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Abstract. In this paper we show how to translate bounded-length verification
problems for timed automata into formulae in difference logic, a propositional
logic enriched with timing constraints. We describe the principles of a satisfiabil-
ity checker specialized for this logic that we have implemented and report some
preliminary experimental results.

1 Introduction

The generic problem of verification can be phrased as follows: given a description of a
transition system, check whether its set of possible behaviors contains a behavior vio-
lating some desired property. It is known for quite a while that the problem is decidable
for finite-state systems and various specification formalisms [QS81,EC82,LP84,V\W86]
via graph search algorithms. However, most systems of interest are given as a compo-
sition of many interacting sub-systems and their global state-space is prohibitively-
large for enumerative graph algorithms. To treat such systems one needs symbolic
techniques that perform the reachability computation on an implicit syntactic repre-
sentation of the system. This is the basis of what is called symbolic model-checking
[McM93,BCM™93].

To be more concrete, consider a system over a set 3 of state variables and its tran-
sition relation R(B, B’), written using an auxiliary set of “next-state” variables 5’. The
global transition relation is expressed as a conjunction of the local transition formulae
for the system components:

R(B,B') = Ri(B,B') A Ry(B,B) A ... A Ry (B, B)).

The standard algorithm for checking whether from a set of initial states F' one can reach
a set G works as follows:

* This work was partially supported by the EC project 1IST-2001-35302 AMETIST (Advanced
Methods for Timed Systems).



repeat
F(B) := 3B'[ F(B') A R(B', B)]
until F(B)AG(B) # 0

At every iteration k of the algorithm, the formula F' characterizes the states reach-
able from the initial set within exactly & steps. The Boolean operations and the 3-
operation are implemented usually using BDDs, a canonical representation for propo-
sitional formulae [Bry86]. A variant of the algorithm which keeps a representation of
all states reachable within at most & steps is guaranteed to terminate after finitely many
steps.

In recent years it has been realized that this way of solving the reachability problem
is not always the most efficient, and that the representation of intermediate sets of states
by BDDs can explode in size. Instead of an alternating sequence of next-state compu-
tation and elimination of intermediate states, one can construct a formula expressing
the existence of a path of length &, and then apply generic SAT solvers to the formula
[SS90,BCCZ99,BCCZ99]. The formula looks like this:

3B°,...,3B8F F(B°) A R(B®,BY) AR(BY,B®) A ... AR(B*1, B¥) A G(B").

The advantage in using a SAT solver for such a formula lies in the fact that we
are not restricted anymore to a fixed order of variable elimination and can use any of
the numerous techniques for solving the satisfiability problem (which is, perhaps, the
most celebrated discrete computational problem). Of course, this idea is most useful for
systems that do exhibit undesired behavior, and is less so for correct systems of large
diameter, but bug hunting is a respectable activity especially for systems too large for
complete verification.

In this work we take this idea further and apply it to timed systems where the compu-
tational difficulty is much bigger. To this end we define difference logic, a propositional
logic augmented with numerical variables and difference constraints between pairs of
such variables. We then define a procedure for expressing bounded reachability prob-
lems for timed automata as formulae in this logic. These formulae are then checked
for satisfiability by a new SAT solver for difference logic that we have designed and
implemented. Preliminary experimental results are reported.

The rest of the paper is structured as follows. In section 2 we define difference
logic and the conjunctive normal form for its formulae. The derivation of formulae
for bounded reachability problems for “flat” timed automata is described in Section 3
followed by a compositional version of this transalation in Section 4. Section 5 is ded-
icated to the description of the solver, while some preliminary experimental results are
described in Section 6. We conclude with some related work.

2 DifferencelLogic

In this section we define the class of formulae that we consider. This class has already
been used elsewhere (see e.g. [MLAH99,LPWY99,ABK+97,BM00,ACG99]) and is



probably part of folklore, but to give it a name let us call it difference logic (DL).
We use two slightly different variants, DLZ and DLR depending on the domain of the
numerical variables.

Definition 1 (Difference Logic). Let B = {Bj, Bs, ... } be a set of Boolean variables
and X = {X;,X,,...} be a set of numerical variables. The set of atomic formulae
of DL(B, X) consists of the Boolean variables in B and numerical constraints of the
following forms:

Xi — Xj 2 C

(with ¢ € Z for DLZ and ¢ € Q for DLR) and
X; — Xj >c

with ¢ € Q for DLR only.!

The set F of all DL formulae is the smallest set containing the atomic formulae
which is closed under negation (¢ € F implies - € F) and a collection of binary
Boolean connectives (1, p2 € F implies o1 V o2, 01 A 92,01 — @2, ... € F).

