coming from host B.

� TBIT sets up a host firewall on A to prevent any packets com-
ing from host B from reaching the kernel of host A.

� TBIT sends a TCP SYN packet, with the destination address
of host B and a destination port of 80. The packet advertises
a very large receiver window, and the desired MSS.

� The TCP stack running on host B will see this packet and
respond with a SYN/ACK.

� The SYN/ACK arrives at host A. The host firewall blocks the
kernel from seeing this packet, while the BPF device delivers
this packet to the TBIT process.

� TBIT creates a packet that contains the HTTP 1.0 GET re-
quest for the base page (“/”), along with the appropriate ACK
field acknowledging the SYN/ACK. This packet is sent to
host B.

� After receiving the GET request, host B will start sending
data packets for the base web page to host A.

� TBIT does not acknowledge any further packets sent by host
B. The TCP stack running on host B will only be able to
send packets that fit within its ICW, and will then time out,
eventually retransmitting the first packet.

� Once TBIT sees this retransmitted packet, it sends a packet
with the RST flag set to host B. This closes the TCP connec-
tion.

The ICW value used by the TCP stack running on host B is given
by the number of unique data bytes sent by host B by the end of the
test.

Three salient features of the TBIT architecture are illustrated by
this test. First, this test can be run against any web server, and does
not require any special privileges on the web server being tested.
Second, note the ability of TBIT to fabricate its own TCP packets.
This allows us to infer the ICW value for any MSS, by setting ap-
propriate options in the SYN packet. This ability is important for

several other tests implemented in TBIT. Finally, the traffic gener-
ated during the ICW test will appear as conformant TCP traffic to
any monitoring entity.

The test incorporates several measures to increase robustness
and ensure the accuracy of test results. Robustness against errors
caused by packet losses is an important requirement. The loss of
the SYN, SYN/ACK, or the packet carrying the HTTP request is
dealt with in a manner similar to TCP, i.e. using retransmissions
triggered by timeouts. The loss of data packets sent by host B is
harder to deal with. Some losses are detectable by observing a gap
in the sequence numbers of arriving data bytes. If TBIT detects
such a gap in the sequence numbers, it terminates the test, without
returning a result. However, TBIT may not always be able to de-
tect lost packets if consecutive packets at the end of the congestion
window are lost. In such cases, the TBIT result may be incorrect.
Some robustness against this error can be achieved by running the
test multiple times. Another possibility is that the base web page
might not be large enough to fill the initial window for a given MSS.
If this happens, then the remote web server will usually transmit a
FIN either in the last data packet or immediately following last data
packet. TBIT can detect this. For additional robustness, the user
can conduct the test with a different MSS, or specify the URL of a
larger object on the web server, if such a URL is known.

We have implemented several tests in TBIT to verify various
aspects of TCP behavior of the remote web server. We have de-
scribed the ICW test above. Later in the paper, we consider five
others: a test to determine the version of congestion control algo-
rithm (Tahoe, Reno, NewReno etc.), running on the remote web
server, a test to determine if the remote web server reduces its con-
gestion window in half in response to a packet drop, a test to de-
termine if the remote web server supports SACK, and uses SACK
information correctly, a test to measure the duration of the time-
wait period on the remote web server and finally a test to determine
if the remote web supports ECN. We selected these tests to best
illustrate the versatility of TBIT, as well as to report on interesting
TCP behaviors that we have observed.

3. RELATED WORK
There are several ways to elicit information about the TCP be-

havior of a remote server. In the previous section, we described the
TBIT architecture. We now compare TBIT with related work that
has been reported in the literature.

One possible approach to actively eliciting and identifying TCP
behavior would have been to use a standard TCP at the web client to
request a web page from the server, and to use a tool in the network
along the lines of Dummynet [29] to drop specific packets from
the TCP connection (e.g. as we dropped ACKs for the ICW test).
A more complex alternative would have been to use a simulator
such as NS [10] in emulation mode to drop specific packets from
the TCP connection. However, both these approaches lack certain
flexibilities that we felt were desirable. As we shall describe in Sec-
tion 4.2, for some of the tests we needed to ensure that we would
receive a significant number of packets (20 to 25) in a single trans-
fer. Rather than search for large objects at each web site, the easiest
way to do this is to control the TCP sender’s packet size in bytes,
by specifying a small MSS (Maximum Segment Size) at the TCP
receiver. This would not have been easy to accomplish with either
the Dummynet or the NS emulator. Without the ability to specify a
small MSS, we may not have been able to test many web servers of
our choice.

An extensive study of the TCP behavior of Internet hosts is pre-
sented in [25]. The study was conducted using a fixed set of In-
ternet hosts on which the author had obtained special privileges,

such as the ability to login and to run tcpdump [20]. Large file
transfers were carried out between pairs of hosts belonging to this
set, and packet traces of these transfers captured using tcpdump
at both hosts. The traces were analyzed off-line, to determine the
TCP behavior of the hosts involved. The paper reported on the
TCP performance of eight major TCP implementations. The paper
also discussed the failure to develop a fully-general tool for auto-
matically analyzing a TCP implementation’s behavior from packet
traces.

We would note that the methodology used in [25] would not be
well-suited for our own purposes of testing for specific TCP behav-
iors in public web servers. First, the restriction to Internet hosts on
which the required privileges could be obtained would not allow
the widespread tests of web servers. Second, certain TCP behav-
iors of end-nodes can only be identified if the right patterns of loss
and delay occur during the TCP data transfer.

In [14], the authors examine TCP/IP implementations in three
major operating systems, namely, FreeBSD 4.0, Windows 2000 and
Linux (Slackware 7.0), using simulated file transfers in a controlled
laboratory setting. Specific loss/delay patterns are introduced using
Dummynet [29]. The authors report several flaws in the TCP/IP
implementations in the operating systems they examined. Since
the methodology requires complete control over both end-hosts, as
well as the routers between them (to introduce loss and delay), it
can not be used to answer questions about TCP deployment in the
global Internet.

NMAP [13] is a tool for identifying operating systems (OS) run-
ning on remote hosts in the Internet. NMAP probes remote ma-
chines with a variety of ordinary and out-of-ordinary TCP/IP packet
sequences. The response of the remote machine to these probes
constitutes the fingerprint of the TCP/IP stack of the remote OS.
By comparing the fingerprint to a database of known fingerprints,
NMAP is able to make a guess about the OS running on the re-
mote host. TBIT differs from NMAP in many respects. The goal
of NMAP is to detect the operating system running on the remote
host, and not to characterize the TCP behavior of the remote host.
Thus, NMAP probing is not limited to TCP packets alone. Be-
yond fingerprinting, NMAP collects no information about the TCP
behavior of the remote hosts. So, information such as the range
of ICW values observed in the Internet can not be obtained using
NMAP. Also, as mentioned in Section 2, NMAP uses out-of-the-
ordinary TCP/IP packet sequences for several of its fingerprinting
probes, while TBIT uses only normal TCP data transfer operations
to elicit information.

One might argue that to characterize the TCP behavior of a re-
mote host, it is sufficient to detect the OS running on the host using
a tool like NMAP. The TCP behavior can be analyzed by studying
the OS itself, using the source code (when available), information
provided by the vendor (e.g. Microsoft web site offers information
about the TCP/IP stack in the Windows operating system), and lab-
oratory experiments [14]. We first argue that identifying the OS of
the remote host is not sufficient, because the TCP standard defines
a number of user-configurable parameters. These are set differ-
ently by different users, and data about these parameters cannot be
obtained by merely identifying the OS or by analyzing the source
code. Second, regardless of the claims made by the vendor, the
TCP code might contain subtle bugs [26], and hence, the observed
behavior can be significantly different from claims in vendor liter-
ature. Thus, direct experimentation is required, either in laboratory
experiments or across the Internet with public web servers. While
laboratory experiments are well-suited for a thorough exploration
of the behavior of major, widely-distributed TCP implementations,
they are not practical for characterizing the entire range of TCP im-

plementations in the public Internet. Thus, we believe that TBIT is
complementary to trace analysis, laboratory experiments, and OS
fingerprinting tools.

4. TCP BEHAVIOR OF WEB SEVERS
In this section, we describe some of the tests implemented in

TBIT. We have examined the TCP behaviors of thousands of web
servers using these tests. These results are also included along with
the description of each test.

For TBIT tests described in Sections 4.1- 4.5, we used a list of
4550 web severs (unique IP addresses). The list is a subset of the
set of IP addresses obtained from three sources: trace data from a
web proxy [16], the list published at 100hot.com and the list of
web servers used in [17]. Each of these 4550 web servers sends
more than 3500 bytes of data when the base page is requested. We
make no claim about the representativeness of this list, apart from
assuming that this list is likely to contain some selection of high-
traffic web servers in the Internet. This is a smaller but more se-
lective list of web servers than the one used in an earlier version
of this work [23]. We used NMAP [13] to identify the operating
systems running on these remote hosts. NMAP was able to provide
some guess about the operating system running on 3225 of these
web servers. The tests were run in May 2001.

For the ECN test described in Section 4.6, we used a different set
of hosts, and the tests were run in September 2000. We will discuss
the reasons for this in Section 4.6.

4.1 Initial value of congestion window (ICW)
We have described the ICW test in Section 2. We ran this test

on the list of servers described above. The MSS was set to 100
bytes. We tested each server five times. Thus, we carried out a total
of ���� � � � ��	�� tests. A TBIT test can terminate without
returning a result due to various reasons. Of the 22750 tests only
1012 tests terminated without returning a result. There were several
reasons for early termination:

� TBIT did not receive a SYN/ACK in response to its SYN,
even after retransmissions, so no connection was established.

� The server sent a SYN/ACK but did not send any data in
response to the HTTP request.

� TBIT detected a packet loss.

� The remote server sent a packet with the RST or FIN flag set,
before the test was complete.

� The remote server sent a packet with MSS larger than the one
TBIT had specified.

Table 1 gives the number of tests that terminated due to each reason.
We will discuss these reasons in more detail in Section 5.

In Section 5, we discussed how the ICW test may return an er-
roneous result. As we mentioned earlier, we tested each server five
times. To provide robustness against errors, we classify each server
into one of the five categories based on results of the five tests.

� If at least three tests return results, and all the results are
the same, the server is added to category 1. We have the
highest confidence in these results, as they have been shown
to be repeatable. We report summary results only for servers
belonging to this category.

� If at least three tests return results, but not all the results are
the same, the server is added to category 2. The differing re-
sults could be due to several factors, such as confusing packet

Reason Tests
No connection 376
No data 374
RST/FIN 82
Large MSS 17
Packet drop 163
Total out of 22750 1012

Table 1: ICW: Reasons for early termination

Category Servers
1 4264
2 196
3 41
4 2
5 44

Total 4550

Table 2: ICW: Server categories

ICW size Servers
1 409
2 3638
3 12
4 62

5 or more 143
Total 4264

Table 3: ICW: Summary results

drop patterns (as discussed in Section 2), which are further
discussed in Section 5. We would like to minimize the num-
ber of servers that fall in this category.

� If one or two tests return results, and all the results are the
same, the server is added to category 3. Further tests are
needed to categorize the TCP behavior of this server.

� If one or two tests return results, and not all the results are
the same, the server is added to category 4. We would like to
minimize the number of servers that fall in this category as
well.

� If none of the five tests returned a result, this server was
added to category 5. These servers need to be investigated
further.

Table 2 shows the number of servers belonging to each category.
Further discussion of these categories is provided in Section 5.

Table 3 shows the summary results for the servers belonging to
the first category. We found that 3378 servers set the ICW to two
segments, while 409 servers set it to a single segment. Only 62
servers set the ICW to four segments, as allowed by [4]. A total
of 143 servers set their ICW to larger than four segments. Three
web servers, belonging to University of Wisconsin-Madison, were
found to set the ICW to more than 8000 bytes. We repeated the ex-
periment with an MSS of 512 bytes, which confirmed these trends.

NMAP was able to guess the operating system running on 25
servers out of the 62 that set their ICW to 4 packets. 24 of these
are running a beta version of the Solaris 8 operating system, while
one runs Solaris 2.6-2.7. The web servers that set ICW to 8000
bytes or more seem to be running older versions of a Digital (Com-
paq) UNIX operating system. We understand that these web servers
might be a research implementation.