An (X, B)-valuation consists of two functions (overloaded with the name v) v :
B — {T,F}andv : X — ZforDLZ orv : X — R for DLR. The valuation v is
extended to all DL(B, X') formulae by letting

’U(Xi — X] > C) =T IﬁU(XZ) — ’U(Xj) >c

and applying the obvious rules for the Boolean connectives.
A formula ¢ is satisfied by a valuation v iff v(¢) = T (we denote it also by v |= ¢).
A formula ¢ is satisfiable if it has a satisfying valuation.

Proposition 1. The satisfiability problem for DL (B, X') is NP-complete.

Proof. NP-hardness is an immediate consequence of the Boolean case, Cook’s theo-
rem [GJ79]. For NP-easiness, a non-deterministic algorithm works by guessing which
atomic formulae (Boolean variables and inequalities) appearing in the formula are true
and which are false. A polynomial time test then has to check that this assignment
renders the entire formula true (linear time in the size of the formula) and that the cor-
responding set of constraints on the reals is in fact satisfiable. The satisfiability of a con-
junction of difference constraints (a special case of linear programming) can be solved
in polynomial (cubic) time using a variant of the Floyd-Warshall algorithm [CLRSO01].

O

We work with formulae in conjunctive normal with at most 3 literals in a clause.

Definition 2 (3CNF). A Boolean literal is a formula of the form B or =B with B € B.
A numerical literal is a formula of the form X — Y > ¢ (also X — Y > ¢ for DLR). A
3-clause is a disjunction C = Ly V Lo V L3 of at most 3 literals at most one of which
is a numerical literal. A formula of difference logic is in 3CNF if it is a conjunction
Arex Cr of aset of 3-clauses Cy,.

L Over integers, the constraint X — Y > c is of course equivalent to X —Y > ¢ + 1, hence
>-constraints are obsolete in the integer case and life is easier without them.



The restriction to at most one numerical literal per clause plays an important role in
the implementation of our procedure. The restriction to 3-clauses is less pertinent — it
simplifies the description of proof methods based on the Davis-Putnam approach. We
have developed another version with unbounded clause size.

As in propositional logic (see [T70]), translations from arbitrary formulae to 3CNF
need not be costly if auxiliary Boolean variables are introduced:

Proposition 2. From an arbitrary DL(B, X’) formula ¢ one can derive a DL(B’, X)
formula ¢’ over an extended set of Boolean variables B’ O B, such that

¢’ isin 3CNF;

any (B, X')-valuation v satisfying ¢ can be extended to a (5’, X')-valuation v’ sat-
isfying ',

(the projection of) any valuation v’ satisfying ¢’ satisfies equally ¢.

'] = O(l¢)-

Proof. (Sketch) A simple construction to achieve this is to introduce for each composed
sub-formula ¢ of ¢ a fresh variable B, to express whether for a given valuation ¢ holds.
Then the structure of ¢ can be broken up into local semantic constraints by coding,
using 3CNF clauses, the semantic relation of v with its immediate sub-formulae. For
instance, if ¢ = 11 \V 1, then we will add the three clauses {—~By, V By, V By,, By V
=By, , By V By, } to our set of clauses. In addition to these structural clauses, a clause
B, is used to express that ¢ should be true. It is easy to extend a satisfying valuation of
 to a satisfying valuation for the set of clauses constructed this way and, conversely,
projecting the additional variables of a satisfying valuation of ¢’ yields a satisfying
valuation of ¢. O

As a tiny example, consider the formula ¢ consisting of a clause
Y-Z>-2vZ-X>1)

with two numerical literals. To transform it to 3CNF we use an additional Boolean
variable B to represent Y — Z > —2. Using the fact that B < Y — Z > —2 can be
written as

B—Y—-Z>-2)AN(B—=Y —-Z>-2)

we get
(BVZ-X>1)AN(-BVY —-Z>-2)A(BVZ-Y >2).
In practice, optimized translations introducing less variables and with certain additional

structural properties are possible (see [GW99] for a more detailed discussion).

3 From Flat Timed Automata to Difference Logic

Timed automata [AD94] are automata augmented with clock variables. Their behavior
consists of an alternation of discrete transitions and passage of time where the autom-
taton stays in a state and the clock values grow with a uniform rate. Clock values can



enable transitions, disable staying in a state and be reset by transitions. We will start
with “flat” timed automata and define their translation to DL, and later will proceed to
a product of interacting automata. A similar translation, proposed in [HNSY94], is the
basis for the algorithmic verification of timed automata. An integer bounded inequality
over a set C of variables is either C < d,C < d,C > dorC > dforC € C and an
integer constant d.