4.2 Congestion control algorithm (CCA)
There are a range of TCP congestion control behaviors in de-

ployed TCP implementations, including Tahoe [15], Reno [5], New-
Reno [12], and SACK [19], which date from 1988, 1990, 1996,
and 1996, respectively. These different variants of TCP conges-
tion control are described and illustrated in detail in [9]. A TCP
connection cannot use the SACK option unless both end nodes are
SACK-enabled. In the absence of SACK, the TCP congestion con-
trol mechanisms used by a remote host are likely to be either Tahoe,
Reno, or NewReno. The different varieties of TCP can have sig-
nificantly different performance under certain packet loss regimes.
These different TCP variants are not signaled in packet headers; the
only way to determine which is being used by a particular host is to
observe a trace of a TCP connection that contains packet drops elic-
iting the desired behavior. Using TBIT’s ability to create artificial
packet drops, we have designed a test to distinguish between the
Tahoe, Reno, and NewReno TCP congestion control mechanisms.
The test is based on the simulations described in [9].

� TBIT establishes a connection with the remote web server,
in a manner similar to the ICW test described in Section 2.
The MSS is set to a small value (e.g. 100 bytes) to force the
remote server to send several data packets for the test, even
if the requested web page is small in size. TBIT declares a
receiver window of 5*MSS.

� TBIT requests the base web page.

� The remote server starts sending the base web page to the
TBIT client in 100-byte packets.

� TBIT acknowledges each packet according to the TCP pro-
tocol [27], until the 13-th packet is received.

� TBIT drops this packet, as illustrated in the tests in Figure 1.

� TBIT receives and acknowledges packets 14 and 15. The
ACKs sent are duplicate ACKs for packet 12.

� Packet 16 is dropped. All further packets are acknowledged
appropriately.

� TBIT closes the connection as soon as 25 data packets are
received, including retransmissions.

Based on this stream of 25 packets, TBIT can determine the con-
gestion control behavior of the remote TCP. NewReno TCP is char-
acterized by a Fast Retransmit for packet 13, no additional Fast Re-
transmits or Retransmit Timeouts, and no unnecessary retransmis-
sion of packet 17, as in Figure 1(a). Reno TCP is characterized by a
Fast Retransmit for packet 13, a Retransmit Timeout for packet 16,
and no unnecessary retransmission of packet 17, as in Figure 1(b).
Tahoe TCP is characterized by no Retransmit Timeout before the
retransmission of packet 13, but an unnecessary retransmission of
packet 17, as shown in Figure 1(c). For a more detailed explana-
tion of this behavior, we refer the reader to [9]. TCP without Fast
Retransmit, a category that we had never encountered before, is
characterized by a Retransmission Timeout for packet 13, and an
unnecessary retransmission of packet 17, as shown in Figure 1(d).

In addition to these four behaviors, a number of web servers ex-
hibit a variant of Reno characterized by the transmission of addi-
tional packets “off the top” between the retransmissions of packets
13 and 16, and no unnecessary retransmissions, as show in Fig-
ure 2. We call this variant RenoPlus.

As described in Section 4.1, a TBIT test can terminate without
returning any result due to a variety of reasons. In addition to the

Reason Tests
No connection 237
No data 205
RST/FIN 106
Large MSS 20
Packet drop 387
Packet reordering 1372
Buffer overflow 2
Uncategorized 343
Total out of 22750 2672

Table 4: CCA: Reasons for early termination

Category Servers
1 3728
2 483
3 172
4 23
5 144

Total 4550

Table 5: CCA: Server categories

Type Servers
NewReno 1571
NoFastRetrans 1010
Reno 667
RenoPlus 279
Tahoe 201
Total 3728

Table 6: CCA: Summary results

reasons described in Section 4.1, this test will also terminate with-
out returning a result due the following reasons:

� TBIT detected packet reordering.

� An internal buffer overflowed. This happens very rarely, and
we are working to remedy this.

� Based on the observed packet sequence, TBIT is unable to
classify the server into any of the types shown in Figures 1 and 2.

As before, we ran each test five times. Of the 22750 tests we ran,
2672 terminated without returning results. Table 4 gives the num-
ber of tests that terminated due to each reason. We classified the
servers based on these test results into five categories, as described
in Section 4.1. Table 5 shows the number of servers belonging
to each category. To ensure robustness, we only report results for
servers belonging to the first category. Table 6 shows the summary
results.

The main surprise in these results was the number of web servers
that were categorized as “TCP without Fast Retransmit”, shown in
Figure 1(d). We did not expect to find any TCP implementations
that did not use the Fast Retransmit procedure, which has been in
TCP implementations since 1988. For TCP without Fast Retrans-
mit, the TCP sender does not infer a packet loss from the receipt of
three duplicate ACKs, but has to wait for a retransmit timer to ex-
pire before inferring loss and retransmitting a packet. Figure 1(d)
shows the clear performance penalty to the user of the absence of
Fast Retransmit.

NMAP was able to guess the operating system running on 751
of the 1010 web servers classified by our test as using TCP without

0

500

1000

1500

2000

2500

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

S
eq

ue
nc

e
N

um
be

r

Time

www.june.com 195.81.253.100

Rcvd
Ack

Drop

(a) NewReno

0

500

1000

1500

2000

2500

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

S
eq

ue
nc

e
N

um
be

r

Time

www.careerblazers.net 205.247.125.19

Rcvd
Ack

Drop

(b) Reno

0

500

1000

1500

2000

2500

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

S
eq

ue
nc

e
N

um
be

r

Time

www.metal-gear.de 212.63.155.158

Rcvd
Ack

Drop

(c) Tahoe

0

500

1000

1500

2000

2500

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

S
eq

ue
nc

e
N

um
be

r

Time

www.attach.net 209.150.120.5

Rcvd
Ack

Drop

(d) TCP without Fast Retransmit

Figure 1: Examples of congestion control behavior

0

500

1000

1500

2000

2500

1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4

S
eq

ue
nc

e
N

um
be

r

Time

www.unm.edu 129.24.8.216

Rcvd
Ack

Drop

Figure 2: RenoPlus, a variant of Reno

Fast Retransmit. Of these, 666 are running some variant of Mi-
crosoft’s Windows operating system. To investigate this behavior
further, we developed a TBIT test that verifies the web server’s re-
sponse to a single packet dropped from a window of five packets,
and verified that most of these servers do not use Fast Retransmit
even in a scenario with a single packet drop. Our enquiries with
Microsoft have indicated that this behavior is a result of a failed
attempt to optimize TCP performance for web pages that are small
enough to fit in the socket buffer of the sender. The attempt to opti-
mize the transmission of packets in such cases does not seem to be
working as intended. Our results indicate that this problem indeed
does not occur when the base web page is large.

Microsoft reported that it would fix the bug in Whistler, its next-
generation operating system, and promised a software patch to fix
the problem in Windows 2000. However, at the time of writing this
paper, the patch was not available.

NMAP results indicate that most of the servers identified by
TBIT as using NewReno run newer versions of Linux and Solaris
operating systems, while many of the systems reporting the older
Reno behavior seem to be running various versions of FreeBSD
and BSDI. Many of the others with Reno seem to be running var-
ious versions of Windows operating systems, but with large base
web pages. Systems reporting Tahoe behavior seem to be running
various versions of the Linux operating system. NMAP was able to
identify the behavior of only 123 servers that exhibited the “Reno-
Plus” behavior. Of these, 43 appear to be running Solaris 2.5-2.5.1.

We note that for 30 servers, three or more (of the five) tests ter-
minated because TBIT was unable to classify the server into any of
the types shown in Figures 1 and 2. We are investigating these 30
servers further.

4.3 Conformant congestion control (CCC)
A TCP sender is expected to halve its congestion window after

a packet loss. This aspect of TCP behavior is the key to the stabil-
ity of the Internet [11]. Therefore, we developed a TBIT test that
verifies this behavior, shown in Figure 3. The test is carried out as
follows.

� TBIT establishes a connection with the remote server, using
a small MSS, and requests the base web page.

0

500

1000

1500

2000

2500

3000

3500

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

S
eq

ue
nc

e
N

um
be

r

Time

www.thetech.org 204.161.56.11

Rcvd
Ack

Drop

(a) Window not reduced

0

500

1000

1500

2000

2500

3000

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

S
eq

ue
nc

e
N

um
be

r

Time

www.zipmail.com 207.88.19.245

Rcvd
Ack

Drop

(b) Window reduced to four segments

Figure 3: Examples of window reduction behavior

Reason Tests
No connection 389
No data 500
RST/FIN 185
Large MSS 19
Packet drop 452
Packet reordering 1338
Buffer overflow 2
Total out of 22750 2885

Table 7: CCC: Reasons for early termination

Category Servers
1 3461
2 704
3 196
4 50
5 139

Total 4550

Table 8: CCC: Server categories

Window after loss Servers
5 segments or less 3330
More than 5 segments 131
Total 3461

Table 9: CCC: Summary results

� TBIT acknowledges all packets until packet 15 is received. If
the remote TCP has been exhibiting correct slowstart behav-
ior, the congestion window should be at least eight segments
at this time. TBIT drops packet 15.

� TBIT ACKs all packets appropriately, sending duplicate ACKs
acknowledging packet 14, until packet 15 is retransmitted.
The retransmission is acknowledged appropriately. After that,
TBIT does not acknowledge any more packets. This will ul-
timately force the remote server to time out and retransmit
the first unacknowledged packet.

� As soon as TBIT detects this retransmission, it closes the
connection and terminates the test.

The size of the reduced congestion window, in bytes, is the dif-
ference between the maximum sequence number received by TBIT

and the highest sequence number acknowledged by TBIT. Com-
paring it to the size of the congestion window prior to reduction
(8 segments), we can decide if the remote TCP uses conformant
congestion control.

The robustness issues involved in this test are similar to those
discussed in Section 4.2. We ran the test against each host five
times. Table 7 gives the number of tests that terminated without
returning any result due to various reasons. Based on these test
results, we categorized the servers in five categories as described
in Section 4.1. Table 8 shows the number of servers belonging to
each category. Table 9 gives summary results, based on the servers
in the first category.

We found 131 servers that did not reduce their congestion win-
dow to five segments or less. NMAP was able to identify the op-
erating system running on 99 of these. 40 of these were identified
as running running an older version of Solaris, namely 2.5 or 2.5.1.
We contacted our colleagues at Sun, who looked at the code and re-
ported that the behavior was due to a bug in the TCP stack of adding
three segments to the congestion window after halving it following
a Fast Retransmit. We did not see this problem in the more recent
versions of this operating system.

4.4 Response to selective acknowledgments
A number of TCP stacks have implemented the TCP Selective

Acknowledgment option (SACK) [19]. It is possible to determine
from passive traces whether a remote TCP supports the TCP SACK
option simply by observing whether the TCP SYN packet includes
the SACK PERMITTED option [3]. However, using only passive
monitoring, it is difficult to determine whether the remote TCP ac-
tually uses the information contained in the SACKs sent by the
receiver. We have designed the following TBIT test to verify this.

� TBIT sends a SYN packet with a small MSS and the SACK -
PERMITTED option to the remote web server.

� If the returning SYN/ACK does not contain the SACK PER
MITTED option, TBIT terminates the test.

� Otherwise, TBIT continues to receive and acknowledge pack-
ets until packet 15 is received. Packets 15, 17 and 19 are
dropped. TBIT sends appropriate SACKs in response to pack-
ets 16 and 18.

� TBIT continues to receive packets, and send appropriate SACKs
until the retransmissions of packets 15, 17 and 19 are re-
ceived.

0

500

1000

1500

2000

2500

3000

0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2

S
eq

ue
nc

e
N

um
be

r

Time

www.earthlink.net 207.217.114.200

Rcvd
Ack

Drop

(a) Retransmissions in one RTT: Optimal SACK usage.

0

500

1000

1500

2000

2500

3000

3500

4000

0.95 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35

S
eq

ue
nc

e
N

um
be

r

Time

www.safetyalerts.com 216.15.183.52

Rcvd
Ack

Drop

(b) Retransmissions in two RTTs: SACK usage shown.

0

500

1000

1500

2000

2500

3000

3500

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2

S
eq

ue
nc

e
N

um
be

r

Time

www.coda.cs.cmu.edu 128.2.194.223

Rcvd
Ack

Drop

(c) NewReno-like behavior: No SACK usage shown.

0

500

1000

1500

2000

2500

3000

3500

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

S
eq

ue
nc

e
N

um
be

r

Time

www.storageauctions.com 209.90.101.134

Rcvd
Ack

Drop

(d) TCP without Fast Retransmit.