Definition 3 (Timed Automaton). A timed automaton is a tuple A = (Q,C, S, A)
where @ is a finite set of states, C is a finite set of clock variables, S is a function
which associates with every state ¢ a conjunction .S, of integer bounded inequalities
over C (staying conditions), and A is a transition relation consisting of tuples of the
form (q, g, p,q') where ¢ and ¢’ are states, p C C and g (the transition guard) is a
conjunction of integer bounded inequalities over C.

A clock valuation is a function v : C — R, or equivalently a |C|-dimensional
vector over R . We denote the set of all clock valuations by H. A configuration of the
automaton is hence a pair (¢,v) € @Q x H consisting of a discrete state (sometimes
called “location”) and a clock valuation. Every subset p C C induces a reset function
Reset, : H — H defined for every clock valuation v and every clock variable C' € C
as

] ifCep
Reset, v(C) = {V(C) it Cdp
That is, Reset,, resets to zero all the clocks in p and leaves the other clocks unchanged.
We use 1 to denote the unit vector (1,...,1) and O for the zero vector.

Definition 4 (Steps and Runs). A step of the automaton is one of the following:
— Adiscrete step:
(g:v) == (¢ V),

where § = (q,9,p,q") € A, such that v satisfies g and v/ = Reset,(v).
— Atime step:

(q.v) = (g, v +11),
where ¢ > 0, and v + t1 satisfies S,.

A finite run of a timed automaton is a finite sequence of steps

(quVO) i> (Q17v1) & e i> (Qvan)'

Steps and runs can be extended to include time stamps that indicate the absolute time
since the beginning of the run. This can be viewed as having an additional clock which
is never reset to zero. An extended discrete step is thus

(¢.v,T) = (d',V',T),

and an extended time step is

(q,v,T) R (¢, v+1t1,T +1).



Note that a single behavior of the automaton can be represented by infinitely many runs
due to splitting of time steps. For example, the step above can be split into

(¢, v, T) = (¢, v +t'1, T+ 1) =5 (¢, v+ 11,T + 1).

In particular the definition of a time step allows ¢ = 0 which means that idle transitions
that do nothing and take no time can be inserted anywhere inside a run. This will be
used in the sequel. We will refer to a run in which there are no two consecutive time
steps as a minimal run.

To build a DL formula that characterizes valid runs of the automaton we assume first
that ) can be encoded by a set 3 of Boolean variables so that ¢, (B) is the formula over
those variables denoting a state ¢. Such state formulae can be extended using disjunction
into formulae of the form & p for every P C Q. In order to express step formula we will
use auxiliary sets of variables B’ and C’ to denote the values of state and clock variables
after the step.

The formula @,(C, C’) expressing the effect of applying Reset, is

o,C.Ch)= N\ Cr,=0A /\ C,=Cn.
Cm€p Cmép

The formula @ (C, C’) for the passage of time is

b,(C,C)=3t>0AN\C), —Crn =t

The formula &5(B,C, B’,C’) for a step associated with a transition 6 = (q, g, p, ¢’) IS
Ws(B,C,B',C") = D4(B) NPy(C) NP,(C,C") A By (B')

where @,(C) is just the substitution of C in the guard g. The formula &,(5,C,5’,C’)
for a time step at state ¢ is

U, (B,C,B',C") = By(B) AD,(C,C") A D, 4(C') A Dy(B)

where &, ,(C') is just the substitution of C’ in S,. The formula for a valid step is

w(B,C.B.C)=\ v, v\ ¥.

qeQ [ <PAY
The formula ¥ (B°,C°, ... , B¥,C*) characterizing a run of length k is written as
@, =w(B°,CO, B, CH AW (B, CY, B2, C?) AL A (BETL cR L B ).

Due to idling this formula is satisfied also by runs whose minimal run is of length
smaller than k. Finally a run of length & starting from a set G and ending in a set H is
written as

Dq(B°,C0) AL (B°,C0, ..., BF . CF) A Dy (B, CF).



As the alert reader might have noticed, the inequalities in @, are outside the scope of
DL. After eliminating ¢ we obtain

o.(C.C)= NN\ (Ci=Ci)=(C;—Cy) >0
i i

with numerical constraints that relate 4 numerical variables. This can be, however, cir-
cumvented by a change of variables which has an intuitive meaning (see also [BJLY98]).
Consider a state extended with a time-stamp 7. For every clock C;, the variable X; =
T — C; represents the last time when C; was reset (we use the notation X = T' — C for
the whole transformation). It is not hard to see that an (X, T')-valuation gives a state
representation “isomorphic” to a C-valuation: the guard and staying conditions should
be evaluated on 7' — X instead of on C, passage of time affects only 7" while a reset of
C; at time T corresponds to the assignment X; := T'. All the above formulae can be
transformed into formulae in X and T as follows. The reset formula becomes

o,(X, X T)= N X, =Tn N\ X}, =Xpn.
Cm€p Cmép
Time passage is written as

G (X, T, X, T)= NX}, = Xn At >0NT =T =1t

and after elimination of ¢ as
O (X, T, X, T)= \NX}, = Xpu NT' =T > 0.