Figure 4: Examples of response to SACKs

� TBIT closes the connection.

The ideal behavior of a SACK-enabled sender would be to resend
packets 15, 17 and 19 in a single RTT, and not send any unneces-
sary retransmissions. This behavior is quite different from that of
a NewReno receiver, which will take at least three round trip times
to send all the retransmissions.

Before carrying this test out, we used another, simple TBIT test
to determine which of the 4550 web servers were SACK-enabled.
We found 1854 web servers to be SACK-enabled. The above test
was carried out on this smaller set.

The robustness issues involved in this test are similar to those
discussed in Section 4.2. We ran the test against each host five
times. Table 10 gives the number of tests that terminated without
returning any result due to various reasons. To our surprise, we
found that in 18 tests, the web server did not negotiate the SACK
option in the initial SYN handshake. We have identified two servers
that appear to negotiate SACK sometimes, while not negotiating it
at other times. We speculate that the IP addresses of these servers
are answered by multiple physical machines. We are investigating
this use further.

Based on these test results, we categorized the servers in five
categories as described in Section 4.1. Table 11 shows the number
of servers belonging to each category. Table 12 gives summary
results, based on the servers in the first category.

The behavior seen in Figure 4(a) represents optimal use of SACK
information. The TCP sender retransmits all three packets in a sin-
gle round-trip time, and does not retransmit any packets unneces-

sarily. NMAP results indicate that most of the hosts exhibiting this
type of behavior are running newer versions of Linux (2.2.13) or
Solaris (2.6 or higher) operating systems.

The behavior seen in Figure 4(b) also makes clear use of the
SACK information, although the sender takes two round trip times
to retransmit the lost packets. The sender does not retransmit any
packets unnecessarily. Senders represented in the first row of Ta-
ble 12 exhibit one of these two behaviors. The behavior in Fig-
ure 4(b) is mostly exhibited by larger base pages from hosts that
are running various versions of the Windows 2000 operating sys-
tem. (Smaller base pages from hosts identified as Windows 2000
tended to behave as TCP without Fast Retransmit in Figure 4(d), as
discussed in earlier.)

In Figure 4(c), the sender is seen to be taking three round trip
times to finish the retransmissions. This is the behavior we would
expect from a NewReno sender. There is no indication that the TCP
sender is making any use of the information in the SACK packets.
NMAP results indicate that most of the hosts exhibiting this type
of behavior are running various versions of the Linux operating
system.

Finally, in Figure 4(d), we see a sender that ignores SACK in-
formation, acting like TCP without Fast Retransmit. The sender
is using a Retransmission Timeout to retransmit packet 15, and a
TCP sender is required to discard information obtained from SACK
blocks following a Retransmission Timeout [19]. Hosts exhibiting
this behavior seem to be running various versions of Microsoft’s
Windows operating systems, and seem to have small base pages.

Reason Tests
No connection 141
No data 353
RST/FIN 20
Large MSS 13
Packet drop 223
Packet reordering 991
No SACK 18
Total out of 9270 1759

Table 10: SACK: Reasons for early termination

Category Servers
1 1309
2 259
3 121
4 11
5 154

Total 1854

Table 11: SACK: Server categories

SACK usage Servers
SACK usage verified 550
SACK usage not verified 759
Total 1309

Table 12: SACK: Summary results

This failure to use Fast Retransmit was discussed in Section 4.2.

4.5 Time wait duration
A three-way handshake [31] is required to close a TCP connec-

tion between the two hosts. Consider two hosts, A and B, with a
TCP connection between them. Assume that host A wishes to close
the TCP connection. Host A starts by sending a FIN packet to host
B. Host B acknowledges this FIN, and it sends its own FIN to host
A. Host A sends an ACK for this FIN to host B. When this ACK
arrives at host B, the handshaking procedure is considered to be
complete. The TCP standard [27] specifies that after ACKing the
FIN, the host A (i.e. the host that initiated the closing sequence)
must wait for twice the duration of the Maximum Segment Life-
time (MSL) before it can reuse the port on which the connection
was established. The prescribed value of MSL is 2 minutes [27].
During this time, host A must retain sufficient state information
about the connection to be able to acknowledge any retransmission
of the FIN sent by host B. For busy web servers, this represents
a significant overhead [18]. Thus, many major web servers use a
smaller value of MSL. We have developed a TBIT test to measure
this value. The test works as follows.

1. TBIT opens a connection with the remote host, and requests
the basic web page.

2. TBIT receives and appropriately acknowledges all the pack-
ets sent by the remote web server.

3. The remote server will actively close the connection by send-
ing a FIN.

4. TBIT acknowledges the FIN, and sends its own FIN packet.

5. TBIT waits until the remote server acknowledges its FIN.
If necessary, it retransmits the FIN using the timeout mecha-
nism described in the TCP standard [27]. Once the FIN/ACK
is received, set syn counter to zero.

Reason Tests
No connection 527
No data 1479
RST/FIN 118
Large MSS 10
Packet drop 112
Buffer overflow 1
syn counter == 200 240
Total out of 22750 2487

Table 13: Time Wait: Reasons for early termination

Category Servers
1 3808
2 371
3 262
4 11
5 98

Total 4550

Table 14: Time Wait: Server categories

Duration Servers
No wait 1259
� � � �MSL �
� 2118

� � � �MSL � ��� 11
��� � � �MSL � ��� 2
��� � � �MSL � ��
 401
� �MSL � ��� 17
Total 3808

Table 15: Time wait duration

6. TBIT sends a SYN packet to the remote web server. The
sequence number of this SYN packet is less than the largest
sequence number sent by TBIT to the remote web server so
far. Increment syn counter by 1.

7. TBIT waits for a fixed amount of time to receive a SYN/ACK
from the remote web server. It ignores any other packets sent
by the remote web server.

8. If a SYN/ACK is received at the end of the waiting period,
go to 9. Otherwise, check to see if syn counter is equal
to 200. If it is, terminate the test without returning any result.
Otherwise, go to 6.

9. Once the SYN/ACK is received, TBIT sends a packet with
the RST flag set to the remote web server.

The approximate duration of the 2*MSL period is the time elapsed
between steps 6 and 9.