The transition formula becomes
Us(B, X, T,B X"\ T") = ®;(B) NPy(X, T) NP,(X, X'\ T) NPy (BYNT =T"

where &, (X, T') is the substitution of 7' — X’ in the guard g instead of C. A time step at
state q is expressed as

U, (B, X, T, B, X'\ T") = Dy(B) NP (X, T, X', T') NPy o(X',T') N Dy(B)
where &, ,(X’,T") is the substitution of 7/ — X" in S,,. The formula for a step is
w(B,X,T,B,X T = \/ #,v \/ .
qeQ deA
The formula ¥y, (B, X°,7°, ... B, X* T*) for a run of length £ is
@, =w(B0, X0, 10, BL, X TY AL Aw(BEL k=t ph=l BR xR Tk,

All these formulae are in DL and the price is the addition of £ numerical variables that
represent the dates at which the corresponding transitions were taken.

Proposition 3 (Translation). Let A be a timed automaton with » states, m clocks and
[ transitions. The problem of reachability within at most & transitions can be expressed
by a DL formula with (k + 1) logn Boolean variables and (k + 1)(m + 1) numerical
variables. The size of the formula is O(k(n + I)m? logn).



4 Compositional Trandglation

In this section we describe the construction of DL formulae for reachability problems
for a product of interacting timed automata. There are many variants of composition
operators and we will concentrate in the presentation on communication by variables,
that is, any automaton may observe the state of the other automata and refer to their
values in its transition guards and staying conditions. Consider several timed automata
{A;}ier of the form A; = (Q;,C;, S;, A;) running in parallel. We assume the states
of each automaton A; are encoded using a distinct set 13; of Boolean variables and let
B= UBL and C = LJCZ

To express the mutual interaction between automata we use some notations. The set
of automata whose state should be observed while taking the transition §; € A; with a
guard g; is

Js, = {j : Q, appearsin g;}.

Likewise, the set of automata to be observed during time passage in a state ¢; € Q; is
Jg. = {j : Q; appearsin Sy, }.

Finally the set of automata whose passage of time might be influenced by transitions in
automaton A; is

Ji={j:3q; € Q; st Q; appearsin S, }.
A local discrete step of an automaton A; is

0;
(Qi7vi,T) — (qg?V;ﬁT)’

such that the transition guard g; of §; € A, is satisfied by the clocks of A; and by the
states of all other automata in Js, at time 7". A time step of A4; is

(inviaT) L) (Q’iavi +t1,T+t)

such that S, is satisfied by the clocks of .A; and by states of the automata in J,, during
the interval [T', T + ¢).
The first approach for constructing global runs and their corresponding formulae is
rather straightforward. A global discrete step is of the form
((q1y e Giseee s qn)s (Viy oo s Viy ooy V), T) N
((q1ye s dlyeeyqn)s (Vi, oo sV o V), T)

such that (g;, v;, T) LN (¢}, v%, T) is a discrete step of some? automaton A;. A global
time step is

((QIa-" aQH)7(V1a"' 7V7L)5T) L) ((qla aQH)7(V1+t17"' ,Vn+t1),T+t)

such that for every ¢;, Sy, is satisfied by v; + ¢1 and by (g1, ... , g»). This means that
whenever one automaton makes a discrete transition at time T, any other automaton
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Fig. 1. A fragments of a run of 3 automata where the black dots represent discrete transitions.
The local minimal runs need to be refined by splitting time steps in order to to conform with the
minimal run of the global automaton. For example, A, splits its time step at [7'2, T'*) into two
steps at [72,73) and [T, T%).

that makes a time step in an interval [7”,T") containing 7', must “split” that step (see
Figure 1).

To build the formulae we replace, as before, clock variables by date variables X; for
each automaton (X = [J &;) and use one global time stamp variable 7" common to all
automata. We construct for each A; its step formulae &,(B, X;, T, B, X!,T") and the
conjunction of those characterizes a global step. The use of the same variable 7" by all
automata guarantees synchronization, i.e. that whenever A; refers to the state variables
of A;, their values correspond to the same time instant.

When the automata are loosely-coupled it might be more economical to express the
steps of each automaton using its private time-scale and impose synchronization be-
tween those time scales only when the automata interact (this approach was introduced
in [BJLY98] as an attempt to apply partial-order methods to timed automata). For each
automaton .A; we use a different time-stamp variable T; (7 = |J T;) such that the val-
ues of its date variables are X; = T; — C;. Then we have, for every A; and a reset
Pi

G, (X, X, T)= N\ X, =Tin N\ X, =X
Cm€p;i Crnépi
Time passage for A; is written as

O, (X, T, X, T)) = \ X}, = Xpn NT] = T; > 0.
m
The transition formula for §; € A; is

Pg, (Bi) N Py, (B, Xi, Ti) N Dy, (Xi, X, Ti)A

U5 (B, X, T, B, X, T') =
g P VT = Gy (BY AT =TI A Njegyon T =T

2 This definition corresponds to full interleaving of transitions but in the implementation we
allow several simultaneous transitions in the same step.



where @, (B, &;, T;) is the substitution of 7; — &; and the corresponding values of the
state-variables of the other automata in g;. Note that the last condition enforces identity
on time stamps only for automata whose state is important for the transition, i.e. those
that guard it and those whose time steps might be disabled due to the transition. Need-
less to say, only the state variables of the automata in Js, will appear in the formula.
The formula for a time step at ¢; is

sth (Bl) A 457_1, (Xiv T;, Xilv Ti/) A QSSJH (Bv X/v TZ/)/\
2 (Bé) A /\jequ (Tz = Tj)

where &, ., (B, X/, T}) is just the substitution of 7] — X/ and all the state variables in
Sq;- The formula for a step of A; is

v, (B,X,T,B X T)=

Wi(Bv‘)(i;TngﬂXilﬂT/)E \/ g;q\/ \/ w‘s'
qeQ; [<VAY)

The formula for a global step is

!Z/(Ba Xa 77 6/7 X/a T/) = /\ g/’i(Ba XivTa Bia X;vT/)
el

and the formula for a run with at most £ transitions is
O, =w(BY, X, T BL XY TY A .. Aw(BF L k= TRt e xk Tk,

In this construction we pay the price of introducing more time-stamp variables in order
to obtain less steps for the same run.

5 The Solver

5.1 Handling Mixed Constraints

The challenge for a satisfiability checker for DL lies, of course, in the interaction be-
tween Boolean and numerical constraints. We sketch some of the popular approaches
to this problem. Given the scope of the topic and its inter-disciplinary nature, this is not
intended to be an exhaustive nor an objective survey.

Numerical constraints were traditionally treated in the context of continuous opti-
mization where efficient algorithms exist, for example, for conjunction of linear con-
straints (linear programming). Attempting to extend this approach to mixed constraints
leads to the so-called mixed integer-linear programming where Booleans are viewed as
integers. When there are only few such “integer” variables one may convert them into
reals ranging in [0, 1], use efficient linear programming algorithms to find a satisfying
assignment for the relaxed problem and then try to push the assignments for the con-
verted Booleans back to {0, 1}. Although certain classes of problems admit successful
relaxation schemes, we do not believe that this approach will work when the combinato-
rial part of the problem is significant and the discrete variables have no metric meaning.

An opposite approach, which tries to keep everything inside the propositional world,
is to replace every numerical constraint by a new Boolean variable (similarly to what we



partially do while transforming to CNF) until a purely propositional problem remains.
After a satisfying assignment for this problem is found, linear programming can be
used to see whether the numerical constraints implied by the extended assignment are
satisfiable. If they are not satisfiable, a new propositional instance should be found,
and so on. The advantage of this approach is in the ability to use of-the-shelf efficient
SAT solvers. However, the interaction between the numerical and logical constraints is
restricted only to the final phase and this might lead to a lot of backtracking.

The approach, often described under the title of constraint propagation or constraint
logic programming [JM94], treats both types of constraints rather equally. Here the key
idea is an incremental search in the space of solution, where every decision concerning
one variable can be propagated to reduce the domains of other variables. Such methods
have been applied rather successfully to problems with increasingly complex numerical
constraints, both linear and non-linear. Some recent “hybrid” techniques that combine
constraint propagation with linear programming proved to be very powerful. More on
the relation between these approaches can be found in [HOO0].

Given that DL, with its restricted class of linear constraints, is perhaps the most
conservative numerical extension of propositional logic, we have chosen to construct
our solver as an extended propositional solver. Our algorithm gives priority to propo-
sitional reasoning but derives information from numerical constraints as soon as they
become isolated and easy to manipulate. The key idea of our approach is that a con-
junction of difference constraints can be represented using a difference bounds matrix,
a data-structure used extensively in the verification of timed automata [Dil89]. The
Floyd-Warshall algorithm is used to normalize the constraints, to find contradictions
in the set of numerical clauses and also to extract a solution from a consistent set of
inequalities in polynomial time.