The test can overestimate the time-wait duration if the SYNs sent
by TBIT or the SYN/ACK sent by the remote web server are lost.
Robustness against these packet losses can be obtained by reducing
the wait period between successive SYNs (step 7). The accuracy
of measurement is limited by the round trip time to the server be-
ing tested, and the duration of the wait period between successive
SYNs. We carried out this test using a wait of 2 seconds between
successive SYNs.

As before, we ran each test five times. Of the 22750 tests we ran,
2487 terminated without returning results. Table 13 gives the num-
ber of tests that terminated due to each reason. The last row rep-
resents tests that terminated because the value of syn counter

reached 200. We classified the servers based on these test results
into five categories, as described in Section 4.1. Table 14 shows the
number of servers belonging to each category. To ensure robust-
ness, we only report results for servers belonging to the first cate-
gory. Table 15 shows the summary results. The first row represents
hosts that replied to the very first SYN (step 6). From the results, it
appears that the most popular values of MSL are 30 seconds and 2
minutes. From NMAP results, it appears that the current versions
of Solaris and Windows operating systems provide 2 minutes as
the default MSL value, while Linux and FreeBSD use 30 seconds.
Most of the servers using no wait seem to be running either some
version of the Windows operating system, or older versions (2.0.37
or less) of the Linux operating system.

4.6 Response to ECN
Explicit Congestion Notification (ECN) [28] is a mechanism to

allow routers to mark TCP packets to indicate congestion, instead
of dropping them, when possible. While ECN-capable routers are
not yet widely deployed, the latest versions of the Linux operat-
ing system include full ECN support. Following this deployment
of ECN-enabled end nodes, there were widespread complaints that
ECN-capable hosts could not access a number of websites [16].
We wrote a TBIT test to investigate whether ECN-enabled packets
were being rejected by popular web servers. For this test, the be-
havior of the web server is indistinguishable from the behavior of
firewalls or load-balancers along the path to the server; the rejection
of packets from ECN-enabled hosts in fact is due to the firewalls
and load-balancers, and not due to the web servers themselves [1].

Setting up an ECN-enabled TCP connection involves a hand-
shake between the sender and the receiver. This process is de-
scribed in detail in [28]. Here we provide only a brief descrip-
tion of the aspects of ECN that we are interested in. An ECN-
capable client sets the ECN ECHO and CWR (Congestion Window
Reduced) flags in the header of the SYN packet; this is called an
ECN-setup SYN. If the server is also ECN-capable, it will respond
by setting the ECN ECHO flag in the SYN/ACK; this is called an
ECN-setup SYN/ACK. From that point onwards, all data packets
exchanged between the two hosts, except for retransmitted pack-
ets, can have the ECN-Capable Transport (ECT) bit set in the IP
header. If a router along the path wishes to mark such a packet as
an indication of congestion, it does so by setting the Congestion
Experienced (CE) bit in the IP header of the packet.

The goal of the test is to detect broken equipment that results
in denying access to certain web-servers from ECN-enabled end
nodes. The test is not meant to verify full compliance to the ECN
standard [28].

1. TBIT constructs an ECN-setup SYN packet, and sends it to
the remote web server.

2. If TBIT receives a SYN/ACK from the remote host, TBIT
proceeds to step 4.

3. If no SYN/ACK is received after three retries (failure mode
1), or if a packet with RST is received (failure mode 2), TBIT
concludes that the remote server exhibits a failure. The test
is terminated.

4. TBIT checks to see if the SYN/ACK was an ECN-setup SYN/-
ACK, with the ECN ECHO flag set and CWR flag unset. If
this is the case, then the remote web server has negotiated
ECN usage. Otherwise, the remote web server is not ECN-
capable.

5. Ignoring whether the remote web server negotiated ECN us-
age, TBIT sends a data packet containing a valid HTTP re-
quest, with the ECT and CE bits set in the IP header.

6. If an ACK is received, check to see if the ECN ECHO flag
is set. If no ACK is received after three retries, or if the
resulting ACK does not have the ECN ECHO flag set (failure
mode 3), TBIT concludes that the remote web server does not
support ECN correctly.

To ensure robustness, before running the test we check to make
sure that the remote server is reachable from our site, and would
ACK a SYN packet sent without the ECN ECHO and CWR flags
set. Robustness against packet loss is ensured by the retransmission
of a SYN or of the test data packet as mentioned in steps 4 and 6.

The ECN test was conducted in September, 2000, and used a
larger set of hosts (about 27,000). The purpose of the ECN test
was to investigate the problem reported in [16], so we included the
same list of web servers. Each host was tested only once. The test
returned a result in case of 24,030 hosts. The cumulative findings
are reported in Table 16. The first row reports hosts that do not sup-
port ECN, but interact correctly with clients that do support ECN.
The second and third row represent hosts that deny access to ECN-
capable clients. The fourth row represents hosts that negotiate ECN
support, but fail to respond to CE bits set in data packets. These
three cases, failure modes 1 through 3, are broken implementations
or firewalls that need to be corrected. The fifth row represents hosts
that seem to support ECN correctly.

NMAP results indicated that many hosts with failure mode 2
were behind Cisco’s Localdirector 430 [7], which is a load bal-
ancing proxy. Some of the hosts with failure mode 2 have been
identified by others as using Cisco’s PIX firewall. Both of these
problems have been brought to Cisco’s attention, and a fix has since
been made available. Most hosts with failure mode 1 seem to be
running a version of the AIX operating system. We have contacted
people at IBM, and they are working on the problem. Some of these
failures are due to firewalls and load-balancers that mistake the use
of the ECN-related flags in TCP for a signature for a port scanner
tool [21]. Most of the hosts with failure mode 3 seem to be running
older versions of Linux (Linux 2.0.27-34). Of the 22 hosts in the
fifth row, negotiating ECN and using ECN correctly, 18 belong to
a single subnet. NMAP could not identify the operating systems
running on these 18 hosts. Of the remaining four, three seem to be
running newer versions of Linux (2.1.122-2.2.13).

We repeated the ECN tests in April, 2001 for the servers report-
ing failure mode 1 or 2 in the September 2000 tests. Of the 1699
web servers responding, 1039 still exhibited failure mode 1, 326
still exhibited failure mode 2, and 332 no longer exhibited failure.
The list of the failing web servers is available on the TBIT web
page [22].