Typical SAT solvers perform both syntactic transformations of formulae that may
simplify clauses and remove variables, and a search in the space of valuations for the
remaining variables. Our solver, inspired by the Davis-Putnam procedure, gives priority
to the former and resorts to search (“branching™) only when simplifications are impos-
sible. In other popular solvers such as GRASP [MS99] and Chaff [MMZ*], search is
the primary mechanism and syntactic transformations are incorporated as “learning”,
that is adding new clauses implied by failures in the search.

5.2 Boolean Proof Methods

In this section we sketch the way we treat the Boolean part, some of which is common
to other approaches for realizing the Davis-Putnam proof procedure (see, e.g. [Zha95]).
This will serve as an introduction to the treatment of numerical constraints (there are
some interesting analogies between the Boolean and numerical proof methods). Our
presentation largely follows that of [GW99].

The proof method relies on applying satisfiability-preserving transformations to
3CNF DL formulae, some of which might reduce the number of satisfying valuations.
Successive applications of these rules can lead to a satisfying valuation or to a (resolu-
tion) proof of unsatisfiability.

Simplifications: Elimination of redundant clauses which are weaker than others, inde-
pendently of the rest of the formula. On the level of literals, a literal Lo is weaker



than another literal L, if for any valuation v, v = Ly implies v |= Lo. For Boolean
literals this is the case for identical literals. For numerical constraints, X —Y > cis
weaker than X — Y > d if d > c. This weaker-than relation generalizes to clauses
in the obvious way.

Elimination of redundant literals by resolution: If there are two clauses C; = L; V
C"and Cy = =Ly v C’, replace Cy and Cs by C.

Boolean unit resolution: If there is a clause L; and a clause C = L, V C’ such that
L, and L, are contradictory, replace C by C’. Boolean literals are contradictory if
one is the negation of the other.

Boolean pure variables detection: If there is a boolean literal L such that the formula
can be writtemas /\; C; A A\ ;(L Vv C}) where L does not occur in any of the clauses
C; and C;. Then we can set L=T and the formula is reduced A, C;.

Detection of Ioglcal cycles: If there is a chain of two literal clauses —L{ V Ly, — Lo V
Ls,...—Ly, Vv Ly, apply a renaming of L,, ... , L, to L; (this renaming has to be
remembered in order to reconstruct complete valuations of the original formula). A
cycle including the same literal negatively and positively exposes a contradiction
and the formula is unsatisfiable. In practice, the detection of cycles is implemented
using Tarjan’s linear-time algorithm for computing strongly connected components
[Tar72]. For performance considerations, this rule is only applied if the number of
two literal clauses is below a certain value (800 in the current implementation).

Detection of Boolean contradictions: An empty clause is not satisfiable, hence the
entire formula containing an empty clause is not satisfiable. Note that numerical
contradictions will show up as Boolean contradictions via resolution.

The empty conjunction: If we arrive at a formula containing no more clauses, it is
trivially satisfiable by any valuation.

All of the above transformations can reduce the size of a formula without affecting its
semantics. Sometimes, however, checking the conditions for applying these rules might
be costly (quadratic in the size of the formula).

The Davis-Putnam rules go beyond these transformations by replacing a formula
by a stronger one while preserving (non)satisfiability. Instead of describing the gen-
eral Davis-Putnam framework, we only mention an interesting rule which preserves the
3CNF structure without introducing new variables.

Boolean Davis-Putnam rule: Supposing that there is a Boolean literal L such that the
formula can be represented as A\; C; A \;(LV C}) A N\ (=L V Ly) where L does
not occur in any of the clauses C;, C’ That is, aII negative occurrences of L are
in 2-clauses. Then we can set L := /\k L (and memorize this assignment) and
substitute /\, L for L throughout the formula.

Note that this transformation, while preserving satisfiability, can decrease the number
of solutions. Secondly, while going back to 3CNF, some clauses may have to be copied
in case of more than a single negative occurrence of L. It is a question of heuristics,
when the application of this rule is sensible. Obviously, in the case of a single negative
occurrence of L this will result in a simplification.



Branching When the above transformations yield neither a solution nor a contradiction
we resort to branching over valuations of Boolean variables: A Boolean variable is cho-
sen and either assumed to be false or true, thus eliminating it. By recursion, eventually
all variables will be eliminated. However, the scheme as stated requires backtracking,
possibly leading to an exponential-time linear-space complexity.

5.3 Numerical Proof Methods

The main novelty of our approach is in the treatment of numerical difference con-
straints. We sketch here the major ideas as applicable to the integer interpretation.

Numerical unit resolution When a formula contains a numerical 1-literal clause X —
Y > ¢, we can replace numerical literals X —Y > d with d < ¢by T and numerical
literals Y — X > dwithc > —d by F.

Computing numerical implications: Consider a chain of clauses X1 — Xo > ¢4, ...,

Xno1— X, > c,. Forevery j, ksuchthat 1 < j < k < n we can conclude that
X;—Xi > Zj<i<k ¢;. These implied inequalities can be used to remove weaker
numerical literals from the formula. In particular, when the chain involves a cycle
(X, and X, are identical) then it can be replaced by F' if it is positive. Moreover,
if this sum is zero, one can eliminate the variables X;.1,... , X;_; and express
them using X ;.
Similarly to the treatment of Boolean chains and cycles, the above numerical impli-
cations are computed using a graph algorithm, in this case the Floyd-Warshall all
vertex shortest path algorithm with negative weights [CLRS01]. The data-structure
for representing conjunctions of difference constraints is the difference bounds ma-
trix used extensively in the verification of timed automata. In this matrix an in-
equality of the form X, — X; > c s represented by putting —c in the (¢, j)-entry
of the matrix (when two variables are not related by a constraint c is set to —oo).

In the following, we develop an analogue of the Davis-Putnam rule for numerical
constraints. We say that in a numerical literal X —Y > ¢ the variable X occurs posi-
tively and Y occurs negatively. Let v and v" be two valuation which are identical except
for one variable X. One can see that if v/(X) > v(X) then v = L implies v’ |= L for
every literal L where X occurs positively and v’ = L implies v = L when X occurs
negatively in L.

Davis-Putnam for literal >-constraints: Assume, we have only a few (ideally, one)
positive occurrences of X in literal clauses X — Y; > ¢; with ¢ € I and all other
occurrences — in particular those in mixed clauses — are negative. Then we can set
X = max{Y;+ ¢ | i € I} (or X := Y, + ¢; in the ideal case) and eliminate
X from all clauses: Each literal Z — X > d will be replaced by a conjunction
Nier Z —Yi > d + c;. Analogously, if we have only a few negative occurrence
of X in the one-literal clauses Y; — X > c with ¢ € I, we can safely set X :=
min{Y —¢; | i € I}.

This rule is correct in not affecting the satisfiability of the formula because any val-
uation v satisfying it must satisfy v(X) > v(Y;) + ¢;. The valuation v' = v[X :=



max{v(Y;) + ¢; }] where only the value of X is changed such that v'(X) < v(X) also
satisfies the formula, because it satisfies X — Y; > ¢; for all 7 € I and all other clauses
containing negative occurrences of X will also remain true.

5.4 The Overall Algorithm.

The algorithm consists of two major parts: The branching procedure and the non-
branching rules. Since the cost of Davis-Putnam rules is potentially higher than that
of the other rules, Boolean and numerical rules are performed in the following order:

1. Boolean simplifications;

2. Unit resolution;

3. Strongly connected component algorithm on the two literal Boolean clauses with
subsequent detection of contradictions or elimination of equivalent literals;

4. Shortest path algorithm for the normalization of numerical constrains with subse-
quent detection of contradictions or elimination of tightly coupled variables and
numerical unit resolution;

5. Application of the Boolean Davis-Putnam rule;

6. Application of the numerical Davis-Putnam rule;

7. Pass to branching.

Whenever a change in the clause set occurs at one of the stages (1)-(6), the algorithm
restarts at (1).

6 Implementation and Experimental Results

The solver has been written from scratch in order to keep its size small. In its current
status it still needs a lot of tuning and application-specific heuristics, in particular, for
selecting variables for branching. Consequently, its current performance is inferior to
that of more mature tools for timed verification. We hope that this situation will change
in the near future. We will report the result of preliminary experiments after a brief
description of the implementation architecure.

6.1 Implementation

The central data-structure of the solver is the clause table in which we keep Boolean and
mixed clauses, while while purely numerical clauses are stored in a difference bounds
matrix. The interaction between the two happens when, following a simplification, a
mixed clause is transformed into a numerical literal and passes from the clause table to
the matrix. Numerical implications are computed on the matrix and may affect Boolean
clauses, for example by numerical unit resolution.

Due to branching we need to organize these data structures in a stack. Heuristic
improvements can be used to render stack operations less expensive, e.g. a special tech-
nique for storing stacks of sparse matrices.