5. DISCUSSION OF RESULTS
This section discusses in more detail the reasons why a TBIT

test might terminate without returning any result. The fraction of
tests that do not return a result is highest for the SACK test, where
a total of 19% of the tests failed to return a result. These reasons
for failing to return a result are enumerated in Tables 1, 4, 7, 10 and
13.

The first three reasons in the tables are: (i) no connection, (ii) no
data and (iii) receipt of a packet with the RST or FIN flag set before
the the test is complete. When any of these three happen, the TBIT
test ends without returning a result.

The fourth reason in each of the tables is “Large MSS”. TBIT
terminates the test if the server sends a packet with MSS larger

Test result Servers
Server not ECN-Capable 21602
Failure mode 1: No response to ECN-setup SYN 1638
Failure mode 2: RST in response to ECN-setup SYN 513
Failure mode 3: ECN negotiated, but data ACK does not report ECN ECHO 255
ECN negotiated, and ECN reported correctly in data ACK 22
Total 24030

Table 16: ECN test results, September 2000.

than the maximum set by the receiver. One might argue that this
should not be a reason to terminate the test immediately, especially
for simpler tests like the ICW test, and for tests such as the Time-
wait test, where the data flow itself is not of interest. However, we
decided to do so, because the sender TCP is not supposed to exceed
the MSS value set by the receiver [2]. We are working on relaxing
this requirement.

The two other important reasons for test terminations are packet
drops and packet reordering detected by TBIT before the comple-
tion of the test. For the ICW test, while certain packet drops can be
detected and their impact on the final result can be correctly antic-
ipated, we chose not to do so to keep the test code simple. Packet
reordering is not an issue for the ICW test.

For the CCA, CCC amd SACK tests, packet drops and packet re-
ordering cause significant problems, as the results from these tests
depend upon the ordering and timing of the packets received. We
have developed code to avoid terminating the test for some simple
cases of packet losses and reordering. However, we decided that
the incremental gain was not worth the added complexity.

The Timewait test is not affected by packet reordering. It is also
unaffected by any packet drops within the data stream. Packet
drops during the handshake and teardown do affect the test. As
described in Section 4.5, we guard against them by using retrans-
missions, in a manner similar to TCP. In Table 13, we see that 112
tests terminated without returning a result due to packet drops. This
is due to a bug in our code, which terminated the test whenever the
very first data packet sent by the server is lost. We plan to fix this
error in a future version of TBIT.

We also note that a TBIT test might return different results when
run against the same host at different times. The hosts belonging to
categories 3 and 4 in Tables 2, 5, 8, 11 and 14 exhibit this problem.
We speculate that there are at least two causes for this.

The first cause may be certain packet loss sequences that TBIT
is unable to detect and guard against. For example, during an ICW
test, packets can be lost from the “top” of the congestion window.
TBIT can not detect this loss, and would return a value of ICW that
is smaller than the one actually used by the server. In case of the
CCA test, all of the duplicate ACKs sent by TBIT for packet 13
may be lost. In that case, the remote host would be forced to take
a timeout, and may be erroneously classified as “TCP without Fast
Retransmit”.

Another possibility is that some of the web servers are, in effect,
clusters of computers answering to the same IP address. Depending
on the load balancing algorithm used, we may contact two differ-
ent machines in the cluster if the same test is repeated at different
times. These two computers may run different operating systems,
and hence different TCP stacks. We have seen some evidence of
this in the SACK test as discussed in Section 4.4.

Since we found no easy way to deal with either of the two prob-
lems discussed above, we chose to ran each TBIT test multiple
(five) times, and report results only about those hosts that returned
results for some minimum number (three) of these tests, and re-
turned the same result each time. It is possible to devise more

elaborate schemes to ensure robustness of test results, and we are
investigating these further.

Hosts belonging to Category 5 also deserve special attention.
These hosts failed to return answers for any of the five tests. We
found that some of these hosts were simply offline for a variety
of reasons (failed dot-coms?) during our testing period. Some
would not send packets with a small MSS. We also found that
packet reordering was a persistent problem for some of the hosts,
especially the ones that appear to be across transoceanic links. TBIT
tests like CCA, CCC and SACK tend to fail more often with such
hosts.

We note that the number of hosts belonging to Category 1 may
be thought of as a metric of “usefulness” of TBIT tests. Suppose
we were to come up with a TBIT test that verified some interest-
ing property of TCP, but required very large number of packets to
complete, and had to terminate for any packet loss or reordering.
It is likely that for such a test, few hosts would belong to the first
category. Thus, the results of such a test would always be question-
able. We note that for all of the tests reported in this paper, more
than 70% of the hosts belong to the first category. We had reported
considerably poorer performance in an earlier report [23] on this
work. The poor performance was due to the fact that we had not
verified that all the hosts would send sufficient data to complete the
test. We have also made improvements in the TBIT code to reduce
the number of instances in which a test has to be terminated early.

We used NMAP to identify the operating system running on the
web servers being tested. Any assertions we make regarding the op-
erating system running on a web server are subject to the accuracy
of NMAP identification. We also note that in many cases, rather
than providing a single guess, NMAP provides a set of operating
systems as potential candidates.

6. CONCLUSION
In this paper, we have described a tool, TBIT, for characterizing

the TCP behavior of remote web servers. TBIT can be used to
check any web server, without the need for any special privileges
on that web server, in a non-disruptive manner. The source code for
TBIT is available from the TBIT web page [22]. We believe that
this kind of data (e.g. versions of congestion control algorithms
running on web servers, sizes of initial window, time wait duration)
is being reported for the first time. As a result of these tests, we
have more information about the congestion control mechanisms
used by traffic in the Internet. As a side effect of this work, we
uncovered several bugs in TCP implementations of major vendors,
and helped them correct these bugs.

We plan to continue this work in several ways. First, we plan
to develop tests for more aspects of TCP behavior. For example,
it would be useful to track the deployment of new TCP mecha-
nisms such as the DSACK option (RFC 2883), Limited Transmit
(RFC 3042), or Congestion Window Validation (RFC 2861), or to
investigate the details of retransmit timeout mechanisms. One goal
is to provide comprehensive standards-compliance testing of TCP
implementations. In addition, we are exploring the possibility of

using TBIT to automatically generate models of TCP implementa-
tions for use in simulators such as NS [10].

More generally, we believe that active tools like TBIT are neces-
sary to test other aspects of Internet behavior as well. Similar work
has already been done to test the deployment of HTTP/1.1 in web
servers [17], and to test the protocol behavior of web clients [3], in
addition to the wealth of other measurement-related research. One
possibility would be to extend TBIT to gather more information
about the infrastructure surrounding web servers, as it affects the
behavior of the server. (Firewalls that block ICMP packets come
to mind.) A completely different approach would be to develop
active but non-destructive tools to explore the effectiveness (or in-
effectiveness) of queue management at the congested router(s) on
the path to the web server, by examining the pattern of drops and
of end-to-end delay. There is a great deal still to do to understand
both the behavior in the Internet and the rate of deployment of new
mechanisms in the infrastructure.

Acknowledgments
We are grateful to Aaron Hughes for his generosity and immense
patience during the time we used his systems for NMAP scans.
Without Aaron’s generosity, a large part of this work would not
have been possible. We thank Stefan Savage for the source code of
the Sting tool. We thank Mark Handley for help with system ad-
ministration issues and several helpful discussions about the ECN
test. We thank Vern Paxson for his help in developing the time-wait
duration test. We thank Balachander Krishnamurthy for the list of
web servers used in [17]. We thank Mark Allman, Fred Baker,
Nick Bastin, Alan Cox, Jamal Hadi-Salim, Tony Hain, Dax Kelson,
Balachander Krishnamurthy, Alexey Kuznetsov, Jamshid Mahdavi,
William Miller, Erich Nahum, Kacheong Poon, K. K. Ramakrish-
nan, N. K. Srinivas, Venkat Venkatsubra, Richard Wendland and
participants of NANOG 20 for helpful discussions and comments.
We also thank the anonymous SIGCOMM referees for their helpful
feedback.

7. REFERENCES
[1] ECN-under-Linux Unofficial Vendor Support Page.

http://gtf.org/garzik/ecn/.
[2] Internet protocol, September 1981. RFC791.
[3] M. Allman. A Web Server’s View of the Transport Layer.

Computer Communication Review, 30(5), October 2000.
[4] M. Allman, S. Floyd, and C. Partridge. Increasing TCP’s

Initial Window, September 1998. RFC2414.
[5] M. Allman, V. Paxson, and W. Stevens. TCP Congestion

Control, April 1999. RFC2581.
[6] N. Cardwell, S. Savage, and T. Anderson. Modeling TCP

Latency. In Proc. IEEE INFOCOM, 2000.
[7] Cisco Systems. How to Cost-Effectively Scale Web Servers.

Packet Magazine, Third Quarter 1996.
http://www.cisco.com/warp/public/784/5.html.

[8] K. Claffy, G. Miller, and K. Thompson. The Nature of the
Beast: Recent Traffic Measurements from an Internet
Backbone. In Proceedings of INET’98, 1998.

[9] K. Fall and S. Floyd. Simulation-based Comparisons of
Tahoe, Reno, and SACK TCP. Computer Communication
Review, 26(3), July 1996.

[10] K. Fall and K. Varadhan. ns: Manual, February 2000.
[11] S. Floyd and K. Fall. Promoting the use of End-to-end

Congestion Control in the Internet. IEEE/ACM Trans.
Networking, August 1999.

[12] S. Floyd and T. Henderson. The NewReno Modification to
TCP’s Fast Recovery Algorithm, April 1999. RFC 2582.

[13] Fyodor. Remote OS detection via TCP/IP Stack
FingerPrinting. Phrack 54, 8, Dec. 1998. URL
”http://www.insecure.org/nmap/nmap-fingerprinting-
article.html”.

[14] T. Gao and J. Mahdavi. On Current TCP/IP Implementations
and Performance Testing, August 2000. Unpublished
manuscript.

[15] V. Jacobson. Congestion Avoidance and Control. Computer
Communication Review, 18(4), August 1988.

[16] D. Kelson, September 2000. http://www.uwsg.iu.edu/-
hypermail/linux/kernel/0009.1/0342.html.

[17] B. Krishnamurthy and M. Arlitt. PRO-COW: Protocol
Compliance on the Web-A Longitudinal Study. In USENIX
Symposium on Internet Technologies and Systems, 2001.

[18] B. Krishnamurthy and J. Rexford. Web Protocols and
Practice: HTTP/1.1, Networking Protocols, Caching, and
Traffic Measurement. Addison-Wesley, 2001.

[19] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP
Selective Acknowledgment Options, October 1996.
RFC2018.

[20] S. McCanne and V. Jacobson. The BSD Packet Filter: A New
Architecture for User-level Packet Capture. In Proceedings
of the winter USENIX technical conference, January 1993.

[21] T. Miller. Intrusion Detection Level Analysis of Nmap and
Queso, August 2000.

[22] J. Padhye and S. Floyd. The TBIT Web Page.
http://www.aciri.org/tbit/.

[23] J. Padhye and S. Floyd. Identifying the TCP Behavior of
Web Servers. Technical Report 01-002, ICSI, 2001.

[24] K. Park, G. Kim, and M. Crovella. On the Relationship
between File Sizes, Transport Protocols and Self-Similar
Network Traffic. In Proc. International Conference on
Network Protocols, 1996.

[25] V. Paxson. End-to-End Internet Packet Dynamics. In Proc.
ACM SIGCOMM, 1997.

[26] V. Paxson, M. Allman, S. Dawson, W. Fenner, J. Griner,
I. Heavens, K. Lahey, J. Semke, and B. Volz. Known TCP
Implementation Problems, March 1999. RFC2525.

[27] J. Postel. Transmission Control Protocol, September 1981.
RFC793.

[28] K. K. Ramakrishnan and S. Floyd. A Proposal to add
Explicit Congestion Notification (ECN) to IP, January 1999.
RFC2481.

[29] L. Rizzo. Dummynet and Forward Error Correction. In Proc.
Freenix, 1998.

[30] S. Savage. Sting: a TCP-based Network Measurement Tool.
Proceedings of the 1999 USENIX Symposium on Internet
Technologies and Systems, pages 71–79, Oct. 1999.

[31] W. Stevens. TCP/IP Illustrated, Vol.1 The Protocols.
Addison-Wesley, 1997. 10th printing.