We have tried to keep the translation from DL to 3CNF separated as much as pos-
sible from the rest of the solver. And indeed, a new version of the solver, not restricted



to 3CNF has been written recently in a very short time. This version consumes less
memory but still needs more tuning to compete in time performance with the 3CNF
version.

We have started implementing translators from various formats of timed automata
as used in the tools Kronos, OpenKronos and IF [Y97,BDM™98,BFG*00]. Since these
tools admit a variety of syntax, synchronization mechanisms and semantic definitions,
this process is not yet complete. The translations that are currently working are a direct
translation from job-shop scheduling problems?, a translation from flat timed automata
in the Kronos format, and a global-time compositional translation for the sub-class of
timed automata corresponding to digital circuits with bi-bounded inertial delays [BS94]
following their modeling as timed automata [MP95,BIMY].

6.2 Experimental Results

Long Runs of Simple Automata As a first example we took a simple timed automaton
with 4 states and one clock and created, via our translator, DL formulae for paths of
varying length. Table 1 show how the size and properties of the formulae change with
the length of the path, as well as the time it takes to check satisfiability. The good
results here are misleading, because most of the complexity in this example is along the
temporal dimension and hence the solver does not need to perform a lot of branching.

path |# bool|# real| # bool |[# mixed| time
length| vars| vars|clauses| clauses|(secs)
1| b51 7 87 52| 0.01
10| 492| 34| 888 520| 0.24
20| 982| 64| 1778 1040| 1.46
50| 2452| 154| 4448| 2600(10.34
100| 4902 304| 8898 5200(43.20

Table 1. Size of reachability formulae (in 3CNF) and solution time as a function of path length
for a simple automaton. In all cases the formula is satisfiable.

Job-Shop Scheduling The classical job-shop scheduling problem translates very nat-
urally into DL. The problem can be stated as an optimization problem (“find an optimal
schedule™) or as a decision problem (“is there a schedule of length smaller than L?”).
We have experimented with a well-known benchmark example taken from [ABZ88]
with 10 machines and 10 jobs, each having 10 steps. The known optimal schedule is
of length 1179. The 3CNF DL formula for a feasible schedule has 1452 Boolean vari-
ables, 102 real variables, 1901 Boolean clauses and 2453 mixed clauses. While posing
the verification problem we observe a phenomenon which, we think, is very typical in

8 This translation does not go through timed automata but encodes the obvious constraints on
the start times of steps in jobs.



such situations: when L is much larger than the length of the optimal schedule, a satis-
fying assignment is easily found. Likewise, when L is much smaller than the optimum,
we detect quickly a contradiction. As we approach the optimum from both sides, the
computational cost grows. The results appear in Table 2.

L |answer|time(secs)
100, No 4,72
500 No 4.47
750/ No 4,57

1000| No 31.03
1100| No oo
1179| Yes 00
1200( Yes o0
1300( Yes 00
1400| Yes 18.88
1500( Yes 13.36
2000| Yes 12.59
3000| Yes 12.79
5000| Yes 13.59
10000| Yes 14.53

Table 2. The results for the job-shop benchmark. The second column indicates the (a-priori
known) answer to the question whether there exists a schedule of length < L. The symbol co
indicates that the solver did not terminate within 25 minutes.

All experiments were performed on a standard PC powered by a 600MHz Pen-
tium I11. The maximum memory usage reached was about 90MB (for the hard job-shop
examples and the formula for a path of length 100 for the simple automaton). Other
experiments required less than 10MB.

7 Redated Work and Conclusions

The idea to extend the applicability of SAT-based verification from finite-state systems
to systems augmented with unbounded variables or clocks is a very natural one and
has been pursued independently by several groups. In [ACG99] a solver for a simi-
lar logic was applied to Al temporal planning problems. The closest work to ours is
that of [ABCT02,ACKS02] where the authors develop an extended SAT solver to ver-
ify timed automata against temporal logic specifications. The major differences with
respect to the present paper is in their use of a more general linear constraint solver,
and in the limited interaction between the Boolean and numerical parts. The work of
[MRS02] considers more general numerical constraints and gives priority to proposi-
tional reasoning by encoding numerical constraints as Booleans and then using decision
procedures to eliminate “spurious solutions”. Other investigations in this methodology
appear in [SSB02] where DL formulae are called separation formulae.



We have proposed an alternative approach for solving timing related verification and
optimization problems. It is worth mentioning other works, such as [BFHT01,AMO01],
that go in the opposite direction by applying timed automata verification techniques
to scheduling problems that were traditionally solved using constraint resolution. We
hope that all this effort will eventually lead to performance improvements and to a
better understanding of the computational difficulty of temporal reasoning.
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